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On the Linear Convergence of the ADMM in

Decentralized Consensus Optimization

Wei Shi, Qing Ling, Kun Yuan, Gang Wu, and Wotao Yin

Abstract

In decentralized consensus optimization, a connected network of agents collaboratively minimize

the sum of their local objective functions over a common decision variable, where their information

exchange is restricted between the neighbors. To this end, one can first obtain a problem reformulation

and then apply the alternating direction method of multipliers (ADMM). The method applies iterative

computation at the individual agents and information exchange between the neighbors. This approach has

been observed to converge quickly and deemed powerful. Thispaper establishes its linear convergence

rate for the decentralized consensus optimization problemwith strongly convex local objective functions.

The theoretical convergence rate is explicitly given in terms of the network topology, the properties of

local objective functions, and the algorithm parameter. This result is not only a performance guarantee

but also a guideline toward accelerating the ADMM convergence.

Index Terms

Decentralized consensus optimization, alternating direction method of multipliers (ADMM), linear

convergence
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I. INTRODUCTION

Recent advances in signal processing and control of networked multi-agent systems have led to much

research interests in decentralized optimization [2]–[14]. Decentralized optimization problems arising

in networked multi-agent systems include coordination of aircraft or vehicle networks [2]–[4], data

processing of wireless sensor networks [5]–[10], spectrum sensing of cognitive radio networks [11], [12],

state estimation and operation optimization of smart grids[13], [14], etc. In these scenarios, the data is

collected and/or stored in a distributed manner; a fusion center is either disallowed or not economical.

Consequently, any computing tasks must be accomplished in adecentralized and collaborative manner by

the agents. This approach can be powerful and efficient, as the computing tasks are distributed over all

the agents and information exchange occurs only between theagents with direct communication links.

There is no risk of central computation overload or network congestion.

In this paper, we focus ondecentralized consensus optimization, an important class of decentralized

optimization in which a network ofL agents cooperatively solve

min
x̃

L
∑

i=1
fi(x̃), (1)

over a common optimization variablẽx, wherefi(x̃) : RN → R is the local objective function known by

agenti. This formulation arises in averaging [4]–[6], learning [7], [8], and estimation [9]–[13] problems.

Examples offi(x̃) include least squares [4]–[6], regularized least squares [8], [10]–[12], as well as more

general ones [7]. The values of̃x can stand for average temperature of a room [5], [6], frequency-domain

occupancy of spectra [11], [12], states of a smart grid system [13], [14], and so on.

There exist several methods for decentralized consensus optimization, including distributed subgradient

descent algorithms [15]–[17], dual averaging methods [18], [19], and the alternating direction method

of multipliers (ADMM) [8]–[10], [20], [21]. Among these algorithms, the ADMM demonstrates fast

convergence in many applications, e.g., [8]–[10]. However, how fast it converges and what factors affect

the rate are both unknown. This paper addresses these issues.

A. Our Contributions

Firstly, we establish the linear convergence rate of the ADMM that is applied to decentralized consensus

optimization with strongly convex local objective functions. This theoretical result gives a performance

guarantee for the ADMM and validates the observation in prior literature.

Secondly, we study how the network topology, the propertiesof local objective functions, and the

algorithm parameter affect the convergence rate. The analysis provide guidelines for networking strategies,
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objective-function splitting strategies, and algorithm parameter settings to achieve faster convergence.

B. Related Work

Besides the ADMM, existing decentralized approaches for solving (1) include belief propagation

[7], incremental optimization [22], subgradient descent [15]–[17], dual averaging [18], [19], etc. Belief

propagation and incremental optimization require one to predefine a tree or loop structure in the network,

whereas the advantage of the ADMM, subgradient descent, anddual averaging is that they do not rely on

any predefined structures. Subgradient descent and dual averaging work well for asynchronous networks

but suffer from slow convergence. Indeed, for subgradient descent algorithms [15] and [16] establish

the convergence rate ofO(1/k), wherek is the number of iterations, to a neighborhood of the optimal

solution when the local subgradients are bounded and the stepsize is fixed. Further assuming that the

local objective functions are strongly convex, choosing a dynamic stepsize leads to a rate ofO(log(k)/k)

[17]. Dual averaging methods using dynamic stepsizes also havesublinear rates, e.g.,O(log(k)/
√
k) as

proved in [18] and [19].

The decentralized ADMM approaches use synchronous steps byall the agents but have much faster

empirical convergence, as demonstrated in many applications [8]–[10]. However, existing convergence

rate analysis of the ADMM is restricted to the classic, centralized computation. The centralized ADMM

has a sublinear convergence rateO(1/k) for general convex optimization problems [23]. In [24] an

ADMM with restricted stepsizes is proposed and proved to be linearly convergent for certain types of

non-strongly convex objective functions. A recent paper [25] shows a linear convergence rateO(1/ak)

for somea > 1 under a strongly convex assumption, and our paper extends the analysis tools therein to

the decentralized regime.

A notable work about convergence rate analysis is [20], which proves the linear convergence rate of the

ADMM applied to the average consensus problem, a special case of (1) in which fi(x̃) = ‖x̃− yi‖22 with

yi being a local measurement vector of agenti. Its analysis takes a state-transition equation approach,

which is not applicable to the more general local objective functions considered in this paper.

C. Paper Organization and Notation

This paper is organized as follows. SectionII reformulates the decentralized consensus optimization

problem and develops an algorithm based on the ADMM. SectionIII analyzes the linear convergence

rate of the ADMM and shows how to accelerate the convergence through tuning the algorithm parameter.
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SectionIV provides extensive numerical experiments to validate the theoretical analysis in SectionIII .

SectionV concludes the paper.

In this paper we denote‖x‖2 as the Euclidean norm of a vectorx and 〈x, y〉 as the inner product of

two vectorsx andy. Given a semidefinite matrixG with proper dimensions, theG-norm ofx is
√
xTGx.

We letσmax(G) be the operator that returns the largest singular value ofG and σ̃min(G) be the one that

returns the smallest nonzero singular value ofG.

