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On the Linear Convergence of the ADMM in

Decentralized Consensus Optimization
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Abstract

In decentralized consensus optimization, a connectedanktaf agents collaboratively minimize
the sum of their local objective functions over a common sieai variable, where their information
exchange is restricted between the neighbors. To this er@can first obtain a problem reformulation
and then apply the alternating direction method of mukirgdi(ADMM). The method applies iterative
computation at the individual agents and information exgegbetween the neighbors. This approach has
been observed to converge quickly and deemed powerful. Jdper establishes its linear convergence
rate for the decentralized consensus optimization prolémstrongly convex local objective functions.
The theoretical convergence rate is explicitly given imrgrof the network topology, the properties of
local objective functions, and the algorithm parameteis Thsult is not only a performance guarantee

but also a guideline toward accelerating the ADMM conveogen
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. INTRODUCTION

Recent advances in signal processing and control of neadomkulti-agent systems have led to much
research interests in decentralized optimizati@x-[[L4]. Decentralized optimization problems arising
in networked multi-agent systems include coordination m€raft or vehicle networks 7]-[4], data
processing of wireless sensor networkp-[10], spectrum sensing of cognitive radio networkg][ [12],
state estimation and operation optimization of smart g}, [14], etc. In these scenarios, the data is
collected and/or stored in a distributed manner; a fusiarteses either disallowed or not economical.
Consequently, any computing tasks must be accomplishedé&tentralized and collaborative manner by
the agents. This approach can be powerful and efficient,easdmputing tasks are distributed over all
the agents and information exchange occurs only betweeaghats with direct communication links.
There is no risk of central computation overload or netwarkgestion.

In this paper, we focus odecentralized consensus optimizatiam important class of decentralized
optimization in which a network of. agents cooperatively solve

L
min ; fi(@), )
over a common optimization variablg wheref;(#) : R — R is the local objective function known by
agenti. This formulation arises in averaging]f[6], learning [7], [8], and estimation9]—[13] problems.
Examples off;(z) include least squared](-[6], regularized least square8][[10]-[12], as well as more
general ones’]. The values ofi can stand for average temperature of a ro8m[p], frequency-domain
occupancy of spectrdl]], [12], states of a smart grid systerhd, [14], and so on.

There exist several methods for decentralized consengimipgtion, including distributed subgradient
descent algorithmsl1p]-[17], dual averaging method4 @, [19], and the alternating direction method
of multipliers (ADMM) [8]-[10], [20], [21]. Among these algorithms, the ADMM demonstrates fast
convergence in many applications, e.@)-[10]. However, how fast it converges and what factors affect

the rate are both unknown. This paper addresses these.issues

A. Our Contributions

Firstly, we establish the linear convergence rate of the ADat is applied to decentralized consensus
optimization with strongly convex local objective funaig This theoretical result gives a performance
guarantee for the ADMM and validates the observation inrgiferature.

Secondly, we study how the network topology, the propertie$ocal objective functions, and the

algorithm parameter affect the convergence rate. The sisglyovide guidelines for networking strategies,
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objective-function splitting strategies, and algorithargmeter settings to achieve faster convergence.

B. Related Work

Besides the ADMM, existing decentralized approaches fdvirsp (1) include belief propagation
[7], incremental optimizationZ2], subgradient descent$—-[17], dual averaging1g], [19], etc. Belief
propagation and incremental optimization require one &alefine a tree or loop structure in the network,
whereas the advantage of the ADMM, subgradient descentjaaldaveraging is that they do not rely on
any predefined structures. Subgradient descent and dualgivvg work well for asynchronous networks
but suffer from slow convergence. Indeed, for subgradiersicdnt algorithms1p] and [16] establish
the convergence rate @#(1/k), wherek is the number of iterations, to a neighborhood of the optimal
solution when the local subgradients are bounded and tipsiséeis fixed. Further assuming that the
local objective functions are strongly convex, choosinyaatnic stepsize leads to a rate@flog(k)/k)
[17]. Dual averaging methods using dynamic stepsizes also $uavinear rates, e.gQ(log(k)/Vk) as
proved in L8] and [19].

The decentralized ADMM approaches use synchronous stepsl iye agents but have much faster
empirical convergence, as demonstrated in many applitafg]-[10]. However, existing convergence
rate analysis of the ADMM is restricted to the classic, calited computation. The centralized ADMM
has a sublinear convergence rad¢l1/k) for general convex optimization problem23]. In [24] an
ADMM with restricted stepsizes is proposed and proved toibeally convergent for certain types of
non-strongly convex objective functions. A recent pag@s] ghows a linear convergence rat¥1/a")
for somea > 1 under a strongly convex assumption, and our paper exterdarnalysis tools therein to
the decentralized regime.

A notable work about convergence rate analysi2@, [which proves the linear convergence rate of the
ADMM applied to the average consensus problem, a special @@d) in which f;(Z) = ||7 — y;]|3 with
y; being a local measurement vector of agenlts analysis takes a state-transition equation approach,

which is not applicable to the more general local objectivections considered in this paper.

