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Abstract—Cyclostationary processes exhibit a form of fre-
quency diversity. Based on that, we show that a digital wave-
form with symbol period T can be asymptotically represented
as a rank-1 frequency-domain vector process which exhibits
uncorrelation at different frequencies inside the Nyquist spectral
support of 1/T . By resorting to the fast Fourier transform (FFT),
this formulation obviates the need of estimating a cumbersome
covariance matrix to characterize the likelihood function. We
then derive the generalized likelihood ratio test (GLRT) for
the detection of a cyclostationary signal in unknown white
noise without the need of a assuming a synchronized receiver.
This provides a sound theoretical basis for the exploitation
of the cyclostationary feature and highlights an explicit link
with classical square timing recovery schemes, which appear
implicitly in the core of the GLRT. Moreover, to avoid the
well-known sensitivity of cyclostationary-based detection schemes
to frequency-selective fading channels, a parametric channel
model based on a lower bound on the coherence bandwidth is
adopted and incorporated into the GLRT. By exploiting the rank-
1 structure of small spectral covariance matrices, the obtained
detector outperforms the classical spectral correlation magnitude
detector.

Index Terms—GLRT, LMPIT, Cognitive Radio, Cyclostation-
arity Based Detection, Spectral Correlation, Timing Synchroniza-
tion, Frequency-Smoothed Cyclic Periodogram.

EDICS—SPC–DETC Detection, estimation and demodulation.

I. INTRODUCTION

To efficiently use the spectrum and manage the interference
caused to Primary Users (PU), interweave cognitive receivers
[1] must reliably detect the transmission by the PU under
challenging situations, such as low signal-to-noise ratio (SNR),
shadowing and fading. Motivated by this requirement, the
problem of detecting the presence of a PU signal in white
noise on a given band has gained considerable attention in the
last few years. A variety of approaches have been developed
to tackle this basic problem, and their structure depends
on the degree of side information that cognitive users have
about the primary-to-secondary propagation wireless channel.
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Higher degrees of side information on the noise and PU signal
models induce to detectors with enhanced capabilities, yet at
the additional cost of higher sensitivity to model inaccuracies.

Concerning the noise component, for instance, uncertainties
on the white noise floor give rise to an SNR wall below
which a detector will fail to be robust [2]. In a more general
situation, the aggregated noisy component may be composed
of narrow or wide band co-channel interferences (i.e., signals
other than the PU signal that cognitive users are not interested
on detecting). For example, interfering orthogonal frequency
division multiplexing (OFDM) signals propagating through
multi-path channels can be modeled as colored wide-sense
stationary (WSS) Gaussian noise [3]. In this line, cyclosta-
tionarity feature detection has emerged, among other reasons,
as a means for relaxing assumptions on noise statistics [4],
thus gaining robustness against changing noise levels and
interference activity. As an example, when the noise variance
is unknown, it is shown that feature outperforms energy
detector [5].

Concerning the received PU component, the adoption of
a model is also relevant for designing the detection strategy,
and it includes both transmitted PU signal model and propa-
gation channel model. The accuracy in the modeling of the
transmitted PU signal can range from simply knowing the
potential occupied band to exactly knowing the transmitted
signal waveform (e.g., PU pilot signals). In the middle of these
two extreme cases one can make use of other features such
as the transmitted power spectral density [6] (including or not
the signal power), cyclostationarity, modulation type, etc. [1].

Regarding the propagation channel, the degree of frequency-
selectivity associated to a particular wireless scenario can
be modeled by the effective length of the channel response
or, equivalently, by the channel coherence bandwidth [7].
Likewise, the channel coherence time can be used to model
the time-varying nature. In practice, the time-varying behavior
of a channel may arise due either to time fluctuations on the
received PU signal power and/or to the presence of clock
drifts, jitters and variable timing offsets due to errors on the
receiver sampling clock and/or carrier frequency. Depending
on how the detection algorithms are equipped with signal
features, their performance and sensitivity to the propagation
channel conditions will vary. For example, if the knowledge of
the transmitter PU spectrum is exploited, the carrier frequency
error can produce a frequency shift on it; if cyclostationary
features are used, the frequency selective nature of the channel
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may partially or completely kill them [8]; if synchronized
averaging is required (for example to exploit the knowledge
of cyclic frequencies), the time clock drift can put a limitation
on the averaging time [9], etc.

The propagation channel depends also on whether multiple
antennas are used at the receiver, and they have been proposed
by various researchers as a means to improve the PU detec-
tion performance [10], [11], [12]. Assuming Gaussian signals
and noise (a commonly used hypothesis leading to tractable
analysis and useful detectors) and depending on the degree of
structure associated to the noise models, different tests arise
such as a test for block diagonal structure of the covariance
matrix in the most general case or an sphericity test for i.i.d.
noises (see for instance [12] and references therein). On the
other hand, the knowledge on the rank of the covariance matrix
has been shown to play a relevant role in the modeling of the
PU signal. While a rank-1 spatial covariance matrix structure
for the signal of interest is considered in [13], a generalization
for covariance matrices with any known rank is derived in [11],
[14]. The exploitation of the low rank nature of the PU signal
helps, for instance, in the noise floor estimation process, as
one has access to a noise subspace which is free of signal
component. As, in the general case, the likelihood depends
on unknown parameters, the generalized likelihood ratio test
(GLRT) has been considered by most approaches, as well as
the locally most powerful invariant test (LMPIT) when the
particular but challenging case of close hypothesis is focused,
[15].

In the single antenna case, the exploitation of the signal
and noise structure requires the specification of models for the
temporal autocorrelation function of these signals. In the case
of WSS signals, asymptotic (large-data-record) frequency-
domain approximations of the likelihood ratio have been de-
rived in [16] by resorting to asymptotic properties of Toeplitz
matrices, showing that detectors can be formulated from the
signal periodogram, smoothed by an appropriately selected
spectral mask. This approach yields to significant saving on
computational complexity, which is specially interesting in
order to make cognitive radios feasible. In the case of a
second order cyclostationary signal, the particular structure of
the covariance matrix can be exploited in the time-domain as
well as in the frequency-domain (spectral correlation property)
to either improve the detection performance or as the unique
feature to distinguish the signal from noise.

The main goal of this paper is to formulate the single-
antenna detection problem of a second order stationary signal
by resorting to and taking benefit from the mature and recent
detection theory advances developed in the field of array pro-
cessing, providing an original formulation of cyclostationary-
based detection. Although the proposed approach can also be
used with multiple antennas (MIMO techniques), the single
antenna case is chosen as the main framework in order to
gain clarity and concision in the exposition. By considering
large data records as in [16], a frequency-domain approach is
naturally obtained. We propose a vectorial frequency-domain
processing that leads to a signal model which resembles the
multi antenna model widely used for WSS signals, where the
low rank information is specifically due to the cyclostationary

nature of the PU signal. Particularly, the rank-1 structure for
pulse-shaped digital modulations considered in our formula-
tion plays the equivalent role of the spatial signature typically
found in the array processing field.