We use two kinds of definitions of convergence, Q-linear convergence and R-linear convergence. We

say that a sequenceyk, where the superscriptk stands for time index, Q-linearly converges to a point

y∗ if there exists a numberρ ∈ (0, 1) such that lim
k→∞

‖yk+1−y∗‖
‖yk−y∗‖ = ρ with ‖ · ‖ being a vector norm. We

say that a sequencexk R-linearly converges to a pointx∗ if for all k, ‖xk − x∗‖ ≤ ‖yk − y∗‖ whereyk

Q-linearly converges toy∗.

II. T HE ADMM FOR DECENTRALIZED CONSENSUSOPTIMIZATION

In this section, we first reformulate the decentralized consensus optimization problem (1) such that it

can be solved by the ADMM (see SectionII-A ). Then we develop the decentralized ADMM approach

and provide a simplified decentralized algorithm (see Section II-B).

A. Problem Formulation

Throughout the paper, we consider a network consisting ofL agents bidirectionally connected byE

edges (and thus2E arcs). We can describe the network as a symmetric directed graphGd = {V,A} or

an undirected graphGu = {V, E}, whereV is the set of vertexes with cardinality|V| = L, A is the set

of arcs with |A| = 2E, andE is the set of edges with|E| = E. Algorithms that solve the decentralized

consensus optimization problem (1) are developed based on this graph.

Generally speaking, the ADMM applies to the convex optimization problem in the form of

min
y1,y2

g1(y1) + g2(y2),

s.t. C1y1 +C2y2 = b,
(2)

wherey1 andy2 are optimization variables,g1 andg2 are convex functions, andC1y1 + C2y2 = b is a

linear constraint ofy1 andy2. The ADMM solves a sequence of subproblems involvingg1 andg2 one

at a time and iterates to converge as long as a saddle point exists.

To solve (1) with the ADMM in a decentralized manner, we reformulate it as

min
{xi},{zij}

L
∑

i=1
fi(xi),

s.t. xi = zij , xj = zij , ∀(i, j) ∈ A.

(3)
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Here xi is the local copy of the common optimization variablex̃ at agenti and zij is an auxiliary

variable imposing the consensus constraint on neighboringagentsi and j. In the constraints,{xi} are

separable when{zij} are fixed, and vice versa. Therefore, (3) lends itself to decentralized computation

in the ADMM framework. Apparently, (3) is equivalent to (1) when the network is connected.

Defining x ∈ R
LN as a vector concatenating allxi, z ∈ R

2EN as a vector concatenating allzij , and

f(x) =
∑L

i=1 fi(xi), (3) can be written in a matrix form as

min
x,z

f(x) + g(z),

s.t. Ax+Bz = 0,
(4)

where g(z) = 0, which fits the form of (2), and is amenable to the ADMM. HereA = [A1;A2];

A1, A2 ∈ R
2EN×LN are both composed of2E×L blocks ofN×N matrices. If(i, j) ∈ A andzij is the

qth block ofz, then the(q, i)th block ofA1 and the(q, j)th block ofA2 areN×N identity matricesIN ;

otherwise the corresponding blocks areN ×N zero matrices0N . Also, we haveB = [−I2EN ;−I2EN ]

with I2EN being a2EN × 2EN identity matrix.

B. Algorithm Development

Now we apply the ADMM to solve (4). The augmented Lagrangian of (4) is

Lc(x, z, λ) = f(x) + 〈λ,Ax+Bz〉+ c

2
‖Ax+Bz‖22,

whereλ ∈ R
4EN is the Lagrange multiplier andc is a positive algorithm parameter. At iterationk + 1,

the ADMM firstly minimizesLc(x, z
k, λk) to obtainxk+1, secondly minimizesLc(x

k+1, z, λk) to obtain

zk+1, and finally updatesλk+1 from xk+1 andzk+1. The updates are

x-update: ∇f(xk+1) +ATλk + cAT (Axk+1 +Bzk) = 0,

z-update: BTλk + cBT (Axk+1 +Bzk+1) = 0,

λ-update: λk+1 − λk − c(Axk+1 +Bzk+1) = 0,

(5)

where∇f(xk+1) is the gradient off(x) at pointx = xk+1 if f is differentiable, or is a subgradient if

f is non-differentiable.

Next we show that if the initial values ofz and λ are properly chosen the ADMM updates in (5)

can be simplified (see also the derivation in [8]). Multiplying the two sides of theλ-update byAT and

adding it to thex-update, we have∇f(xk+1) +ATλk+1 + cATB(zk − zk+1) = 0. Further, multiplying

the two sides of theλ-update byBT and adding it to thez-update we haveBTλk+1 = 0. Therefore (5)
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can be equivalently expressed as

∇f(xk+1) +ATλk+1 + cATB(zk − zk+1) = 0,

BTλk+1 = 0,

λk+1 − λk − c(Axk+1 +Bzk+1) = 0.

(6)

Letting λ = [β; γ] with β, γ ∈ R
2EN and recallingB = [−I2EN ;−I2EN ], we knowβk+1 = −γk+1

from the second equation of (6). Therefore, the first equation in (6) reduces to∇f(xk+1) +M−β
k+1 −

cM+(z
k − zk+1) = 0 whereM+ = AT

1 + AT
2 andM− = AT

1 − AT
2 . The third equation in (6) splits to

two equationsβk+1 − βk − cA1x
k+1 + czk+1 = 0 andγk+1 − γk − cA2x

k+1 + czk+1 = 0. If we choose

the initial value ofλ asβ0 = −γ0 such thatβk = −γk holds fork = 0, 1, · · · , summing and subtracting

these two equations result in12M
T
+x

k+1− zk+1 = 0 andβk+1−βk− c
2M

T
−x

k+1 = 0, respectively. If we

further choose the initial value ofz asz0 = 1
2M

T
+x

0, 1
2M

T
+x

k − zk = 0 holds fork = 0, 1, · · · .
To summarize, with initializationβ0 = −γ0 andz0 = 1

2M
T
+x

0, (6) reduces to

∇f(xk+1) +M−β
k+1 − cM+(z

k − zk+1) = 0,

βk+1 − βk − c
2M

T
−x

k+1 = 0,

1
2M

T
+x

k − zk = 0.