C. Paper Organization and Notation

This paper is organized as follows. Sectibrreformulates the decentralized consensus optimization
problem and develops an algorithm based on the ADMM. Sedtloanalyzes the linear convergence

rate of the ADMM and shows how to accelerate the convergédmoeigh tuning the algorithm parameter.
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SectionlV provides extensive numerical experiments to validate le@retical analysis in Sectidii .
SectionV concludes the paper.

In this paper we denotgz||2 as the Euclidean norm of a vectorand (z,y) as the inner product of
two vectorsz andy. Given a semidefinite matri@ with proper dimensions, thé-norm of z is V27 Gx.
We leton,ax(G) be the operator that returns the largest singular valu@ ehda,,i,(G) be the one that
returns the smallest nonzero singular value=of

We use two kinds of definitions of convergence, Q-linear eoggnce and R-linear convergence. We
say that a sequenag, where the superscrigt stands for time index, Q-linearly converges to a point
y* if there exists a numbey € (0,1) such thatkh_ﬂo w = p with || - || being a vector norm. We
say that a sequencé R-linearly converges to a poiat* if for all &, ||z* — z*|| < [|y* — y*|| wherey”

Q-linearly converges tg*.

[I. THE ADMM FORDECENTRALIZED CONSENSUSOPTIMIZATION

In this section, we first reformulate the decentralized eosss optimization probleni) such that it
can be solved by the ADMM (see SectitlirA). Then we develop the decentralized ADMM approach

and provide a simplified decentralized algorithm (see 8ndtiB).

A. Problem Formulation

Throughout the paper, we consider a network consisting afgents bidirectionally connected iy
edges (and thugE arcs). We can describe the network as a symmetric directuhgiy = {V, A} or
an undirected grapb, = {V,£}, whereV is the set of vertexes with cardinality| = L, A is the set
of arcs with|A| = 2E, and& is the set of edges witl€| = E. Algorithms that solve the decentralized
consensus optimization probler) (are developed based on this graph.

Generally speaking, the ADMM applies to the convex optirtii@aproblem in the form of

min - g1(y1) + g2(y2), @
s.t. Ciyi + Coyz = b,
wherey; andy, are optimization variablegy and g, are convex functions, an@y; + Coys = b is a
linear constraint ofy; andy,. The ADMM solves a sequence of subproblems involviagand g, one
at a time and iterates to converge as long as a saddle posis.exi
To solve () with the ADMM in a decentralized manner, we reformulatest a

L
min i\Lqi),
{@i}{zi;} z;f( ) 3)

S.t. Ti = Zij, Tj = Zij, \V/('L.>j) €A
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Here z; is the local copy of the common optimization varialleat agent; and z;; is an auxiliary
variable imposing the consensus constraint on neighb@gents: and j. In the constraints{z;} are
separable whexz;;} are fixed, and vice versa. Therefor8) (ends itself to decentralized computation
in the ADMM framework. Apparently,3) is equivalent to ) when the network is connected.
Defining z € RLY as a vector concatenating al), z € RV as a vector concatenating al;, and

flx) = Zle fi(x;), (3) can be written in a matrix form as

min  f(z) + g(z),

(4)

s.t. Ax+ Bz =0,
where g(z) = 0, which fits the form of 2), and is amenable to the ADMM. Herd = [A;; As];
Ay, Ay € R2ENXLN gre poth composed @&fE x L blocks of N x N matrices. If(i, j) € A andz;; is the
gth block of z, then the(q, 7)th block of A; and the(g, j)th block of A, are N x N identity matrices/ y;
otherwise the corresponding blocks avex N zero matriced)y. Also, we haveB = [—Isgn; —IopN]

with Ibpy being a2EN x 2EN identity matrix.

B. Algorithm Development

Now we apply the ADMM to solve4). The augmented Lagrangian @) (is
Le(w,2,)) = f(x) + (A, Av+ Bz) + || Az + Bz|3,

where\ € R*¥N is the Lagrange multiplier and is a positive algorithm parameter. At iteratiént 1,
the ADMM firstly minimizesL.(x, z¥, \¥) to obtainz**!, secondly minimized..(z**1, z, \¥) to obtain

2#*+1 and finally updates**! from z*+! andz*+!. The updates are

z-update: Vf(zFt1) + ATAF 4 cAT (Azh+ + B2F) =0,
z-update: BTNF + BT (Azh+! 4+ B2F+1) =0, (5)
\-update: ML ZE —e(Axk T 4 B2EFL) =,
where V f(z*+1) is the gradient off (x) at pointz = z*! if f is differentiable, or is a subgradient if
f is non-differentiable.

Next we show that if the initial values of and A\ are properly chosen the ADMM updates i8) (
can be simplified (see also the derivation 8})] Multiplying the two sides of the\-update byA” and
adding it to thez-update, we hava/ f(zF+1) + ATXFF1 4 cAT B(2F — 2F+1) = 0. Further, multiplying
the two sides of the\-update byB” and adding it to the:-update we have3” \**! = 0. Therefore §)
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can be equivalently expressed as
Vf(aF ) + ATARHL 4 cAT B2 — 2h+1) = 0,
BT \k+1 = (6)
ARFL Nk o(Aghtl 4 Bkt = 0,
Letting A = [B;~] with 8,7y € R?PN and recallingB = [~ Ign; —Lpn], we know gFtl = —F+1
from the second equation o) Therefore, the first equation i) reduces tov f(z*+1) + M_gk+1 —
cM, (2F — 21y = 0 where M, = AT + AT and M_ = AT — AT The third equation ing) splits to
two equations3* ! — gF — cA xRt 4 2P = 0 andyF Tt — Ak — cApaF Tl 4 et = 0. If we choose
the initial value of\ as° = —4° such thats* = —+* holds fork = 0, 1,---, summing and subtracting
these two equations result fn/ T z* 1 — zk+1 = 0 and gk+1 — gk — M T2k = 0, respectively. If we
further choose the initial value of as 20 = 1729, I1MTak — 2k = 0 holds fork = 0,1,---.

