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Abstract—A new optimization method for the design of full-
band and lowpass IIR digital differentiators is proposed. In the
new method, the passband phase-response error is minimized
under the constraint that the maximum passband amplitude-
response relative error is below a prescribed level. For lowpass
IIR differentiators, an additional constraint is introduced to limit
the average squared amplitude response in the stopband, so
as to minimize any high-frequency noise that may be present.
Extensive experimental results are included which show that
the differentiators designed using the proposed method have
much smaller maximum phase-response error for the same
passband amplitude-response error and stopband constraints
when compared with several differentiators designed using state-
of-the-art competing methods.

Index Terms—Digital differentiators, IIR filter design, design
of filters by optimization

I. INTRODUCTION

Digital differentiators are used in various fields of signal
processing such as in the design of compensators in con-
trol systems [1], extracting information about transients in
biomedical signal processing [2]-[4], analyzing the signals in
radar systems [5], and for edge detection in image process-
ing [6]. Differentiators having perfect linear phase can be
easily designed using FIR filters. However, in most applica-
tions perfectly linear phase is not required and differentiators
having approximately linear phase are quite acceptable. In
such applications, IIR differentiators are more attractive than
FIR differentiators for two main reasons: Firstly, they can
satisfy the given filter specifications with a much lower filter
order thereby reducing the computational requirement or the
complexity of hardware in a hardware implementation, and,
secondly, they usually have a much smaller group delay
thereby resulting in lower system delay.

The presence of the denominator polynomial in IIR filters
renders their design more challenging than that of FIR filters
because it results in highly nonlinear objective functions
that require highly sophisticated optimization methods. As
IIR filters lack the stability property of FIR filters, stability
constraints must be incorporated in the design process to
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ensure that the filter is stable, which means constraining the
poles to lie within the unit circle of the z plane.

Lowpass differentiators are appropriate when the signal
of interest is at the low frequency end as they provide the
advantage of reducing any high-frequency noise that may be
present. In [7], [8], lowpass IIR differentiators have been
designed by inverting the transfer function of lowpass in-
tegrators and then adjusting the denominator coefficients so
that the poles lie within the unit circle. More recently in [9],
two methods for designing lowpass IIR differentiators have
been presented. In the first method, a fullband differentiator
is cascaded with an appropriate lowpass filter, while in the
second method the numerator is realized as a linear phase
filter and the denominator is obtained using a constrained
optimization method.

Earlier examples of fullband IIR differentiators have been
provided in [10], although no method for their design is pre-
sented. In [11]-[15], fullband IIR differentiators are designed
by taking the inverse of the transfer function of a fullband
integrator and appropriately adjusting the denominator coeffi-
cients so that the poles lie within the unit circle. Then in [16],
a sequential minimization procedure based on second-order
factor updates was used, while in [17], an iterative quadratic
programming approach with prescribed passband edge fre-
quency is presented. The method in [17], however, uses a
restrictive stability constraint that could affect the quality of
the designs and, additionally, it requires that the group delay
be specified. In [18] and [19], the differentiators are derived
by taking an existing IIR differentiator and optimizing their
pole-zero locations to improve the performance further.

In this paper, we propose a design method where the group-
delay deviation with respect to the average group delay is
minimized under the constraint that the maximum amplitude-
response error be below a prescribed level. For lowpass IIR
differentiators, we introduce an additional constraint to limit
the average squared amplitude-response in the stopband, so as
to minimize any high-frequency noise that may be present.
By representing the filter in polar form, a non-restrictive
stability constraint characterized by a set of linear inequality
constraints can be incorporated in the optimization algorithm.
The group delay is included as an optimization variable to
achieve improved design specifications. Procedures for design-
ing fullband and lowpass IIR differentiators are then described.
Experimental results show that differentiators designed using
the method have much smaller maximum phase-error for the
same passband error and stopband constraint than several
known state-of-the-art methods.

The paper is organized as follows. In Section II, we frame
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the problem as an iterative constrained optimization problem.
In Section III, we describe procedures for designing fullband
and lowpass IIR differentiators. In Section IV, performance
comparisons between filters designed using the proposed
method and known methods are carried out. Conclusions are
drawn in Section V.

II. THE OPTIMIZATION PROBLEM

In this section, we frame the problem at hand as an
iterative constrained optimization problem by approximating
each update as a linear approximation step as was done in [20]
and [21]. To this end, we formulate the stability constraints,
group-delay deviation, passband error, and stopband attenu-
ation. Then, we incorporate the analytical results obtained
within the framework of a constrained optimization problem.

A digital differentiator can be represented by the transfer
function

H(z) = H0

J∏
m=1

(z − r(1)amejθam)(z − r(2)ame−jθam)

J∏
m=1

(z − r
(1)
bmejθbm)(z − r

(2)
bme−jθbm)

(1)

where J is the number of differentiator sections, N = 2J is
the differentiator order, and H0 is a multiplier constant. An
odd-order transfer function can be easily obtained by setting
r
(1)
a1 and r

(1)
b1 to zero in the first section.

