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Abstract

We consider algorithms and recovery guarantees for theysinatparse model in which the signal is sparse
with respect to a highly coherent frame. We consider the tfise mmonotone version of the fast iterative shrinkage-
thresholding algorithm (MFISTA) to solve the analysis sgarecovery problem. Since the proximal operator in
MFISTA does not have a closed-form solution for the analysizdel, it cannot be applied directly. Instead, we
examine two alternatives based on smoothing and decorigposiansformations that relax the original sparse regover
problem, and then implement MFISTA on the relaxed formalatWe refer to these two methods as smoothing-based
and decomposition-based MFISTA. We analyze the conveegefdoth algorithms, and establish that smoothing-
based MFISTA converges more rapidly when applied to gem@masmooth optimization problems. We then derive a
performance bound on the reconstruction error using tregeiques. The bound proves that our methods can recover
a signal sparse in a redundant tight frame when the measotenagrix satisfies a properly adapted restricted isometry
property. Numerical examples demonstrate the performahoer methods and show that smoothing-based MFISTA
converges faster than the decomposition-based alteenativeal applications, such as MRI image reconstruction.
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|. INTRODUCTION

Low-dimensional signal recovery exploits the fact that gnaxatural signals are inherently low dimensional,
although they may have high ambient dimension. Prior infdfom about the low-dimensional space can be exploited
to aid in recovery of the signal of interest. Sparsity is ofiehe popular forms of prior information, and is the
prior that underlies the growing field of compressive semditi-[4]. Recovery of sparse inputs has found many
applications in areas such as imaging, speech, radar gigoe¢ssing, sub-Nyquist sampling and more. A typical

sparse recovery problem has the following linear form:
b= Az + w, (1)

in which A € R™*™ is a measurement matrik, € R™ is the measurement vector, angd € R™ represents the
noise term. Our goal is to recover the signak R™. Normally we haven < n, which indicates that the inverse
problem is ill-posed and has infinitely many solutions. Talfanunique solution, prior information ap must be
incorporated.

In the synthesis approach to sparse recovery, it is assunagd tcan be expressed as a sparse combination of
known dictionary elements, represented as columns of abmBtre R"*P with p > n. That isz = Da with «
sparse, i.e., the number of non-zero elements iis far less than the length @t. The main methods for solving
this problem can be classified into two categories. One degdgreedy methods, such as iterative hard thresholding
[5] and orthogonal matching purstuitl [6]. The other is basada@axation-type methods, such as basis pursuit [7]
and LASSO[[8]. These methods can stably recover a sparsal sigwhen the matrixA D satisfies the restricted
isometry property (RIP)[9]-[11].

Recently, an alternative approach has became popularhwbi&nown as the analysis methdd [[12], [13]. In
this framework, we are given an analysis dictionddy (D € R™*P) under whichD*z is sparse. Assuming, for

example, that thé, norm of the noisav is bounded by, the recovery problem can be formulated as
min |[D*z||p subject to|lb — Azx||s < ¢. 2
xcR"

Since this problem is NP hard, several greedy algorithms baen proposed to approximate it, such as thresholding
[14] and subspace pursuit [15].
Alternatively, the nonconve, norm can be approximated by the convexnorm leading to the following relaxed

problem, referred to as analysis basis pursuit (ABP):

min ||[D*z|; subject to]|b — Az|> < e. 3)

xeR™
ABP is equivalent to the unconstrained optimization

1 .
min o[[b— Az|3 + A\ D"a||:, (4)

which we call analysis LASSO (ALASSO). The equivalence isha sense that for any> 0 there exists a\ for
which the optimal solutions of ABP and ALASSO are identical.
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Both optimization problems ABP and ALASSO can be solved gisimerior point methods [16]. However,
when the problem dimension grows, these techniques becamesiow since they require solutions of linear
systems. Another suggested approach is based on alteymitaction method of multipliers (ADMM)[17],118].
The efficiency of this method highly depends on nice strictoir the matricesA. Fast versions of first-order
algorithms, such as the fast iterative shrinkage-threshglalgorithm (FISTA)[[18], are more favorable in dealing
with large dimensional data since they do not requiréo have any structure. The difficulty in directly applying
first-order techniques to ABR](3) and ALASSD (4) is the fa@ttthe nonsmooth terfiD*z||; is inseparable.

