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Abstract

We consider algorithms and recovery guarantees for the analysis sparse model in which the signal is sparse

with respect to a highly coherent frame. We consider the use of a monotone version of the fast iterative shrinkage-

thresholding algorithm (MFISTA) to solve the analysis sparse recovery problem. Since the proximal operator in

MFISTA does not have a closed-form solution for the analysismodel, it cannot be applied directly. Instead, we

examine two alternatives based on smoothing and decomposition transformations that relax the original sparse recovery

problem, and then implement MFISTA on the relaxed formulation. We refer to these two methods as smoothing-based

and decomposition-based MFISTA. We analyze the convergence of both algorithms, and establish that smoothing-

based MFISTA converges more rapidly when applied to generalnonsmooth optimization problems. We then derive a

performance bound on the reconstruction error using these techniques. The bound proves that our methods can recover

a signal sparse in a redundant tight frame when the measurement matrix satisfies a properly adapted restricted isometry

property. Numerical examples demonstrate the performanceof our methods and show that smoothing-based MFISTA

converges faster than the decomposition-based alternative in real applications, such as MRI image reconstruction.
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I. I NTRODUCTION

Low-dimensional signal recovery exploits the fact that many natural signals are inherently low dimensional,

although they may have high ambient dimension. Prior information about the low-dimensional space can be exploited

to aid in recovery of the signal of interest. Sparsity is one of the popular forms of prior information, and is the

prior that underlies the growing field of compressive sensing [1]-[4]. Recovery of sparse inputs has found many

applications in areas such as imaging, speech, radar signalprocessing, sub-Nyquist sampling and more. A typical

sparse recovery problem has the following linear form:

b = Ax+w, (1)

in which A ∈ R
m×n is a measurement matrix,b ∈ R

m is the measurement vector, andw ∈ R
m represents the

noise term. Our goal is to recover the signalx ∈ R
n. Normally we havem < n, which indicates that the inverse

problem is ill-posed and has infinitely many solutions. To find a unique solution, prior information onx must be

incorporated.

In the synthesis approach to sparse recovery, it is assumed thatx can be expressed as a sparse combination of

known dictionary elements, represented as columns of a matrix D ∈ R
n×p with p ≥ n. That isx = Dα with α

sparse, i.e., the number of non-zero elements inα is far less than the length ofα. The main methods for solving

this problem can be classified into two categories. One includes greedy methods, such as iterative hard thresholding

[5] and orthogonal matching pursuit [6]. The other is based on relaxation-type methods, such as basis pursuit [7]

and LASSO [8]. These methods can stably recover a sparse signal α when the matrixAD satisfies the restricted

isometry property (RIP) [9]-[11].

Recently, an alternative approach has became popular, which is known as the analysis method [12], [13]. In

this framework, we are given an analysis dictionaryD∗(D ∈ R
n×p) under whichD∗x is sparse. Assuming, for

example, that theℓ2 norm of the noisew is bounded byε, the recovery problem can be formulated as

min
x∈Rn

‖D∗x‖0 subject to‖b−Ax‖2 ≤ ε. (2)

Since this problem is NP hard, several greedy algorithms have been proposed to approximate it, such as thresholding

[14] and subspace pursuit [15].

Alternatively, the nonconvexℓ0 norm can be approximated by the convexℓ1 norm leading to the following relaxed

problem, referred to as analysis basis pursuit (ABP):

min
x∈Rn

‖D∗x‖1 subject to‖b−Ax‖2 ≤ ε. (3)

ABP is equivalent to the unconstrained optimization

min
x∈Rn

1

2
‖b−Ax‖22 + λ‖D∗x‖1, (4)

which we call analysis LASSO (ALASSO). The equivalence is inthe sense that for anyε > 0 there exists aλ for

which the optimal solutions of ABP and ALASSO are identical.
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Both optimization problems ABP and ALASSO can be solved using interior point methods [16]. However,

when the problem dimension grows, these techniques become very slow since they require solutions of linear

systems. Another suggested approach is based on alternating direction method of multipliers (ADMM) [17], [18].

The efficiency of this method highly depends on nice structure of the matricesA. Fast versions of first-order

algorithms, such as the fast iterative shrinkage-thresholding algorithm (FISTA) [19], are more favorable in dealing

with large dimensional data since they do not requireA to have any structure. The difficulty in directly applying

first-order techniques to ABP (3) and ALASSO (4) is the fact that the nonsmooth term‖D∗x‖1 is inseparable.

A generalized iterative soft-thresholding algorithm was proposed in [20] to tackle this difficulty. However, this

approach converges relatively slow as we will show in one of our numerical examples. A common alternative is to

transform the nondifferentiable problem into a smooth counterpart. In [21], the authors used Nesterov’s smoothing-

based method [22] in conjunction with continuation (NESTA)to solve ABP (3), under the assumption that the

matrix A∗A is an orthogonal projector. In [23], a smoothed version of ALASSO (4) is solved using a nonlinear

conjugate gradient descent algorithm. To avoid imposing conditions onA, we focus in this paper on the ALASSO

formulation (4).

It was shown in [24] that one can apply any fast first-order method that achieves anε-optimal solution within

O( 1√
ε
) iterations, to anε smooth-approximation of the general nonsmooth problem andobtain an algorithm with

O(1ε ) iterations. In this paper, we choose a monotone version of FISTA (MFISTA) [25] as our fast first-order method,

whose objective function values are guaranteed to be non-increasing. We apply the smoothing approach together

with MFISTA leading to the smoothing-based MFISTA (SFISTA)algorithm. We also propose a decomposition-

based MFISTA method (DFISTA) to solve the analysis sparse recovery problem. The decomposition idea is to

introduce an auxiliary variablez in (4) so that MFISTA can be applied in a simple and explicit manner. This

decomposition approach can be traced back to [26], and has been widely used for solving total variation problems

in the context of image reconstruction [27].

Both smoothing and decomposition based algorithms for nonsmooth optimization problems are very popular in

the literature. One of the main goals of this paper is to examine their respective performance. We show that SFISTA

requires lower computational complexity to reach a predetermined accuracy. Our results can be applied to a general

model, and are not restricted to the analysis sparse recovery problem.

In the context of analysis sparse recovery, we show in Section II-C that both smoothing and decomposition

techniques solve the following optimization problem:

min
x∈Rn,z∈Rp

1

2
‖Ax− b‖22 + λ‖z‖1 +

1

2
ρ‖z −D∗x‖22, (5)

which we refer to as relaxed ALASSO (RALASSO). Another contribution of this paper is in proving recovery

guarantees for RALASSO (5). With the introduction of the restricted isometry property adapted toD (D-RIP) [12],

previous work [12] [28] studied recovery guarantees based on ABP (3) and ALASSO (4). Here we combine the

techniques in [9] and [28], and obtain a performance bound onRALASSO (5). We show that whenσ2s < 0.1907
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and‖D∗A∗w‖∞ ≤ λ
2 , the solutionx̂ρ of RALASSO (5) satisfies

‖x̂ρ − x‖2 ≤ C0

√
sλ+ C1

‖D∗x− (D∗x)s‖1√
s

+ C2
λp√
sρ

, (6)

wherep is the number of rows inD∗, C0, C1, C2 are constants, and we use(x)s to denote the vector consisting

of the largests entries of |x|. As a special case, choosingρ → ∞ extends the bound in (6) and obtains the

reconstruction bound for ALASSO (4) as long asσ2s < 0.1907, which improves upon the results of [28].