To summarize, with initializatio8” = —° and z° = £ M7z, (6) reduces to

V(2R ) 4+ M_GFH — oM, (25 — 2FH1) = 0,
Br+L — gk e MTgh+1l = 7)
%Mka —ZF=0.

In Sectionlll we will analyze the convergence rate of the ADMM updaf®s The analysis requires an
extra initialization condition thag® lies in the column space df/” (e.g.,3° = 0) such that3**! also
lies in the column space d¥/”; the reason will be given in Sectidi .

Indeed, 7) also leads to a simple decentralized algorithm that ire®lenly anz-update and a new
multiplier update. To see this, substitutigd/7 2" — z¥ = 0 into the first two equations of7f we have

V(@) + M_gH — e M MT ok 4 M, MT 2+ = o,
BEH gk e Tkt =, (8)
which is irrelevant withz. Note that in the first equation o8) the z-update relies od/_**! other than
j*. Therefore, multiplying the second equation with- we haveM _ g1 — M_ g~ —<M_ MLk = 0.
Substituting it to the first equation o) we obtain thez-update where**! is decided by:* and M_ ¥,
ie., V(@) + M_gF+ (SMyMT + SM_MT)ak 1 — M, MT 2k = 0. Letting W € REVXEN pe a
block diagonal matrix with itg:,)th block being the degree of agentultiplying /5 and other blocks
beingOy, Ly = M MT, L = M_MT, we knowW = (L, + L_). Defining a new multiplier
a = M_j3 c RENV, we obtain a simplified decentralized algorithm
z-update: Vf(xF 1) + ok 4+ 2eWabtt — cL 2% =0,

a-update: ot —oF —cL 2kt = 0.

(9)
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TABLE |

ALGORITHM 1: DECENTRALIZED CONSENSUSOPTIMIZATION BASED ON THEADMM

Input functionsf;; initialize variablesz? = 0, o = 0; set algorithm parameter> 0;
Fork =0,1,---, every agent do

Updatez?** by solving V fi (1) + af 4 2¢|N;|zF T — ¢ <|M|mf + xf) =0;
JEN;

Updatea’! =ocf+c<lf\/z-|m7§+1 -5 x§+l>;
JEN;

End for

The introduced matriced/, M_, L, L_, andW are related to the underlying network topology.
With regard to the undirected gragh, M, and M _ are the extended unoriented and oriented incidence
matrices, respectively;,. andL_ are the extended signless and signed Laplacian matricggatvely;
and W is the extended degree matrix. By “extended”, we mean remgaeveryl by Iy, —1 by —Iy,
and0 by O in the original definitions of these matrice36[-[29].

The updates in9) are distributed to agents. Note that= [x1;- - - ;21| wherez; is the local solution
of agenti anda = [ay;--- ;o] wherea; € RY is the local Lagrange multiplier of ageit Recalling
the definitions ofiV’, L, and L_, (9) translates the update of agenby

Vet + af + 2¢Nilaf T —c <|le§ 1 x?) =0,
JEN;

(10)
okt =k 4 (muf“ -z ) >
JEN;

whereN; denotes the set of neighbors of agenthe algorithm is fully decentralized since the updates
of z; anda; only rely on local and neighboring information. The decalited consensus optimization

algorithm based on the ADMM is outlined in Table

[1l. CONVERGENCERATE ANALYSIS

This section first establishes the linear convergence ratbeo ADMM in decentralized consensus
optimization with strongly convex local objective funai® (see Sectioill-A ); the detailed proof of the
main theoretical result is placed in Appendix. We then discliow to tune the parameter and accelerate

the convergence (see SectibhB).
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A. Main Theoretical Result

Throughout this paper, we make the following assumptiontti@local objective functions are strongly

convex and have Lipschitz continuous gradients; note tiatatter implies differentiability.

Assumption 1. The local objective functions are strongly convex. For eagénti: and given anyt,, &, €
RN (Vfi(Za) — Vfi(@), Ta — Tv) > my, ||Ta — Tp||3 with my, > 0. The gradients of the local objective
functions are Lipschitz continuous. For each ageand given anyi,, 7, € RY, ||V f;(Z4) =V fi(p)]2 <

MfiHi'a — @bHQ with Mfi > 0.

Recall the definitionf(z) = Zle fi(z;). Assumptionl directly indicates thaf (x) is strongly convex
(i.e., (Vf(za) — VI (xp), 2q — ) > myl|lwa — x3]|3 given anyz,, z;, € REY with my = min; my,) and
the gradient off(x) is Lipschitz continuous (i.e.||Vf(zq) — Vf(xp)|2 < Myl|lze — a2 for any
Zq, Ty € REN with My = max; My,).