A generalized iterative soft-thresholding algorithm wasgmsed in [[2D] to tackle this difficulty. However, this
approach converges relatively slow as we will show in onewfrumerical examples. A common alternative is to
transform the nondifferentiable problem into a smooth ¢erpart. In [21], the authors used Nesterov’s smoothing-
based method [22] in conjunction with continuation (NESTA)solve ABP [(8), under the assumption that the
matrix A* A is an orthogonal projector. In_[23], a smoothed version ofASISO [3) is solved using a nonlinear
conjugate gradient descent algorithm. To avoid imposingd@mns on A, we focus in this paper on the ALASSO
formulation [4).

It was shown in[[24] that one can apply any fast first-orderhmétthat achieves asp-optimal solution within
O(%) iterations, to are smooth-approximation of the general nonsmooth problemabtdin an algorithm with
O(%) iterations. In this paper, we choose a monotone version®T&MFISTA) [25] as our fast first-order method,
whose objective function values are guaranteed to be nmeasing. We apply the smoothing approach together
with MFISTA leading to the smoothing-based MFISTA (SFISTAyorithm. We also propose a decomposition-
based MFISTA method (DFISTA) to solve the analysis sparsevery problem. The decomposition idea is to
introduce an auxiliary variable in (@) so that MFISTA can be applied in a simple and explicitnmar. This
decomposition approach can be traced back to [26], and resWwiglely used for solving total variation problems
in the context of image reconstructidn [27].

Both smoothing and decomposition based algorithms for mowsh optimization problems are very popular in
the literature. One of the main goals of this paper is to erarttieir respective performance. We show that SFISTA
requires lower computational complexity to reach a predeiteed accuracy. Our results can be applied to a general
model, and are not restricted to the analysis sparse recgveblem.

In the context of analysis sparse recovery, we show in Sefifi€] that both smoothing and decomposition

techniques solve the following optimization problem:

1
min -
zER™,z€RP 2

1 *
Az = bl + Al|z]l1 + 5ol — D*a|l3, (5)
which we refer to as relaxed ALASSO (RALASSO). Another cimition of this paper is in proving recovery
guarantees for RALASSQ](5). With the introduction of thetriesed isometry property adapted 19 (D-RIP) [12],
previous work [[12] [28] studied recovery guarantees basedBP (3) and ALASSO[{4). Here we combine the

techniques in[[9] and_[28], and obtain a performance boun®AhASSO [3). We show that whet,, < 0.1907
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and||D*A*w||« < 3, the solutionz, of RALASSO [5§) satisfies
|D*x — (D*@)s|| Ap
Vs Vsp’

wherep is the number of rows iD*, Cy, C;, C> are constants, and we use), to denote the vector consisting

H:i:p—:an SCO\/§A+01| +Cg

(6)

of the largests entries of |x|. As a special case, choosing— oo extends the bound irf]J(6) and obtains the
reconstruction bound for ALASS@](4) as long @s < 0.1907, which improves upon the results 6f [28].

The paper is organized as follows. In Sectioh Il, we intradsome mathematical preliminaries, and present
SFISTA and DFISTA for solving RALASSO15). We analyze the wergence behavior of these two algorithms in
Section1ll, and show that SFISTA converges faster than DAIf®r a general model. Performance guarantees on
RALASSO [5) are developed in SectibnllV. Finally, in Secildiwe test our techniques on numerical experiments
to demonstrate the effectiveness of our algorithms in sglthe analysis recovery problem. We show that SFISTA
performs favorably in comparison with DFISTA. A continuatimethod is also introduced to further accelerate the
convergence speed.