(7)

In SectionIII we will analyze the convergence rate of the ADMM updates (7). The analysis requires an

extra initialization condition thatβ0 lies in the column space ofMT
− (e.g.,β0 = 0) such thatβk+1 also

lies in the column space ofMT
− ; the reason will be given in SectionIII .

Indeed, (7) also leads to a simple decentralized algorithm that involves only anx-update and a new

multiplier update. To see this, substituting12M
T
+x

k − zk = 0 into the first two equations of (7) we have

∇f(xk+1) +M−β
k+1 − c

2M+M
T
+x

k + c
2M+M

T
+xk+1 = 0,

βk+1 − βk − c
2M

T
−xk+1 = 0,

(8)

which is irrelevant withz. Note that in the first equation of (8) thex-update relies onM−β
k+1 other than

βk. Therefore, multiplying the second equation withM− we haveM−β
k+1−M−β

k− c
2M−M

T
−x

k+1 = 0.

Substituting it to the first equation of (8) we obtain thex-update wherexk+1 is decided byxk andM−β
k,

i.e.,∇f(xk+1) +M−β
k + ( c2M+M

T
+ + c

2M−M
T
−)x

k+1 − c
2M+M

T
+xk = 0. Letting W ∈ R

LN×LN be a

block diagonal matrix with its(i, i)th block being the degree of agenti multiplying IN and other blocks

being 0N , L+ = 1
2M+M

T
+ , L− = 1

2M−M
T
− , we knowW = 1

2 (L+ + L−). Defining a new multiplier

α = M−β ∈ R
LN , we obtain a simplified decentralized algorithm

x-update: ∇f(xk+1) + αk + 2cWxk+1 − cL+x
k = 0,

α-update: αk+1 − αk − cL−x
k+1 = 0.

(9)
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TABLE I

ALGORITHM 1: DECENTRALIZED CONSENSUSOPTIMIZATION BASED ON THE ADMM

Input functionsfi; initialize variablesx0
i = 0, α0

i = 0; set algorithm parameterc > 0;

For k = 0, 1, · · · , every agenti do

Updatexk+1
i by solving∇fi(x

k+1
i ) + αk

i + 2c|Ni|x
k+1
i − c

(

|Ni|x
k
i +

∑

j∈Ni

xk
j

)

= 0;

Updateαk+1
i = αk

i + c

(

|Ni|x
k+1
i −

∑

j∈Ni

xk+1
j

)

;

End for

The introduced matricesM+, M−, L+, L−, andW are related to the underlying network topology.

With regard to the undirected graphGu, M+ andM− are the extended unoriented and oriented incidence

matrices, respectively;L+ andL− are the extended signless and signed Laplacian matrices, respectively;

andW is the extended degree matrix. By “extended”, we mean replacing every1 by IN , −1 by −IN ,

and0 by 0N in the original definitions of these matrices [26]–[29].

The updates in (9) are distributed to agents. Note thatx = [x1; · · · ;xL] wherexi is the local solution

of agenti andα = [α1; · · · ;αL] whereαi ∈ R
N is the local Lagrange multiplier of agenti. Recalling

the definitions ofW , L+ andL−, (9) translates the update of agenti by

∇fi(x
k+1
i ) + αk

i + 2c|Ni|xk+1
i − c

(

|Ni|xki +
∑

j∈Ni

xkj

)

= 0,

αk+1
i = αk

i + c

(

|Ni|xk+1
i − ∑

j∈Ni

xk+1
j

)

,

(10)

whereNi denotes the set of neighbors of agenti. The algorithm is fully decentralized since the updates

of xi andαi only rely on local and neighboring information. The decentralized consensus optimization

algorithm based on the ADMM is outlined in TableI.

III. C ONVERGENCERATE ANALYSIS

This section first establishes the linear convergence rate of the ADMM in decentralized consensus

optimization with strongly convex local objective functions (see SectionIII-A ); the detailed proof of the

main theoretical result is placed in Appendix. We then discuss how to tune the parameter and accelerate

the convergence (see SectionIII-B ).
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A. Main Theoretical Result

Throughout this paper, we make the following assumption that the local objective functions are strongly

convex and have Lipschitz continuous gradients; note that the latter implies differentiability.

Assumption 1. The local objective functions are strongly convex. For eachagenti and given anỹxa, x̃b ∈
R
N 〈∇fi(x̃a)−∇fi(x̃b), x̃a − x̃b〉 ≥ mfi‖x̃a − x̃b‖22 with mfi > 0. The gradients of the local objective

functions are Lipschitz continuous. For each agenti and given anỹxa, x̃b ∈ R
N , ‖∇fi(x̃a)−∇fi(x̃b)‖2 ≤

Mfi‖x̃a − x̃b‖2 with Mfi > 0.

Recall the definitionf(x) =
∑L

i=1 fi(xi). Assumption1 directly indicates thatf(x) is strongly convex

(i.e., 〈∇f(xa)−∇f(xb), xa − xb〉 ≥ mf‖xa − xb‖22 given anyxa, xb ∈ R
LN with mf = mini mfi) and

the gradient off(x) is Lipschitz continuous (i.e.,‖∇f(xa) − ∇f(xb)‖2 ≤ Mf‖xa − xb‖2 for any

xa, xb ∈ R
LN with Mf = maxiMfi).

Although the convergence of Algorithm 1 to the optimal solution of (4) can be shown based on the

convergence property of the ADMM (see e.g., [21]), establishing its linear convergence is nontrivial. In

[25] the linear convergence of the centralized ADMM is proved given that eitherg(z) is strongly convex

or B is full row-rank in (4). However, the decentralized consensus optimization problem does not satisfy

these conditions. The functiong(z) = 0 is not strongly convex, and the matrixB = [−I2EN ;−I2EN ] is

row-rank deficient.