This basic frequency-domain formulation was already intro-
duced by the authors in [17] where the low rank nature of the
spectral covariance matrix was exploited to derive unbiased
SNR estimators based solely on second order statistics. As
the GLRT tends asymptotically to be optimal in the Neyman-
Pearson sense [15], it will be the adopted tool in this paper
in order to extend the applicability of the vectorial frequency-
domain approach to detection problems.

A. Contributions

In summary, the main contributions of this work are the
following.

1) Vectorial frequency-domain processing: The proposed
frequency-domain vectorial processing, motivated by
the inherent asymptotic spectral correlation properties
of cyclostationary processes, possibilities the use of
well-known detection theory framework (developed so
far in the field of array processing) to the single-
antenna cyclostationary-based spectrum sensing field.
The asymptotic log-likelihood function is given in (17).
In fact, the proposed kind of data processing constitutes
the root idea that enables the rest of contributions.

2) Exploitation of the pulse-shaped structure of digital
modulations for detection. New detection schemes are
obtained which are specific for the pulse-shaped digital
modulations that are commonly used in most commu-
nication standards. As a direct consequence of the vec-
torial frequency-domain formulation, the pulse-shaped
structure is simply manifested as a rank-1 property
of a set of spectral covariance matrices. Under the
authors’ knowledge, the particular rank-1 structure of
the spectral-correlation exhibited by pulse-shaped digi-
tal modulations has never been exploited for detection
purposes. In that sense, we try to fill an apparent research
gap in this direction, as it was done in [13] to exploit
the rank-1 structure in the spatial counterpart.

3) Frequency-Domain Estimator-correlator: The asymp-
totic form of the estimator-correlator detector for pulse-
shaped digital modulations is obtained in (25)–(27),
which generalizes that derived in [16] for stationary
signals. Although the derived detector requires perfect
channel state information (including the need for perfect
timing synchronization), in the case of pulse-shaped
digital modulations with modulation pulse free of inter-
symbol interference (ISI) under white noise, the knowl-
edge of the SNR is not required by the new detector,
in contrast with its classical stationary counterpart for
which the hypothesis of low-SNR is typically adopted
to cope with this issue, [6].

4) Scale-invariant GLRT detectors based on sub-band sam-
ple spectral covariances: Different forms of the GLRT
detector for pulse-shaped digital modulations are derived
(see (39), (45) and (53)), depending on the degree of side
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information about the propagation channel. It is shown
that, in all cases, the sufficient statistic for detection
consists on an estimate of a frequency-smoothed (consis-
tent) version of the cyclic periodogram. New detectors
based on the computation of the largest eigenvalue of
small spectral covariance matrices are proposed, which
are less computationally demanding that those based on
the singular value decomposition of a huge correlation
matrix. They show improved performance compared
with classical cyclic-spectrum based approaches.

B. Notation
In the sequel, [a]

i
and [A]

i,j
denote the entries of a vector

and a matrix, respectively, diag (A) is a diagonal matrix whose
diagonal elements are equal to the diagonal elements of the
square matrix A, �max(A) denotes the maximum eigenvalue
of a positive-definite square matrix, � is the Hadamard
(element-wise) product, det(A) denotes the determinant of
A, 1 is a column vector with entries equal to 1, dxe and bxc

are the integer ceiling and floor of a real x > 0, respectively,
f(x) is a column vector whose entries are f([x]

i
), where f(.)

is a scalar function of scalar argument, |a| is a vector whose
elements are [|a|]

i
= |[a]

i
|, kak denotes the 2�norm of a

vector, [a, b] and [a; b] are used to specify row and column
vectors, respectively, IL is the L⇥L identity matrix, and q.m.

denotes quadratic mean convergence.

C. Paper Structure
The remainder of this paper is organized as follows. Section

II poses the problem and provides some brief background
on cyclostationarity. The basic formulation of the problem is
shown in Section III by deriving the asymptotic likelihood
function that will be used through the paper. The GLRT formu-
lation is presented in sections IV and V, for the flat fading and
frequency-selective fading, respectively. Section VI evaluates
computational complexity of the proposed algorithms. Finally,
the performance of the proposed detectors is illustrated by
means of numerical simulations in Section VII, and Section
XIII summarizes the main conclusions.

II. PROBLEM STATEMENT AND BACKGROUND

Consider the binary hypothesis testing problem of detecting
a pulse-shaped digital modulations in stationary noise

H0 : y(t) = n(t)
H1 : y(t) = n(t) + x(t),

(1)

with
x(t) =

p
�Th(t) ⇤

X

n

a[n]p(t� nT ), (2)

where ⇤ denotes convolution, n(t) is WSS circular noise
of power spectral density Sn(f) = N0/2 inside the signal
band and zero outside (a situation that models an ideal
antialiasing filter that suppresses noise and possible out of
band interference), h(t) is the (complex) propagation channel,
and � > 0 is the signal strength. We assume that the
symbols a[n] are of unite variance and the modulation pulse

p(t) is of unite energy. The signal model in (2) is valid
for a wide class1 of digital modulations in either single or
multi carrier (OFDM) configurations, which includes all Pulse
Amplitude Modulations (PAM) and Quadrature Amplitude
Modulations (QAM) used for example in the digital video
broadcast standard DVB-T2 [18], as well as the Amplitude
Phase Shift Keying (APSK) format defined in the digital
television broadcast standard DVB-S2 [19]. The two-sided
bandwidth of the (complex envelope) digital modulation x(t)
is B = (1 + ↵)/T where ↵ > 02 is the excess bandwidth
(roll-off parameter) and T is the symbol interval.

As the asymptotic frequency-domain formulation of the
detection problem will naturally lead to the concepts of
cyclic spectral density (CSD) and frequency-smoothed cyclic
periodogram (FS-CP), both are then briefly introduced here in
order to make subsequent notation clear. The reader is referred
to [20], [21], [22], [23], [24] for more details on this subject.
The CSD of a process x(t) is specifically defined in this
paper as the Cross Spectral Density of the pair x(t)e�j⇡↵t

and x(t)ej⇡↵t, i.e.,

S
↵

x
(f) = limT0!1E

h
XT0

⇣
f +

↵

2

⌘
X

⇤

T0

⇣
f �

↵

2

⌘i
, (3)

where XT0(f) is the normalized finite Fourier transform of a
T0-length realization of the process3,

XT0(f) =
1

p
T 0

Z T0
2

�
T0
2

x(t)e�j2⇡ft
dt. (4)

It is well-known [25], that for a fixed value of f , the random
variable XT0(f) has asymptotic normality for T0 ! 1,
when the signal samples x(t1) and x(t2) are independent for
sufficiently large values of |t1�t2|. The implication of this fact
is that if E

⇥
XT0(f1)X

⇤

T0
(f2)

⇤
! 0, then the pair of random

variables XT0(f1) and XT0(f2) has asymptotic independence.
This fact will be fully exploited through this paper to simplify
the expression of the likelihood functions and then reduce the
computational complexity of the derived cyclic spectrum based
detectors.

The cyclic periodogram (CP) of x(t) is defined as the cross
periodogram of the pair x(t)e�j⇡↵t and x(t)ej⇡↵t, i.e.