Throughout the paper, we use capital italic bold lettersejoreésent matrices and lowercase italic bold letters
to represent vectors. For a given matifix, D* denotes the conjugate matrix. We denoteld§ the matrix that
maintains the rows iD* with indices in set7’, while setting all other rows to zero. Given a vecior||x|| 1, || z||2
are the/y, ¢5 norms respectivelyjx||o counts the number of nonzero components which will be reteto as thé,

norm although it is not a norm, and|| .. denotes the maximum absolute value of the elemenis We usex|i]

Az,
lllq

Finally, Re(a, b) = W. We useargmin{f(x) : * = z,y} to denotez or y, whichever yields a smaller

to represent théth element ofe. For a matrixA, |

Al|2 is the induced spectral norm, afjé ||, , = max

function value off(x).

Il. SMOOTHING AND DECOMPOSITION FORANALYSIS SPARSERECOVERY

In this section we present the smoothing-based and decdtiopelsased methods for solving ALASSQ] (4). To
do so, we first recall in Subsectidn TIFA some results reldtegroximal gradient methods that will be essential to

our presentation and analysis.

A. The Proximal Gradient Method

We begin this section with the definition of Moreau’s proxinf@r “prox”) operator [29], which is the key step
in defining the proximal gradient method.

Given a closed proper convex functian R™ — R U {oc}, the proximal operator ok is defined by

prox, (x) = arg min {h(u) + %Hu — m|§} . @)

ueR”

The proximal operator can be computed efficiently in manydrtgmt instances. For example, it can be easily
obtained whem: is anl, norm (p € [1,00)), or an indicator of “simple” closed convex sets such as the, bo

unit-simplex and the ball. More examples of proximal operaias well as a wealth of properties can be found, for

example, in[[30] [[31].
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The proximal operator can be used in order to compute smggtiogimations of convex functions. Specifically,

let h be a closed, proper, convex function, and et 0 be a given parameter. Define

. 1
(o) = min {htw) + 5 Ju—al} | ®)
It is easy to see that
1
hu() = h(prox, (z)) + @Hw — prox,,,(z)|3. )

The functionh,, is called theMoreau envelope of and has the following important properties (se€ [29] fotHar
details):
o hy(x) < h(x).
 h, is continuously differentiable and its gradient is Lipsgzhgontinuous with constarit/ ...
« The gradient of., is given by
Vh,(x) = i(cc — prox,,(x)). (10)

One important usage of the proximal operator is in the prakigradient method that is aimed at solving the
following composite problem:

mnenRr}l{F(m) +G(x)}. (12)

Here F : R™ — R is a continuously differentiable convex function with a tionous gradient that has Lipschitz
constantLy p:

IVE(x) - VF(y)lls < Lyrllz —yl2, foralzycR",

andG : R” — RU{oo} is an extended-valued, proper, closed and convex functibe proximal gradient method
for solving [11) takes the following form (see [19], 132]):

Proximal Gradient Method For Solving (L)

Input: An upper boundL > Lvr.
Step 0.Takexy € R™.
Step k. (k> 1)

Computex, = Proxi g (in—l — %VF(:Bk_l)) .

The main disadvantage of the proximal gradient method isitteuffers from a relatively slowD(1/k) rate of
convergence of the function values. An accelerated veiisitime fast proximal gradient metho@lso known in the
literature adast iterative shrinkage thresholding algorithieISTA) [19], [32]. WhenG = 0, the problem is smooth,
and FISTA coincides with Nesterov’s optimal gradient metffgg]. In this paper we implement a monotone version

of FISTA (MFISTA) [25], which guarantees that the objectiuction value is non-increasing along the iterations.
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Monotone FISTA Method (MFISTA) For Solving (L1)

Input: An upper bound. > Lyp.
Step 0.Takey,; = xq,t; = 1.
Step k. (k > 1) Compute
Z = Proxig (yr — $VF(yr)) -
14+4/1+4t2
tk+1 = 3 -

x = argmin{F(x) + G(x) : & = zi, Ti_1}.