The paper is organized as follows. In Section II, we introduce some mathematical preliminaries, and present

SFISTA and DFISTA for solving RALASSO (5). We analyze the convergence behavior of these two algorithms in

Section III, and show that SFISTA converges faster than DFISTA for a general model. Performance guarantees on

RALASSO (5) are developed in Section IV. Finally, in SectionV we test our techniques on numerical experiments

to demonstrate the effectiveness of our algorithms in solving the analysis recovery problem. We show that SFISTA

performs favorably in comparison with DFISTA. A continuation method is also introduced to further accelerate the

convergence speed.

Throughout the paper, we use capital italic bold letters to represent matrices and lowercase italic bold letters

to represent vectors. For a given matrixD, D∗ denotes the conjugate matrix. We denote byD∗
T the matrix that

maintains the rows inD∗ with indices in setT , while setting all other rows to zero. Given a vectorx, ‖x‖1, ‖x‖2
are theℓ1, ℓ2 norms respectively,‖x‖0 counts the number of nonzero components which will be referred to as theℓ0

norm although it is not a norm, and‖x‖∞ denotes the maximum absolute value of the elements inx. We usex[i]

to represent theith element ofx. For a matrixA, ‖A‖2 is the induced spectral norm, and‖A‖p,q = max
‖Ax‖p

‖x‖q
.

Finally, Re〈a, b〉 = 〈a,b〉+〈b,a〉
2 . We useargmin{f(x) : x = z,y} to denotez or y, whichever yields a smaller

function value off(x).

II. SMOOTHING AND DECOMPOSITION FORANALYSIS SPARSERECOVERY

In this section we present the smoothing-based and decomposition-based methods for solving ALASSO (4). To

do so, we first recall in Subsection II-A some results relatedto proximal gradient methods that will be essential to

our presentation and analysis.

A. The Proximal Gradient Method

We begin this section with the definition of Moreau’s proximal (or “prox”) operator [29], which is the key step

in defining the proximal gradient method.

Given a closed proper convex functionh : Rn → R ∪ {∞}, the proximal operator ofh is defined by

proxh(x) = argmin
u∈Rn

{

h(u) +
1

2
‖u− x‖22

}

. (7)

The proximal operator can be computed efficiently in many important instances. For example, it can be easily

obtained whenh is an lp norm (p ∈ [1,∞)), or an indicator of “simple” closed convex sets such as the box,

unit-simplex and the ball. More examples of proximal operators as well as a wealth of properties can be found, for

example, in [30] [31].
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The proximal operator can be used in order to compute smooth approximations of convex functions. Specifically,

let h be a closed, proper, convex function, and letµ > 0 be a given parameter. Define

hµ(x) = min
u∈Rn

{

h(u) +
1

2µ
‖u− x‖22

}

. (8)

It is easy to see that

hµ(x) = h(proxµh(x)) +
1

2µ
‖x− proxµh(x)‖22. (9)

The functionhµ is called theMoreau envelope ofh and has the following important properties (see [29] for further

details):

• hµ(x) ≤ h(x).

• hµ is continuously differentiable and its gradient is Lipschitz continuous with constant1/µ.

• The gradient ofhµ is given by

∇hµ(x) =
1

µ
(x− proxµh(x)). (10)

One important usage of the proximal operator is in the proximal gradient method that is aimed at solving the

following composite problem:

min
x∈Rn

{F (x) +G(x)}. (11)

HereF : Rn → R is a continuously differentiable convex function with a continuous gradient that has Lipschitz

constantL∇F :

‖∇F (x)−∇F (y)‖2 ≤ L∇F ‖x− y‖2, for all x,y ∈ R
n,

andG : Rn → R∪ {∞} is an extended-valued, proper, closed and convex function.The proximal gradient method

for solving (11) takes the following form (see [19], [32]):

Proximal Gradient Method For Solving (11)

Input : An upper boundL ≥ L∇F .

Step 0.Takex0 ∈ R
n.

Step k. (k ≥ 1)

Computexk = prox 1
L
G

(

xk−1 − 1
L∇F (xk−1)

)

.

The main disadvantage of the proximal gradient method is that it suffers from a relatively slowO(1/k) rate of

convergence of the function values. An accelerated versionis the fast proximal gradient method, also known in the

literature asfast iterative shrinkage thresholding algorithm(FISTA) [19], [32]. WhenG ≡ 0, the problem is smooth,

and FISTA coincides with Nesterov’s optimal gradient method [33]. In this paper we implement a monotone version

of FISTA (MFISTA) [25], which guarantees that the objectivefunction value is non-increasing along the iterations.

January 15, 2014 DRAFT



6

Monotone FISTA Method (MFISTA) For Solving (11)

Input : An upper boundL ≥ L∇F .

Step 0.Takey1 = x0, t1 = 1.

Step k. (k ≥ 1) Compute

zk = prox 1
L
G

(

yk − 1
L∇F (yk)

)

.

tk+1 =
1+

√
1+4t2

k

2 .

xk = argmin{F (x) +G(x) : x = zk,xk−1}.

yk+1 = xk +
tk

tk+1
(zk − xk) +

tk−1
tk+1

(xk − xk−1).

The rate of convergence of the sequence generated by MFISTA is O(1/k2).

Theorem II.1. [25] Let {xk}k≥0 be the sequence generated by MFISTA, and letx̂ be an optimal solution of (11).

Then

F (xk) +G(xk)− F (x̂)−G(x̂) ≤ 2L∇F ‖x0 − x̂‖22
(k + 1)2

. (12)

B. The General Nonsmooth Model

The general optimization model we consider in this paper is

min
x∈Rn

{H(x) = f(x) + g(D∗x)}, (13)

wheref : Rn → R is a continuously differentiable convex function with a Lipschitz continuous gradientL∇f . The

functiong : Rp → R∪ {∞} is a closed, proper convex function which is not necessarilysmooth, andD∗ ∈ R
p×n

is a given matrix. In addition, we assume thatg is Lipschitz continuous with parameterLg:

|g(z)− g(v)| ≤ Lg‖z − v‖2 for all z,v ∈ R
p.

This is equivalent to saying that the subgradients ofg overRp are bounded byLg:

‖g′(z)‖2 ≤ Lg for anyx ∈ R
n andg′(z) ∈ ∂g(z).

An additional assumption we make throughout is that the proximal operator ofαg(z) for anyα > 0 can be easily

computed.

Directly applying MFISTA to (13) requires computing the proximal operator ofg(D∗x). Despite the fact that

we assume that it is easy to compute the proximal operator ofg(z), it is in general difficult to compute that of

αg(D∗x). Therefore we need to transform the problem before utilizing MFISTA, in order to avoid this computation.