Although the convergence of Algorithm 1 to the optimal swotof (4) can be shown based on the
convergence property of the ADMM (see e.@1]), establishing its linear convergence is nontrivial. In
[25] the linear convergence of the centralized ADMM is provedegithat eitheg(z) is strongly convex
or B is full row-rank in @). However, the decentralized consensus optimizationlpnoldoes not satisfy
these conditions. The functigg(z) = 0 is not strongly convex, and the matriX = [—I,gpn; —l2enN] IS
row-rank deficient.

Next we will analyze the convergence rate of the ADMM itevat(7). The analysis requires an extra
initialization condition that3® lies in the column space af/” such thatg**! also lies in the column
space ofM”, which is necessary in the analysis. Note that there is auenaptimal multiplier3* lying

in the column space af/”. To see so, consider the KKT conditions dj (

V(@) + M_g* =0,

MTz* =0, (11)
%MIw* -2 =0,

where *, z*) is the unique primal optimal solution and the uniquenelsvic from the strong convexity

of f(z) as well as the consensus constraint+ Bz = 0. Since the consensus constraidts + Bz = 0

are feasible, there is at least one optimal multipieexists such tha¥ f (z*) 4+ M_5 = 0. We show that

its projection onto the column space®f’, denoted bys*, is also an optimal multiplier. According to the

property of projection)_(3—3*) = 0 and hencé//_5 = M_*. Therefore, the projectiofi* that lies in

the column space af/” also satisfie§ f(z*)+M_3* = 0. Next we show the uniqueness of such*aby
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contradiction. Consider two different vectat$’ v, M v, € R2EN that both lie in the column space of
M7 and satisfy the equation. Therefore, we h&&(z*)+M_M v, = 0 andV f(z*)+ M_MTvy = 0.
Subtracting them yieldd/_ MT (v; — vq) = 0. Since||M_ M (vy — va)|l2 > Fmin(M_) | ML (v1 —v2)]|2
wheres i, (M_) is the smallest nonzero singular value df , we conclude thaf M7 (v; — vg)|a =0
and consequently/Tv; = MTv, which contradicts with the assumption 8f”v; and M” v, being
different. Hence/* is the unique dual optimal solution that lies in the columapofi/?.

Our main theoretical result considers the convergence ettovthat concatenating the primal variable
z and the dual variablg, which is common in the convergence rate analysis of the ADNB]-[25)].

Let us introduce
U G- clopy  O2EN . (12)
B Oeen  1hpn
We will show thatu* = [2*; 5¥] is Q-linearly convergent to its optimal* = [2*; 3*] with respect to the
G-norm. Further, the Q-linear convergenceuf= [2*; 3*] to u* = [2*; 8*] implies thatz* is R-linearly

convergent to its optimat*.

Theorem 1. Consider the ADMM iteration?) that solves4). The primal variables: and z have their
unique optimal values* and z*, respectively; the dual variablg has its unique optimal valug* that
lies in the column space df/”. Recall the definition of. and G defined in 12). If the local objective
functions satisfy Assumptidnand the dual variables is initialized such tha3® lies in the column space
of MT, then for anyu > 1, u* = [2*; 8*] is Q-linearly convergent to its optimal* = [2*; %] with

respect to thez-norm

1
[t — g < g lluf - urlE, (13)
where
o (p=1)52, (M) my
0= mm{ 1O (M) iafnax<M+>+%Mﬁ&;?n(M7>} > 0. (14)

Further, z* is R-linearly convergent ta* following from
lah 1 — 2713 < Lk — w2 (15)
Proof. See Appendix. [

In Theoremi, (14) shows thafju**! —u*[|%, is no greater thapis||u” —u* || and hence” converges

to u* Q-linearly at a rate

144
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10

A larger 6 guarantees faster convergence. On the other hﬁjf\g,is a theoretical upper bound of the
convergence rate, probably not tight. The Q-linear coremeg ofu” to w* translates to the R-linear

convergence of to z* as shown in 15).

B. Accelerating the Convergence

From (14) we can find that the theoretical convergence rate (moragalgcits upper bound) is given
in terms of the network topology, the properties of localeaiive functions, and the algorithm parameter.
The value ofé is related with the free parametgr> 1, opax (M), dmin(M-—), the strongly convexity
constantm of f, the Lipschitz constant/; of V f, and the algorithm parameter

Now we consider tuning the free paramejerand the algorithm parameterto maximized and
thus accelerate the convergence (i.e., through minimi%%gthat is indeed an upper bound). From the
analysis we will see more clearly how the convergence rateflisenced by the network topology and
the local objective functions. For convenience, we defimedbndition number of as

M
T3

my
Recall thatm; = min; my, and M; = max; My,. Therefore,x; is an upper bound of the condition
numbers of the local objective functions. We also define thredition number of the underlying graph

Gq Or G, as

Omax (M) _ Omax(L+)

5min(M—) 5min(L—) '

With regard to the underlying graph, the minimum nonzergugiar value of the extended signed Laplacian

KRG =

matrix L_, denoted ag,i, (L_), is known as its algebraic connectivi®d], [27]. The maximum singular
value of the extended signless Laplacian mattix, denoted asr,.x(L+), has also drawn research
interests recently28], [29]. Both opax(L+) and omin(L-) are measures of network connectedness but
the former is weaker. Roughly speaking, largel.«<(L+) andomin(L_) mean stronger connectedness,
and a largeg means weaker connectedness.