The ideal response of a causal differentiator is of the
form [22]

Hd(ω) = jωe−jτω, 0 < |ω| < π (2)

where τ is the group delay. From (2), it is clear that at ω = 0
the amplitude response is zero while the phase characteristic
has a discontinuity of π and jumps between −π/2 and π/2 as
frequency ω switches between 0− and 0+, respectively. Such a
frequency response at ω = 0 can be realized by placing a zero
at z = 1 [10]. With this modification, the transfer function of
the differentiator in (1) becomes

H(c, z) = H0(z − 1)(z − ra1)

·

J∏
m=2

(z − r(1)amejθam)(z − r(2)ame−jθam)

J∏
m=1

(z − r
(1)
bmejθbm)(z − r

(2)
bme−jθbm)

(3)

where

c = [ra1 r
(1)
b1 r

(2)
b1 θb1 r

(1)
a2 r

(2)
a2 θa2 r

(1)
b2 r

(2)
b2 θb2

· · · r(1)aJ r
(2)
aJ θaJ r

(1)
bJ r

(2)
bJ θbJ H0]

T
(4)

To ensure that the differentiator is stable, the poles of the
transfer function must lie within the unit circle [22]. If ϵs ≥ 0
is a stability margin of the pole radius from unity, and r

(1)
bm(k)

and r
(2)
bm(k) are the corresponding values of r

(1)
bm and r

(2)
bm at

the start of the kth iteration of the optimization, the stability
conditions are given by

|r(1)bm(k) + δ
(1)
bm| ≤ 1− ϵs ∀ m ∈ [1, J ]

|r(2)bm(k) + δ
(2)
bm| ≤ 1− ϵs ∀ m ∈ [1, J ] (5)

where δ
(1)
bm and δ

(2)
bm are the corresponding updates for r(1)bm(k)

and r
(2)
bm(k). Note that the conditions in (5) are convex in-

equality constraints and can, therefore, be incorporated within
a convex optimization problem.

A. Group delay deviation

The group delay corresponding to the transfer function
H(c, z) in (3) is given by

τh(c, ω) = α(1, 0, ω) + α(ra1, 0, ω)

+

J∑
m=2

[
α(r(1)am, θam, ω) + α(r(2)am,−θam, ω)

]
−

J∑
m=1

[
α(r

(1)
bm, θbm, ω) + α(r

(2)
bm,−θbm, ω)

] (6)

where

α(r, θ, ω) =

−1/2 r = 1
r cos(θ − ω)− 1

r2 − 2r cos(θ − ω) + 1
otherwise

(7)

The group-delay deviation at frequency ω is given by

eg(x, ω) = τh(c, e
jω)− τ (8)

where
x = [cT τ ]T (9)

and τ is the desired group delay which may be an opti-
mization variable. To incorporate the Lp norm of the group-
delay deviation, E

(gd)
p , in an iterative optimization problem

we can approximate E
(gd)
p for the kth iteration by a linear

approximation given by [20]

E(gd)
p (k) ≈ ∥Ckδ + dk∥p (10)

where

Ck =

 κg∇eg(xk, e
jω1)T

...
κg∇eg(xk, e

jωNp )T

 (11)

dk = [d1 d2 · · · dNp ]
T (12)

di = κgeg(xk, e
jωi), ωi ∈ Ψp (13)

xk is the value of x in the kth iteration, δ is the update to
xk, κg is a constant, and Ψp is the set of passband frequency
sample points. The right-hand side of (10) is the Lp norm of
an affine function of δ and, therefore, it is convex with respect
to δ [23].

B. Passband error

If Hd(ω) is the desired frequency response of the differen-
tiator in the passband and ck is the value of vector c at the start
of the kth iteration, a passband error function at frequency ω
can be defined as

eh(ck, e
jω) = W (ω)[|H(ck, e

jω)| − |Hd(ω)|]
= W (ω)[|H(ck, e

jω)| − |ω|], ω ∈ Ψp

(14)

Constant absolute or relative error may be required and
W (ω) can be chosen as unity or 1/|ω| depending upon the
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application. Note, however, that for constant absolute error,
the relative error of the differentiator would tend to infinity
as the frequency tends to zero; therefore, constant absolute
error would not, typically, be of much practical interest and
the design of differentiators with constant absolute error will
not be considered further.

For the case of relative error, eh(ck, ejω) can be expressed
as

eh(ck, e
jω) = [P (ω)− 1] , ω ∈ Ψp (15)

where

P (ω) =
|H(ck, e

jω)|
|ω|

(16)

Function P (ω) becomes indeterminate when ω = 0. To
circumvent this problem, we set z = ejω and substitute (3)
in (16) to obtain

P (ω) =
∣∣H0[e

jω − ra1]
∣∣

·
∣∣∣∣− ω sinc2(ω/2) + j 2 sinc ω

2

∣∣∣∣
·

∣∣∣∣∣∣∣∣∣∣

J∏
m=2

(ejω − r(1)amejθam)(ejω − r(2)ame−jθam)

J∏
m=1

(ejω − r
(1)
bmejθbm)(ejω − r

(2)
bme−jθbm)

∣∣∣∣∣∣∣∣∣∣
(17)

where

sinc(x) =

1 x = 0
sinx

x
otherwise

(18)

The modified form in (17) results in a deterministic value of
P (ω) at ω = 0. Using the same approach as in Section II-
A, the Lp norm of the passband relative error, eh(ck, ejω), in
(15) can be expressed in matrix form as

E(pb)
p (k) ≈ ∥D(pb)

k δ + f
(pb)
k ∥p (19)

where

D
(pb)
k =

 κpb∇eh(ck, e
jω1)T 0

...
...

κpb∇eh(ck, e
jωNp )T 0

 , ωi ∈ Ψp (20)

f
(pb)
k = [f

(pb)
1 f

(pb)
2 · · · f

(pb)
Np

]T (21)

f
(pb)
i = κpbeh(ck, e

jωi) (22)
δ = [δTc δτ ]

T (23)

where δc is the vector update for ck, δτ is the scalar update
for τ , and κpb is a constant. The elements of the last column
of D(pb)

k in (20) are all zeros since (19) is independent of τ .