When considering ALASSO,f(x) = 1
2‖Ax− b‖22 andg(D∗x) = λ‖D∗x‖1. The Lipschitz constants are given

by L∇f = ‖A‖22 andLg = λ
√
p. The proximal operator ofαg(z) = αλ‖z‖1 can be computed as

proxαg(z) = Γλα(z) = [|z| − λα]+sgn(z), (14)
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where for brevity, we denote the soft shrinkage operator byΓλα(z). Here[z]+ denotes the vector whose components

are given by the maximum betweenzi and0. Note, however, that there is no explicit expression for theproximal

operator ofg(D∗x) = λ‖D∗x‖1, i.e., there is no closed form solution to

argmin
u∈Rn

{

αλ‖D∗u‖1 +
1

2
‖u− x‖22

}

. (15)

In the next subsection, we introduce two popular approachesfor transforming the problem (13): smoothing and

decomposition. We will show in Sections II-D and II-E that both transformations lead to algorithms which only

require computation of the proximal operator ofg(z), and not that ofg(D∗x).

C. The Smoothing and Decomposition Transformations

The first approach to transform (13) is the smoothing method in which the nonsmooth functiong(z) is replaced

by its Moreau envelopegµ(z), which can be seen as a smooth approximation. By lettingz = D∗x , the smoothed

problem becomes

min
x∈Rn

{Hµ(x) = f(x) + gµ(D
∗x)}, (16)

to which MFISTA can be applied since it only requires evaluating the proximal operator ofg(z). From the general

properties of the Moreau envelope, and from the fact that thenorms of the subgradients ofg are bounded above

by Lg, we can deduce that there exists someβ1, β2 > 0 such thatβ1 + β2 = Lg and g(z) − β1µ ≤ gµ(z) ≤
g(z) + β2µ for all z ∈ R

p (see [24], [22]). This shows that a smallerµ leads to a finer approximation.

The second approach for transforming the problem is the decomposition method in which we consider:

min
x∈Rn,z∈Rp

{

Gρ(x, z) = f(x) + g(z) +
ρ

2
‖z −D∗x‖22

}

. (17)

With ρ → ∞, this problem is equivalent to the following constrained formulation of the original problem (13):

min{f(x) + g(z)}

s.t. z = D∗x, x ∈ R
n, z ∈ R

p. (18)

Evidently, there is a close relationship between the approximate models (16) and (17). Indeed, fixingx and

minimizing the objective function of (17) with respect toz we obtain

min
x∈Rn,z∈Rp

{

f(x) + g(z) +
ρ

2
‖z −D∗x‖22

}

= min
x∈Rn

{

f(x) + g 1
ρ
(D∗x)

}

. (19)

Therefore, the two models are equivalent in the sense that their optimal solution set (limited tox) is the same when

µ = 1
ρ . For analysis sparse recovery, both transformations lead to RALASSO (5). However, as we shall see, the

resulting smoothing-based and decomposition-based algorithms and their analysis are very different.
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D. The Smoothing-Based Method

Since (16) is a smooth problem we can apply an optimal first-order method such as MFISTA withF = Hµ =

f(x) + gµ(D
∗x) and G ≡ 0 in equation (11). The Lipschitz constant ofHµ is given by L∇f +

‖D‖2
2

µ , and

according to (10) the gradient of∇gµ(D
∗x) is equal to1

µD(D∗x−proxµg(D
∗x)). The expressionproxµg(D

∗x)

is calculated by first computingproxµg(z), and then lettingz = D∗x.

Returning to the analysis sparse recovery problem, after smoothing we obtain

min
x∈Rn

{

Hµ(x) =
1

2
‖Ax− b‖22 + gµ(D

∗x)

}

, (20)

where

gµ(D
∗x) =min

u

{

λ‖u‖1 +
1

2µ
‖u−D∗x‖22

}

=

p
∑

i=1

λHλµ((D
∗x)[i]).

The functionHα(x) with parameterα > 0 is the so-called Huber function [34], and is given by

Hα(x) =







1
2αx

2 if |x| < α

|x| − α
2 otherwise.

(21)

From (14), the gradient ofgµ(D∗x) is equal to

∇gµ(D
∗x) =

1

µ
D(D∗x− Γλµ(D

∗x)). (22)

Applying MFISTA to (20), results in the SFISTA algorithm, summarized in Algorithm 1.

Algorithm1: Smoothing-based MFISTA (SFISTA)

Input : An upper boundL ≥ ‖A‖22 +
‖D‖2

2

µ .

Step 0.Takey1 = x0, t1 = 1.

Step k. (k ≥ 1) Compute

∇f(yk) = A∗(Ayk − b).

∇gµ(D
∗xk−1) =

1
µD(D∗xk−1 − Γλµ(D

∗xk−1)).

zk = yk − 1
L(∇f(yk) +∇gµ(D

∗xk−1)).

tk+1 =
1+

√
1+4t2

k

2 .

xk = argmin{Hµ(x) : x = zk,xk−1}.

yk+1 = xk +
tk

tk+1
(zk − xk) +

tk−1
tk+1

(xk − xk−1).
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E. The Decomposition-Based Method

We can also employ MFISTA on the decomposition model

min
x∈Rn,z∈Rp

{Gρ(x, z) = Fρ(x, z) +G(x, z)}, (23)

where we take the smooth part asFρ(x, z) = f(x) + ρ
2‖z −D∗x‖22 and the nonsmooth part asG(x, z) = g(z).

In order to apply MFISTA to (17), we need to compute the proximal operator ofαG for a given constantα > 0,

which is given by

proxαG(x, z) =





x

proxαg(z)



 . (24)

In RALASSO (5),G(x, z) = λ‖z‖1 andFρ(x, z) =
1
2‖Ax− b‖22 + 1

2ρ‖z −D∗x‖22. Therefore,

proxαG(x, z) =





x

Γλα(z)



 . (25)

The Lipschitz constant of∇F is equal to(‖A‖22 + ρ(1 + ‖D‖22)). By applying MFISTA directly, we have the

DFISTA algorithm, stated in Algorithm 2.

Algorithm 2:Decomposition-based MFISTA (DFISTA)

Input : An upper boundL ≥ (‖A‖22 + ρ(1 + ‖D‖22)).
Step 0.Takeu1 = x0,v1 = z0, t1 = 1.

Step k. (k ≥ 1) Compute

∇xFρ(uk,vk) = A∗(Auk − b) + ρD(D∗uk − vk).

∇zFρ(uk,vk)) = ρ(vk −D∗uk).

pk = uk − 1
L∇xFρ(uk,vk).

qk = Γ λ
L
(vk − 1

L∇zFρ(uk,vk)).

tk+1 =
1+

√
1+4t2

k

2 .

(xk, zk)

= argmin{Gρ(x, z) : (x, z) = (pk, qk), (xk−1, zk−1)}.

uk+1 = xk +
tk

tk+1
(pk − xk) +

tk−1
tk+1

(xk − xk−1).

vk+1 = zk + tk
tk+1

(qk − zk) +
tk−1
tk+1

(zk − zk−1).