Keeping the definitions ok; and kg in mind, the following theorem shows how to choose the free

parametel: and the algorithm parameterto maximized and accelerate the convergence.

Theorem 2. If the algorithm parametect in (14) is chosen as

o 2% M,
C=C = (M )omn (V) 1o
where
2 2 -1
K2, KR
u=(1+ﬁ_2% »T?H) > 1 .
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then

_ _ 1 1 4 1
5_5t_m1/ﬂ—§+%—m (18)

maximizes the value ofin (14) and ensures thatlg) holds.

Proof. Observing the two values inside the minimization operatofl¥), we find that only the second
term is relevant withe. It is easy to check that the value ofin (16), no matter howy is chosen,

maximizessd as

_ e Jwe)eR, (M) om0
5_m1n{ oz (M7) ’HéMfcrmx(MH}. "

Inside the minimization operator inl9), the first and second terms are monotonically increasirdy an
decreasing with regard to > 1, respectively. To maximizé, we choose a value gf such that the two
terms are equal. Simple calculations show that the valug of (17), which is larger than 1, satisfies

this condition. The resulting maximum value ®fs the one in 18). [

The value ofd in (18) is monotonically decreasing with regard4g > 1 andxg > 0. This conclusion
suggests that a smaller condition numberof f(x) and a smaller condition numbeg; of the graph lead
to faster convergence. On the other hand, if these conditionbers keep increasing, the convergence
can go arbitrarily slow. In fact, the limit of in (18) is 0 asx; — oo or kg — oo. Givendy, the upper

bound ofé, we define the upper bound of the convergence rate as

1
o= 140y

IV. NUMERICAL EXPERIMENTS

In this section, we provide extensive numerical experimemtd supplement to validate our theoretical
analysis. We introduce experimental settings in SeclibA and then study the influence of different

factors on the convergence rate in Sectib8 throughlV-E.

A. Experimental Settings

We generate a network consisting bfagents and possessing at méﬂ’z_—l) edges. If the network
is randomly generated, we defipethe connectivity ratio of the network, as its actual numbkedges
divided by@. Such a random network is generated v#ﬁ{—l)p edges that are uniformly randomly
chosen, while ensuring the network connected.

We apply the ADMM to a decentralized consensus least squaodsem

mmlné v — U3 (20)
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Herez € R? is the unknown signal to estimate and its true values follegvrtormal distribution\V'(0, ),
U; € R¥3 is the linear measurement matrix of agémhose elements follow\’(0, 1) by default, and
v; € R? is the measurement vector of agénvhose elements are polluted by random noise following
N(0,0.1). In SectionlV-D the elements of the matricd$ need to be further manipulated to produce
different condition numbers; of the objective functions. We reformulat2Q) into the form of @) as
min 3 4o - Ui,
{zd{zi} =1 (21)
s.t. T = Zij, Tj = 2j, V(i,5) € A
The solution to 20) is denoted byz* in which the part of agent is denoted byz;. The algorithm is
stopped oncdiz* — 2*||, reachesl0~'® or the number of iterations reachest000, whichever is earlier.
In the numerical experiments, we choose to record the pramar || 2% — 2*||, instead off|u* — u*| ¢
as the latter incurs significant extra computation when theber of agentd. is large. But note that
|z* — z*||2 is not necessarily monotonic i Let the transient convergence rate fe= ”ka_imnz As

xk—l_x*”z

pr fluctuates, we report theunning geometric-averagete of convergencg, given by

Pk = (ﬁ Ps>1/k
_ (|||mk—m*n2>1/’“ (22)

o\ 1/k
< L( 146 Jlu ul\c) ,

myg |[x0—z* |2

which follows from @3) and (L5). While u°, u*, 2° *, andm; influencep;, observing

/1
5o— 1 o <
p kil-lr-loopk_ 1494’

we see that their influence diminishes and the steady statepper bounded b Fl(s asp is. Throughout
the numerical experiments, we repgjt and p.

In the following subsections, we demonstrate how diffefantors influence the convergence rate. We
firstly show the evidence of linear convergence, and aloegmay, the influence of the connectivity ratio
p on the convergence rate (see SectiéiB). Secondly, we compare the practical convergence ratgusin
the best theoretical algorithm parameter= ¢, in (16) and that using the best hand-tuned parameter
c = c* (see SectiorV-C). Thirdly, we check the effect ok, the condition number of the objective
function (see Sectioiv-D). Finally, we show hows, the condition number of the network, as well as
other network parameters, influence the convergence re¢eSsctiorV-E). The numerical experiments

are summarized in Table II.
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Fig. 1. Relative errodZ ~*"l2 versus iteratiort:

13

TABLE I
SUMMARY OF THE NUMERICAL EXPERIMENTS

Section Factor Conclusion

IV-B p, connectivity ratio Largerp leads to faster convergence
IV-C ¢, algorithm parameter ¢ ~ 0.5¢;, works well

IV-D k¢, condition number of objective function Largerxy leads to slower convergence
IV-E ka, condition number of network Larger kg leads to slower convergence
IV-E D, network diameter Larger D leads to slower convergence
IV-E ds, geometric average degree Largerd; leads to faster convergence
IV-E Lg, imbalance of bipartite graphs

Larger L, leads to faster convergence

B. Linear Convergence

|
@

=
o

Relative error

=
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N
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p

p
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500

1500

To illustrate linear convergence of the ADMM for decentzall consensus optimization, we generate

random networks consisting df = 200 agents. The connectivity ratio of the networks,is set to
different values. The ADMM parameter is set@s- ¢, (16).

