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Series Expansion Approximations of Brownian
Motion for Non-Linear Kalman Filtering of

Diffusion Processes
Simon Lyons, Simo Särkkä, Senior Member, IEEE, and Amos Storkey

Abstract—In this paper, we describe a novel application of
sigma-point methods to continuous-discrete filtering. The nonlin-
ear continuous-discrete filtering problem is often computationally
intractable to solve. Assumed density filtering methods attempt
to match statistics of the filtering distribution to some set of
more tractable probability distributions. Filters such as these
are usually decompose the problem into two sub-problems. The
first of these is a prediction step, in which one uses the known
dynamics of the signal to predict its state at time ti+1 given
observations up to time ti. In the second step, one updates the
prediction upon arrival of the observation at time ti+1.

The aim of this paper is to describe a novel method that
improves the prediction step. We decompose the Brownian
motion driving the signal in a generalised Fourier series, which
is truncated after a number of terms. This approximation to
Brownian motion can be described using a relatively small
number of Fourier coefficients, and allows us to compute statistics
of the filtering distribution with a single application of a sigma-
point method.

Assumed density filters that exist in the literature usually rely
on discretisation of the signal dynamics followed by iterated
application of a sigma point transform (or a limiting case thereof).
Iterating the transform in this manner can lead to loss of
information about the filtering distribution in highly non-linear
settings. We demonstrate that our method is better equipped to
cope with such problems.

I. INTRODUCTION

STOCHASTIC differential equations (SDEs) provide a
natural way to describe the evolution of systems that are

inherently noisy, or contain unknown phenomena that can be
modelled as stochastic processes [1], [2]. Suppose that the
evolution of an idealised system could be modelled with the
ordinary differential equation (ODE)

dXt

dt
= a(Xt), (1)

where Xt ∈ Rn is the state of the system, and a : Rn → Rn.
Roughly speaking, to construct an SDE, one adds a ‘white’
driving noise to the dynamics of an ODE. From the modelling
perspective, the purpose of the noise is to capture deviations
from the ideal deterministic model. The amplitude of this
driving noise may potentially depend on the current state Xt

of the system. The result is a differential equation
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dXt

dt
= a(Xt) + b(Xt)Ẇt, (2)

where Ẇt ∈ Rd is Gaussian white noise, and b : Rn →
Rn×d. Because of the highly irregular nature of continuous-
time white noise, one needs to be careful when defining
this equation mathematically. In order to do this, the usual
approach is re-write (2) as an integral equation and interpret
the second term on the right as an Itô stochastic integral [2],
[3]:

Xt = X0 +

∫ t

0

a(Xu)du+

∫ t

0

b(Xu)dWu. (3)

This allows us to interpret the dynamics as an Itô stochastic
differential equation:

dXt = a(Xt)dt+ b(Xt)dWt, X0 = x0. (4)

The solution Xt will then be an Itô diffusion process. Here, the
term dWt denotes the infinitesimal change in a d-dimensional
Brownian motion. We assume W is a standard Brownian
motion, so that its components are independent with variance t
at time t (we use the convention that a vector-valued stochastic
process is represented with an upper-case bold letter, whereas
a stochastic process evaluated at a given time also has a
subscript). In situations where we need to refer to, say, the
k-th component of the vector Xt, we use the notation Xk(t).

One must make some assumptions on a and b to ensure
Equation (4) has a unique solution. If both functions are
globally Lipschitz and grow at most linearly, one is assured
that this will be the case [3].

It is often the case that one cannot observe the process
X directly—instead, one must rely on discrete-time, noisy
observations {Ytk ∈ Rs}k≥1 of the process. In mathematical
terms, the model for measurements of this type can often be
written as

Ytk = h(Xtk) + Vtk , (5)

with Gaussian measurement noises Vtk ∼ N (0,Rk). One is
then often faced with the task of computing the expectation
E[φ(Xt)|Yt1 , . . . ,Ytf ], where t ≥ tf for some given function
φ. This is known as the continuous-discrete filtering problem.
For simplicity, we assume that the conditional distribution of
Xt has a density with respect to the Lebesgue measure. For
filtering problems where this is not the case, such as when
part of the system is observed without error, much of our
analysis can be applied with only minor modifications. The
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estimation problem can be solved for arbitrary φ provided that
we can compute the filtering density pXt (x |{Ytk : tk ≤ t})
for all t. This latter approach is often called the probabilistic
or Bayesian approach to the filtering problem [1].

It is only in a small number of special cases that the condi-
tional distribution of Xt can be described using a finite number
of parameters. When the SDE is linear and the function h
in the measurement model is linear, then the Kalman filter
can be used to compute the exact solution [4]. Certain other
filtering problems also admit closed-form solutions (see, for
example, the Benes̆ filter [5]). However, closed-form filters
are rare, and in most cases one must approximate the filtering
distribution in some manner. For example, one can discretise
the signal and employ a particle filter [6]–[9], which uses
Monte Carlo samples to approximate the filtering distribution.
Other approaches include variational filtering [10], homotopy
filtering [11], and path integral filtering [12].

Another general technique is to take a parametric set of
tractable densities (for example a set of densities within the
exponential family) and find the density within that set that
most closely matches the filtering density. This approach,
introduced in [13], is known as assumed density filtering.