III. C ONVERGENCEANALYSIS

In this section we analyze the convergence behavior of both the smoothing-based and decomposition-based

methods. Convergence of smoothing algorithms has been treated in [22], [24]. In order to make the paper self
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contained, we quote the main results here. We then analyze the convergence of the decomposition approach. Both

methods require the same type of operations at each iteration: the computation of the gradient of the smooth function

f , and of the proximal operator corresponding toαg, which means that they have the same computational cost

per iteration. However, we show that smoothing converges faster than decomposition based methods. Specifically,

the smoothing-based algorithm is guaranteed to generate anε-optimal solution withinO(1/ε) iterations, whereas

the decomposition-based approach requiresO(1/ε1.5) iterations. We prove the results by analyzing SFISTA and

DFISTA for the general problem (13), however, the same analysis can be easily extended to other optimal first-order

methods, such as the one described in [22].

A. Convergence of the Smoothing-Based Method

For SFISTA the sequence{xk} satisfies the following relationship [25]:

Hµ(xk)−Hµ(x̂µ) ≤
2
(

L∇f +
‖D‖2

2

µ

)

Λ1

(k + 1)2
, (26)

whereΛ1 is an upper bound on the expression‖x̂µ − x0‖2 with x̂µ being an arbitrary optimal solution of the

smoothed problem (16), andx0 is the initial point of the algorithm. Of course, this rate ofconvergence is problematic

since we are more interested in bounding the expressionH(xk)− Ĥ rather than the expressionHµ(xk)−Hµ(x̂µ),

which is in terms of the smoothed problem. Here,Ĥ stands for the optimal value for original nonsmooth problem

(13). For that, we can use the following result from [24].

Theorem III.1. [24] Let {xk} be the sequence generated by applying MFISTA to the problem(16). Letx0 be the

initial point and letx̂ denote the optimal solution of(13). An ε-optimal solution of(13), i.e. |H(xk)−H(x̂)| ≤ ε,

is obtained in the smoothing-based method using MFISTA after at most

K = 2‖D‖2
√

LgΛ1
1

ε
+
√

L∇fΛ1
1√
ε

(27)

iterations withµ chosen as

µ =

√

‖D‖22
Lg

ε
√

‖D‖22Lg +
√

‖D‖22Lg + L∇fε
, (28)

in whichLg andL∇f are the Lipschitz constants ofg and the gradient function off in (13), andΛ1 = ‖x0− x̂µ‖2.

We usex̂µ to denote the optimal solution of problem(16).

Remarks: For analysis sparse recovery using SFISTA,Lg = λp
1
2 andL∇f = ‖A‖22, which can be plugged into

the expressions in the theorem.

B. Convergence of the Decomposition-Based Method

A key property of the decomposition model (17) is that its minimal value is bounded above by the optimal value

Ĥ in the original problem (13).

January 15, 2014 DRAFT
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Lemma III.1. Let Ĝρ be the optimal value of problem(17) and Ĥ be the optimal value of problem(13). Then

Ĝρ ≤ Ĥ.

Proof: The proof follows from adding the constraintz = D∗x to the optimization:

Ĝρ = min
x∈Rn,z∈Rp

{

f(x) + g(z) +
ρ

2
‖z −D∗x‖22

}

≤ min
x∈Rn,z∈Rp,z=D∗x

{

f(x) + g(z) +
ρ

2
‖z −D∗x‖22

}

= min
x∈Rn

{f(x) + g(D∗x)} , (29)

which is equal toĤ .

The next theorem is our main convergence result establishing that anε-optimal solution can be reached after

O(1/ε1.5) iterations. By assuming that the functionsf andg are nonnegative, which is not an unusual assumption,

we have the following theorem.

Theorem III.2. Let {xk, zk} be the sequences generated by applying MFISTA to(17) with both f and g both

being nonnegative functions. The initial point is taken as(x0, z0) with z0 = D∗x0. Let x̂ denote the optimal

solution of the original problem(13). An ε-optimal solution of problem(13), i.e. |H(xk)−H(x̂)| ≤ ε, is obtained

using the decomposition-based method after at most

K = max

{

16
√

(1 + ‖D‖2Λ2H(x0))Lg

ε1.5
,
2
√

L∇fΛ2√
ε

}

(30)

iterations of MFISTA withρ chosen as

ρ =

(

Lg

√

2H(x0)K
2

2(1 + ‖D‖2)Λ2

)2/3

. (31)

HereLg andL∇f are the Lipschitz constants forg and the gradient function off in (13), andΛ2 = ‖x0− x̂ρ‖22+
‖z0 − ẑρ‖22. We usex̂ρ, ẑρ to denote the optimal solutions to(17).

Proof: Since the monotone version of FISTA is applied we have

f(xk) + g(zk) +
ρ

2
‖zk −D∗xk‖22

=Gρ(xk, zk) ≤ Gρ(x0, z0) = f(x0) + g(D∗x0) = H(x0). (32)

With the assumption thatf andg are nonnegative, it follows that

ρ

2
‖zk −D∗xk‖22 ≤ H(x0),

and therefore

‖zk −D∗xk‖2 ≤
√

2H(x0)

ρ
. (33)

The gradient off(x)+ ρ
2‖z−D∗x‖22, is Lipschitz continuous with parameter(L∇f +ρ(1+ ‖D‖22)). According

to [25], by applying MFISTA, we obtain a sequence{(xk, zk)} satisfying

Gρ(xk, zk)− Ĝρ ≤ 2(L∇f + ρ(1 + ‖D‖22))Λ2

k2
.
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Using lemma III.1 and the notation

A = 2L∇fΛ2, B = 2(1 + ‖D‖22)Λ2,

we have

Gρ(xk, zk)− Ĥ ≤ A+ ρB

k2
. (34)

We therefore conclude that

H(xk) =f(xk) + g(D∗xk)

=f(xk) + g(zk) + g(D∗xk)− g(zk)

≤Gρ(xk, zk) + Lg‖zk −D∗xk‖2

≤Ĥ +
A+ ρB

k2
+ Lg‖zk −D∗xk‖2

≤Ĥ +
A+ ρB

k2
+ Lg

√

2H(x0)

ρ
.

The first inequality follows from the Lipschitz condition for the functiong, the second inequality is obtained from

(34), and the last inequality is a result of (33).

We now seek the “best”ρ that minimizes the upper bound, or equivalently, minimizesthe term

A+ ρB

k2
+ Lg

√

2H(x0)

ρ
=

A

k2
+ Cρ+

D√
ρ
, (35)

whereC = B
k2 andD = Lg

√

2H(x0). Setting the derivative to zero, the optimal value ofρ is ρ =
(

D
2C

)2/3
, and

H(xk) ≤ Ĥ +
A

k2
+ 2C1/3D2/3. (36)

Therefore, to obtain anε-optimal solution, it is enough that

A

k2
≤ ε

2
,

2B1/3D2/3

k2/3
≤ ε

2
, (37)

or

k ≥max

{

43/2B1/2D

ε1.5
,

√
2A√
ε

}

=max

{

16
√

(1 + ‖D‖2Λ2H(x0))Lg

ε1.5
,
2
√

L∇fΛ2√
ε

}

, (38)

completing the proof.