Fig. 1 depicts how the relative erro%, varies ink. Obviously the convergence rates are linear

for all p; a higher connectivity ratio leads to faster convergendg. Fplots pi, which stabilizes within

10 iterations. From Figl and Fig.2, one can observe that for such randomly generated netwaksng

the connectivity ratigp within the rang€g0.08, 1] does not significantly change the convergence rate. The
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Fig. 2. Running geometric-average rate of converggnceersus iteratiork.

reason is that whep is larger than a certain threshold, its value makes littfeuégnce onxg (see Table
Il in Section IV-C). We will discuss more about the influenceaf in SectionlV-D.

As a comparison, we also demonstrate the convergence ofistiébuted gradient descent (DGD)
method in Fig.1 and Fig.2. Using a diminishing stepsizé/k!/? [30], the DGD shows sublinear

convergence that is slow even for a complete graph (.es,1).

C. Algorithm Parameter

Here we discuss the influence of the ADMM parameten the convergence rate. The best theoretical
value ¢ = ¢ in (16), though optimizing the upper bound of the convergence i@des not give best
practical performance. We vatyand plot the steady-state running geometric-average odienvergence
p in Fig. 3. For each curve that corresponds to a uniguere mark the best theoretical valugand the
best practical value*. Consistentlyc; are larger thar*.

Now we setec = ¢*, the hand-tuned optimal value, and DW in Fig. 4 as per Fig.1 and g
in Fig. 5 as per Fig.2. Comparing to those using= ¢, the best theoretical value, in Fifj.and Fig.
2, the convergence improves significantly. The numericahtjties of Figs.1, 2, 4, and5 are given in
Table III.

It appears that; is a stable overestimate of. Therefore, we recommend= 6c¢; for nearly optimal
convergence using sontec (0, 1). Fig. 6 illustrates the convergence corresponding to differeftes

of §. We randomly generaté000 connected networks witlh, = 200 agents whose connectivity ratios
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Fig. 3. Steady-state running geometric-average rate ofergencep versus algorithm parameter
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Fig. 4. Relative error"

are uniformly distributed orﬁ%, 1]. The random networks are divided in26 groups according to their
condition numbers:g. For each group of the random networks, the valueg afe plotted with error
bars, and compared with the theoretical upper bopnd-or this dataset) ~ 0.5 appear to be a good

overall choice. A smalleé imposes a risk of slower convergence whenis small.
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TABLE 11l

SETTINGS AND CONVERGENCE RATES CORRESPONDING TBIG. 1, FIG. 2, FIG. 4, AND FIG. 5

16

Connectivity ratiop

Best theoreticat;

Best practicalk”

Theoretical rate

(L = 200 agents) KG c p c p Pt
0.01 33.00 123.8 0.9960 3.110 0.9189 0.9908
0.02 7.032 3.477 0.9314 0.5510 0.7014 0.9806
0.04 3.500 0.6714 0.8358 0.1687 0.5624 0.9295
0.08 2.221 0.1677 0.7088 0.05303 | 0.4297 0.8526
1.00 1.411 || 0.006837 | 0.5348 || 0.002722 | 0.2714 0.7313

D. Condition Number of the Objective Function

Now we study hows, the condition number of the objective function, affects tonvergence rate.

We generate random networks consisting/of= 200 agents with different connectivity ratigs We

setc = ¢;. To produce different: ¢, we first generate a linear measurement matgwith its elements

following A/(0,1). Second, we apply singular value decompositioné/{pscale the singular values to

the range, /Hlf, 1], and rebuildU;.
Fig. 7 shows that the theoretical convergence ratesre monotonically increasing ass increases,

which is consistent with Theore@ When the connectivity ratios are small, the trend of disobeys

the theoretical analysis. It is because that our upper bofitide convergence rate, becomes loose when
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Fig. 6. Convergence performance obtained with ¢, for varying 6, wherec; is analytically given in 16).

the network connectedness is poor. When the network is aeelhected (say = 1), we can observe a

positive correlation betweep andx ¢, which coincides with the theoretical analysis.

1.1
1 o 0”‘63'@ L TR - . - e, 4
g XX x X O .
oot~ 0°
O
Ko)
ogf el
K]
D
<o0.7}
—
=} )
\QO.GW
0.5} -
—75 ,p=001
0.4} ——p ,p=0.04
i
I coepe, p=0.
03 o py o p=0.04
02 . Lo p,p=100
10° 10" 10° 10°
Ky

Fig. 7. Convergence performance versus the condition numpef the objective function at different connectivity ratips

E. Network Topology

Last we study how the network topology affects the convergeate. Besides the condition numiaey

of the network that is relevant, we also consider other nd¢yarameters including the network diameter,
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geometric average degree, as well as imbalance of bipasiigorks. In the numerical experiments, the
local objective functions are generated as described itiddeld/-A . The algorithm parameter is set as
Cc = ¢t.