Next we will analyze the convergence rate of the ADMM iteration (7). The analysis requires an extra

initialization condition thatβ0 lies in the column space ofMT
− such thatβk+1 also lies in the column

space ofMT
− , which is necessary in the analysis. Note that there is a unique optimal multiplierβ∗ lying

in the column space ofMT
− . To see so, consider the KKT conditions of (4)

∇f(x∗) +M−β
∗ = 0,

MT
−x

∗ = 0,

1
2M

T
+x

∗ − z∗ = 0,

(11)

where (x∗, z∗) is the unique primal optimal solution and the uniqueness follows from the strong convexity

of f(x) as well as the consensus constraintAx+Bz = 0. Since the consensus constraintsAx+Bz = 0

are feasible, there is at least one optimal multiplierβ̃ exists such that∇f(x∗)+M−β̃ = 0. We show that

its projection onto the column space ofMT
− , denoted byβ∗, is also an optimal multiplier. According to the

property of projection,M−(β̃−β∗) = 0 and henceM−β̃ = M−β
∗. Therefore, the projectionβ∗ that lies in

the column space ofMT
− also satisfies∇f(x∗)+M−β

∗ = 0. Next we show the uniqueness of such aβ∗ by
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contradiction. Consider two different vectorsMT
−v1,M

T
−v2 ∈ R

2EN that both lie in the column space of

MT
− and satisfy the equation. Therefore, we have∇f(x∗)+M−M

T
−v1 = 0 and∇f(x∗)+M−M

T
−v2 = 0.

Subtracting them yieldsM−M
T
−(v1 − v2) = 0. Since‖M−M

T
−(v1 − v2)‖2 ≥ σ̃min(M−)‖MT

− (v1 − v2)‖2
whereσ̃min(M−) is the smallest nonzero singular value ofM−, we conclude that‖MT

− (v1 − v2)‖2 = 0

and consequentlyMT
−v1 = MT

−v2 which contradicts with the assumption ofMT
−v1 andMT

−v2 being

different. Hence,β∗ is the unique dual optimal solution that lies in the column space ofMT
− .

Our main theoretical result considers the convergence of a vector that concatenating the primal variable

z and the dual variableβ, which is common in the convergence rate analysis of the ADMM[23]–[25].

Let us introduce

u =





z

β



 , G =





cI2EN 02EN

02EN
1
c I2EN



 . (12)

We will show thatuk = [zk;βk] is Q-linearly convergent to its optimalu∗ = [z∗;β∗] with respect to the

G-norm. Further, the Q-linear convergence ofuk = [zk;βk] to u∗ = [z∗;β∗] implies thatxk is R-linearly

convergent to its optimalx∗.

Theorem 1. Consider the ADMM iteration (7) that solves (4). The primal variablesx and z have their

unique optimal valuesx∗ and z∗, respectively; the dual variableβ has its unique optimal valueβ∗ that

lies in the column space ofMT
− . Recall the definition ofu andG defined in (12). If the local objective

functions satisfy Assumption1 and the dual variableβ is initialized such thatβ0 lies in the column space

of MT
− , then for anyµ > 1, uk = [zk;βk] is Q-linearly convergent to its optimalu∗ = [z∗;β∗] with

respect to theG-norm

‖uk+1 − u∗‖2G ≤ 1
1+δ‖uk − u∗‖2G, (13)

where

δ = min
{

(µ−1)σ̃2
min(M−)

µσ2
max(M+) , mf

c

4
σ2
max(M+)+µ

c
M2

f σ̃
−2

min(M−)

}

> 0. (14)

Further, xk is R-linearly convergent tox∗ following from

‖xk+1 − x∗‖22 ≤ 1
mf

‖uk − u∗‖2G. (15)

Proof. See Appendix.

In Theorem1, (14) shows that‖uk+1−u∗‖2G is no greater than1
1+δ‖uk−u∗‖2G and henceuk converges

to u∗ Q-linearly at a rate

ρ ≤
√

1

1 + δ
.
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A larger δ guarantees faster convergence. On the other hand,1
1+δ is a theoretical upper bound of the

convergence rate, probably not tight. The Q-linear convergence ofuk to u∗ translates to the R-linear

convergence ofx to x∗ as shown in (15).

B. Accelerating the Convergence

From (14) we can find that the theoretical convergence rate (more precisely, its upper bound) is given

in terms of the network topology, the properties of local objective functions, and the algorithm parameter.

The value ofδ is related with the free parameterµ > 1, σmax(M+), σ̃min(M−), the strongly convexity

constantmf of f , the Lipschitz constantMf of ∇f , and the algorithm parameterc.

Now we consider tuning the free parameterµ and the algorithm parameterc to maximizeδ and

thus accelerate the convergence (i.e., through minimizing1
1+δ that is indeed an upper bound). From the

analysis we will see more clearly how the convergence rate isinfluenced by the network topology and

the local objective functions. For convenience, we define the condition number off as

κf =
Mf

mf
.

Recall thatmf = minimfi and Mf = maxi Mfi . Therefore,κf is an upper bound of the condition

numbers of the local objective functions. We also define the condition number of the underlying graph

Gd or Gu as

κG =
σmax(M+)

σ̃min(M−)
=

√

σmax(L+)

σ̃min(L−)
.

With regard to the underlying graph, the minimum nonzero singular value of the extended signed Laplacian

matrixL−, denoted as̃σmin(L−), is known as its algebraic connectivity [26], [27]. The maximum singular

value of the extended signless Laplacian matrixL+, denoted asσmax(L+), has also drawn research

interests recently [28], [29]. Both σmax(L+) and σ̃min(L−) are measures of network connectedness but

the former is weaker. Roughly speaking, largerσmax(L+) and σ̃min(L−) mean stronger connectedness,

and a largerκG means weaker connectedness.