C. Amplitude response in the stopband

The frequency response update for the differentiator at the
kth iteration is given by

H(ck + δc, e
jω) ≈ H(ck, e

jω) +∇H(ck, e
jω)T δc (24)

In the stopband, the type of noise that may require attenuation
may not always be white. If the spectrum of the noise in

the stopband is known in advance, a weight Ws(ω) can be
incorporated in (24) so that more emphasis can by assigned
to frequency components with higher noise power; i.e.,

Ws(ω)H(ck + δc, e
jω) ≈ Ws(ω)[H(ck, e

jω)

+∇H(ck, e
jω)T δc]

(25)

In such cases, Ws(ω) can correspond to the normalized mag-
nitude spectrum of the noise in the stopband. If the stopband
noise is white, as assumed in all our experiments in Section
IV, then Ws(ω) is set to unity.

By using the same approach as in Section II-B, the Lp norm
of the weighted frequency response in the stopband can be
approximated as

E(sb)
p (k) ≈ ∥D(sb)

k δ + f
(sb)
k ∥p (26)

where

D
(sb)
k =

 κsbWs(ω1)∇H(ck, e
jω1)T 0

...
...

κsbWs(ωNs)∇H(ck, e
jωNs )T 0

 , ωi ∈ Ψs

(27)

f
(sb)
k = [f1 f2 · · · fNs ]

T , ωi ∈ Ψs (28)
fi = κsbWs(ω)H(ck, e

jωi) (29)

In the above equations, Ψs corresponds to the set of frequency
points in the stopband and κsb is a constant.

D. Optimization problem

The optimization can be carried out by minimizing the
group-delay deviation under the constraints that the passband
error and stopband attenuation are within prescribed levels.
The design of a lowpass differentiator can be obtained by
solving the optimization problem

minimize ∥eg(x, ejω)∥p (30)
subject to: passband error function ≤ Γpb

stopband gain ≤ Γsb

differentiator is stable

For the case of a fullband differentiator, the stopband con-
straint is not relevant and it is not included.

Using (5), (10), (19), and (26) the problem for the kth
iteration can be expressed as

minimize ∥Ckδ + dk∥p (31)

subject to: ∥D(pb)
k δ + f

(pb)
k ∥p ≤ Γpb

∥D(sb)
k δ + f

(sb)
k ∥p ≤ Γsb

∥δ∥2 ≤ Γsmall

|r(1)bm(k) + δ
(1)
bm| ≤ 1− ϵs ∀ m ∈ [1, J ]

|r(2)bm(k) + δ
(2)
bm| ≤ 1− ϵs ∀ m ∈ [1, J ]

where δ ∈ R6J−1 is the optimization variable. The optimum
value of δ is then used to update the optimizing parameters
for the next iteration. Note that variables δ

(1)
bm and δ

(2)
bm are

included within the vector δ.
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In the design of IIR differentiators, the typical approach is
to minimize the maximum passband amplitude-response error
and maximum phase-response error. For the former, this can
be done by making the value of p large when computing the
Lp norm for the parameter in (19). However, for the latter it
is more appropriate to take the L1 norm of (10) since the
group delay is a derivative of the phase and minimization
of the L1 norm of the group-delay error corresponds to
better reduction of the maximum phase-response error than
the minimization of the L∞ norm; this would be effective
under the additional constraint that the average group-delay
error in the passband is zero. For the stopband, the aim is
to minimize the noise power, and therefore the L2 norm is
more appropriate. Furthermore, as in [20], we also include
slack variable δrlx in the passband error constraint in case the
initialization filter does not satisfy the maximum passband-
error constraint. With these modification, the problem in (31)
becomes

minimize ∥Ckδ + dk∥1 + V δrlx (32)
subject to: sum[Ckδ + dk] = 0

∥D(pb)
k δ + f

(pb)
k ∥∞ ≤ Γpb + δrlx

∥D(sb)
k δ + f

(sb)
k ∥2 ≤ Γsb

∥δ∥2 ≤ Γsmall + δrlx

δrlx ≥ 0

|r(1)bm(k) + δ
(1)
bm| ≤ 1− ϵs ∀ m ∈ [1, J ]

|r(2)bm(k) + δ
(2)
bm| ≤ 1− ϵs ∀ m ∈ [1, J ]

where
sum[X] =

∑
i

xi (33)

δ and δrlx are optimization variables, and V is a positive
weighing factor for the relaxation variable.

Note that as in [20], the group delay can be fixed to a
prescribed value or optimized. However, in some applications
it is desirable that the optimized group delay be small. In such
cases, we can constrain the desired group delay τ in (9) to be
below a prescribed upper bound Γgd. Such a constraint is given
by

τ ≤ Γgd + δrlx (34)

where slack variable δrlx is also included if τ is greater than
Γgd during initialization. The minimization of the group-delay
deviation instead of the phase-response error in (32) would
result in a sign ambiguity in the final solution. This can be
corrected simply by checking the sign of the final solution and
multiplying the transfer function by −1 if the sign is reverse.

The optimization problem in (32) can be easily expressed
as a second-order cone programmming (SOCP) problem as
in [21] and solved using efficient SOCP solvers such as the one
available in the MATLAB SeDuMi optimization toolbox [24].

III. DESIGN OF DIGITAL DIFFERENTIATORS

In this section, we first describe a procedure for designing
the lowest even- and odd-order filters that satisfy or nearly
satisfy the amplitude-response constraints, which are then used
for obtaining the initialization filters. We then describe the
algorithm for the design of differentiators.

A. Lowest order filters satisfying the passband amplitude-
response constraints

To find the lowest even- and odd-order filters that satisfy or
nearly satisfy the amplitude response constraint, we modify
the algorithm developed in [25] so that the absolute relative
error is minimized instead of the squared amplitude-response
error.