I
↵

x,T0
(f) = XT0

⇣
f +

↵

2

⌘
X

⇤

T0

⇣
f �

↵

2

⌘
, (5)

and it can be seen as an inconsistent estimate of S
↵

x
(f). The

FS-CP is defined as

Ŝ
↵

x,T0,�f
(f) =

1

�f

Z
f+�f

2

f�
�f
2

I
↵

x,T0
(f 0)df 0

, (6)

1The exception for which the proposed approach cannot be applied is for the
class of Continuous Phase Modulations (CPM), were the information symbols
and the transmitted waveform are not linearly related.

2Although for classical root raised cosine (RRC) pulses it holds that 0 <

↵  1, i.e., the excess bandwidth is not higher than 100% of the Nyquist
rate 1/T , our study is general for any value of ↵ in order to accommodate
wideband modulation schemes as well.

3For the sake of clarity, continuous-time Fourier transforms are used in this
paper. However, in practice, the derived detection schemes will employ the
Fast Fourier Transform (FFT) based on the received signal samples taken at a
minimum sampling rate of fs,min = (1+2 d↵e)/T . Other simpler sufficient
conditions for the sampling rate (see for instance [24], Eq. (3)) would require
that fs,min = 2(1+d↵e)/T . In particular, the number of samples per symbol
would be Nss = 4 for 0 < ↵  1 and Nss = 8 for ↵ = 3, which will be
the cases considered in the simulation results.
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which constitutes a consistent estimate of the CSD in the sense
that

S
↵

x
(f)

q.m.

= lim
�f!0

lim
T0!1

Ŝ
↵

x,T0,�f
(f), (7)

where the order of the two limits cannot be interchanged.
Finally, for a process defined as in (2), and assuming, without
loss of generality, stationary zero-mean (real or complex)
uncorrelated data symbols, the CSD is given by

S
l/T

x
(f) = �G

✓
f +

l

2T

◆
G

⇤

✓
f �

l

2T

◆
, (8)

where l is an integer and

G(f) = H(f)P (f), (9)

with H(f) and P (f) the channel frequency response and
modulation pulse Fourier transform, respectively. We note that
the factorization of the CSD as indicated in Eqs. (8) and (9),
which holds even in the presence of a frequency-selective
channel H(f), is a consequence solely of the pulse-shaped
structure of the digital modulations modeled in Eq. (2), and it
constitutes the core idea behind the exploitation of the rank-1
structure developed later on4.

If the process x(t) is WSS, then for large T0 the process
X(f) becomes asymptotically Gaussian5 (by invoking the
central limit theorem, CLT) and processes X(f + �) and
X(f) are asymptotically uncorrelated (i.e., independent) for
� 6= 0. This property is well-known (see for instance [21])
and forms the basis for a frequency-domain signal processing
involving detection and estimation [16]. If the process is not
WSS, then Y (f) (i.e. the Fourier transform of y(t) in Eq.
(1)) has some degree of spectral correlation, [4]. In the case
of pure cyclostationary processes, the spectral correlation may
be non-zero only for values of � which are multiples of the
fundamental cyclic period (1/T ) and, at the same time, lower
than the signal bandwidth (B, i.e., the overall spectral support)
of the complex base-band signal.

III. ASYMPTOTIC FREQUENCY-DOMAIN LIKELIHOOD
FUNCTION OF A CYCLOSTATIONARY PROCESS

Consider the normalized Fourier transform of a MT -length6

realization of a process y(t), i.e., YMT (f). The approach
proposed in this paper consists basically on introducing a
vectorial treatment of the frequency-domain process YMT (f)
such that we can still rely on some asymptotically uncorrelated

4We remark that Eq. (8), which is the core of this paper, is valid
as well in the presence of correlated data symbols (e.g. coded modula-
tions). The rationale is that if the stationary stream a[n] has correlation
ra[m] = E[a[n + m]a⇤[n]] (which admits some factorization in the form
ra[m] = b[m] ⇤ b

⇤[�m]), it can be modeled as a[n] = a
0[n] ⇤ b[n],

where a
0[n] is an equivalent uncorrelated stream. Then, Eq. (2) becomes

x(t) =
p
�Th

0(t)⇤
P

n a
0[n]p(t�nT ) where h

0(t) is an equivalent channel
given by h

0(t) =
P

m b[m]h(t�mT ), thus proving the general validity of
Eq. (8), with G(f) = H

0(f)P (f) and H
0(f) the frequency response of

h
0(t).

5The reader is referred to [26] for a further rationale on the Gaussian
assumption in the context of digital modulation signals.

6Samples of partially received blocks at the beginning and the end are
discarded. These end-effects will be very small for M � 1. A similar
consideration is taken, for instance, by the time-domain approach in [9].

domain to simplify the detection problem. To make that clear,
we define a frequency-domain observation vector as

y(�) , YMT (f�), (10)

where f� is a L-dimensional frequency-domain uniform sam-
pling vector defined as

f� = �1+ s, (11)

where

s =
1

T

0

BBB@

(L� 1)/2
(L� 1)/2� 1

...
�(L� 1)/2

1

CCCA
, (12)

i.e., [f�]l = �l = � + (L � 1)/(2T ) � (l � 1)/T , where
L = dBT e is the dimension of the observation vector and
� is an auxiliary frequency within the range �1/(2T ) 

�  1/(2T )7. We note that the signal bandwidth to symbol
rate ratio determines the dimension of the observation vector8,
while the range of the auxiliary frequency � is held constant.
For example, in the important case of digital modulations with
no more than 100% of excess bandwidth, we have simply that
L = 2 and the frequency-domain observation vector becomes

y(�) =

✓
YMT (�+)
YMT (��)

◆
, (13)

where �+ = � + 1/(2T ), �� = � � 1/(2T ). This specific
case was considered by the authors in [17] to derive a SNR
estimator based on second order statistics, and our aim here
is to generalize the applicability of the approach to a wider
class of problems.

As a direct consequence of the asymptotic spectral correla-
tion property indicated in Eq. (3), and due to the wide sense
stationarity of the additive noise term, the vector process y(v)
adopts the following second order statistics:

E
�
y(� + �)yH(�)

 
!

(
Sy(�)

0

� = 0

� 6= 0
, (14)

where the L⇥ L spectral matrix Sy(�) is defined as

[Sy(�)]i,j2{1,...,L} = S
�i��j
y

✓
�i + �j

2

◆
, (15)

and S
�

y
(�) is the CSD of y(t). As a result, by introducing

a vectorial (instead of scalar) spectral process to treat pure
cyclostationary processes, we succeed in recovering the uncor-
relation property (although on an auxiliary frequency-domain
�) similar to the one manifested by WSS processes in the
standard frequency-domain f . Thus, (14) constitutes the basis
for the extension of the frequency-domain treatment of WSS
processes to cyclostationary processes, just by extending the
dimension of the frequency-domain process.

7Note that the minimum and maximum frequency values inside vector fv
are minl,v [fv ] = �L/(2T ) and maxl,v [fv ] = L/(2T ). Its difference is
equal to L/T , which corresponds to the overall signal spectral support, where
L is clearly the ceil of the relative excess band with respect to Nyquist band
(1/T ).