Keeping the definitions ofκf andκG in mind, the following theorem shows how to choose the free

parameterµ and the algorithm parameterc to maximizeδ and accelerate the convergence.

Theorem 2. If the algorithm parameterc in (14) is chosen as

c = ct =
2µ

1
2 Mf

σmax(M+)σ̃min(M−)
(16)

where

µ =
(

1 + κ2
G

2κ2
f

− κG

2κf

√

κ2
G

κ2
f

+ 4
)−1

> 1, (17)
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then

δ = δt =
1

2κf

√

1
κ2
f

+ 4
κ2
G

− 1
2κ2

f

(18)

maximizes the value ofδ in (14) and ensures that (15) holds.

Proof. Observing the two values inside the minimization operator in (14), we find that only the second

term is relevant withc. It is easy to check that the value ofc in (16), no matter howµ is chosen,

maximizesδ as

δ = min

{

(µ−1)σ̃2
min(M−)

µσ2
max(M+) , mf σ̃min(M−)

µ
1
2 Mfσmax(M+)

}

. (19)

Inside the minimization operator in (19), the first and second terms are monotonically increasing and

decreasing with regard toµ > 1, respectively. To maximizeδ, we choose a value ofµ such that the two

terms are equal. Simple calculations show that the value ofµ in (17), which is larger than 1, satisfies

this condition. The resulting maximum value ofδ is the one in (18).

The value ofδ in (18) is monotonically decreasing with regard toκf ≥ 1 andκG > 0. This conclusion

suggests that a smaller condition numberκf of f(x) and a smaller condition numberκG of the graph lead

to faster convergence. On the other hand, if these conditionnumbers keep increasing, the convergence

can go arbitrarily slow. In fact, the limit ofδ in (18) is 0 asκf → ∞ or κG → ∞. Given δt, the upper

bound ofδ, we define the upper bound of the convergence rate as

ρt =

√

1

1 + δt
.

IV. N UMERICAL EXPERIMENTS

In this section, we provide extensive numerical experiments and supplement to validate our theoretical

analysis. We introduce experimental settings in SectionIV-A and then study the influence of different

factors on the convergence rate in SectionsIV-B throughIV-E.

A. Experimental Settings

We generate a network consisting ofL agents and possessing at mostL(L−1)
2 edges. If the network

is randomly generated, we definep, the connectivity ratio of the network, as its actual numberof edges

divided by L(L−1)
2 . Such a random network is generated withL(L−1)

2 p edges that are uniformly randomly

chosen, while ensuring the network connected.

We apply the ADMM to a decentralized consensus least squaresproblem

min
x̃

L
∑

i=1

1
2‖vi − Uix̃‖22. (20)
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Herex̃ ∈ R
3 is the unknown signal to estimate and its true values follow the normal distributionN (0, I),

Ui ∈ R
3×3 is the linear measurement matrix of agenti whose elements followN (0, 1) by default, and

vi ∈ R
3 is the measurement vector of agenti whose elements are polluted by random noise following

N (0, 0.1). In SectionIV-D the elements of the matricesUi need to be further manipulated to produce

different condition numbersκf of the objective functions. We reformulate (20) into the form of (3) as

min
{xi},{zij}

L
∑

i=1

1
2‖vi − Uixi‖22,

s.t. xi = zij , xj = zij , ∀(i, j) ∈ A.

(21)

The solution to (20) is denoted byx∗ in which the part of agenti is denoted byx∗i . The algorithm is

stopped once‖xk −x∗‖2 reaches10−15 or the number of iterationsk reaches4000, whichever is earlier.

In the numerical experiments, we choose to record the primalerror‖xk −x∗‖2 instead of‖uk −u∗‖G
as the latter incurs significant extra computation when the number of agentsL is large. But note that

‖xk −x∗‖2 is not necessarily monotonic ink. Let the transient convergence rate beρk = ‖xk−x∗‖2

‖xk−1−x∗‖2
. As

ρk fluctuates, we report therunning geometric-averagerate of convergencēρk given by

ρ̄k :=

(

k
∏

s=1
ρs

)1/k

=
(

‖xk−x∗‖2

‖x0−x∗‖2

)1/k

≤
√

1
1+δ

(√

1+δ
mf

‖u0−u∗‖G

‖x0−x∗‖2

)1/k
,

(22)

which follows from (13) and (15). While u0, u∗, x0 x∗, andmf influenceρ̄k, observing

ρ̄ := lim
k→+∞

ρ̄k ≤
√

1

1 + δ
,

we see that their influence diminishes and the steady stateρ̄ is upper bounded by
√

1
1+δ asρ is. Throughout

the numerical experiments, we reportρ̄k and ρ̄.

In the following subsections, we demonstrate how differentfactors influence the convergence rate. We

firstly show the evidence of linear convergence, and along the way, the influence of the connectivity ratio

p on the convergence rate (see SectionIV-B). Secondly, we compare the practical convergence rate using

the best theoretical algorithm parameterc = ct in (16) and that using the best hand-tuned parameter

c = c∗ (see SectionIV-C). Thirdly, we check the effect ofκf , the condition number of the objective

function (see SectionIV-D). Finally, we show howκf , the condition number of the network, as well as

other network parameters, influence the convergence rate (see SectionIV-E). The numerical experiments

are summarized in Table II.
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TABLE II

SUMMARY OF THE NUMERICAL EXPERIMENTS

Section Factor Conclusion

IV-B p, connectivity ratio Largerp leads to faster convergence

IV-C c, algorithm parameter c ≃ 0.5ct works well

IV-D κf , condition number of objective function Largerκf leads to slower convergence

IV-E κG, condition number of network LargerκG leads to slower convergence

IV-E D, network diameter LargerD leads to slower convergence

IV-E ds, geometric average degree Largerds leads to faster convergence

IV-E Ld, imbalance of bipartite graphs LargerLd leads to faster convergence
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p = 0.01, ADMM
p = 0.02, ADMM
p = 0.04, ADMM
p = 0.08, ADMM
p = 1.00, ADMM
p = 1.00, DGD

Fig. 1. Relative error‖x
k−x∗‖2
‖x∗‖2

versus iterationk.