If we consider an IIR filter with the transfer function

Hm(z) =

m∑
i=0

biz
−i

n∑
i=0

aiz
−i

(35)

then setting z = ejω we can express the squared amplitude
response as

N(ω)

D(ω)
= |Hm(ejω)|2 = Hm(ejω)Hm(e−jω)

=

p0 +
m∑
i=1

2pi cos(ωi)

q0 +

n∑
i=1

2qi cos(ωi)

(36)

where p−m, . . . , pm and q−n, . . . , qn are the numerator and
denominator filter coefficients, respectively, of the product
Hm(z)Hm(z−1) such that pi = p−i and qi = q−i. If Fd(ω)
is the desired squared passband amplitude response of the
differentiator, then the optimization algorithm in [25] can be
used to find the filter coefficients that satisfy the constraints

ϵl(ω) ≤
[
N(ω)

D(ω)
− Fd(ω)

]
≤ ϵr(ω), ∀ ω ∈ Ψp (37)

If δr is the maximum absolute relative error of the passband
amplitude response, then

1

|ω|

∣∣∣∣∣
√

N(ω)

D(ω)
−
√
Fd(ω)

∣∣∣∣∣ ≤ δr, ∀ ω ∈ Ψp (38)

where Fd(ω) = ω2. Now as shown in Appendix A, we can
select ϵl(ω) and ϵr(ω) in (37) as

ϵr(ω) = (2δr + δ2r)ω
2 (39)

ϵl(ω) = (2δr − δ2r)ω
2 (40)

For the lowpass differentiator, an additional requirement is to
limit the gain above the passband edge frequency so as to
minimize any out-of-band high-frequency noise. One way to
do this is to constrain the gain at ω = π to be below a certain
threshold, that is,

N(π)

D(π)
≤ Γ2

p (41)

where Γp is the maximum allowable gain at ω = π. Since
the ideal gain of a fullband differentiator at ω = π is π, we
can assume the upper limit for Γp to be π. Consequently, the
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optimization can be expressed as a linear programming (LP)
problem given by

minimize ν (42)
subject to: N(ω)−D(ω)[ω2 + ϵr(ω)]− ν ≤ 0

−N(ω) +D(ω)[ω2 − ϵl(ω)]− ν ≤ 0

N(ω) ≥ 0

D(ω) ≥ 0 + ρs

N(π)− Γ2
pD(π) ≤ 0

ν ≥ 0

where ρs is a small positive constant used to ensure that the
poles lie inside the unit circle. The above LP problem can
be solved for ω ∈ Ψp with ν, pi, and qi as the optimization
variables.

If the optimal value of ν is close to zero, that is, νopt ≤
esmall, then the solution would approximately satisfy the
passband constraints and the next step is to recover the actual
minimum-phase filter from the optimal values of pi and qi.
This is a straightforward step that can be carried out by using
either spectral factorization [26] or a procedure described
in [25].

For a fullband differentiator, the lowest filter order that
would satisfy the passband constraint can be determined by
means of the following procedure:

Step 1: Initialize the passband error, δr, and the passband
sampling frequencies, Ψp, to the prescribed values. Also set
the starting filter order, M , to 1, and Γp to a sufficiently large
value greater than π.

Step 2: For filter order M , set m = n = M in (36) and
solve the LP problem in (42).

Step 3: If the optimal value of ν is close to zero (νopt ≤
esmall), the passband specification is satisfied; therefore, pro-
ceed to Step 4. Otherwise, set M = M + 1 and go to Step
2.

Step 4: The optimal values of pi and qi are used to obtained
the lowest-order filter and the algorithm is terminated.

For the case of a lowpass differentiator, we use steps 1 to 4
above and then continue with the following additional steps:

Step 5: Without changing the filter order, find the smallest
value of Γp between 0 and π that would satisfy the passband
specification (i.e., νopt ≤ esmall) by solving the LP problem
in (42) for different values of Γp. This can be done by using a
one-dimensional optimization procedure, such as the golden-
section search [23], to find the optimum value of Γp between
the bounds [0, π]; an accuracy of 10−2 is typically sufficient.

Step 6: The optimal values of pi and qi with the smallest
value of Γp is then used to derive the lowest-order filter that
would satisfy the passband error specification for the lowpass
differentiator.

The next step is to find a second filter of order (Mlow − 1)
that has the smallest passband error, δr, while keeping Γp

larger than π. To find such a filter, we use the one-dimensional
optimization procedure, as in Step 5 above, to derive a filter
with the smallest value of δr within the bounds [0, 1] that
satisfies νopt ≤ esmall. However, if Mlow = 1, which is the
lowest possible order, the second filter is obtained by setting

the filter order to 2 and then performing Steps 2 to 4 above
for a fullband differentiator or Steps 2 to 6 for a lowpass
differentiator.

The transfer functions of the two filters obtained,
Hmag(z,M1) and Hmag(z,M2), are given by

Hmag(z,M) =

M∏
i=1

z − raie
jθai

z − rbiejθbi
(43)

where

M1 = Mlow (44)

M2 =

{
2 if Mlow = 1

Mlow − 1 otherwise
(45)

by letting M = M1 or M2.

B. Initialization filters

To obtain initialization filters of the desired filter or-
ders, we add a number of biquadratic transfer functions to
Hmag(z,M1) and Hmag(z,M2).