In this paper, we will attempt to compute statistics of the
Gaussian distribution that most closely matches the filtering
distribution. This particular special case of assumed density
filtering is known as Gaussian filtering [14]. There are a
number of ways to approach the problem. The extended
Kalman filter (EKF) [1] uses a Taylor series approximation
to the non-linearities in SDE and measurement model. The
unscented Kalman filter (UKF) [15]–[17] uses a set of sigma-
points for computing the mean and covariance of the Gaussian
approximation. Quadrature and cubature based filters [14],
[18]–[20] use Gaussian numerical integration for computing
the mean and covariance. The Gaussian assumption is a
natural one when the filtering distribution is known to be
unimodal. However, it may lead to significant errors for
certain multimodal distributions. It is not advisable to apply a
Gaussian filter blindly, without considering the possibility of
encountering a multimodal filtering distribution.

The commonly used approaches to filtering in continuous-
discrete systems can be divided into two categories: one pos-
sibility is that the SDE is first discretised using methods such
as Itô–Taylor series or a stochastic Runge–Kutta discretisation
[21], [8]. Discrete-time filtering algorithms are the applied to
the discretised process. The alternative is that an approximate
filter is formed that operates in continuous time, and that filter
is discretised. The relative merits of these approaches were
recently studied in [22].

In the current paper, we take a different approach. We begin
by noting that one can view the Brownian motion W as a
random element of the Hilbert space L2[0, T ]. It is an inher-
ently infinite-dimensional object. However, one can construct a
finite-dimensional approximation of W by projecting it onto
a finite-dimensional subspace of L2[0, T ] [23]. We use the
projection as the driving noise in an approximation of the
original signal. The transition map is then approximated as a
function that satisfies a certain ordinary differential equation.
We refer to the new filter as the series expansion unscented

Kalman filter (SE-UKF).
Ideas of this type were first explored by Wong and Zakai

[24]. Similar ideas have been explored in [25], [26] in the
context of variance reduction for Monte-Carlo simulation,
and in [27] in the context of parameter estimation. In this
framework, one can interpret the approximation we use as
the image of an N -dimensional standard normal distribution
under a nonlinear transform. This suggests the possibility of
using sigma-point methods such as the unscented transform to
construct a Gaussian filter.

Gaussian filters that currently exist in the literature typically
rely on discretisation of the signal. The time-t distribution of
the discretised signal is repeatedly projected onto the set of
Gaussian distributions, for example through moment matching
or by minimising some form of generalised metric as in [28].
Our methodology avoids repeated projection onto the space of
Gaussian random variables during the prediction phase. For
this reason we expect our new prediction step to outperform
the prediction steps of existing methods when the inference
problem is sufficiently nonlinear.

Our paper is structured as follows. In Section II, we describe
our model of the filtering problem and briefly review some
methods that are used in the literature at present. In Section III,
we describe our method of approximating the time-t marginal
distribution of a diffusion process, and we show how the
approximation can be exploited to construct a novel Gaussian
filter. The accuracy of this approximation is investigated in
Section IV, and we show that our filter performs well on a
high-dimensional nonlinear problem. In Section V, we review
our work and discuss some questions that arise as a result of
the study.

II. GAUSSIAN FILTERING

A. Sigma point approximations
One widely-used approach to Gaussian filtering relies on so-

called ‘sigma point’ approximations, perhaps the best known
of which is the unscented transform [15], [16]. Given a random
variable U and a function f , we wish to approximate the
distribution of f(U). In order to accomplish this, one chooses
a number of points {σi} that represent the distribution of U in
some sense. The number of sigma points used by the unscented
transform scales linearly with the dimension of U.

We will restrict our exposition to the case where U has an
n-dimensional multivariate normal distribution, and we wish
to fit a multivariate normal distribution to f(U). Suppose U
has mean m and covariance P. The unscented transform uses
2n + 1 sigma points, which are constructed as follows. One
chooses two tuning parameters α and κ, then sets λ = α2(n+
κ) − n. The sigma points are then defined by the following
expressions:

σ0 = m, (6)

σi = m + (
√

(n+ λ)P)∗i, 1 ≤ i ≤ n, (7)

σn+i = m− (
√

(n+ λ)P)∗i, 1 ≤ i ≤ n. (8)

The sigma points are determined once one chooses an
appropriate matrix square root. Here (

√
P)∗i is the i-th column

of the matrix square root of P defined via P =
√
P
√
P
>

.
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The mean and covariance of f(U) are approximated by a
weighted average of the sigma-point images. Define Yi =
f(σi), and set

µ :=

2n∑
i=0

w
(m)
i Yi ' E[f(U)]. (9)

We can then make the approximations

E[(f(U)− E[f(U)])(f(U)− E[f(U)])>]

'
2n∑
i=0

w
(c)
i (Yi − µ) (Yi − µ)

>
, (10)

E[(U−m)(f(U)− E[f(U)])>]

'
2n∑
i=0

w
(c)
i

(
σi −m

)
(Yi − µ)

>
. (11)

The weights depend on a third tuning parameter β, and are
given by

w
(m)
0 =

λ

n+ λ
,

w
(c)
0 =

λ

n+ λ
+ (1− α2 + β),

w
(m)
i =

1

2(n+ λ)
i = 1, . . . , 2n,

w
(c)
i =

1

2(n+ λ)
i = 1, . . . , 2n. (12)

It is well known that the unscented transform matches the
mean of f(U) exactly when f is a polynomial of degree three
or less. In general, errors in the estimate of the mean are
introduced only by the fourth and higher terms in the Taylor
expansion of f [29].