B. Linear Convergence

To illustrate linear convergence of the ADMM for decentralized consensus optimization, we generate

random networks consisting ofL = 200 agents. The connectivity ratio of the networks,p, is set to

different values. The ADMM parameter is set asc = ct (16).

Fig. 1 depicts how the relative error,‖x
k−x∗‖2

‖x∗‖2
, varies ink. Obviously the convergence rates are linear

for all p; a higher connectivity ratio leads to faster convergence. Fig. 2 plots ρ̄k, which stabilizes within

10 iterations. From Fig.1 and Fig.2, one can observe that for such randomly generated networks,varying

the connectivity ratiop within the range[0.08, 1] does not significantly change the convergence rate. The
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Fig. 2. Running geometric-average rate of convergenceρ̄k versus iterationk.

reason is that whenp is larger than a certain threshold, its value makes little influence onκG (see Table

III in Section IV-C). We will discuss more about the influence ofκG in SectionIV-D.

As a comparison, we also demonstrate the convergence of the distributed gradient descent (DGD)

method in Fig.1 and Fig. 2. Using a diminishing stepsize1/k1/3 [30], the DGD shows sublinear

convergence that is slow even for a complete graph (i.e.,p = 1).

C. Algorithm Parameter

Here we discuss the influence of the ADMM parameterc on the convergence rate. The best theoretical

value c = ct in (16), though optimizing the upper bound of the convergence rate, does not give best

practical performance. We varyc, and plot the steady-state running geometric-average rates of convergence

ρ̄ in Fig. 3. For each curve that corresponds to a uniquep, we mark the best theoretical valuect and the

best practical valuec∗. Consistently,ct are larger thanc∗.

Now we setc = c∗, the hand-tuned optimal value, and plot‖xk−x∗‖2

‖x∗‖2
in Fig. 4 as per Fig.1 and ρ̄k

in Fig. 5 as per Fig.2. Comparing to those usingc = ct, the best theoretical value, in Fig.1 and Fig.

2, the convergence improves significantly. The numerical quantities of Figs.1, 2, 4, and5 are given in

Table III.

It appears thatct is a stable overestimate ofc∗. Therefore, we recommendc = θct for nearly optimal

convergence using someθ ∈ (0, 1). Fig. 6 illustrates the convergence corresponding to different values

of θ. We randomly generate4000 connected networks withL = 200 agents whose connectivity ratios
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Fig. 3. Steady-state running geometric-average rate of convergenceρ̄ versus algorithm parameterc.
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p = 1.00, DGD

Fig. 4. Relative error‖x
k−x∗‖2
‖x∗‖2

versus iterationk.

are uniformly distributed on[ 2L , 1]. The random networks are divided into20 groups according to their

condition numbersκG. For each group of the random networks, the values ofρ̄ are plotted with error

bars, and compared with the theoretical upper boundρt. For this dataset,θ ≃ 0.5 appear to be a good

overall choice. A smallerθ imposes a risk of slower convergence whenκG is small.
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Fig. 5. Running geometric-average rate of convergenceρ̄k versus iterationk.

TABLE III

SETTINGS AND CONVERGENCE RATES CORRESPONDING TOFIG. 1, FIG. 2, FIG. 4, AND FIG. 5

Connectivity ratiop Best theoreticalct Best practicalc∗ Theoretical rate

(L = 200 agents) κG c ρ̄ c ρ̄ ρt

0.01 33.00 123.8 0.9960 3.110 0.9189 0.9908

0.02 7.032 3.477 0.9314 0.5510 0.7014 0.9806

0.04 3.500 0.6714 0.8358 0.1687 0.5624 0.9295

0.08 2.221 0.1677 0.7088 0.05303 0.4297 0.8526

1.00 1.411 0.006837 0.5348 0.002722 0.2714 0.7313

D. Condition Number of the Objective Function

Now we study howκf , the condition number of the objective function, affects the convergence rate.

We generate random networks consisting ofL = 200 agents with different connectivity ratiosp. We

setc = ct. To produce differentκf , we first generate a linear measurement matrixUi with its elements

following N (0, 1). Second, we apply singular value decompositions toUi, scale the singular values to

the range[
√

1
κf
, 1], and rebuildUi.

Fig. 7 shows that the theoretical convergence ratesρt are monotonically increasing asκf increases,

which is consistent with Theorem2. When the connectivity ratiosp are small, the trend of̄ρ disobeys

the theoretical analysis. It is because that our upper boundof the convergence rate, becomes loose when
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Fig. 6. Convergence performance obtained withc = θct for varying θ, wherect is analytically given in (16).

the network connectedness is poor. When the network is well-connected (sayp = 1), we can observe a

positive correlation between̄ρ andκf , which coincides with the theoretical analysis.
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Fig. 7. Convergence performance versus the condition number κf of the objective function at different connectivity ratiosp.

E. Network Topology

Last we study how the network topology affects the convergence rate. Besides the condition numberκG

of the network that is relevant, we also consider other network parameters including the network diameter,
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geometric average degree, as well as imbalance of bipartitenetworks. In the numerical experiments, the

local objective functions are generated as described in Section IV-A . The algorithm parameter is set as

c = ct.

1) Condition Number of the Network:As it is difficult to precisely designκG, the condition number

of the network, we run a large number of trials to sampleκG. We randomly generate4000 connected

networks withL = 50, 200, 500 agents, 12000 networks in total. Their connectivity ratiosare uniformly

distributed on[ 2L , 1]. In addition, we generate special networks with topologiesof the line, cycle, star,

complete, and grid types. The grid networks are generated ina 3D space (2 × 5 × 5, 5 × 5 × 8, and

5× 10× 10).