Two types of allpass transfer functions can be used. One
possibility is to use

H(1)
ap (z,Map) =


1 if Map = 0
Map∏
i=1

G0
z − r−1

i ejθi

z − riejθi
otherwise

(46)

where Map is the order of the transfer function,

θi =
(i− 1)2π

Map
(47)

and G0 is a multiplier constant. The second possibility,
H

(2)
ap (z,Map), can be obtained as follows: For an odd-order

allpass transfer function, H(2)
ap (z,Map) is obtained by rotating

the pole-zero positions of H
(1)
ap (z,Map) by π radians in the

z plane; on the other hand, for an even-order allpass transfer
function, H(2)

ap (z,Map) is obtained by rotating H
(1)
ap (z,Map)

by π/2 radians either in the clockwise or counter-clockwise
direction. Note that if the allpass transfer function is a mul-
tiple of 4, it can be easily shown that H

(1)
ap (z,Map) and

H
(2)
ap (z,Map) are identical.
The transfer functions of the four initialization filters are

given by

Hinit1(z) = Hmag(z,M1) ·H(1)
ap (z,Md −M1)

Hinit2(z) = Hmag(z,M1) ·H(2)
ap (z,Md −M1)

Hinit3(z) = Hmag(z,M2) ·H(1)
ap (z,Md −M2)

Hinit4(z) = Hmag(z,M2) ·H(2)
ap (z,Md −M2)

(48)

where Md is the differentiator order. Note that Hinit1(z) and
Hinit2(z) are valid only if Md ≥ M1, while Hinit3(z) and
Hinit4(z) are valid only if Md ≥ M2.
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C. Passband phase-response error in the differentiator

If the average passband group delay of the differentiator is
given by

τ̄ =
1

ωp

∫ ωp

0

τh(ω)dω (49)

where ωp is the passband edge frequency and τh(ω) is the
group delay of the differentiator, then the ideal phase response
of the differentiator is given by

ϕideal(ω) =
π

2
− ωτ̄ , ω ∈ [0, 2π] (50)

The phase-response error is given by

eϕ(ω) = ϕh(ω)− ϕideal(ω), eϕ(ω) ∈ [−π, π] (51)

where ϕh(ω) is the actual phase response of the differentia-
tor. Consequently, the maximum peak-to-peak phase-response
error, in degrees, is given by

ξϕ =
180

π
[sup

ω
eϕ(ω)− inf

ω
eϕ(ω)] (52)

Parameter ξϕ will be referred to as the maximum phase-
response error hereafter.

D. Design procedure

The design of a digital differentiator that would satisfy
prescribed specifications can be carried out using the following
algorithm:

Step 1: Compute the two lowest-order transfer functions,
Hmag(z,M1) and Hmag(z,M2), using the procedure in Sec-
tion III-A.

Step 2: Set the desired differentiator order to Md and
compute the initialization filters in (48).

Step 3: Solve the optimization problem in (32) for all
the initialization filters derived in Step 2. For the fullband
differentiator set Γsb = ∞, while for the lowpass differentiator
set it to the prescribed value.

Step 4: Select the solution that has the smallest maximum
phase-response error ξϕ and at the same time satisfies the
passband error constraint; for the lowpass differentiator, the
solution should also satisfy the stopband constraint.

Step 5: If a solution is found that satisfies the phase-error
specification in Step 4, stop. Otherwise, set Md = Md+1 and
go to Step 2.

E. Special case for differentiators with fixed group delay

In general, the average group delay of fullband differen-
tiators with optimized group delay increases as the order
of the differentiator is increased. The value of the average
group delay usually follows that of the ideal fullband causal
differentiator where the group delay is confined to τn samples,
where τn is defines as

τn = 0.5 + n, n is a nonnegative integer (53)

In applications where the order of the differentiator is large,
it may be desirable to have a differentiator with a smaller
group delay at the expense of increased in amplitude- and
phase-response errors. In such applications, a modified version

of the design method in Section III-A can be used. Rather
than finding the lowest-order filter that would satisfy the
amplitude-response constraints, for differentiators with the
smallest possible group delay we start from the opposite end
by finding the prescribed highest and second-highest order
filters that would satisfy the amplitude-response constraints,
and then using the procedure in Section III-B we obtain the
initialization filters. In this way, as the desired group delay
is increased, the order of the filter that would satisfy the
amplitude-response constraint is progressively decreased.

The same approach can be used for lowpass differentiators
with fixed group delay.

F. Practical considerations

The frequency-dependent parameters are evaluated at fre-
quency points that are sampled between −π and π, such that
the sample points between −π and 0 are the negative of the
sample points between 0 and π. To reduce the number of
sample points and at the same time prevent spikes in the
passband amplitude-response error function, the nonuniform
variable sampling technique described in Chapter 16 of [22]
can be used. Unlike the passband amplitude-response error,
which is an L∞ norm, the group delay and stopband errors
are L1 and L2 norms, respectively, and hence the technique
in [22] is not applicable. However, a uniform sampling can be
used for these error functions.

The weight factor V for the relaxation parameter δrlx in
(32) should not be too small, say, smaller than 100 as this
could make the optimization algorithm unstable and prevent it
from converging; at the same time, it should not be too large,
say, larger than 10, 000 as this can slow down the convergence.
Values of V in the range 500 to 5000 were found to give good
results.

To ensure that the optimization is not prematurely termi-
nated, the termination condition is decided by monitoring
the values of the objective function typically for the last 40
iterations as was done in [20].

IV. EXPERIMENTAL RESULTS

In this section, we provide comparative experimental results
to demonstrate the efficiency of the proposed method. Twelve
design examples of various differentiator types are considered.
Parameters Γsmall and V in (32) were set to 0.01 and 1000,
respectively. The allpass transfer function, H

(1)
ap (z,Map), in

(46) was initialized with rk = 0.9. The default maximum
pole radius was set to 0.98. A normalized sampling frequency
of 2π was assumed in all design examples. The number of
virtual and actual sample frequencies used in the nonuniform
sampling technique [22] over the frequency range −ωp to ωp

were 2000 and 68, respectively. Eight of the actual sample
frequencies were uniformly distributed near the passband edge
with a separation of 7.8 × 10−4 rad/s between them. The
group delay and stopband parameters, on the other hand, were
uniformly sampled and evaluated using 800 uniformly sampled
frequencies in the interval [−π, π].