8The integer L coincides in practice with the minimum number of samples
per symbol required for a digital implementation.
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For example, for L = 2, the spectral matrix reduces simply
to

Sy(�) =

 
Sy(�+) S

1/T
y (�)

S
�1/T
y (�) Sy(��)

!
. (16)

In the general case, as y(v + �) and y(v) become asymp-
totically independent in the auxiliary frequency domain v as
shown in (14), its log-likelihood function (ln

�
py|Hi

(y)
�
i=0,1

)
adopts (up to irrelevant additive constants) the following
asymptotic frequency-domain form

L(y) = �

Z

1/T

�
ln det (Sy(�)) + yH(�)S�1

y (�)y(�)
�
d�.

(17)
The main advantage of the obtained expression is the fixed
(independent from data size) and low dimensionality (L⇥L)
of the involved spectral matrices, which provides mathematical
simplicity compared with the time-domain approach typically
involving the estimation (and even the singular value decom-
position (SVD) in some cases) of cumbersome covariance
matrices, like in [27] and [28]. Using (8), the spectral matrices
under both hypothesis are given by

H0 :
H1 :

Sy(�) = D(�) = diag (Sn(f�))
Sy(�) = D(�) + �g"(�)gH

"
(�),

(18)

where

g"(�) = g(�)�w", (19)
g(�) = G(f�), (20)
w" = e

j2⇡"s
, (21)

and 0  " < 1 is the time-delay (or timing) parameter, the
dimension of the spectral matrices is L⇥L, and G(f) is given
in (9).

It is emphasized that, as a result of the frequency-domain
formulation of the likelihood function, the general problem
posed in (1) has been rewritten as the specific problem
posed in (18). For example, for L = 2, we have g(�) =
[G(�+);G(��)] and w" = [ej⇡"; e�j⇡"]. The important fea-
ture of the model defined in (18) is that the signal component
has a rank-1 structure as a result of (8), while the noise
component is full-rank. This low-rank nature of the signal to
be detected is what provides the original formulation of the
detection of cyclostationary signals developed in the following
sections.
Remark 1. It is assumed in this paper that the receiver has
a perfect knowledge of the fundamental cyclic frequency of
the PU signal. In practice, if the receiver has no means for
establishing synchronization with some pilot channel of the
PU user, the presence of a clock offset will cause a smearing
of the spectral correlation properties [5], and this will impose
an upper limit on the value of signal block length to be used for
the detection task. A similar situation occurs in the presence of
a time-varying channel, in which the averaging time required
for estimating the relevant signal features is limited by the
coherence time of the channel response. If this upper bound on
the block length is not enough to achieve the target detection
performance, then several independent signal blocks need to be
used and the independent detection metrics should be finally

averaged. For clarity reasons, this issue will not be taken into
account in the presentation of the different approaches in this
paper, i.e., the channel will be assumed essentially constant
during a length of MT seconds.

IV. GLR DETECTION OF PULSE-SHAPED MODULATIONS
OVER FLAT FADING CHANNELS

Consider a flat fading channel such that

g"(�) =
p
�p"(�), (22)

where (assuming H(f) = 1) � is some arbitrary gain and
kp"(�)k

2 = 1. In the sequel, we will derive the GLRT for
this specific scenario. First, we will consider that the timing
and the noise floor (" and N0) are known by the receiver, and
will derive the estimator-correlator for that problem, because
it provides insights to the structure of the GLRT. Next, we
will consider " and N0 as nuisance parameters and will derive
the GLRT. Finally, we will provide some links with classical
timing recovery schemes.

A. Estimator-Correlator

It is well-known that, in the case of white noise (Sn(f) =
N0)9, the asymptotic frequency-domain estimator correlator
assuming stationary signals is given by the following fre-
quency average of the received signal periodogram [16]

Z

B

Kstat(f) |YMT (f)|
2
d�

H1

?
H0

⌘, (23)

where ⌘ is the detection threshold which is set to satisfy a
false alarm level10, and Kstat(f) is the stationary frequency-
domain kernel defined as

Kstat(f) =
�|G(f)|2

N0 (N0 + �|G(f)|2)
. (24)

Using the tools developed in the previous section and
resorting to Woodbury formula to express S�1

y (�), we can
similarly obtain the cyclostationary rank-1 frequency-domain
version of the estimator-correlator as

Z

T�1

Kcyc(�)|w
H

"
z(�)|2d�

H1

?
H0

⌘, (25)

where z(�) is generally given by

z(�) =
1

kg(�)k
g⇤

"
(�)� y(�), (26)

9The consideration of white noise is taken in this paper to improve the
clarity of the presentation. In the case of colored noise, one should simply
prewhiten the data.

10The detector (23) and all the detectors proposed in this paper are
derived under a GLRT formulation. Hence, the optimality in the Neyman-
Pearson sense is satisfied, i.e., the detection probability is maximized for a
given false alarm level. Setting the detection threshold requires the statistical
characterization of the detector under H0. Even though this is in general a
hard problem which has only been addressed in some specific situations, one
can resort to the Wilks’ theorem [15] as a general anlytical tool to set the
threshold.
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and Kcyc(�) is the cyclostationary frequency-domain kernel
defined as

Kcyc(�) =
� kg(�)k2

N0

⇣
N0 + � kg(�)k2

⌘ . (27)

In general, either for stationary or cyclostationary signals,
apart of requiring the knowledge of the noise floor, the
estimator correlator requires also the knowledge of the strength
� of the useful signal to construct the frequency-domain
kernels that adequately weight the periodogram and cyclic-
periodogram, respectively, of a filtered version of the received
signal. When this happens, as knowing the strength of the own
signal to be detected may become unrealistic, the low-SNR
assumption is typically adopted to obtain a locally optimum
detector [29].

However, the estimator-correlator applied to our rank-1
cyclostationary signal detection problem exhibits a particular
property that makes the low-SNR assumption unnecessary to
construct the detector, namely, if the channel is flat (H(f) =
h) and the modulation pulse of the pulse-shaped signal fulfills
the Nyquist criterion, then

kg(�)k2 = kgk2 , 8�, (28)

which implies that the kernel Kcyc(�) becomes constant
with respect to �, and then the estimator-correlator can be
implemented without knowing the signal strength. As a result,
the likelihood ratio statistic for ISI-free pulse-shaped digital
modulations simply reduces to11

wH

"
Cw"

H1

?
H0

⌘, (29)

where C is the matched filter output sample covariance
spectral matrix given by

C =

Z

T�1

z(�)zH(�)d�, (30)

and z(�) is the frequency-domain observation vector at the
matched filter output, i.e.,

z(�) =
1

kgk
g⇤(�)� y(�) =

1

kgk
ZMT (f�). (31)

The important remark is that the obtained detector is optimum
at all values of SNR, without necessity of knowing the SNR
a priori. Note that the entries of the above matrix C are equal
to the area over intervals of length 1/T along the frequency-
domain of the estimated cyclic periodogram evaluated at the
matched filter output. This basic idea will be further explored
and generalized later on.