B. Sigma point Kalman filters for diffusion processes

In the Gaussian filtering paradigm, of which the unscented
Kalman filter (UKF) is a special case, the filtering problem is
reduced to computation of the conditional mean and covari-
ance of the filtering distribution:

mt = E [Xt | {Ytk : tk ≤ t}] (13)

and
Pt = Cov [Xt | {Ytk : tk ≤ t}] . (14)

This procedure is usually divided up into two steps: the
prediction step and the update step. In the prediction step, we
begin with an estimate of the mean and covariance of the
filtering distribution at time tk−1. We then use the known
dynamics of X to compute the mean and variance of the
filtering distribution the instant before the next observation
arrives.

Upon arrival of the observation at time tk, we proceed to the
update step. In this step, we update our estimate of the mean
and variance of the filtering distribution using information
from observation Ytk .

It is usually necessary to approximate the conditional mean
and covariance: for a general nonlinear diffusion, the moments
are only known in terms of the solution of a partial differential

equation known as the Fokker-Planck equation [1], [2]. In
dimensions higher than three, the Fokker-Planck equation is
typically numerically intractable.

The simplest application of the UKF to a diffusion relies on
discretisation of the process X. Suppose that at time tk−1 we
have an estimate of mtk−1

and Ptk−1
. In the prediction step,

our aim is to compute an estimate of mt and Pt the instant
before the next observation arrives.

We divide the time interval [tk−1, tk] into a number of sub-
intervals of length ∆t (for clarity, we will discuss the interval
[0, t1] here). We then approximate the SDE (4) on the grid
{X∆t,X2∆t, . . . } via the relation

X(j+1)∆t = f(Xj∆t,Zj), (15)

where Z0,Z1, . . . is a suitable sequence of Gaussian random
variables. Here, f is a transition function that depends on the
method of discretisation, and Zk is typically draw from a
spherical Gaussian distribution of dimension d. For example,
in the Euler-Maruyama scheme [21],

f(Xj∆t,Zj) = Xj∆t+a(Xj∆t)∆t+b(Xj∆t)
√

∆tZj , (16)

where Zj ∼ N (0, Id).
In this sense, X(j+1)∆t is the image of (Xj∆t,Zj) under

a nonlinear transform f . Given a Gaussian approximation to
Xj∆t, one can apply the unscented transform to f to find a
Gaussian approximation of X(j+1)∆t. One proceeds iteratively
until tk, at which point the prediction phase ends and we
proceed to the update phase. Instead of the Euler–Maruyama
method, one can also use higher order Itô–Taylor expansions,
stochastic Runge–Kutta methods or various other methods
[21].

Alternatively, instead of iteratively applying the unscented
transform at the prediction, one can take a limit as ∆t → 0,
in which case one recovers a system of differential equations
for the predictive mean and covariance (see, e.g., [17], [20]):

dm−t
dt

= E[a(X−t )]

dP−t
dt

= E[a(X−t )(X−t −m−t )>]

+ E[(X−t −m−t )a>(X−t )]

+ E[b(X−t )b>(X−t )], (17)

where the expectations are taken with respect to the Gaussian
distribution X−t ∼ N (m−t ,P

−
t ).

When t = tk, we will make a new observation. We
must then update our predictive distribution with the new
information from that observation. Let m−tk and P−tk be the
mean and covariance of the predictive distribution immediately
before the new observation arrives. We form an approximation
X̂−tk of the signal, which is Gaussian with the predictive
mean and covariance. The update equations using the linear
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minimum mean square error estimator are as follows:

µk = E[h(X̂−tk)]

Sk = E[(h(X̂−tk)− µk)(h(X̂−tk)− µk)>] + Rk

Ck = E[(X̂−tk −m−tk)(h(X̂−tk)− µk)>]

Kk = CkS
−1
k

mtk = m−tk + Kk(Ytk − µi)
Ptk = P−tk −KkSkK

>
k , (18)

The updated distribution has mean mtk and covariance Ptk .
When the observation function h is nonlinear, one can apply
the unscented transform to h(X̂−tk) to compute an approxima-
tion of µk, Sk, and Ck in (18). More complex update rules
that have been tuned for numerical stability are also known in
the literature [30].

In Section III, we describe a new method of approximating
the predictive mean and variance by constructing a function
f so that Xt ≈ f(t,X0,Z1, . . . ,ZN ), where the random
variables {Zi} follow a standard normal distribution. We can
apply sigma point methods to f to estimate the mean and
variance of Xt. The image of each sigma point is computed by
solving an ordinary differential equation. Our method requires
one application of the unscented transform per observation
(though this is generalised in Section IV-C). This is in contrast
to the standard UKF, which discretises the system first, then
iteratively applies the unscented transform at each timestep.

III. SIGMA POINT FILTERING VIA SMOOTH
APPROXIMATIONS OF STOCHASTIC DIFFERENTIAL

EQUATIONS

A. Series expansions of Brownian motion

We now describe a method for obtaining a smooth approxi-
mation of Brownian motion by decomposing it in a generalised
Fourier series. We aim to use the smooth approximation as a
driving function in a differential equation. This will enable
us to approximate a nonlinear stochastic differential equation
with a randomised ordinary differential equation, which will
prove to be computationally tractable to work with. This
approximation was used as the basis of a Markov chain
Monte Carlo algorithm for Bayesian parameter estimation of
a nonlinear diffusion in [27].