The amount of noise power in the stopband for the lowpass
differentiator, assuming white Guassian noise, is proportional
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TABLE I
FULLBAND DIFFERENTIATOR SPECIFICATIONS FOR EXAMPLE 1

Parameters Values
Maximum rel. error, δr 0.0065
Maximum pole radius 0.98

TABLE II
DESIGN RESULTS FOR EXAMPLE 1 (FULLBAND DIFFERENTIATOR)

Parameters Proposed Proposed Method
method 1 method 2 in [10]

Filter order 4 6 6
Max. rel. error, δr 0.006 0.0061 0.0065
Avg. group delay, τ̄ 2.5 3.5 0.5
Max. phase error, ξϕ 3.72 2.12 10.53

to the average squared amplitude response in the stopband and
is given by

Psb =
1

π − ωp

∫ π

ωp

|H(ejω)|2dω (54)

This quantity was used to compare the stopband noise power
of the different lowpass differentiator designs considered.

In Sections IV-A to IV-D below, we compare the proposed
design method with a number of state-of-the-art methods for
the design of digital differentiators including the methods
in [9], [10], [12], [13], [15], and [16].

A. Examples 1, 2, and 3

The competing differentiators for Examples 1, 2, and 3
correspond to the third example in [10], the second example
in [12], and the second example in [13], respectively. The
required design specifications for these differentiators are
given in Tables I, III, and V and the results obtained are
summarized in Tables II, IV, and VI. The relative amplitude-
and phase-response errors for Example 1 are plotted in Fig. 1.
As can be seen in Fig. 1 and Tables II, IV, and VI, the
IIR differentiators designed using the proposed method have
much smaller maximum phase-response error for practically
the same relative error in the amplitude response as the designs
obtained with the competing methods. The differentiators
reported in [15], [16] have poor amplitude and phase responses
close to the zero frequency due to the absence of a zero at
point (1, 0) of the z plane, while the one in [14] has a phase-
response error that is very large throughout the passband. For
these reasons, we relegate the comparison of our differentiators
with those in [15], [16], and [14] to the weblink document
mentioned in [27].

B. Examples 4, 5, 6, and 7

The design specifications for Examples 4 to 7 are given
in Tables VII, IX, XI, and XIII, respectively. The competing

TABLE III
FULLBAND DIFFERENTIATOR SPECIFICATIONS FOR EXAMPLE 2

Parameters Values
Maximum rel. error, δr 0.055
Maximum pole radius 0.98
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Fig. 1. Plots of relative amplitude-response error and phase-response error
for the proposed method 2 (solid curves) and the method in [10] (dashed
curves) for Example 2.

TABLE IV
DESIGN RESULTS FOR EXAMPLE 2 (FULLBAND DIFFERENTIATOR)

Parameters Proposed Proposed Method
method 1 method 2 in [12]

Filter order 2 3 3
Max. rel. error, δr 0.05 0.05 0.055
Avg. group delay, τ̄ 0.5 1.5 0.5
Max. phase error, ξϕ 7.12 2.06 12.05

differentiators for each of the examples correspond to the
fourth, sixth, eighth, and thirteenth example in [9], respec-
tively. Tables VIII, X, XII and XIV and Fig. 2 show that the
IIR differentiators designed using the proposed method have
much smaller maximum phase-response error for practically
the same passband relative amplitude-response error and aver-
age squared-amplitude response in the stopband, as the designs
obtained with the competing method in [9].

C. Examples 8, 9, and 10

In Example 8, we have designed fullband differentiators
with fixed and optimized group delays using the proposed
method and compared our designs with a competing differ-
entiator taken from [19, eqn. (21)]. The design specifications
are given in Table XV and the results obtained are sum-
marized in Table XVI. From these results, we observe that
differentiators designed with the proposed method have much
smaller maximum phase-response error for practically the
same passband relative amplitude-response error and average
squared-amplitude response in the stopband. Note that the
differentiator with optimized group delay has smaller phase-
response error than the differentiator with fixed group delay
but larger average group delay.

TABLE V
FULLBAND DIFFERENTIATOR SPECIFICATIONS FOR EXAMPLE 3

Parameters Values
Maximum rel. error, δr 0.035
Maximum pole radius 0.98

TABLE VI
DESIGN RESULTS FOR EXAMPLE 3 (FULLBAND DIFFERENTIATOR)

Parameters Proposed Proposed Method
method 1 method 2 in [13]

Filter order 2 3 3
Max. rel. error, δr 0.031 0.031 0.0317
Avg. group delay, τ̄ 0.5 1.5 0.5
Max. phase error, ξϕ 8.26 3.26 12.05
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TABLE VII
LOWPASS DIFFERENTIATOR SPECIFICATIONS FOR EXAMPLE 4

Parameters Values
Maximum rel. error, δr 0.015
Maximum ASAR in SB 1.2
Passband edge, rad/s 0.7π
Maximum pole radius 0.98

ASAR: average squared amplitude-response; SB: stopband

TABLE VIII
DESIGN RESULTS FOR EXAMPLE 4 (LOWPASS DIFFERENTIATOR)

Parameters Proposed Method
method in [9]

Filter order 4 4
Max. rel. error, δr 0.01 0.0115
ASAR in SB, Psb 1.09 1.184
Avg. group delay in PB, τ̄ 2.02 1.24
Max. phase error, ξϕ 12 28.16

ASAR: average squared amplitude-response; SB: stopband; PB: passband
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Fig. 2. Plots of amplitude response, relative amplitude-response error and
phase-response error for the proposed method (solid curves) and the method
in [9] (dashed curves) for Example 4.