Although the previous key observation provides some ad-
vantage compared to the WSS case, we have still two impor-
tant limitations that need to be solved: the need of assuming a
synchronized receiver and the need of knowing the noise floor
N0 for the specification of the threshold. Even in the case that

11Despite that the rank-1 property leads to an implementation of the
estimator-correlator without the knowledge of SNR, the specification of the
threshold ⌘ in (29) and the following, if one follows the Neyman-Pearson
criterion, still requires this knowledge.

estimates of these parameters are available, sensitivity to their
inaccuracies may be an issue in practice [2], [5]. Moreover, in
a real situation one has to cope in addition with the issue of
the sensitivity of the detector performance to the presence of
an unknown frequency selective channel affecting the signal
to be detected [8].

The subsequent sections are intended to extend the applica-
bility of the proposed methodology to cope with the mentioned
scenarios.

B. GLR Detector
The timing and the noise floor will now be considered

as nuisance parameters whose Maximum Likelihood (ML)
estimates under both hypothesis are required to construct the
detector, and will focus on the case of ISI-free pulse-shaped
digital modulations and white noise. For convenience, we
define the signal support and the residual noise support as

Is =

✓
�

1

2T
,
1

2T

◆
, (32)

and
In =

✓
�
↵� b↵c

2T
,
↵� b↵c

2T

◆
, (33)

respectively. The presentation of the main approach is best
clarified by considering the SVD of the spectral coherence
matrices

Sy(�) = U"(�)⇤(�)UH

"
(�), (34)

with
U"(�) =

⇥
p"(�),U

?

"
(�)
⇤
, (35)

and

⇤(�) =

2

4
N1 0 0
0 N0IL�2 0
0 0 N0⌥(�)

3

5 , (36)

where ⌥(�) is an indicator function which takes 1 for � 2 In

and 0 otherwise, N1 = N0 + � at H1 and N1 = N0

at H0. U?

"
(�) is a unitary matrix whose columns (u",l(�),

l = 2, ..., L) span the orthogonal subspace of p"(�). The
particularity of the eigenvalues of in (36) is that signal
eigenvalue N1 does not depend on �. The meaning is that the
signal covariance eigenvalue multiplicity12 becomes maximum
and equal to the Nyquist rate (1/T ) for ISI-free digital
modulations.

Note that |In| / 1/T only in the case that ↵ / L � 1
and |In| ' 0 only in the case that ↵ ' L � 2 . This issue
is considered in the definition of ⇤(�) above by means of an
indicator function ⌥(�). The meaning is that, in general, the
noise dimension is L � 1 for � 2 In and L � 2 otherwise.
This is a consequence of assuming that the out-of-band noise
has been removed by some filtering process. For example, in
the case of the typical RRC pulses (see [17]) with 0 < ↵ 6 1
the residual noise support would be |In| = ↵/T .

12To appreciate in more detail the relevance of this issue in the derivation
of a GLRT, the reader is referred to [30] (and to its extension in [31])
where a unified framework for GLRT spectrum sensing of signals with known
multiplicities is created, and to [9, Section III-A] for the exploitation of known
eigenvalue multiplicities in the context of cyclostationary-based detection
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The formulation of the GLR detector involves the ML
estimation of N0 and N1 under H0 and H1 from the log-
likelihood function (17) based on the decomposition (34)–(36).
After obtaining the estimates, substituting them into the log-
likelihood function and removing data-independent constants
(see Appendix A for the complete derivation), we obtain

max
"


1

�" (1� �")
↵

� H1

?
H0

⌘, (37)

with

�" =
P̂s,"

P̂T

(38)

which resembles that obtained in [32, Eq. (37)], in the array
processing field. As 1/(1 + ↵)  �1  1 and the function in
the brackets in the above equation is monotonically increasing
in this range, the final GLRT detector becomes

max"
⇥
wH

"
Cw"

⇤

P̂T

H1

?
H0

⌘, (39)

which is simply the estimator-correlator detector maximized
with respect to the timing parameter and then normalized
by the total estimated power. Timing synchronization is then
inherent to detection in the flat fading, white noise and ISI-free
case, which has also been recognized in other time-domain
GLRT approaches [31].

To get further insights into the detector (39) and, in addition,
simplify the required search in ", we observe that wH

"
Cw" is

a linear weighted combination of periodic terms in " within
0  " < 1 in the form e

j2⇡p", with 0  p  L�1. Therefore,
by choosing (at least) 2L uniform sampling values of the
parameter ", we can write the Fourier series

wH

"
Cw" = 2Re

"
L�1X

p=0

ape
j2⇡p"

#
, (40)

where ap is given by

ap =
1

2L

2L�1X

q=0

wH
q
2L
Cw q

2L
e
�j2⇡ pq

2L . (41)

As a result, the maximization process can be avoided by
exploiting the following approximation that allows to reduce
the computational complexity:

max
"

⇥
wH

"
Cw"

⇤
⇡ tr (C) + 2

L�1X

p=1

|ap| , (42)

where the right term becomes an equality in the particular case
of L  2, and an upper-bound in the general case. Based on
the previous result, the final detector becomes

1

P̂T

tr (C) +
2

P̂T

L�1X

p=1

|ap|

H1

?
H0

⌘. (43)

whose validity will be analyzed through computer simulations.
While the left hand side of the detector does not take into
account the cyclostationarity property, the right hand side is a

multi cycle feature detector that exploits cyclostationarity. The
final detector is a combination of these two detection measures.
This issue is further clarified in the next subsection.

C. Time-Domain GLRT Implementation and Relationship with
Square Timing Recovery Schemes

Before going further, we explore some links with known
results on timing synchronization to get insights into the core
of the proposed detector in (39). In the case of L = 2, the
numerator of the GLRT can be expanded as

1

MT

Z

Is

⇥
|ZMT (�+)|

2 + |ZMT (��)|
2+

2Re
�
e
�j2⇡"

ZMT (�+)Z
⇤

MT
(��)

 ⇤
d�. (44)

Substituting Z(f) as a function of z(t) (matched filter output)
in the previous result and maximizing with respect to " yields
the following time-domain GLRT

R
MT

|z(t)|2dt+ 2
���
R
MT

|z(t)|2e�j2⇡ t
T dt

���
R
MT

|y(t)|2dt

H1

?
H0

⌘. (45)

The denominator of the previous detector is an estimate of
the power at the matched filter input (total received power),
and it provides overall invariance to scaling. The left hand
side of the numerator is the estimated power at the matched
filter output. The ratio between this term and the denominator
is sensitive only to the fact that the spectrum of the signal
is non flat (contrary to the noise) and, in that sense, it
constitutes a measure of the amount of spectrum matching,
ignoring completely the cyclostationary feature of the signal.
Contrarily, the right hand side of the numerator is the modulus
of the regenerated spectral line at the symbol rate at the
modulus-squared matched filter output. The ratio between this
term and the denominator is a feature detector, [27], [33],
which is only sensitive to the presence of cyclostationarity
by looking at the normalized strength of regenerated spectral
line. The phase of the mentioned spectral line is just the
timing estimate based on the classical squared timing recovery
scheme, [34], [35], whose asymptotic equivalence with ML
estimation was established in [36]. The final detector can be
seen as a weighted combination of both statistics mentioned
above.