Remarks:

1. As in SFISTA, when treating the analysis sparse recovery problem,Lg = λp
1
2 andL∇f = ‖A‖22, which again

can be plugged into the expressions in the theorem.

2. MFISTA is applied in SFISTA and DFISTA to guarantee a mathematical rigorous proof, i.e. the existence of

equation (32). In real application, FISTA without monotoneoperations can also be applied to yield corresponding

smoothing and decomposition based algorithms.
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Comparing the results of smoothing-based and decomposition-based methods, we immediately conclude that the

smoothing-based method is preferable. First, it requires only O(1/ε) iterations to obtain anε-optimal solution

whereas the decomposition approach necessitatesO(1/ε3/2) iterations. Note that both bounds are better than the

boundO(1/ε2) corresponding to general sub-gradient schemes for nonsmooth optimization. Second, the bound in

the smoothing approach depends on
√

Lg, and not onLg, as when using decomposition methods. This is important

since, for example, wheng(z) = ‖z‖1, we haveLg = p
1
2 . In the smoothing approach the dependency onp is of

the formp
1
4 and notp

1
2 , as when using the decomposition algorithm.

IV. PERFORMANCEBOUNDS

We now turn to analyze the recovery performance of analysis LASSO when smoothing and decomposition are

applied. As we have seen, both transformations lead to the same RALASSO problem in (5). Our main result in this

section shows that the reconstruction obtained by solving RALASSO is stable whenD∗x has rapidly decreasing

coefficients and the noise in the model (1) is small enough. Our performance bound also depends on the choice of

parameterρ in the objective function. Before stating the main theorems, we first introduce a definition and some

useful lemmas, whose proofs are detailed in the Appendix.

To ensure stable recovery, we require that the matrixA satisfies the D-RIP:

Definition IV.1. (D-RIP) [12]. The measurement matrixA obeys the restricted isometry property adapted toD

with constantσs if

(1− σs)‖v‖22 ≤ ‖Av‖22 ≤ (1 + σs)‖v‖22 (39)

holds for all v ∈ Σs = {y : y = Dx and ‖x‖0 ≤ s}. In other words,Σs is the union of subspaces spanned by

all subsets ofs columns ofD.

The following lemma provides a useful inequality for matrices satisfying D-RIP.

Lemma IV.1. Let A satisfy the D-RIP with parameterσ2s, and assume thatu,v ∈ Σs. Then,

Re〈Au,Av〉 ≥ −σ2s‖u‖2‖v‖2 +Re〈u,v〉. (40)

In the following, x̂ρ denotes the optimal solution of RALASSO (5) andx is the original signal in the linear

model (1); we also useh to represent the reconstruction errorh = x̂ρ−x. Let T be the indices of coefficients with

s largest magnitudes in the vectorD∗x, and denote the complement ofT by T c. SettingT0 = T , we decompose

T c
0 into sets of sizes whereT1 denotes the locations of thes largest coefficients inD∗

T cx, T2 denote the nexts

largest coefficients and so on. Finally, we letT01 = T0 ∪ T1.

Using the result of Lemma IV.1 and the inequality‖D∗
T0
h‖2 + ‖D∗

T1
h‖2 ≤

√
2‖D∗

T01
h‖2 sinceT0 andT1 are

disjoint, we have the following lemma.
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Lemma IV.2. (D-RIP property) Let h = x̂ρ − x be the reconstruction error in RALASSO(5). We assume thatA

satisfies the D-RIP with parameterσ2s andD is a tight frame. Then,

Re〈Ah,ADD∗
T01

h〉

≥(1 − σ2s)‖D∗
T01

h‖22 −
√
2s−

1
2σ2s‖D∗

T01
h‖2‖D∗

T ch‖1. (41)

Finally, the lemmas below show that the reconstruction error h and‖D∗
T ch‖1 can not be very large.

Lemma IV.3. (Optimality condition) The optimal solution̂xρ for RALASSO(5) satisfies

‖D∗A∗Ah‖∞ ≤
(

1

2
+ ‖D∗D‖1,1

)

λ. (42)

Lemma IV.4. (Cone constraint) The optimal solution̂xρ for RALASSO(5) satisfies the following cone constraint,

‖D∗
T ch‖1 ≤ λ

ρ
p+ 3‖D∗

T h‖1 + 4‖D∗
T cx‖1. (43)

We are now ready to state our main result.

Theorem IV.1. LetA be anm×n measurement matrix,D an arbitraryn×p tight frame, and letA satisfy the D-

RIP withσ2s < 0.1907. Consider the measurementb = Ax+w, wherew is noise that satisfies‖D∗A∗w‖∞ ≤ λ
2 .

Then the solution̂xρ to RALASSO(5) satisfies

‖x̂ρ − x‖2 ≤ C0

√
sλ+ C1

‖D∗x− (D∗x)s‖1√
s

+ C2
λp√
sρ

, (44)

for the decomposition transformation and

‖x̂ρ − x‖2 ≤ C0

√
sλ+ C1

‖D∗x− (D∗x)s‖1√
s

+ C2
λµp√

s
, (45)

for the smoothing transformation. Here(D∗x)s is the vector consisting of the largests entries ofD∗x in magnitude,

C1 andC2 are constants depending onσ2s, andC0 depends onσ2s and ‖D∗D‖1,1.

Proof: The proof follows mainly from the ideas in [9], [28], and proceeds in two steps. First, we try to show that

D∗h insideT01 is bounded by the terms ofD∗h outside the setT . Then we show thatD∗
T ch is essentially small.

From Lemma IV.2,

Re〈Ah,ADD∗
T01

h〉

≥(1 − σ2s)‖D∗
T01

h‖22 −
√
2s−

1
2σ2s‖D∗

T01
h‖2‖D∗

T ch‖1. (46)

Using the fact thatRe〈x,y〉 ≤ |〈x,y〉| ≤ ‖x‖1‖y‖∞, we obtain that

Re〈Ah,ADD∗
T01

h〉 =Re〈D∗A∗Ah,D∗
T01

h〉

≤‖D∗A∗Ah‖∞‖D∗
T01

h‖1

≤
√
2sc0λ‖D∗

T01
h‖2, (47)
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with c0 = 1
2 + ‖D∗D‖1,1. The second inequality is a result of Lemma IV.3 and the fact that ‖D∗

T01
h‖1 ≤

√
2s‖D∗

T01
h‖2, in which 2s is the number of nonzero terms inD∗

T01
h. Combining (46) and (47), we get

‖D∗
T01

h‖2 ≤
√
2sλc0 +

√
2s−

1
2σ2s‖D∗

T ch‖1
1− σ2s

. (48)

Then the second step bounds‖D∗
T ch‖1. From (48),

‖D∗
T h‖1 ≤

√
s‖D∗

T h‖2 ≤
√
s‖D∗

T01
h‖2

≤
√
2λsc0 +

√
2σs‖D∗

T ch‖1
1− σ2s

. (49)