Fig. 8 depicts the effect ofκG on the convergence rate. In Fig.8, the dashed curve with error bars

correspond to the random networks, and the individual points correspond to the special networks. There

is only one dashed curve in the plot sinceL = 50, 200, 500 do not make significant differences. The

networks of the line, cycle, complete, and grid topologies generate points in the plot that are nearly

on the dashed curve, which indicates thatκG is a good indicator for convergence rate. In addition, the

trends ofρ̄, the steady-state running geometric-average rate of convergence, andρt, the theoretical rate

of convergence, are consistent. The points corresponding to the three networks of the star topology are

away from the dashed side.

We observe that the convergence rate is closely related toκG, less toL. To reach a target convergence

rate, one therefore shall have a sufficiently smallκG, which in turn depends onL andp, as well as other

factors. To obtain a sufficiently smallκG, typically, p needs to be large ifL is small, but not as large if

L is large. In other words, if one has a network with a large number of agents (sayL = 200), a small

connectivity ratio (sayp = 0.1) will lead to a smallκG and thus fast convergence.

With the sameκG, the networks with the star topology have much faster convergence than random

networks. We shall discuss this special topology at the end of this subsection.

2) Network Diameter:The network diameterD is defined as the longest distance between any pair

of agents in the network. In decentralized consensus optimization,D is related to how many iterations

the information from one agent will reach all the other agents.

To discuss the effect of the network diameter on the convergence rate, we randomly generated4000

connected networks withL = 200 agents and connectivity ratios uniformly distributed on[ 2L , 1]. We also

generate the networks of the line, cycle, star, complete, and grid topologies. Most randomly generated

networks possess small diameters. In this experiment, the numbers of those withD = 2, 3 ≤ D ≤ 4 and

5 ≤ D ≤ 198 are 3141, 717 and 142, respectively. From Fig.9, we conclude that in general a larger
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Fig. 8. Convergence performance versus the condition number of the networkκG obtained with networks of different topologies

(random, line, cycle, star, complete, and grid) and of different sizes (L = 50, 200, 500).
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Fig. 9. Convergence performance versus the condition number κG of the network and the network diameterD obtained with

networks of different topologies (random, line, cycle, star, complete, and grid) and of sizeL = 200.

diameter tends to cause a worse condition number of the network and thus slower convergence, though

this relationship is interfered by network properties.

3) Geometric Average Degree:Definedmin anddmax as the largest and smallest degrees of the agents

in the network, respectively. The geometric average degreeds =
√
dmindmax reflects the agents’ number

of neighbors in a geometric average sense. Its value reachesmaximum atL−1 if the topology is complete;
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Fig. 10. Convergence performance versus the condition numberκG of the network and the geometric average degreeds obtained

with networks of different topologies (random, line, cycle, star, complete, and grid) and of sizeL = 200.

and reaches minimum
√
2 when the topology is a line.

Again, we randomly generated4000 connected networks withL = 200 agents and connectivity ratios

uniformly distributed on[ 2L , 1]. We also generate the networks of the line, cycle, star, complete, and grid

topologies. Out of the randomly generated networks,417 have2 ≤ ds ≤ 20, 1576 have21 ≤ ds ≤ 100,

and 1956 have101 ≤ ds ≤ 198. From Fig. 10, we observe that a largerds generally implies better

connectedness and thus a smaller condition number of the network as well as faster convergence. This

conclusion is similar to the one on the network diameterD (see Fig.9).

4) Imbalance of Bipartite Networks:Let B(LA,LB) denote the class of bipartite networks with|LA|
agents in one group and|LB | agents in another group. Agents within either group cannot directly

communicate with each other. For a bipartite network consisting of L = |LA|+ |LB| agents, its imbalance

is defined asLd = |LA| − |LB|, which can vary between0 andL− 2.

We randomly generate1000 bipartite graphs of sizeL = 200, whose connectivity ratiosp are

uniformly distributed on[ 2L ,
(L+Ld)(L−Ld)

2L(L−1) ], for each of the casesLd = 196, 180, 140, 0. The star topology

corresponds to a special bipartite network withLd = L − 2 = 198. From Fig.11, we find that for the

sameκG, the networks with largerLd have faster convergence. An extreme example is the network of

the star topology. This observation suggests us to assign few “hot spots” to relay information for fast

convergence, ifκG is fixed in advance. However, this approach may cause robustness or scalability issues

because the relaying agents are subject to extensive communication burden. Hence there is a tradeoff
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Fig. 11. Convergence performance versus the condition number κG of the network and the imbalance of bipartite networksLd

obtained with networks of random and star topologies and of size L = 200.

between fast convergence and robustness or scalability in network design.

V. CONCLUSIONS

We apply the ADMM to a reformulation of a general decentralized consensus optimization problem. We

show that if the objective function is strongly convex, the decentralized ADMM converges at a globally

linear rate, which can be given explicitly. It is revealed that several factors affect the convergence rate that

include the topology-related properties of the network, the condition number of the objective function, and

the algorithm parameter. Numerical experiments corroborate and supplement our theoretical findings. Our

analysis sheds light on how to construct a network and tune the algorithm parameter for fast convergence.

APPENDIX

Proof. Consider the ADMM updates (7) and the KKT conditions (11). Subtracting the three equations

in (11) from the corresponding equations in (7) yields

∇f(xk+1)−∇f(x∗) = cM+(z
k − zk+1)−M−(β

k+1 − β∗), (23)

c
2M

T
−(x

k+1 − x∗) = βk+1 − βk, (24)

1
2M

T
+(x

k+1 − x∗) = zk+1 − z∗, (25)

respectively.
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To prove the Q-linear convergence of‖uk+1−u∗‖2G we usemf‖xk+1−x∗‖22 as an intermediate. Based

on Assumption1, f(x) is strongly convex with a constantmf such that

mf‖xk+1 − x∗‖22 ≤ 〈xk+1 − x∗,∇f(xk+1)−∇f(x∗)〉. (26)

Using (23), we can split the right-hand side of (26) to two terms

〈xk+1 − x∗,∇f(xk+1)−∇f(x∗)〉
= 〈xk+1 − x∗, cM+(z

k − zk+1)−M−(β
k+1 − β∗)〉

= 〈xk+1 − x∗, cM+(z
k − zk+1)〉+ 〈xk+1 − x∗,−M−(β

k+1 − β∗)〉
= c〈MT

+ (xk+1 − x∗), zk − zk+1〉+ 〈−MT
−(x

k+1 − x∗), βk+1 − β∗〉.