1) Condition Number of the Networlds it is difficult to precisely desigm, the condition number
of the network, we run a large number of trials to sampie We randomly generaté000 connected
networks with L = 50, 200, 500 agents, 12000 networks in total. Their connectivity ratos uniformly
distributed on[%, 1]. In addition, we generate special networks with topologiethe line, cycle, star,
complete, and grid types. The grid networks are generatesd 3D spaceq x 5 x 5, 5 x 5 x 8, and
5 x 10 x 10).

Fig. 8 depicts the effect okg on the convergence rate. In Fig, the dashed curve with error bars
correspond to the random networks, and the individual paiotrespond to the special networks. There
is only one dashed curve in the plot sinfe= 50,200,500 do not make significant differences. The
networks of the line, cycle, complete, and grid topologiesi@rate points in the plot that are nearly
on the dashed curve, which indicates that is a good indicator for convergence rate. In addition, the
trends ofp, the steady-state running geometric-average rate of cgemee, andg;, the theoretical rate
of convergence, are consistent. The points correspondirtiget three networks of the star topology are
away from the dashed side.

We observe that the convergence rate is closely related; tdess toL. To reach a target convergence
rate, one therefore shall have a sufficiently smaj| which in turn depends oh andp, as well as other
factors. To obtain a sufficiently smatl;, typically, p needs to be large if. is small, but not as large if
L is large. In other words, if one has a network with a large neimdd agents (say. = 200), a small
connectivity ratio (say = 0.1) will lead to a smallx¢ and thus fast convergence.

With the samexg, the networks with the star topology have much faster cgarmre than random
networks. We shall discuss this special topology at the drntli® subsection.

2) Network Diameter:The network diameteD is defined as the longest distance between any pair
of agents in the network. In decentralized consensus amiion, D is related to how many iterations
the information from one agent will reach all the other agent

To discuss the effect of the network diameter on the convergeate, we randomly generatéad0
connected networks with = 200 agents and connectivity ratios uniformly distributed [%n 1]. We also
generate the networks of the line, cycle, star, completd,gaid topologies. Most randomly generated
networks possess small diameters. In this experiment, uhgars of those withD =2, 3 < D < 4 and

5 < D < 198 are 3141, 717 and 142, respectively. From Fig9, we conclude that in general a larger
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Fig. 8. Convergence performance versus the condition nuofttbe networksxc obtained with networks of different topologies

(random, line, cycle, star, complete, and grid) and of d#ife sizes [ = 50, 200, 500).
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Fig. 9. Convergence performance versus the condition numbeof the network and the network diametBr obtained with

networks of different topologies (random, line, cycle rstmmplete, and grid) and of size = 200.

diameter tends to cause a worse condition number of the netaval thus slower convergence, though
this relationship is interfered by network properties.

3) Geometric Average Degre®efined,,;, andd.x as the largest and smallest degrees of the agents
in the network, respectively. The geometric average dediee /dnindmax reflects the agents’ number

of neighbors in a geometric average sense. Its value reatdvdsmum atl. — 1 if the topology is complete;
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Fig. 10. Convergence performance versus the condition rurib of the network and the geometric average degreebtained

with networks of different topologies (random, line, cycitar, complete, and grid) and of siZe= 200.

and reaches minimuny2 when the topology is a line.

Again, we randomly generatef) 00 connected networks witth = 200 agents and connectivity ratios
uniformly distributed or{%, 1]. We also generate the networks of the line, cycle, star, ¢tetmpand grid
topologies. Out of the randomly generated networks, have2 < d, < 20, 1576 have2l < d, < 100,
and 1956 have 101 < ds < 198. From Fig.10, we observe that a larget, generally implies better
connectedness and thus a smaller condition number of theorietis well as faster convergence. This
conclusion is similar to the one on the network diamdie(see Fig.9).

4) Imbalance of Bipartite Networkd:et B(L 4, Lp) denote the class of bipartite networks wiji|
agents in one group anfCp| agents in another group. Agents within either group canncctly
communicate with each other. For a bipartite network caimgjof L = |£ 4|+ |£p| agents, its imbalance
is defined ad.y = |La] — |

We randomly generaté000 bipartite graphs of sizd, = 200, whose connectivity ratiop are
uniformly distributed or‘[%, %], for each of the casds; = 196, 180, 140, 0. The star topology
corresponds to a special bipartite network with = L — 2 = 198. From Fig.11, we find that for the

, Which can vary betweef and L — 2.

samexg, the networks with largel.; have faster convergence. An extreme example is the network o
the star topology. This observation suggests us to assigritiet spots” to relay information for fast
convergence, it is fixed in advance. However, this approach may cause robssor scalability issues

because the relaying agents are subject to extensive coitation burden. Hence there is a tradeoff
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Fig. 11. Convergence performance versus the condition rumb of the network and the imbalance of bipartite networks

obtained with networks of random and star topologies andzaf 5 = 200.

between fast convergence and robustness or scalabilitgtimonk design.