Finally, using Lemma IV.4 and (49),

‖D∗
T ch‖1 ≤ λ

ρ
p+

3
√
2λsc0 + 3

√
2σ2s‖D∗

T ch‖1
1− σ2s

+ 4‖D∗
T cx‖1. (50)

Sinceσ2s < 0.1907, we have1− (1 + 3
√
2)σ2s > 0. Rearranging terms, the above inequality becomes

‖D∗
T ch‖1

≤ 1− σ2s

1− (1 + 3
√
2)σ2s

λ

ρ
p+

3
√
2λsc0 + 4(1− σ2s)‖D∗

T cx‖1
1− (1 + 3

√
2)σ2s

. (51)

We now derive the bound on the reconstruction error. Using the results of (48) and (51), we get

‖h‖2 =‖D∗h‖2 ≤ ‖D∗
T01

h‖2 +
∑

j≥2

‖D∗
Tj
h‖2

≤
√
2sλc0 +

√
2s−

1
2 σ2s‖D∗

T ch‖1
1− σ2s

+ s−
1
2 ‖D∗

T ch‖1

=
c0λ

√
2s

1− σ2s
+

((
√
2− 1)σ2s + 1)s−

1
2 ‖D∗

T ch‖1
1− σ2s

≤C0

√
sλ+ C1

‖D∗x− (D∗x)s‖1√
s

+ C2
λp√
sρ

. (52)

The first equality follows from the assumption thatD is a tight frame so thatDD∗ = I. The first inequality is

the result of the triangle inequality. The second inequality follows from (48) and the fact that
∑

j≥2 ‖D∗
Tj
h‖2 ≤

s−
1
2 ‖D∗

T ch‖1, which is proved in equation (58) in the Appendix. The constants in the final result are given by

C0 =
4
√
2c0

1− (1 + 3
√
2)σ2s

,

C1 =
4((

√
2− 1)σ2s + 1)

1− (1 + 3
√
2)σ2s

,

C2 =
(
√
2− 1)σ2s + 1

1− (1 + 3
√
2)σ2s

.

To obtain the error bound for the smoothing transformation we replaceρ with 1/µ in the result.�

Choosingρ → ∞ in RALASSO (5) leads to the ALASSO problem for whichz = D∗x. We then have the

following result.
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Theorem IV.2. LetA be anm×n measurement matrix,D an arbitraryn×p tight frame, and letA satisfy the D-

RIP withσ2s < 0.1907. Consider the measurementb = Ax+w, wherew is noise that satisfies‖D∗A∗w‖∞ ≤ λ
2 .

Then the solution̂x to ALASSO(4) satisfies

‖x̂− x‖2 ≤ C0

√
sλ+ C1

‖D∗x− (D∗x)s‖1√
s

, (53)

where(D∗x)s is the vector consisting of the largests entries ofD∗x in magnitude,C1 is a constant depending

on σ2s, andC0 depends onσ2s and ‖D∗D‖1,1.

Remarks:

1. When the noise in the system is zero, we can setλ as a positive value which is arbitrarily close to zero. The

solutionx̂ then satisfies‖x̂−x‖ ≤ C1
‖D∗

x−(D∗

x)s‖1√
s

, which parallels the result for the noiseless synthesis model

in [9].

2. WhenD∗ is a tight frame, we haveDD∗ = I. Therefore by lettingv = D∗x, we can reformulate the original

analysis model as

min
v

1

2
‖ADv − b‖22 + λ‖v‖1. (54)

Assuming that the noise term satisfies thel2 norm constraint‖w‖2 ≤ ε, we have

‖D∗A∗w‖∞ ≤ ‖D∗A∗w‖2 ≤ ‖D∗A∗‖2‖w‖2 ≤ ε‖D∗A∗‖2. (55)

WhenA satisfies D-RIP withσ2s < 0.1907, by lettingλ = 2ε‖D∗A∗‖2 we have

‖v̂ − v‖2 ≤ ‖D∗‖2‖x̂− x‖2 ≤ C̃0ε+ C̃1
‖v − (v)s‖1√

s
. (56)

This result has a form similar to the reconstruction error bound shown in [9]. However, the specific constants are

different since in [9] the matrixAD is required to satisfy the RIP, whereas in our paper we require only that the

D-RIP is satisfied.

3. A similar performance bound is introduced in [28] and shown to be valid whenσ3s < 0.25. Using Corollary

3.4 in [35], this is equivalent toσ2s < 0.0833. Thus the results in Theorem IV.2 allow for a looser constraint on

ALASSO recovery.

4. The performance bound of Theorem IV.1 implies that a larger choice of ρ, or a smaller parameterµ, leads

to a smaller reconstruction error bound. This trend is intuitive since largeρ or small µ results in smaller model

inaccuracy. However, a largerρ or a smallerµ leads to a larger Lipschitz constant and thus results in slower

convergence according to Theorem II.1. The idea of parameter continuation [36] can be introduced to bothρ and

µ to accelerate the convergence while obtaining a desired reconstruction accuracy. More details will be given in

the next section.

V. NUMERICAL RESULTS

In the numerical examples, we use both randomly generated data and MRI image reconstruction to demonstrate

that SFISTA performs better than DFISTA. In the last examplewe also introduce a continuation technique to further
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speed up convergence of the smoothing-based method. We further compare SFISTA with the existing methods in

[18], [20], [23] using MRI image reconstruction, and show its advantages.

A. Randomly Generated Data in a Noiseless Case
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Fig. 1: Reconstruction error of SFISTA
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Fig. 2: Reconstruction error of DFISTA

In this simulation, the entries in them × n measurement matrixA were randomly generated according to a

normal distribution. Then×p matrixD is a random tight frame. First we generated ap×n matrix whose elements

follow an i.i.d Gaussian distribution. Then QR factorization was performed on this random matrix to yield the

tight frameD with DD∗ = I (D∗ comprises the firstn columns fromQ, which was generated from the QR

factorization).

In the simulation we letn = 120 andp = 144, and we also set the values ofm and the number of zero terms

namedl in D∗x according to the following formula:

m = αn, l = n− βm. (57)
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We variedα andβ from 0.1 to 1, with a step size0.05. We setλ = 0.004, µ = 10−3λ−1 for the smoothing-based

method, andρ = 103λ for the decomposition-based method. For every combinationof α andβ, we ran a Monte

Carlo simulation 50 times. Each algorithm ran for3000 iterations, and we computed the average reconstruction

error. The reconstruction error is defined by‖x̂−x‖
‖x‖ , in which x̂ is the reconstructed signal using smoothing or

decomposition andx is the original signal in (1).

The average reconstruction error for smoothing and decomposition are plotted in Figs. 1 and 2, respectively.

White pixels present low reconstruction error whereas black pixels mean high error. Evidently, see that with same

number of iterations, SFISTA results in a better reconstruction than DFISTA.

B. MRI Image Reconstruction in a Noisy Case
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Fig. 3: The objective function for MRI reconstruction on Shepp Logan.
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Fig. 4: Reconstruction error for SFISTA and DFISTA with different parameters.