Suppose W = (W (1), . . . ,W (d)) is a standard d-
dimensional Brownian motion, and let {φi}i≥1 be an orthonor-
mal basis of L2([0, T ],R). We use the notation I to denote the
indicator function. That is, I{[0,t]}(u) = 1 when 0 ≤ u ≤ t,
and I{[0,t]}(u) = 0 otherwise. One can construct a series
expansion of W in terms of the basis functions {φi} as follows
[31]:

Wt =

∫ T

0

I{[0,t]}(u)dWu

=

∫ T

0

( ∞∑
i=1

〈I{[0,t]}, φi〉φi(u)

)
dWu

=

∞∑
i=1

(∫ T

0

φi(u)dWu

)∫ t

0

φi(u)du. (19)

We use the standard inner product on L2[0, T ], which is
defined as

〈f, g〉 =

∫ T

0

f(u)g(u)du. (20)

The stochastic integrals are i.i.d d-dimensional standard nor-
mal. We can see this by noting that he basis functions are
deterministic,

E

[∫ T

0

φi(u)dWu

]
= 0, (21)

and

Cov(Zi,Zj)

=E

(∫ T

0

φi(u)dWu

)(∫ T

0

φj(u)dWu

)>
=

(∫ T

0

φi(u)φj(u)du

)
Id = δijId. (22)

Here, Id is the d× d identity matrix.
For ease of notation, we set

Zi =

∫ T

0

φi(u)dWu. (23)

We conclude that

Wt =

∞∑
i=1

Zi

∫ t

0

φi(u)du. (24)

We can obtain an approximation of a Brownian sample path by
drawing i.i.d samples Zi from a standard normal distribution
and truncating the sum in (24). This allows us to describe
a Brownian sample path approximately in terms of a finite
number of variates. This representation is crucial for our
implementation of sigma-point inference methods.

B. Series Expansion Approximation of SDE

In order to approximate the diffusion X, we truncate the
series expansion (24) after N terms, and use the resulting
smooth process as an approximation of Brownian motion. We
replace the stochastic integral in Equation (3) with the time
derivative of the truncated process:

X̂t = X0 +

∫ t

0

a(X̂u)du+

N∑
i=1

∫ t

0

b(X̂u)Ziφi(u)du. (25)

Since X̂ is driven by a finite linear combination of basis func-
tions, the resulting process is differentiable. We can therefore
interpret X̂ as the solution to an ordinary differential equation
with a random driving function.

dX̂t

dt
= a(X̂t) +

N∑
i=1

b(X̂t)Ziφi(t), X̂0 = x0. (26)

Approximations of this type were first investigated by Wong
and Zakai [24], who showed that in the one-dimensional case,
X̂t converges to the Stratonovich solution of the stochastic
differential equation [21]. Convergence issues are discussed
in a more general multidimensional setting in the appendix.
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The approximation (26) has the advantage of re-casting an
infinite dimensional problem in finite-dimensional terms. We
can view the solution of (26) as a function

X̂t = X̂(t, x0,Z1 . . . ,ZN ). (27)

In essence, the time-t distribution of the process X̂ can be
interpreted as the image of a d × N -dimensional Gaussian
distribution under a nonlinear transform. This is precisely the
setting for which sigma-point methods were designed.

C. The proposed series expansion filter

Our algorithm proceeds as follows. We assume we have
a Gaussian approximation N (mtk−1

,Ptk−1
) to the filtering

distribution at time tk−1. We wish to compute the filtering
distribution at time t. If t < tk, we compute the predictive
distribution. If t = tk, we must also update the predictive
distribution with the information gained from our observation
Ytk .

We choose a set {σj} of sigma points to represent the
joint distribution of the state and the random coefficients {Zi}
in (26). Each sigma point can be thought of as a vector of
dimension n+ d×N ,

σj = (σjx, σ
j
z). (28)

Here, the first n elements σjx of the vector σj are the
sigma points for the initial condition for the ODE (26),
that is, the sigma points that represent N (mtk−1

,Ptk−1
).

The remaining d × N elements σjz are the sigma points
corresponding to an N -term expansion of a d-dimensional
Brownian motion. Together, these data determine an initial
value problem. For each sigma point σj , we solve the ordinary
differential equation (26). The initial condition is Xtk−1

= σjx
and the coefficients representing {Zi}i≤N are formed from
the appropriate subvectors of σjz (each one having length d).
At time T , the solution is an n-dimensional vector

X̂j
T = X̂(T, σjx, σ

j
z). (29)

We treat the solution at time T of the initial value problem
as the image of the sigma point σj . The set of vectors {X̂j

t}
can be thought of as a discrete approximation to the predictive
distribution. We can use these vectors to compute an estimate
of mt and Pt, though the specific computation depends on the
choice of sigma-point method. This methodology is in marked
contrast to the sigma point Kalman filters of Section II-B.
These rely on discretisation of the signal dynamics and sigma
point approximation of the Brownian increment Wt+∆t−Wt

at each timestep, or a limiting case of this discretisation as
∆t→ 0.

We summarise our algorithm in pseudocode as follows:
for k = 1 : m do

Set mσ = (mtk−1
,01×(Nd))

Set Pσ =

(
Ptk−1

0n×(Nd)

0(Nd)×n I(Nd)×(Nd)

)
Generate 2(n + Nd) + 1 sigma points, with weighted
mean mσ and weighted covariance Pσ
for Each sigma point σ(j) do

Set x0 = σ
(j)
1:n.

Set Z1:N = σ
(j)
n+1:n+(Nd) (reshaping the right-hand

side into a d×N matrix if appropriate).
Solve numerically Equation (26). Let X(j)

T be the value
of the solution after T units of time.
Set Yj = h(X

(j)
T ).

end for
Predict the mean and variance of the incoming observa-
tion using (9) and (10).
Upon arrival of the observation ytk , update the mean mtk

and variance Ptk of the filtering distribution using (18).
end for

IV. NUMERICAL EXPERIMENTS

A general analysis of the error induced by the series expan-
sion approximation is difficult. One cannot easily exploit the
usual tools from the theory of stochastic processes. In general,
the truncated driving noise does not possess the Markov
property, nor is it a martingale. The truncated driving noise is,
however, a Gaussian process, and this structure is exploited in
[32] to demonstrate convergence to the true SDE. In the first
part of this section we present a numerical investigation into
the approximation error.