Finally, it is emphasized that the common low-SNR as-
sumption has not been required to derive a closed-form GLRT
expression, contrarily to other classical cyclostationarity-based
detection schemes, [4], [3]. This is solely due to the rank-1
structure of the frequency-domain vector and to the fact that
kg(�)k is constant with �.

V. GLR DETECTION OF PULSE-SHAPED DIGITAL
MODULATIONS OVER FREQUENCY-SELECTIVE FADING

CHANNELS

Cyclostationary-based detection schemes are known to suf-
fer from severe performance degradation in the presence
of unknown frequency-selective channels [8], because the
channel can attenuate or even kill the own specific signal
cyclostationary feature which is exploited for its detection.
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However, when a frequency-selective channel affects a pulse-
shaped modulation, the resulting signal preserves the factor-
ization property indicated in Eq. (8) for these kind of signals,
with a modified modulation pulse according with Eq. (9). This
means that the rank-1 structure is still present in the received
waveform as indicated in Eq. (18), even in the presence of an
unknown channel, because the presence of the channel only
modifies the received pulse shape as seen in Eq. (9) without
destroying the factorization property of the CSD in Eq. (8)13.
Based on that observation, the objective of this section is to
develop the means for the exploitation of the rank-1 structure
of the signal in a manner similar to that developed for the
flat fading case, but capable of providing some degree of
robustness to the channel response behavior by introducing
more nuisance parameters into the GLRT formulation.

In the case of a frequency-selective channel H(f) the re-
ceived modulation pulse is modified according to the following
expression

g(�) =
p
�(�)h(�), (46)

where without loss of generality we assume that ||h(�)|| = 1
and �(�) is some frequency-dependent arbitrary gain. The
presence of h(�) (which models the combination of the mod-
ulation pulse and the channel) causes kg(�)k to be no longer
constant in the auxiliary domain � (as actually was in the flat
fading case). Then, if a lower bound on the coherence band-
width of the channel is known in the form of Bc > 1/(KT )
with K some integer, we will have that kg(�1)k ⇡ kg(�2)k for
|�1 � �2| ⌧ Bc and kg(�1)k 6= kg(�2)k for |�1 � �2| � Bc.
Based on the previous rationale, a K-parametric model based
on the knowledge of Bc is proposed based on

g(�) =
p
�khk, � 2 Ik, (47)

where we define

Nk = N0 + �k, � 2 Ik, (48)

and

Ik =

✓
�1/2 + (k � 1)/K

T
,
�1/2 + k/K

T

◆
. (49)

Note that the key assumption in the previous model is that
every entry of the frequency vector g(�) remains essentially
constant for values of v which are within the coherence
bandwidth, but this does not put any constraint onto the
separation between frequencies associated to different entries
of that vector, which may well be higher than the coherence
bandwidth. Compared with the flat fading case, we now
have the set of nuisance parameters {Nk}k=1,...,K instead
of only N1, along with the set of unitary sub-band channel
vectors {hk}k=1,...,K . While other models can in principle
be assumed, the proposed piece-wise flat (within intervals Ik

indicated above) in the auxiliary frequency � has the advantage
of its mathematical simplicity and physical justification. In
addition, it represents a natural extension of the full flat case
(maximum signal covariance eigenvalue multiplicity) that we
encounter for flat fading using Nyquist pulses. As will be

13Note that if the digital modulation were not a pulse-shaped digital
modulations, the rank-1 preserving property would not hold.

clarified, this model provides as well a detector which is
optimum at all SNR values, a property that we found for the
flat case.

Using the above model, the SVD of the spectral coherence
matrices within the range � 2 Ik can be expressed as

Sy(�) = N0I+ �khkh
H

k
= Uk⇤k(�)U

H

k
, � 2 Ik, (50)

where
Uk =

⇥
hk,U

?

k

⇤
, (51)

and

⇤k(�) =

2

4
Nk 0 0
0 N0IL�2 0
0 0 N0⌥(�)

3

5 . (52)

Note that Nk = N0 + �k are free nuisance parameters at
H1 while Nk = N0 for all k at H0. Splitting the integral
of the log-likelihood into the intervals Ik, we can follow a
similar development as in the flat fading case. By doing so
(see appendix B for details), we obtain the following detector,
which clearly constitutes a generalization of (37):

1
⇣Q

K

k=1 �k

⌘1/K ⇣
1�

P
K

k=1 �k

⌘↵
H1

?
H0

⌘, (53)

where
�k = �max{

eBk}, (54)

and
eBk =

Bk

P̂T

. (55)

Here, matrices Bk are short-band estimates of the spectral
covariance matrix of the received signal, Sy(�), around fre-
quencies �k, given by

Bk =

Z

Ik

y(�)yH(�)d�. (56)

The entries of these matrices can be seen as samples of the
frequency-smoothed cyclic periodogram of the signal.

The interpretation of the obtained detector in (53) is as
follows: while the first term of the denominator is a classical
measure of inter-band sphericity, the second term of the
denominator measures, contrarily, the intra-band sphericity,
i.e., the lack of spectral correlation. The second term has no
influence for ↵ = 0, while its relative importance increases
with the excess band. As a whole, the value of the detector
increases when the measured spectrum is far from white and/or
when high spectral correlation (i.e., high eigenvalue dispersion
of sub-band matrices Bk) is measured.
Remark 2. The problem of detecting low rank signals in
the space domain using multiple antennas was developed
by Ramirez et al. in [11], deriving a generalization of the
sphericity ratio computed from the signal and noise eigenval-
ues of the covariance matrix. It can be easily seen that the
generalized sphericity ratio test (see [11, Eq. (11)] reduces
to a detector like that of (53) when the arithmetic mean
of the noise eigenvalues is computed as a function of the
total power and signal space power, and when the ratio
between the signal rank and the total dimension (number of
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antennas) is specifically set to 1/(1+↵). In the context of our
problem, however, the advantage of the new sphericity test
given in (53) is that, instead of requiring the SVD of a single
large covariance matrix, it requires in contrast the simpler
computation of maximum eigenvalues of several small-sized
spectral covariance matrices. This is a consequence of both the
asymptotic frequency-domain formulation and the sub-band
rank-1 structure of cyclostationary processes. As a result the
obtained detector looks only at the signal space, using the total
power as a normalization factor.

Finally, it is worth mentioning that, although theoretical
statistical analysis of detectors based on the estimation of
a single maximum eigenvalue of a covariance matrix has
been provided [13], the problem of theoretically characterizing
the false and detection probabilities of the detector proposed
in (53) is much more difficult because both arithmetic and
geometric averages of eigenvectors are involved, and it is
beyond the scope of this paper.