TABLE IX
LOWPASS DIFFERENTIATOR SPECIFICATIONS FOR EXAMPLE 5

Parameters Values
Maximum rel. error, δr 0.016
Maximum ASAR in SB 0.45
Passband edge, rad/s 0.29π
Maximum pole radius 0.98

ASAR: average squared amplitude-response; SB: stopband

TABLE X
DESIGN RESULTS FOR EXAMPLE 5 (LOWPASS DIFFERENTIATOR)

Parameters Proposed Proposed Method
method 1 method 2 in [9]

Filter order 4 5 5
Max. rel. error, δr 0.015 0.015 0.0155
ASAR in SB, Psb 0.397 0.397 0.418
Avg. group delay in PB, τ̄ 3.71 7.15 2.53
Max. phase error, ξϕ 1.52 0.30 8.26

ASAR: average squared amplitude-response; SB: stopband; PB: passband

TABLE XI
LOWPASS DIFFERENTIATOR SPECIFICATIONS FOR EXAMPLE 6

Parameters Values
Maximum rel. error, δr 0.04
Maximum ASAR in SB 0.55
Passband edge, rad/s 0.3π
Maximum pole radius 0.98

ASAR: average squared amplitude-response; SB: stopband

TABLE XII
DESIGN RESULTS FOR EXAMPLE 6 (LOWPASS DIFFERENTIATOR)

Parameters Proposed Proposed Method
method 1 method 2 in [9]

Filter order 3 4 4
Max. rel. error, δr 0.035 0.035 0.036
ASAR in SB, Psb 0.498 0.494 0.503
Avg. group delay in PB, τ̄ 3.37 3.37 2.08
Max. phase error, ξϕ 1.71 0.0032 5.25

ASAR: average squared amplitude-response; SB: stopband; PB: passband

TABLE XIII
LOWPASS DIFFERENTIATOR SPECIFICATIONS FOR EXAMPLE 7

Parameters Values
Maximum rel. error, δr 0.07
Maximum ASAR in SB 0.95
Passband edge, rad/s 0.5π
Maximum pole radius 0.98

ASAR: average squared amplitude-response; SB: stopband

TABLE XIV
DESIGN RESULTS FOR EXAMPLE 7 (LOWPASS DIFFERENTIATOR)

Parameters Proposed Proposed Method
method 1 method 2 in [9]

Filter order 3 5 5
Max. rel. error, δr 0.06 0.06 0.067
ASAR in SB, Psb 0.939 0.939 0.944
Avg. group delay in PB, τ̄ 2.31 4.46 1.66
Max. phase error, ξϕ 1.74 0.025 11.75

ASAR: average squared amplitude-response; SB: stopband; PB: passband

TABLE XV
FULLBAND DIFFERENTIATOR SPECIFICATIONS FOR EXAMPLE 8

Parameters Values
Maximum rel. error, δr 0.15
Maximum pole radius 0.98

TABLE XVI
DESIGN RESULTS FOR EXAMPLE 8 (FULLBAND DIFFERENTIATOR)

Parameters Proposed Proposed Method
method 1 method 2 in [19]

(OGD) (FGD)
Filter order 4 4 4
Max. rel. error, δr 0.1 0.1 0.11
Avg. group delay, τ̄ 3.5 0.5 0.5
Max. phase error, ξϕ 0.00056 7.44 11.27

OGD: optimized group delay; FGD: fixed group delay
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TABLE XVII
DESIGN RESULTS FOR EXAMPLE 9 (LOWPASS DIFFERENTIATOR)

Parameters Proposed Method
method in [9]
(CGD)

Filter order 5 5
Max. rel. error, δr 0.0143 0.0155
ASAR in SB, Psb 0.396 0.418
Avg. group delay in PB, τ̄ 1.76 2.53
Max. phase error, ξϕ 5.66 8.26

ASAR: average squared amplitude-response; SB: stopband;
PB: passband; CGD: constrained group delay

TABLE XVIII
DESIGN RESULTS FOR EXAMPLE 10 (LOWPASS DIFFERENTIATOR)

Parameters Proposed Method
method in [9]
(CGD)

Filter order 4 4
Max. rel. error, δr 0.035 0.036
ASAR in SB, Psb 0.498 0.503
Avg. group delay in PB, τ̄ 1.452 2.08
Max. phase error, ξϕ 2.63 5.25

ASAR: average squared amplitude-response; SB: stopband;
PB: passband; CGD: constrained group delay

In Examples 9 and 10, we compare lowpass differentiators
where the group delay of the differentiator in the proposed
method is constrained to be equal to or less than that in the
competing design; this is done by incorporating the inequality
constraint in (34) in the optimization problem in (32). To
observe how the performance changes with and without the
group-delay constraint, we have used the design specifica-
tions and competing differentiators in Examples 7 and 8 for
Examples 9 and 10, respectively. The design results for the
two examples are tabulated in Tables XVII and XVIII. The
poles and zeros for our proposed designs are given in [27].
From the results, we observe that the proposed design method
yields differentiators that have smaller phase-response errors
and average group delay than the competing methods. Upon
comparing the designs in Examples 9 and 10 obtained with
our method with the corresponding designs in Examples 7 and
8 obtained with our method, we observe that the designs in
Examples 9 and 10 offer lower group delay at the expense of
increased phase-response error.