The next numerical experiment was performed on a noisy256 × 256 Shepp Logan phantom. The image scale

was normalized to[0, 1]. The additive noise followed a zero-mean Gaussian distribution with standard deviation
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σ = 0.001. Due to the high cost of sampling in MRI, we only observed a limited number of radial lines of the

phantom’s 2D discrete Fourier transform. The matrixD∗ consists of all vertical and horizontal gradients, which

leads to a sparseD∗x. We let λ = 0.001 in the optimization. We tested this MRI scenario withµ values of

10−2λ−1, 10−3λ−1, 10−4λ−1 for SFISTA andρ = 102λ, ρ = 103λ, 104λ for DFISTA. We took the samples along

15 radial lines to test these two methods.

In Fig. 3 we plot the objective12‖Ax − b‖22 + λ‖D∗x‖1 as a function of the iteration number. It can be seen

that the objective function of SFISTA decreases more rapidly than DFISTA. Furthermore, with smallerρ and larger

µ, DFISTA and SFISTA converge faster. Then we computed the reconstruction error. Here we see that smallerµ

and largerρ lead to a more accurate reconstruction. We can see that SFISTA converges faster than DFISTA, which

follows the convergence results in Section III.

Next, we compared SFISTA with the nonlinear conjugate gradient descend (CGD) algorithm proposed in [23]. The

CGD also needs to introduce a smoothing transformation to approximate the term‖D∗x‖1, and in this simulation

the Moreau envelop withµ = 10−4λ−1 was used to smooth this term. We can see from Fig. 5 that SFISTAconverges

faster than the CGD in terms of CPU time. CGD is slower becausein each iteration, backtracking line-search is

required, which reduces the algorithm efficiency.
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Fig. 5: Reconstruction error for SFISTA and CGD with respectto CPU time.
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C. Acceleration by Continuation

Algorithm 3: Continuation with SFISTA

Input : x, the starting parameterµ = µ0,

the ending parameterµf andγ > 1.

Step 1.run SFISTA withµ and initial pointx.

Step 2.Get the solutionx∗ and letx = x∗, µ = µ/γ.

Until. µ ≤ µf .

To accelerate convergence and increase the accuracy of reconstruction, we consider continuation on the parameter

µ for SFISTA, or onρ for DFISTA. From Theorem IV.1, we see that smallerµ results in a smaller reconstruction

error. At the same time, smallerµ leads to a larger Lipschitz constantL∇F in Theorem II.1, and thus results in slower

convergence. The idea of continuation is to solve a sequenceof similar problems while using the previous solution as

a warm start. Taking the smoothing-based method as an example, we can run SFISTA withµ1 ≥ µ2 ≥ µ3, · · · ≥ µf .

The continuation method is given in Algorithm 3. The algorithm for applying continuation on DFISTA is the same.
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Fig. 6: Convergence comparison among SFISTA with and without continuation, GIST and SALSA.

We tested the algorithm on the Shepp Logan image from the previous subsection with the same setting, using

SFISTA with µf = 10−4λ−1 and standard SFISTA withµ = 10−4λ−1. We implemented the generalized iterative

soft-thresholding algorithm (GIST) from [20]. We also included an ADMM-based method, i.e. the split augmented

Lagrangian shrinkage algorithm (SALSA) [18]. SALSA requires solving the proximal operator of‖D∗x‖1, which

is nontrivial. In this simulation, we implemented40 iterations of the Fast GP algorithm [25] to approximate this

proximal operator. Without solving the proximal operator exactly, the ADMM-based method can converge very fast
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Fig. 7: Reconstructed Shepp Logan with SFISTA using continuation.

while the accuracy of reconstruction is compromised as we show in Figure 6. In this figure we plot the reconstruction

error for these four algorithms. It also shows that continuation helps speed up the convergence and exhibits better

performance then GIST. The reconstructed Shepp Logan phantom using continuation is presented in Fig. 7, with

reconstruction error3.17%.

VI. CONCLUSION

In this paper, we proposed methods based on MFISTA to solve the analysis LASSO optimization problem. Since

the proximal operator in MFISTA for‖D∗x‖1 does not have a closed-form solution, we presented two methods,

SFISTA and DFISTA, using smoothing and decomposition respectively, to transform the original sparse recovery

problem into a smooth counterpart. We analyzed the convergence of SFISTA and DFISTA and showed that SFISTA

converges faster in general nonsmooth optimization problems. We also derived a bound on the performance for

both approaches assuming a tight frame and D-RIP. Our methods were demonstrated via several simulations. With

the application of parameter continuation, these two algorithms are suitable to solve large scale problems.

APPENDIX

Proof of Lemma IV.1: Without loss of generality we assume that‖u‖2 = 1 and‖v‖2 = 1. By the definition of

D-RIP, we have

Re〈Au,Av〉 =1

4
{‖Au+Av‖22 − ‖Au−Av‖22}

≥1

4
{(1− σ2s)‖u+ v‖22 − (1 + σ2s)‖u− v‖22}

=− σ2s +Re〈u,v〉.

Now it is easy to extend this equation to get the desired result.

Proof of Lemma IV.2: From the definition ofTj we have

‖D∗
Tj
h‖2 ≤ s−

1
2 ‖D∗

Tj−1
h‖1
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for all j ≥ 2. Summingj = 2, 3, . . . leads to

∑

j≥2

‖D∗
Tj
h‖2 ≤ s−

1
2

∑

j≥1

‖D∗
Tj
h‖1 = s−

1
2 ‖D∗

T ch‖1. (58)

Now, considering the fact thatD is a tight frame, i.e.,DD∗ = I, and that the D-RIP holds,

Re〈Ah,ADD∗
T01

h〉

=Re〈ADD∗
T01

h,ADD∗
T01

h〉+
∑

j≥2

Re〈ADD∗
Tj
h,ADD∗

T01
h〉

≥(1− σ2s)‖DD∗
T01

h‖22 +
∑

j≥2

Re〈ADD∗
Tj
h,ADD∗

T0
h〉

+
∑

j≥2

Re〈ADD∗
Tj
h,ADD∗

T1
h〉

Using the result from Lemma IV.1, we can bound the last two terms in the above inequality; hence, we derive

Re〈Ah,ADD∗
T01

h〉

≥(1− σ2s)‖DD∗
T01

h‖22 +
∑

j≥2

Re〈DD∗
Tj
h,DD∗

T0
h〉

+
∑

j≥2

Re〈DD∗
Tj
h,DD∗

T1
h〉

− σ2s‖DD∗
T0
h‖2

∑

j≥2

‖DD∗
Tj
h‖2

− σ2s‖DD∗
T1
h‖2

∑

j≥2

‖DD∗
Tj
h‖2

=(1− σ2s)‖DD∗
T01

h‖22 +Re

〈

∑

j≥2

DD∗
Tj
h,DD∗

T01
h

〉

− σ2s(‖DD∗
T0
h‖2 + ‖DD∗

T1
h‖2)

∑

j≥2

‖DD∗
Tj
h‖2 (59)

By definition of Tj , we have

Re

〈

∑

j≥2

DD∗
Tj
h,DD∗

T01
h

〉

= Re〈h −DD∗
T01

h,DD∗
T01

h〉

= ‖D∗
T01

h‖22 − ‖DD∗
T01

h‖22.