V. CONCLUSIONS

We apply the ADMM to a reformulation of a general decentedizonsensus optimization problem. We
show that if the objective function is strongly convex, trecentralized ADMM converges at a globally
linear rate, which can be given explicitly. It is revealedtteveral factors affect the convergence rate that
include the topology-related properties of the network,¢bndition number of the objective function, and
the algorithm parameter. Numerical experiments corrdieaaad supplement our theoretical findings. Our

analysis sheds light on how to construct a network and tuaeldprithm parameter for fast convergence.

APPENDIX

Proof. Consider the ADMM updates/) and the KKT conditions{1). Subtracting the three equations

in (11) from the corresponding equations in) yields

V(@) = Vf(a*) = eMy (28 = 2F1) — M_ (81 — %), (23)
SMT (2 — o7) = phtl — gk, (24)
%Mz(xk—i-l _ x*) — Zk—i—l _ 2*7 (25)

respectively.
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To prove the Q-linear convergence|of*+! —u*||2, we usem||z*T! —2*(3 as an intermediate. Based
on Assumptionl, f(x) is strongly convex with a constant; such that
mylla"* — a3 < (25— 2t V() - V(). (26)
Using @23), we can split the right-hand side d26) to two terms

<xk+1 _ x*,Vf(xk“) _ Vf(l'*»
= (e e (R - ) - M (B - )
(

(27)
= (ahT oM (2R — M) 4 (R — o, — M (B - )
= (M (@M —a), 2 — ) (—MT (R o), B - ).
Substituting 24) and @5) to (27) we can eliminate the term**+' — 2* and obtain
(g1 — o YV f(2F ) — V f(2%)) 28)

= 2c(sh — R L PR _ ) 4 2(gh _ gl gkl gxy
Recall the definition ofu and G defined in {2). It is obvious that the right-hand side d28) can be
written as a compact for@(u* —u*+1)T G(uF+1 —u*). Using the equalit@(u* — )T G(ukF 1 —u*) =
|ubf —u)|Z — [ub Tt — u*]|% — [Juf — uF+1)|2, (28) is equivalent to

<l’k+1 _ :E*,Vf(l’k+1) _ Vf(:L'*»

k 2 k+1 2 k k+1(2 (29)
= = w G = Il =g = o = uPE,
and consequently usin@6)
k+1 ®([2
mys||T — X
J;H 2 ||2k 1 2 k k+1)2 (30)
<l —urflG = et =g = e = uPE
Having 30) at hand, to provel3) we only need to show
[uf = uFFHE 4 mgllat = 2] > Sl — w2, (31)
which is equivalent to
s
el = 2F[3 + LB = BB + mypllat T — 2|3 > del| Y — 23 + 28 - 3. (32)

The idea of proof is to show thai||*+1 — 2*||3 and ¢||3**1 — 3*||3 are upper bounded by two non-
overlapping parts of the left-hand side &2, respectively.
The upper bound of z**1 — 2*|3 follows from (25) that shows; M7 (z*! —2*) = z**1 — 2* Hence

we have

12+ — 2*13

TIME @ =23 (33)

T0max (M) |21 — 3,

IN
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whereo .. (M) is the largest singular value éf/,. To find the upper bound dfs*+! — 5*|2, we use
two inequalitieso . (M- )||25 7! — 2F3 > [ MT (2 — 2|3 and ME[a**! — ¥ |3 > [V f (") —

V f(x*)||3; the latter holds sincg(x) has Lipschitz continuous gradients with a constaft Therefore,

given the positive algorithm parameterand anyu > 1 it holds

O M| = 285 + (= DM |2+ — 2|3
> leME(F =23+ (u = DIV () = V()3
Recall that from 23) cM (2% — 2F+1) is the summation oF f(zF*1) — V f(z*) and M_(pF+1 — ).

Hence we can apply the basic inequality + b||3 + (1 — 1)|lalj3 > (1 — i)HbH%, which holds for any

(34)

1> 0, to (34) and obtain
O M) = 283 + (= M|+ — 2|3
> (1= )M (B = 593

Since by assumption® is initialized such that it lies in the column space &f’, we know thatg*+!

(35)

lies in the column space af/” too; see the ADMM updates). Because3* also lies in the column
space of ML, |M_(B*+1 — 8*)[13 > 52, (M_)||B*! — 8*||3 whereguin(M-) is the smallest nonzero

singular value ofM/_. Therefore from 35) we can upper bounds*+! — 5*(]2 by

Coax M) |2 = 283 + (= DMF||* — 2|3

L i (36)
> (1= )0 (MO)B* = B3
Combining @3) and @6), we prove 82). From @3) we have
§0hax (M) — 23 -
e
From (36) we have
cuo?,, (M M? "
L[| A1 — K12 4 [l — a1 )
> L|BF = B3
Summing up 87) and @8) yields
cuo?,. (M M3 c *
Gl URs || — M3+ (wzuid\},) + zafnax(MJr)) [ (39)
>l =2 F B - B3
Apparently,§ in (14) satisfies
cl| 2K = 2F(|3 4 myp |l — 2|3 > Sef| AT — 2|5 + 2|8 - 873, (40)

and consequently3@), which proves 13).
To prove the R-linear convergence of to z*, we observe that3Q) implies m¢||z**! — 2*(|3 <

|uf — u*||%, which proves 15). n
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