We then compare the series expansion UKF with the cuba-
ture Kalman filter, which was found to be the most accurate
and numerically stable amongst standard unscented transform-
based filters in this context. There is already a considerable
amount of theoretical and empirical evidence in the literature
that sigma point methods outperform the extended Kalman
filter, especially in tracking models such as the one described
below (see, for example, [16] [19] [29]). In addition, one
must compute the gradient of the drift function in order
to implement the EKF. For some processes, this can be
cumbersome. In contrast, our algorithm can be used as a ‘black
box’ filter. We compare our results with the UKF rather than
the EKF to provide the most informative experiments. In these
experiments, we use a Stratonovich-to-Itô correction term to
modify the dynamics of our approximation, so that the solution
coincides with the Itô dynamics [21].

A. Approximation error

In the general nonlinear case, analytic solutions for nonlin-
ear multi-dimensional ordinary differential equations are rarely
available in closed form. Hence, it is difficult to establish
precise bounds on the error induced by the series expansion
approximation. In this section we aim to investigate properties
of the series expansion approximation numerically. In the
example we consider, we will see that one can obtain a good
approximation by truncating the series expansion (19) after
about ten terms.

We will test our approximation on a model of an aircraft
turning in the (x1, x3) plane. We model the motion of the
aircraft using noisy dynamics that account for imperfections in
the control system. The model also accounts for external forces
such as wind that might affect the trajectory of the aircraft.
We describe the state of the with a seven-dimensional vector
x1:7. The components (x1, x3, x5) represent the position of
the aircraft in rectangular cartesian coordinates, while the
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components (x2, x4, x6) describe its velocity. The number x7

describes the rate at which the aircraft is turning in the (x1, x3)
plane.

The dynamics of the system are given by (4), with

a(x1:7) =



x2

−x7x4

x4

x7x2

x6

0
0


(30)

b(x1:7) =



0 0 0 0√
1+x2

2

v

√
1+x2

4

vxy

√
(1+x2

2)(1+x2
6)

vvxy
0

0 0 0 0√
1+x2

4

v −
√

1+x2
2

vxy

√
(1+x2

4)(1+x2
6)

vvxy
0

0 0 0 0√
1+x2

6

v 0 −vxy

v 0
0 0 0 1


(31)

Here, v =
√

1 + x2
2 + x2

4 + x2
6 and vxy =

√
1 + x2

2 + x2
4.

Nonlinearities arise from two sources in this system. Firstly,
the state-dependent covariance matrix causes the system to
deviate from Gaussianity. Second, the random evolution of the
turn rate X7(·) causes the aircraft to behave erratically. As the
variance of X7(·) grows, the system becomes more nonlinear
and more non-Gaussian. A similar model was studied in [19],
though in that case the diffusion matrix was assumed to
be constant. Note that the state dependent covariance matrix
makes Itô-Taylor and Runge-Kutta discretisations difficult to
implement.

In order to test the series expansion approximation, we
simulated paths from X on the interval [0, 8]. We set
X0 = (1000, 0, 2650, 150, 200, 0, 6), and Cov(Wt) =
Diag(50, 50, 50, 25)t, resulting in a highly nonlinear pro-
cess. We took 100, 000 simulations from the Euler-Maruyama
scheme as ground truth, having set ∆t = .005. The basis
functions were defined by

φk(t) =

√
2

T
sin

(
(k − 1

2 )πt

T

)
, (32)

with T = 8. We simulated 100, 000 paths from the series
expansion approximation with N = 1, 4, 6 and 10. The
marginal means and standard deviations are shown in tables
1 and 2. Figure 1 shows a Q-Q plot of the Euler simulation
versus the series expansion simulation with N = 10, together
with a plot of both densities.

B. Filtering Experiments

As the nonlinearity of the system increases, the speed
at which the filtering distribution deviates from Gaussianity
should also increase. Intuitively, this means the amount of
information that the conventional UKF ‘throws away’ at each
timestep grows with nonlinearity of the system. The series
expansion method avoids this issue by targeting the predictive
density at a given time directly without any intermediate
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Fig. 1: (Top) Q-Q plot of 100,000 samples from an Euler
discretisation of X1(T = 8) versus 100,000 samples from the
series expansion approximation. Linearity of the plot suggests
the distributions are very similar. (Bottom) Density plots of
the samples. Draws from the Euler scheme are plotted using
the solid line, and draws from the series expansion scheme
are represented by the broken line. We used the Fourier sine
series as a basis, with N = 10.

Euler N = 1 N = 4 N = 6 N = 10
E[X1(t)] 626 549 607 612 619
E[X2(t)] -59 -91 -65 -63 -61
E[X3(t)] 3588 3689 3612 3603 3597
E[X4(t)] 53 82 58 56 55
E[X5(t)] 200 200 200 200 200
E[X6(t)] 0 0 0 0 0
E[X7(t)] 6 6 5.9 6 5.9

TABLE I: Marginal mean values for X1:7(t = 8) as computed
by the Euler scheme and series expansion approximations

discretisation or projection. As a result, we should expect the
series expansion filter to outperform the conventional UKF in
systems that are more highly nonlinear.