A. Locally Most Powerful Invariant Test
It has been recently proposed [37], [38] and proved [12] that

for close hypothesis (i.e., low SNR), the LMPIT is given by the
Frobenius norm of a normalized version of the autocorrelation
matrix, which ignores the rank structure (i.e., the rank-1
structure in our case). This important result can be applied
directly to yield the LMPIT for our problem, given as

KX

k=1

���B̃k

���
2

F

H1

?
H0

⌘, (57)

which can be rewritten simply as the aggregation of the
modulus squared FS-CP, i.e., as
P

L�1
l=l0

Pd
(L�l)K

2 e

n=�d
(L�l)K

2 e

���Ŝl/T

x,MT,1/(KT )

�
n

KT

����
2

P̂
2
T

H1

?
H0

⌘, (58)

where l0 = 0. The numerator of the obtained detector
coincides with the well-known multi-cycle spectral correlation
magnitude detector (MCSCMD) proposed by Gardner [39, Eq.
(34)] in the context of weak cyclostationary signals, where in
general l0 can take the values l0 = 0 or l0 = 1, depending
on whether the stationary component is considered or not by
the detector, respectively. The importance of this observation is
twofold: on the one hand, it shows that the MCSCMD (l0 = 0)
normalized by the squared total estimated power is in fact the
LMPIT for the detection of a cyclostationary signal; on the
other hand, this result is stated here because both the LMPIT
and the MCSCMD (l0 = 1) will be considered for comparison
purposes in the numerical results.

VI. COMPUTATIONAL COMPLEXITY

It is well known that cyclic spectral analysis is in general
computationally expensive due to the potentially large number
of spectral correlation computations, rather than the compu-
tation of the spectral components itself [40]. The proposed
algorithms in this paper use a limited number of correlation
computations, leading to improved complexity. To make this

issue clear, this section evaluates the computational complexity
as the number of complex multiplications involved in the
proposed frequency-domain GLRT-cyc-K, as well as in the
classical frequency-domain LMPIT-K as a benchmark.

Given an observation sample size of NssM samples, one
needs NssM log2 (NssM) multiplications for the FFT, and
KL(L�1)/2 multiplications for the computation of the spec-
tral matrices {B̃k}. While these computations are common
in both algorithms, the improvement arises from the fact that
the proposed GLRT-cyc-K requires K multiplications in the
computation of maximum eigenvalues and their geometric
mean, in front of the KL(L � 1)/2 multiplications in the
computation of the Frobenious norms in LMPIT-K.

In conclusion, the complexity of the proposed GLRT-cyc-K
detector in terms of number of complex multiplications can be
quantized as

KL
�
(Q� 1)L2 + L+ 1

�
⇡ QKL

2
, (59)

which linearly increases with the number of iterations required
by the Rayleigh quotient iteration (RQI) [41] method (Q),
linearly increases with the number of used sub-bands (K),
and quadratically increases with the dimension of the spectral
covariance matrices (L). Hence, it is worth emphasizing that L
solely depends on the excess band of the digital modulations,
while it does not increase with the observation sample size.

Finally, it is further noted that the complexity of the GLRT-
cyc and the GLRT-cyc-ap detectors is nearly equal to that of
the GLRT-cyc-K by setting K = 1, whereas the complexity
of the MCSCMD-K detector is nearly equal to that of the
LMPIT-K detector.

VII. NUMERICAL RESULTS

We evaluate the performance of the proposed detectors by
means of Monte Carlo simulations, using 105 realizations per
scenario. The transmission is modeled by M QPSK symbols
using RRC pulses. A tapped delay line channel model [7] with
exponentially decaying power profile is considered with mean
delay-spread ⌧ , such that it remains constant through a time of
MT seconds, and whose norm relative to the matched filter,
i.e.

R
|H(f)|2 |P (f)|2 df , is kept constant in all realizations.

For comparison, we consider the following six detectors.
1) MCSCMD-K with l0 = 1, given by the numerator of

(58).
2) GLRT-wss, given by the first term of (43), i.e,

1

P̂T

tr (C)
H1

?
H0

⌘. (60)

3) GLRT-cyc, given by (39).
4) GLRT-cyc-ap, given by (43).
5) LMPIT-K, given by (58).
6) The proposed GLRT-cyc-K, given by (53).
It is noted that the main purpose is to compare the per-

formance of test 6) with other existing methods. Among
them, test 5) is the main reference comparison, as it assumes
identical prior knowledge and it is know to be the optimum
low-SNR test. On the other hand, the comparison with the
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Fig. 1. ROC for the different detectors in the flat fading case (⌧ = 0).
↵ = 0.8, SNR = �0.5dB, M = 256, K = 8.
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Fig. 2. ROC for the different detectors in the frequency-selective fading case
(⌧ = 1). ↵ = 0.8, SNR = �0.5dB, M = 256, K = 8.

exiting tests 4) and 3) is given to illustrate the lack of
robustness in presence of a frequency-selective channel, and
test 2) to illustrate the performance loss when cyclostationarity
is not exploited. Finally, test 1) is the only one which is
not invariant to scale (while all the remaining are), and its
performance is included only as a reference and comparison
of the proposed approach with a well-known method.

Fig. 1 shows the receiver operating characteristics (ROC),
i.e., the missed detection probability versus the false alarm
probability in the flat fading case (⌧ = 0), with ↵ = 0.8,
L = 2 and SNR=�0.5dB. It is straightforward to appreciate
that the GLRT-cyc outperforms the other detectors, because
it fully exploits the knowledge of the modulation structure of
the PU.

Fig. 2 shows the ROC when the channel has a mean delay-
spread of ⌧ = 1 symbol and illustrates the high sensitivity of
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Fig. 3. ROC for the different detectors in the frequency-selective fading case
(⌧ = 2.5). ↵ = 3, SNR = �0.5dB, M = 256, K = 8.

GLRT-cyc in front of an unknown channel response. In con-
trast, the performance of the proposed GLRT-cyc-K detector
exhibits a robust behavior in detection performance in front of
unknown frequency-selective channels.

Fig. 3 depicts the scenario simulated in Fig. 2 yet with
a larger excess bandwidth. In particular, we set ↵ = 3 by
implementing the pulse shape

p(t) = p0(t)
1 + e

j2⇡2t/T

p
2

, (61)

where p0(t) is a RRC pulse of unite roll-off. This situation
requires the computation of spectral matrices of higher dimen-
sion (L = 4). As the excess bandwidth is larger, the GLRT-
cyc degradation is more relevant compared with that of Fig. 2.
Even though, as the spectral correlation is richer (due to the
increased excess bandwidth), the performance of the classical
MCSCMD-K improves, and it even outperforms that of the
LMPIT-K and GLRT-cyc-K. Thus, this scenario reflects the
fact that the MCSCMD-K is making use of a known value
of the noise power, while the remaining detectors are not, as
they are invariant to scale. It is also seen that GLRT-cyc-ap
has similar performance than that of the GLRT-cyc.

Fig. 4 shows the missed detection probability versus the
SNR, where the thresholds have been set to satisfy a constant
false alarm rate (CFAR) of 0.05, and the remaining parameters
are set as in Fig. 2. It is rapidly seen than the scaling of the
detection performance with the SNR conditions, i.e., the error
exponent, is significantly improved with the proposed GLRT-
cyc-K.