Yo = on 78 (2 - m) + U (o — wn )

The rate of convergence of the sequence generated by MFISTAIi/k?).

Theorem I1.1. [25] Let {x1}r>0 be the sequence generated by MFISTA, and:Ilbe an optimal solution of (11).

Then
2Lyrllxo — &3

—F(&)-G(=z) <
F(xg)+G(xy) — F(z) - G(x) < e (12)
B. The General Nonsmooth Model
The general optimization model we consider in this paper is
min {H(x) = f(z) + g(D"x)}, (13)

xcR"™
wheref : R™ — R is a continuously differentiable convex function with a $@hitz continuous gradietiy ;. The
functiong : R? — RU {oo} is a closed, proper convex function which is not necessarnipoth, andD* € RP*"

is a given matrix. In addition, we assume tlgais Lipschitz continuous with parametér,:
lg(z) —g(v)| < Lyl|z —v|]2  forall z,v € RP.

This is equivalent to saying that the subgradientg afver R? are bounded by.,:
g’ (2)|]2 < L, for anyx € R™ andg’(z) € dg(2).

An additional assumption we make throughout is that the iptekoperator ofag(z) for any « > 0 can be easily
computed.

Directly applying MFISTA to [IB) requires computing the pimal operator ofg(D*x). Despite the fact that
we assume that it is easy to compute the proximal operatai(f, it is in general difficult to compute that of
ag(D*x). Therefore we need to transform the problem before uttiAtFISTA, in order to avoid this computation.

When considering ALASSOf (x) = %||Ax — b||3 andg(D*xz) = A|[D*z|;. The Lipschitz constants are given
by Lvy = ||A|3 and L, = \,/p. The proximal operator ofig(z) = aA[|z||; can be computed as

Prox,,(2) = Dra(z) = [12] — Aalsgn(2), (14)

January 15, 2014 DRAFT



where for brevity, we denote the soft shrinkage operatdr hy(z). Here[z] . denotes the vector whose components
are given by the maximum betweenand0. Note, however, that there is no explicit expression for ghaximal
operator ofg(D*x) = \||D*z||, i.e., there is no closed form solution to

1
argmin{ou\HD*qu+—||u—cc||§}. (15)
ueR™ 2

In the next subsection, we introduce two popular approatdresansforming the probleni (13): smoothing and
decomposition. We will show in Sectiohs TFD ahd 1I-E thatthdransformations lead to algorithms which only

require computation of the proximal operatorgt), and not that ofy(D*x).

C. The Smoothing and Decomposition Transformations

The first approach to transforin {13) is the smoothing methodhich the nonsmooth function=) is replaced
by its Moreau envelope,(z), which can be seen as a smooth approximation. By lettirg D*x , the smoothed
problem becomes

min {H,(z) = f(z) + g.(D"x)}, (16)

to which MFISTA can be applied since it only requires evahmmthe proximal operator of(z). From the general
properties of the Moreau envelope, and from the fact thamntivens of the subgradients gfare bounded above
by Ly, we can deduce that there exists sofe 82 > 0 such thats; + 2 = Ly, andg(z) — fip < gu(z) <
g(z) + Bop for all z € RP (see [24], [22]). This shows that a smallereads to a finer approximation.

The second approach for transforming the problem is therdposition method in which we consider:

Lomin {Gy@.2) = f(@) +g(=) + §1z - Dal3}. (17)

With p — oo, this problem is equivalent to the following constrainednialation of the original probleni(13):

min{f(x) + g(z)}
st. z=D"x, x€R" zecR". (18)

Evidently, there is a close relationship between the apprate models[{16) and (1L7). Indeed, fixingand

minimizing the objective function of (17) with respect towe obtain

. B _ * 2}
omin {f(@) +9(z)+ §llz - Dzl

= min {f(w) +91 (D*m)} . (19)

zeR™
Therefore, the two models are equivalent in the sense thatdptimal solution set (limited ta) is the same when
u= %. For analysis sparse recovery, both transformations lead@ALASSO [3). However, as we shall see, the

resulting smoothing-based and decomposition-baseditdgm and their analysis are very different.
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D. The Smoothing-Based Method