To test this hypothesis, we set the covariance of the four-
dimensional Brownian motion driving the aircraft model to
Cov(W)(t) = Diag(10, 0.2, 0.2, Q2

W )t. The quantity QW
determines the variance of the turn rate of the aircraft. We
use it as a proxy for the degree of nonlinearity of the system.
We chose a number of values for QW , ranging between
QW = 0.1 and QW = 1.1. For each value of the vari-
ance, we simulated 1400 trajectories for the aircraft, running
both filters on each trajectory. For each trajectory, the initial
condition was drawn from a Gaussian distribution with mean
m0 = (1000, 0, 2650, 150, 200, 0, 6). The standard deviation
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Euler N = 1 N = 4 N = 6 N = 10
Std(X1(t)) 359 151 317 333 346
Std(X2(t)) 90 61 86 88 89
Std(X3(t)) 277 128 250 261 268
Std(X4(t)) 93 66 90 91 92
Std(X5(t)) 29 17 27 28 28
Std(X6(t)) 6.4 5.7 6.2 6.3 6.3
Std(X7(t)) 14.1 12.8 13.7 13.9 14.0

TABLE II: Marginal standard deviations for X1:7(t = 8) as
computed by the Euler scheme and series expansion approxi-
mations

of each component was set to 100, with the exception of the
standard deviation of X7(0) (recall that this notation denotes
the seventh component of the vector at time 0, rather than the
value at time 7). This was set to 0.1. All components were
assumed to be uncorrelated initially.

For each trajectory, we simulated 20 observations, spaced
T = 8 units of time apart. The observation function h models
radar signals arriving at a dish. For this reason, we assume
observations arrive in spherical coordinates, so that h is given
by

h(x1:7) =


√
x2

1 + x2
3 + x2

5

tan−1(x3/x1)

tan−1(x5/
√
x2

1 + x2
3).

 (33)

The covariance matrix of the observation noise was set to
R = diag(50, 0.1, 0.1).

For the standard unscented Kalman filter, an Itô-Taylor
scheme such as the one proposed in [19] is impractical to
implement as a result of the state-dependent noise. This is
due to the presence of iterated stochastic integrals in which the
integrand is a function of Xt (see [21]). Even the simplified
order 2.0 Itô-Taylor scheme proposed in [21] is cumbersome to
implement. For an n-dimensional process, we need to compute
n2 + 2n + 1 terms involving derivatives of the coefficient
functions (in our case, n = 7 so this means 64 terms). The
simplified scheme also involves a number of Bernoulli random
variables, and it is not immediately clear how one would
incorporate these into an unscented filter.

We chose to use the limiting scheme first proposed in
[17]. The system of ODEs (17) was solved by a fourth
order Runge-Kutta scheme. The number of Runge-Kutta steps
used did not appear to affect the error appreciably. However,
with a large step size the predicted covariance can fail to be
positive definite, which causes the filter to diverge. We found
that a good compromise between computational cost and the
divergence issue was to choose a smaller step-size for more
highly nonlinear parameter settings. For this reason, we used
200QW steps per unit time.

The system of ordinary differential equations (26) defining
the series expansion method was solved numerically using the
Dormand-Prince Runge-Kutta method. This is the default ODE
solver implemented in MATLAB.

For the standard Unscented filter, we set α = 1, κ = 0 and
β = 0. This choice of tuning parameters is also known as
the cubature Kalman filter [18], [19]. Various other parameter
settings produced similar results, though these settings were

most stable and most accurate.
For the series expansion method, we used the orthonormal

basis (32) with T = 8, and used N = 8 basis functions for
each component of the Brownian motion.

The series expansion filter takes one large step instead
of many small ones. As such, one can expect that the tar-
get distribution is less like a Gaussian distribution. As a
consequence, the standard heuristics for choosing parameters
for the unscented transform may be sub-optimal. We found
that ‘tweaking’ the standard parameters slightly improved
performance, though not dramatically. We set α = 1, κ =
−32, β = 0 so that λ = 7. Our motivation for this choice is
given in Section V.

For each component ( i.e. position, velocity, turn rate), we
compute the root mean squared error

εc =

√√√√ 1

nl

n∑
k=1

(Xc(tk)−mc(tk))
>

(Xc(tk)−mc(tk)),

(34)
Here, mi is the mean of the filtering distribution at time i. The
value of c depends on the error component. For position errors,
c = (1, 3, 5). For velocity errors, c = (2, 4, 6), and for turn
rate errors, c = 7. We set l = 3 for the position and velocity
errors and l = 1 for the turn rate error. Mean filter errors and
divergences are reported in Table III. A filter was deemed to
have diverged if the RMSE position error was greater than
1km. When this occurred, the run was not included in the
average.

Both the series expansion filter and unscented filter can
diverge and lose track of the signal, in which case the error
becomes very large. Even if divergences are discardrd, a few
large errors can still dominate the average. For this reason,
we report the median absolute error for each component in
Figure 2. We also compute the errors εUKF(i) and εSE(i) for
each run i. We report quartiles of the empirical distribution of
εUKF − εSE in Figure 3.

Figure 2 shows the median values of the difference in
errors together with the first and third interquartiles. The third
interquartile corresponding to QW = 1.1 is excluded because
the plot could not be scaled appropriately. For the position,
the value is 77m . For the velocity, 67m/s, and for the turn
rate, 7.8 degrees/s.