D. Examples 11 and 12

In Examples 11 and 12, we compare the fullband and low-
pass IIR differentiator designs with a corresponding optimal
FIR design. The design specifications for these examples are
given in Tables XIX and XXI, respectively. The optimization
was carried out for various differentiator orders by varying the
number of additional first-order filter sections. A differentiator
order of N = 41 was required to satisfy the specifications
in Table XIX for the fullband FIR differentiator and this
was designed using the Remez Exchange algorithm described
in Chapter 15 of [22]. On the other hand, the specification
in Table XXI for the lowpass FIR differentiator required
an order of N = 60 and the number of zeros at −1 in
the z plane set to K = 27. This was designed using the

TABLE XIX
FULLBAND DIFFERENTIATOR SPECIFICATIONS FOR EXAMPLE 11

Parameters Values
Maximum rel. error, δr 0.005
Maximum pole radius 0.98

TABLE XX
EXAMPLE 11: COMPARISON BETWEEN THE IIR DIFFERENTIATORS AND
AN EQUIVALENT FIR DIFFERENTIATOR (FULLBAND DIFFERENTIATOR)

Parameters IIR IIR IIR FIR
Diff 1 Diff 2 Diff 3 Diff

Filter order 3 4 5 41
Max. rel. error, δr 0.0046 0.0046 0.0046 0.0047
Avg. group delay, τ̄ 0.5 1.5 3.5 20.5
Max. phase error, ξϕ 10.20 5.58 2.77 0
No. of multiplications 7 9 11 21
No. of additions 6 8 10 41
No of delays 3 4 5 41

Selesnick-Type III design method [28]. The results obtained
and the number of arithmetic operations per sampling period
are presented in Tables XX and XXII. We have assumed a
cascade realization of second-order sections both for the IIR
and FIR differentiators. For the IIR differentiators, we have
assumed a direct-canonic realization which would require a
total of 2N + 1 multiplications, 2N additions, and N unit
delays per sampling period where N is the differentiator
order [22]. In the case of the FIR differentiator, (N + 1)/2
multiplications, N additions, and N unit delays would be
required per sampling period in view of the symmetry property
of the transfer function coefficients in constant group-delay
filters. From Tables XX and XXII, we observe a clear trade-off
between filter complexity and group delay versus maximum
phase-response error. It is apparent that the IIR differentiators
offer a significant reduction in the number of arithmetic
operations and system latency but at the cost of a nonzero
phase-response error. For most applications, a perfectly linear-
phase response is not required and a value of ξϕ in the
range of 1 to 10, depending on the application, would be
entirely acceptable. In such applications, a significantly more
economical and efficient IIR design would be possible.

E. Examples 13 to 18

In [27], we have included more comparisons of IIR fullband
differentiators to demonstrate the effectiveness of our proposed
method. The competing differentiators also include design
examples from [11], [14], and [18].

V. CONCLUSION

A method for the design of fullband and lowpass IIR
digital differentiators that would satisfy prescribed specifi-

TABLE XXI
LOWPASS DIFFERENTIATOR SPECIFICATIONS FOR EXAMPLE 12

Parameters Values
Maximum rel. error, δr 0.0095
Maximum ASAR in SB 0.65
Maximum pole radius 0.98

ASAR: average squared amplitude-response; SB: stopband
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TABLE XXII
EXAMPLE 12: COMPARISON BETWEEN THE LOWPASS IIR

DIFFERENTIATORS AND AN EQUIVALENT FIR DIFFERENTIATOR
(LOWPASS DIFFERENTIATOR)

Parameters IIR IIR IIR FIR
Diff 1 Diff 2 Diff 3 Diff

Filter order 4 5 6 60
Max. rel. error, δr 0.009 0.009 0.009 0.0091
ASAR in SB, Psb 0.597 0.597 0.597 0.606
Avg. group delay in PB, τ̄ 1.31 4.11 4.39 30
Max. phase error, ξϕ 8.91 2.41 0.13 0
No. of multiplications 9 11 13 31
No. of additions 8 10 12 60
No of delays 4 5 6 60

ASAR: average squared amplitude-response; SB: stopband; PB: passband

cations has been described. The passband phase-response
error is minimized under the constraint that the maximum
relative amplitude-response error is below a prescribed level.
For lowpass IIR differentiators, an additional constraint is
introduced to limit the average squared amplitude response
in the stopband so as to minimize any high-frequency noise
that may be present.

The experimental results presented show that the differen-
tiators designed using the proposed method have much smaller
maximum phase-response error for the same passband relative
amplitude-response error and stopband constraints when com-
pared with diferentiators designed with several state-of-the-art
competing methods. Our results also show that nearly linear-
phase IIR differentiators can offer some important advantages
over their exactly linear-phase FIR counterparts such as sub-
stantially lower computational complexity and system latency.

APPENDIX

A. Relationships between absolute-relative-error bounds and
squared amplitude-response error bounds

The squared amplitude-response error in (37) can also be
expressed as

N(ω)

D(ω)
− Fd(ω) = ω2e2h(ω) + 2ω

√
Fd(ω)eh(ω) (55)

where eh(ω) is the relative error which is given by

eh(ω) =
1

|ω|

[√
N(ω)

D(ω)
−
√
Fd(ω)

]
(56)

For a differentiator, Fd(ω) = ω2 and hence (55) becomes

N(ω)

D(ω)
− Fd(ω) = ω2[e2h(ω) + 2eh(ω)] (57)

Substituting (57) in (37) and simplifying, we get

|eh(ω) + 1| ≤
√
1 +

ϵr(ω)

ω2
(58)

|eh(ω) + 1| ≥
√
1− ϵl(ω)

ω2
(59)

With the assumption that |eh(ω)| ≪ 1, the term [eh(ω) + 1]
is always positive. Consequently, (58) and (59) simplify to

eh(ω) ≤
√
1 +

ϵr(ω)

ω2
− 1 (60)

eh(ω) ≥
√
1− ϵl(ω)

ω2
− 1 (61)

If δr is the maximum relative error, we have

eh(ω) ≤ δr (62)
eh(ω) ≥ −δr (63)

Equating (60) and (61) with (62) and (63), respectively, and
simplifying, we get

ϵr(ω) = (2δr + δ2r)ω
2 (64)

ϵl(ω) = (2δr − δ2r)ω
2 (65)
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