Combining this equation with (59) results in

Re〈Ah,ADD∗
T01

h〉

≥‖DD∗
T01

h‖22 − σ2s‖DD∗
T01

h‖22 + ‖D∗
T01

h‖22 − ‖DD∗
T01

h‖22

− σ2s(‖DD∗
T0
h‖2 + ‖DD∗

T1
h‖2)

∑

j≥2

‖DD∗
Tj
h‖2.
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Using the fact that whenD is a tight frame,‖DD∗
T01

h‖2 ≤ ‖D∗
T01

h‖2, we have

Re〈Ah,ADD∗
T01

h〉

≥(1 − σ2s)‖D∗
T01

h‖22 − σ2s(‖D∗
T0
h‖2 + ‖D∗

T1
h‖2)

∑

j≥2

‖D∗
Tj
h‖2.

Since‖D∗
T0
h‖2 + ‖D∗

T1
h‖2 ≤

√
2‖D∗

T01
h‖2 (becuaseT0 andT1 are disjoint), we conclude that

Re〈Ah,ADD∗
T01

h〉

≥(1− σ2s)‖D∗
T01

h‖22 −
√
2σ2s‖D∗

T01
h‖2

∑

j≥2

‖D∗
Tj
h‖2,

which along with inequality (58) yields the desired result given by

Re〈Ah,ADD∗
T01

h〉

≥(1 − σ2s)‖D∗
T01

h‖22 −
√
2s−

1
2σ2s‖D∗

T01
h‖2‖D∗

T ch‖1.

Proof of Lemma IV.3: The subgradient optimality condition for RALASSO (5) can be stated as

A∗(Ax̂ρ − b) + ρD(D∗x̂ρ − ẑρ) = 0, (60)

λv + ρ(ẑρ −D∗x̂ρ) = 0, (61)

wherev is a subgradient of the function‖z‖1 and consequently‖v‖∞ ≤ 1. Combining (60) and (61), we have

A∗(Ax̂ρ − b) = λDv.

Multiplying both sides byD∗, we get

‖D∗A∗(Ax̂ρ − b)‖∞

= λ‖D∗Dv‖∞ ≤ λ‖D∗D‖∞,∞ = λ‖D∗D‖1,1. (62)

The first inequality follows from the fact that‖v‖∞ ≤ 1. With the assumption that‖D∗A∗w‖∞ ≤ λ
2 , and the

triangle inequality, we have

‖D∗A∗Ah‖∞

≤ ‖D∗A∗(Ax− b)‖∞ + ‖D∗A∗(Ax̂ρ − b)‖∞

≤
(

1

2
+ ‖D∗D‖1,1

)

λ. (63)

Proof of Lemma IV.4: Sincex̂ρ and ẑρ solve the optimization problem RALASSO (5), we have,

1

2
‖Ax̂ρ − b‖22 + λ‖ẑρ‖1 +

1

2
ρ‖D∗x̂ρ − ẑρ‖22

≤ 1

2
‖Ax− b‖22 + λ‖D∗x‖1.
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Sinceb = Ax+w andh = x̂ρ − x, it follows that

1

2
‖Ah−w‖22 + λ‖ẑρ‖1 +

1

2
ρ‖D∗x̂ρ − ẑρ‖22

≤ 1

2
‖w‖22 + λ‖D∗x‖1.

Expanding and rearranging the terms in the above equation, we get

1

2
‖Ah‖22 + λ‖ẑρ‖1 +

1

2
ρ‖D∗x̂ρ − ẑρ‖22

≤ Re〈Ah,w〉 + λ‖D∗x‖1,

Using (61) to replace the terms witĥzρ, we have

1

2
‖Ah‖22 + λ

∥

∥

∥

∥

D∗x̂ρ −
λ

ρ
v

∥

∥

∥

∥

1

+
1

2
ρ

∥

∥

∥

∥

λ

ρ
v

∥

∥

∥

∥

2

2

≤ Re〈Ah,w〉 + λ‖D∗x‖1.

Since‖D∗x̂ρ − λ
ρv‖1 ≥ ‖D∗x̂ρ‖1 − λ

ρ ‖v‖1, we have

1

2
‖Ah‖22 + λ‖D∗x̂ρ‖1

≤ λ2

ρ
‖v‖1 −

λ2

2ρ
‖v‖22 +Re〈Ah,w〉 + λ‖D∗x‖1

≤ λ2p

2ρ
+Re〈Ah,w〉 + λ‖D∗x‖1. (64)

The second inequality follows from the fact thatλ2

ρ ‖v‖1 − λ2

2ρ ‖v‖22 is maximized when every element ofv ∈ R
p

is 1. Now, with the assumption thatD is a tight frame, we have the following relation:

Re〈Ah,w〉 + λ‖D∗x‖1 =Re〈D∗h,D∗A∗w〉+ λ‖D∗x‖1

≤‖D∗h‖1‖D∗A∗w‖∞ + λ‖D∗x‖1.

This inequality follows from the fact thatRe〈x,y〉 ≤ ‖〈x,y〉‖ ≤ ‖x‖1‖y‖∞. Using the assumption that‖D∗A∗w‖∞ ≤
λ
2 , we get

Re〈Ah,w〉 + λ‖D∗x‖1 ≤ λ

2
‖D∗h‖1 + λ‖D∗x‖1. (65)

Applying inequalities (64) and (65), we have

λ‖D∗x̂ρ‖1 ≤1

2
‖Ah‖22 + λ‖D∗x̂ρ‖1

≤λ2

2ρ
p+Re〈Ah,w〉+ λ‖D∗x‖1

≤λ2

2ρ
p+

λ

2
‖D∗h‖1 + λ‖D∗x‖1,

which is the same as,

‖D∗x̂ρ‖1 ≤ λ

2ρ
p+

1

2
‖D∗h‖1 + ‖D∗x‖1.
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Since we haveh = x̂ρ − x, it follows that

‖D∗h+D∗x‖1 ≤ λ

2ρ
p+

1

2
‖D∗h‖1 + ‖D∗x‖1,

and hence

‖D∗
T h+D∗

T x‖1 + ‖D∗
T ch+D∗

T cx‖1

≤ λ

2ρ
p+

1

2
‖D∗

T h‖1 +
1

2
‖D∗

T ch‖1 + ‖D∗
T x‖1 + ‖D∗

T cx‖1.

Applying the triangle inequality to the left handside of above inequality, we results in

− ‖D∗
T h‖1 + ‖D∗

T x‖1 + ‖D∗
T ch‖1 − ‖D∗

T cx‖1

≤ λ

2ρ
p+

1

2
‖D∗

T h‖1 +
1

2
‖D∗

T ch‖1 + ‖D∗
T x‖1 + ‖D∗

T cx‖1.

After rearranging the terms, we have the following cone constraint,

‖D∗
T ch‖1 ≤ λ

ρ
p+ 3‖D∗

T h‖1 + 4‖D∗
T cx‖1. (66)
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