QW .1 .3 .5
RMSE UKF (divs) 48.6 (2) 50.6 (4) 55.0 (16)
RMSE SE-UKF (divs) 48.6 (2) 49.7 (7) 55.0 (7)

QW .7 .9 1.1
RMSE UKF (divs) 68.2 (32) 97.3 (97) 131.2 (152)
RMSE SE-UKF (divs) 62.5 (21) 73.1 (36) 81 (69)

TABLE III: Mean position errors and divergences for 1400
runs of the filter. Larger values of QW result in more erratic
trajectories. The filter was deemed to have diverged if the
position error was greater than 1km, or if the filter failed due
to the appearance of a non-positive definite covariance matrix.
The number of divergences is reported in parentheses

Choice of basis functions made minimal difference in this
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Basis Pos. Error Vel. Error Turn Error
Sine 54.6 21.4 292.6
Haar 54.1 21.4 292.5

TABLE IV: Error induced by using a Haar wavelet basis versus
error from a sinusoidal basis. Median error from 300 runs of
the filter. We used the most highly nonlinear setting, QW =
1.1.

experiment. We re-ran the experiment using N = 8 Haar
wavelet functions instead of sinusoidal basis functions. Results
for the most nonlinear setting QW = 1.1 are shown in Table
IV. Filtering errors for both sets of basis functions were close
to one another. This is because the Gaussian approximation
and tuning parameters of the unscented transform have a
larger effect on the filter than specifics of the series expansion
approximation.

Surprisingly, we found that choosing the symmetric square
root of Pt (that is, the matrix that satisfies S2 = Pt,
implemented in MATLAB as sqrtm()) instead of the Cholesky
decomposition improved the accuracy of our algorithm con-
siderably (though this choice did not improve performance of
the standard UKF). The choice of matrix square root is known
to affect fourth-order and higher terms in the Taylor expansion
of the transition function f [29]. This is in agreement with our
intuition: the transition function in the UKF is locally linear,
and hence can be approximated with a low-order Taylor series.
On the other hand, the series expansion filter uses a more
nonlinear transition function and one must consider higher
order terms.

C. Series expansion step size
In the prediction step of the standard unscented filter, one

discretises the process X, and iteratively applies the unscented
transform at each timestep. The aim is to estimate the mean
and covariance of Xt at some time t, given an appropriate
initial condition. Repeated applications of the unscented trans-
form at each timestep induce error in this estimate. We will
refer to error of this nature as ‘projection error’.

On the other hand, the error in the SE-UKF comes from the
error induced by the series expansion approximation, coupled
with the error induced by a single application of the unscented
transform. Empirically, we observe that the accuracy of the
series expansion approach improves with the number N of
basis functions that we use, and deteriorates with the time T
between observations. We will refer to error induced by the
series expansion as ‘approximation error’.

In one sense, these two approaches represent two extremes
of a more general framework. For example, we might use the
series expansion approximation to estimate the mean and vari-
ance of XT/2. We could then form a Gaussian approximation
of its distribution, and use this as the initial condition (starting
at time T/2) for a second application of the series expansion
trick to estimate the mean and covariance of XT . In effect,
we reduce the approximation error at the cost of increasing
the projection error.

In order to investigate the effect of trading approximation
error for projection error, we ran the filtering experiment of
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Fig. 2: The x-axis shows the diffusion coefficient QW of the
Brownian motion driving X7(t). We use this as a measure of
the nonlinearity of the system. For a range of values of QW ,
we simulated 1400 trajectories of the signal, observed with
noise. We plot median values of the error for the unscented
Kalman filter (dotted line) and series expansion filter (solid
line).

Section IV-B using the most nonlinear setting, QW = 1.1.
Recall that the time interval between observations was T = 8
seconds. We divided this interval into K subintervals of length
T/K. At the end of each subinterval, we re-initialised the
series expansion approximation, using as initial condition the
mean and variance computed at the previous sub-interval.

Table V shows that one can reduce the error slightly
by repeatedly employing the series expansion approximation
over a shorter timescale, thus trading approximation error for
projection error. As the number K of projections becomes
large, the error grows to match that of the standard UKF.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have presented a Gaussian filter based on
the series expansion approximation. The novel contributions
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Fig. 3: The x-axis shows the diffusion coefficient QW of the
Brownian motion driving X7(t). We use this as a measure of
the nonlinearity of the system. For a range of values of QW ,
we simulated 1400 trajectories of the signal, observed with
noise. We plot median values of the difference in error between
the unscented Kalman filter and series expansion Kalman filter
(solid line), together with the first and third quartiles (dashed
lines). Errors were computed seperately for position, velocity
and turn rate of the aircraft. The last point in the upper range
is omitted because its inclusion would skew the scaling in the
image. Values for these points can be found in Section IV-B.

of this paper focus on improving the predictive distribution,
so it is straightforward to construct a smoother using similar
methods: for example one can use the unscented smoother [6]
or Gaussian smoother [33] directly.

Two questions follow naturally from this work. Firstly, how
does one choose parameters for the unscented transform in a
sensible way? Secondly, what basis functions should one use
in the series expansion? In most cases the optimal solution for
either question is likely to be very difficult to compute.

All filters based around the unscented transform must some-

K Pos. Error Vel. Error Turn Error
1 54.4 21.0 296
2 52.3 20.5 291
4 52.7 20.8 293
8 54.6 22.0 299
16 61.2 23.0 307
32 72.3 24.9 324

TABLE V: The effect of trading approximation error for
projection error. Median errors over 300 runs of the filter.
Rows are indexed by number K of projections per observation.
We used the most challenging parametrisation QW = 1.1 to
generate the data. Observe that results for K = 32 correspond
closely to the errors for the standard UKF in Figure 2.

how deal with the first issue. Various heuristics can be found in
the literature on how one might choose the tuning parameters:
see, for example [34], [35]. In some cases, a poor choice
of tuning parameters can cause the covariance matrix in the
prediction step to fail to be positive definite. This causes the
filter to diverge.