Fig. 5 summarizes the main advantage of the proposed
GLRT-cyc-K detector. It depicts the missed detection prob-
ability versus the mean delay spread of the channel, where
the CFAR is set to 0.05 and the remaining parameters are set
as in Fig. 2. It is appreciated that small values of delay spread
cause a significant degradation in the detectors’ performance.
In contrast, the GLRT-cyc-K tolerates higher delay spreads,
showing a degradation only when the delay spread values
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Fig. 4. Missed detection probability (for a false alarm probability of 0.05)
versus SNR for different detectors. Same scenario as in Fig. 2.
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are of the same order as the number of sub-bands, i.e., K.
Moreover, it is seen that the performance of the GLRT-cyc-
K improves for small delay spread values. This is due to the
fact that the GLRT-cyc-K is partly sensitive to the lack of
sphericity, which is measured by the geometrical mean term
in the expression (53). In other words, in contrast to other
cyclostationary based detectors, the proposed detector does not
ignore the stationary spectral component of the signal, which
is less flat in the presence of a frequency-selective channel.

Finally, Fig. 6 shows the effect of the block length M on the
missed detection probability for the GLRT-cyc-K and LMPIT-
K detectors at different values of SNR and a CFAR of 0.05.
From the illustrated curves, the SNR requirements in order to
compensate small values of M are appreciated.
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VIII. CONCLUSIONS

In this paper we have developed single-antenna, scale-
invariant detectors by using a new vectorial frequency-domain
approach. The main advantage of this formulation is that it
permits the use of mathematical tools typically developed
in the array processing field, and it leads to new detection
schemes with low computational complexity: they are based
on estimating the cyclic spectral density (CSD) of the received
signal (including the stationary component) and they require
handling small-sized spectral covariance matrices. Moreover,
only the computation of maximum eigenvalues of these ma-
trices is required, instead of the singular value decomposi-
tion (SVD) of cumbersome covariance matrices required by
other methods. The proposed detectors, which exploit both
the stationary and cyclostationary component of the primary
users’ (PU) signal, are robust to the presence of an unknown
frequency-selective channel, showing an improvement over
other cyclostationary-based detection schemes. As the rank-1
structure of cyclostationary processes in the frequency-domain
is exploited, the performance is still better than the classical
(normalized) multi-cycle spectral correlation magnitude de-
tector (MCSCMD) which ignores the rank-1 spectral corre-
lation structure. Moreover, in our formulation, the MCSCMD
detector (which is based on an aggregation of the modulus
squared magnitude of the estimated CSD) is derived as the
locally most powerful invariant test (LMPIT) of the problem.
Using the proposed framework, future work will be focused
to the development of detectors in the presence of unknown
stationary interfering signals, as well as to the extension to
the multiple antenna case, where the rank-1 structure in both
space and frequency domains could be naturally exploited.
Theoretical performance analysis of the proposed detectors in
some specific scenarios will be also envisaged.
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APPENDIX A
DERIVATION OF (37)

Using the decomposition (34)–(36), we can write the log-
likelihood function as

L(y) = �

Z

Is

⇤1(�, N1)d�

�

L�1X

l=2

Z

Is

⇤l(�, N0)d� �

Z

In

⇤L(�, N0)d�, (62)

where
⇤l(�, x) = lnx+

1

x
|uH

",l
(�)y(�)|2, (63)

for l = 1, . . . , L, where u",l(�) is the l-th column of matrix
U"(�). Under H0, it is easily shown that the ML estimate of
the noise floor simply becomes

N̂
0
0 =

T

1 + ↵

⇣
P̂s," + P̂n

⌘
(64)

=
1

B
P̂T , (65)

where P̂T is an estimate of the total received signal power
given as

P̂T =

Z
B/2

�B/2
|Y (f)|2df, (66)

In (64), the estimates P̂s," and P̂n read

P̂s," =

Z

Is

|pH

"
(�)y(�)|2d� (67)

=

Z

Is

|wH

"
z(�)|2d�, (68)

and

P̂n =
L�1X

l=2

Z

Is

⇤l(�, N0)d� +

Z

In

⇤L(�, N0)d� (69)

= P̂T � P̂s,". (70)

respectively. Concerning H1, the ML estimates of N1 and N0

are given as [42]
N̂

1
1," = T P̂s," (71)

and
N̂

1
0 =

T

↵
P̂n, (72)

respectively. It is noted that the noise power estimation P̂n

based on integral in (69) for L = 2 was proposed in [17] as
an unbiased measure of the noise power in the presence of the
signal of interest, with the goal of designing an SNR estimator
based solely on second order statistics. After substitution in
(62), maximizing with respect to the unknown " (as required
by the GLRT approach, [15]) and removing additive constants,
we obtain the detector

max
"

"
ln

N̂
0
0

N̂
1
1,"

+ ↵ ln
N̂

0
0

ˆ
N

1
0,"

#
H1

?
H0

⌘, (73)

where ⌘ is some threshold. The obtained expression of the
GLRT can be further simplified as follows. We use (65)–(71)
to write N̂

1
0," as a function of N̂0

0 and ˆ
N

1
1," as

N̂
1
0," =

(1 + ↵)N̂0
0 � N̂1,"

↵
. (74)

The above substitution is important because it implies that
estimation of the power at the noise subspace will never
be required, being the total and the signal subspace powers
the sufficient statistics for the detector. After some trivial
manipulation, we obtain (37).

APPENDIX B
DERIVATION OF (53)

Splitting the integral of the likelihood function in sub-
intervals

L(y) = �
|Is|

K

X

k

lnNk �

X

k

1

Nk

P̂s,k � In lnN0 �
1

N0

X

k

P̂n,k, (75)

where

P̂s,k =

Z

Ik

��hH

k
(�)y(�)

��2 d⌫ = hH

k
B̂khk (76)

P̂n,k =

Z

Ik

��u?H

k
(�)y(�)

��2 d⌫. (77)

Under H0, the ML estimate of the noise floor is given by

N̂
0
0 =

1

Is + In

⇣
P̂s + P̂n

⌘
(78)

=
1

B

Z
B/2

�B/2
|Y (f)|2df (79)

=
1

B
P̂T , (80)

where
P̂s =

X

k

P̂s,k, (81)

and
P̂n =

X

k

P̂n,k. (82)

Concerning H1, the ML estimates of {Nk} and N0 are given
as

N̂k =
1

Is/K
P̂s,k (83)

and

N̂
1
0 =

1

In
P̂n =

(1 + ↵)N̂0
0 �

1
K

P
k
N̂k

↵
(84)

Substituting these estimates to the likelihood function and
forming the GLRT yields

max
{hk}

1
⇣Q

K

k=1 �k

⌘1/K ⇣
1�

P
K

k=1 �k

⌘↵
H1

?
H0

⌘, (85)

with
�k =

hH

k
Bkhk

P̂T

(86)
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Maximizing with respect to the {hk}k=1,...,K under the con-
straint {||hk||

2 = 1}}k=1,...,K
yields (53).
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