(27)

Substituting (24) and (25) to (27) we can eliminate the termxk+1 − x∗ and obtain

〈xk+1 − x∗,∇f(xk+1)−∇f(x∗)〉
= 2c〈zk − zk+1, zk+1 − z∗〉+ 2

c 〈βk − βk+1, βk+1 − β∗〉.
(28)

Recall the definition ofu andG defined in (12). It is obvious that the right-hand side of (28) can be

written as a compact form2(uk−uk+1)TG(uk+1−u∗). Using the equality2(uk−uk+1)TG(uk+1−u∗) =

‖uk − u∗‖2G − ‖uk+1 − u∗‖2G − ‖uk − uk+1‖2G, (28) is equivalent to

〈xk+1 − x∗,∇f(xk+1)−∇f(x∗)〉
= ‖uk − u∗‖2G − ‖uk+1 − u∗‖2G − ‖uk − uk+1‖2G,

(29)

and consequently using (26)

mf‖xk+1 − x∗‖22
≤ ‖uk − u∗‖2G − ‖uk+1 − u∗‖2G − ‖uk − uk+1‖2G.

(30)

Having (30) at hand, to prove (13) we only need to show

‖uk − uk+1‖2G +mf‖xk+1 − x∗‖22 ≥ δ‖uk+1 − u∗‖2G, (31)

which is equivalent to

c‖zk+1 − zk‖22 + 1
c‖βk+1 − βk‖22 +mf‖xk+1 − x∗‖22 ≥ δc‖zk+1 − z∗‖22 + δ

c‖βk+1 − β∗‖22. (32)

The idea of proof is to show thatδc‖zk+1 − z∗‖22 and δ
c‖βk+1 − β∗‖22 are upper bounded by two non-

overlapping parts of the left-hand side of (32), respectively.

The upper bound of‖zk+1− z∗‖22 follows from (25) that shows12M
T
+(x

k+1−x∗) = zk+1− z∗. Hence

we have
‖zk+1 − z∗‖22

= 1
4‖MT

+ (xk+1 − x∗)‖22
≤ 1

4σ
2
max(M+)‖xk+1 − x∗‖22,

(33)
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whereσmax(M+) is the largest singular value ofM+. To find the upper bound of‖βk+1 −β∗‖22, we use

two inequalitiesσ2
max(M+)‖zk+1 − zk‖22 ≥ ‖MT

+(z
k − zk+1)‖22 andM2

f ‖xk+1 − x∗‖22 ≥ ‖∇f(xk+1)−
∇f(x∗)‖22; the latter holds sincef(x) has Lipschitz continuous gradients with a constantMf . Therefore,

given the positive algorithm parameterc and anyµ > 1 it holds

c2σ2
max(M+)‖zk+1 − zk‖22 + (µ− 1)M2

f ‖xk+1 − x∗‖22
≥ ‖cMT

+ (zk − zk+1)‖22 + (µ− 1)‖∇f(xk+1)−∇f(x∗)‖22.
(34)

Recall that from (23) cM+(z
k − zk+1) is the summation of∇f(xk+1)−∇f(x∗) andM−(β

k+1 − β∗).

Hence we can apply the basic inequality‖a + b‖22 + (µ − 1)‖a‖22 ≥ (1 − 1
µ)‖b‖22, which holds for any

µ > 0, to (34) and obtain

c2σ2
max(M+)‖zk+1 − zk‖22 + (µ− 1)M2

f ‖xk+1 − x∗‖22
≥ (1− 1

µ)‖M−(β
k+1 − β∗)‖22.

(35)

Since by assumptionβ0 is initialized such that it lies in the column space ofMT
− , we know thatβk+1

lies in the column space ofMT
− too; see the ADMM updates (7). Becauseβ∗ also lies in the column

space ofMT
− , ‖M−(β

k+1 − β∗)‖22 ≥ σ̃2
min(M−)‖βk+1 − β∗‖22 whereσ̃min(M−) is the smallest nonzero

singular value ofM−. Therefore from (35) we can upper bound‖βk+1 − β∗‖22 by

c2σ2
max(M+)‖zk+1 − zk‖22 + (µ− 1)M2

f ‖xk+1 − x∗‖22
≥ (1− 1

µ)σ̃
2
min(M−)‖βk+1 − β∗‖22.

(36)

Combining (33) and (36), we prove (32). From (33) we have

c
4σ

2
max(M+)‖xk+1 − x∗‖22

≥ c‖zk+1 − z∗‖22.
(37)

From (36) we have

cµσ2
max(M+)

(µ−1)σ̃2
min(M−)‖zk+1 − zk‖22 +

µM2
f

cσ̃2
min(M−)‖xk+1 − x∗‖22

≥ 1
c‖βk+1 − β∗‖22.

(38)

Summing up (37) and (38) yields

cµσ2
max(M+)

(µ−1)σ̃2
min(M−)‖zk+1 − zk‖22 +

(

µM2
f

cσ̃2
min(M−) +

c
4σ

2
max(M+)

)

‖xk+1 − x∗‖22
≥ c‖zk+1 − z∗‖22 + 1

c‖βk+1 − β∗‖22.
(39)

Apparently,δ in (14) satisfies

c‖zk+1 − zk‖22 +mf‖xk+1 − x∗‖22 ≥ δc‖zk+1 − z∗‖22 + δ
c‖βk+1 − β∗‖22, (40)

and consequently (32), which proves (13).

To prove the R-linear convergence ofxk to x∗, we observe that (30) implies mf‖xk+1 − x∗‖22 ≤
‖uk − u∗‖2G, which proves (15).
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