When using a common set of tuning parameters (α = 1, κ =
3−n, β = 2, where n is the dimensionality of the system [36]),
we found the matrix degeneracy problem to occur in both the
series expansion filter (about 1% of runs) and the standard
unscented filter (about 10% of runs). This is a known issue
when using these settings in a high-dimensional context [36].
We found that increasing κ slightly to κ = 5−n in the series
expansion filter removed the divergence issue without affecting
performance. On the other hand, the cubature Kalman filter
settings (α = 1, κ = 0, β = 0) performed poorly for the series
expansion filter. This is because the higher dimensionality of
the system causes the sigma points to be spread far out from
the mode (that is, λ = α2(n+ κ)− n is large).

We also compared our algorithm to the third-order Gauss-
Hermite Kalman filter (GHKF). This algorithm also exhibited
numerical instability, with the predicted covariance matrix
often failing to be positive definite. When we discarded
test runs on which the GHKF diverged, we found that our
algorithm performed comparably to the GHKF. This is despite
the fact that the cost of the GHKF scales exponentially with
dimension. In the present setting, the GHKF used 37 = 2187
sigma points, and required several days of computation time
to perform a comparison for a single value of QW .

We now address the issue of the choice of orthonormal
basis. We performed the same filtering experiments using
a sinusoidal basis, and a basis of Haar wavelets. Results
were similar in both cases. Our explanation for this is that
we already induce significant error by assuming the filtering
distribution is Gaussian. This error is significantly larger than
the error induced by the series expansion approximation, so
the latter error is difficult to detect.

In any case, we recommend choosing a basis that converges
uniformly to Brownian motion, so that one has concrete
theoretical guarantees of convergence without the need to
invoke rough path theory.

For completeness, we outline one more possible strategy for
choosing basis functions for the series expansion. When the
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SDE is linear, it is possible to construct a set of basis functions
such that the series expansion approximation is error-free. In
the univariate case, when b is constant the solution to (26) is
given by

X̂T = X0 exp(aT ) +

N∑
i=1

Zi

∫ T

0

exp(a(t− u))bφi(u)du.

(35)
If we set φ1(u) = exp(−au)/‖ exp(−a·)‖, then the integral

on the right disappears for all i > 1. This is because all other
basis functions are orthogonal to exp(−a·) by construction.
Thus the approximation is exact at time T (though not
necessarily at earlier times t < T ). The multivariate case is
similar, though more involved.

To choose a set of basis functions in a non-linear setting,
one can first construct a linear approximation to the non-linear
problem. One then computes the optimal basis functions for
the linearized dynamics as above. However, in out numerical
tests we found that these basis functions were prone to
numerical instability, and furthermore they do not come with
a guarantee of uniform convergence. We note that this may be
a useful strategy in filtering problems that are ‘almost’ linear.

APPENDIX
CONVERGENCE OF THE APPROXIMATION

We now discuss asymptotic convegence of the approxima-
tion (26) to the solution of the true SDE. Wong and Zakai
[24] showed that in the univariate case, under mild technical
assumptions, the solution of (26) converges to the Stratonovich
solution of the SDE that is being approximated.

We use the circle notation to denote Stratonovich integra-
tion. Recall that a Stratonovich SDE

dXt = a(Xt)dt+ b(Xt) ◦ dWt (36)

can be converted to an Itô SDE and vice versa using the
relationship∫ t

0

b(Xt) ◦ dWt =

∫ t

0

b(Xt)dWt +

∫ t

0

c(Xt)dt, (37)

where the integral on the left is in the Stratonovich sense, and
the i-th component of the vector c satisfies

ci(x) = −1

2

n∑
j=1

d∑
k=1

bj,k(x)
∂bi,k

∂xj
(x). (38)

In other words, the Stratonovich solution of an SDE is
equivalent to the Itô solution with a modified drift.

The issue of convergence in the multidimensional setting
is somewhat more involved than in the univariate case. In
general, if {Wn} is a sequence of piecewise smooth pro-
cesses converging to a Brownian motion, one cannot guarantee
{Wn} → W implies that the sequence of approximate
differential equations converges to the Stratonovich solution
of the SDE. One must impose some extra conditions on the
so-called ‘Levy area’ of the Brownian approximations. Let
W j
n,u be the j-th component of Wn at time u, and let W j

u be
the j-th component of W at time u. Define a set of processes

Sijn,t =

∫ t

0

(
W j
u −W j

n,u

)
dW i

n,u − δijt. (39)

Many results about the convergence issue are known in the
mathematical literature. For example, suppose the following
conditions hold with probability 1 for all κ less than some
positive number γ:

sup
u≤T
‖Wu −Wn,u‖ = O(n−κ), (40)

sup
u≤T
‖Sijn,u‖ = O(n−κ), (41)

∫ T

0

∥∥∥∥ dduSijn,u
∥∥∥∥ du = O(logδ(n)) ∀δ > 0. (42)

The thesis of Schmatkov [37] showed that under these
assumptions,

sup
u≤T
‖Xu − X̂u‖ = O(n−κ). (43)

See [38] for an analogous result about stochastic partial
differential equations.

In general, there is no guarantee that the sequence of partial
sums in (24) converges uniformly (so (40) is not necessarily
satisfied). If one chooses the Haar wavelets as an orthonormal
basis in which to expand the driving Brownian motion, then
convergence is indeed uniform: in fact this choice corresponds
to the Lévy-Ciesielski construction of Brownian motion [39].
For a general choice of basis functions, one can show that
X̂ → X provided that the processes are interpreted as rough
paths [32].
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