Since [I6) is a smooth problem we can apply an optimal firdeomethod such as MFISTA with' = H,, =
f(x) + g.(D*x) and G = 0 in equation [(Il1). The Lipschitz constant &f, is given by Ly + %, and
according to[(I0) the gradient &g, (D*x) is equal tOﬁD(D*m—proxﬂg(D*:c)). The expressioprox,,,(D*x)
is calculated by first computingrox, (), and then lettingg = D*x.

Returning to the analysis sparse recovery problem, afteo#inmg we obtain

. 1 N
min { () = 3142 - bl + 0,(D"0)}. (20)

where

1
u(D"2) =ugn {NJul + 5. - D'al

=3 N (D)),

i=1

The function,, (z) with parameterx > 0 is the so-called Huber functioh [34], and is given by

g2 if |z] <a
Ho(z) =4 2 2 (21)
|| — & otherwise

2
From [13), the gradient of,,(D*x) is equal to
1
Vg (D*x) = ;D(D*w — 'y, (D*x)). (22)

Applying MFISTA to (20), results in the SFISTA algorithm,remarized in Algorithm 1.

Algorithm1: Smoothing-based MFISTA (SFISTA)

Input: An upper bound. > || A3 + %.

Step 0.Takey,; = xq,t; = 1.

Step k. (k > 1) Compute

Vf(yr) = A*(Ayi — b).

VgM(D*iL‘k_l) = %D(D*wk_l — F)\H(D*il:k_l)).

zi =yk — +(Vf(yr) + Vgu(D*zp_1)).
144/11412

ley1 = —5—.

xy, = argmin{H,(x) : ® = zi, Tr_1}.

tp—1
tht1

Yit+1 = T + tktil (2x — ) + (T — xp—1).
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E. The Decomposition-Based Method

We can also employ MFISTA on the decomposition model

{G,(x,2) = Fy(x,z) + G(x, 2)}, (23)

acER" zG]RP
where we take the smooth part &5(x, z) = f(x) + 4|z — D*z||3 and the nonsmooth part &z, z) = g(=z).
In order to apply MFISTA to[(17), we need to compute the pralimperator ofaGG for a given constand > 0,
which is given by
Zr
prox,q(z, z) = . (24)
proxag(z)

In RALASSO [8),G(x, 2) = A||z[|1 and F,(z, 2) = 1||Az — b3 + 1p||z — D*z||3. Therefore,

prox,(x, z) = “ . (25)
F,\a(z)
The Lipschitz constant oV F' is equal to(||A[|3 + p(1 + || D||3)). By applying MFISTA directly, we have the

DFISTA algorithm, stated in Algorithm 2.

Algorithm 2:Decomposition-based MFISTA (DFISTA)

Input: An upper boundZ > (| A% + p(1 + || D||3)).
Step 0.Takeu; = xg,v1 = z9,t1 = 1.

Step k. (k > 1) Compute

VaoFy(ug,vi) = A*(Auy — b) + pD(D*uy — vy,).
V.F,(uk,vi)) = p(vy — D*uyp).

Pr = ug — 1 Vo Fp(uy, vg).

@i =Ty (v — 7V Fy(up, vi)).
+\/1+4t2

thy1 = —5—=.

(K, 21)

= argmin{G, (cc z): (¢, 2) = (Pr, qi)s (Tr—1,2K-1)}

tr—1
trt1

U1 = T + (pr — k) + () — Tp—1).

tk+1

(g — 1) + ¥ (21 — z5-1).

Vkt1 = 2k + tk+1

IIl. CONVERGENCEANALYSIS

In this section we analyze the convergence behavior of blm¢hsmoothing-based and decomposition-based

methods. Convergence of smoothing algorithms has beetedréa [22], [24]. In order to make the paper self
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10

contained, we quote the main results here. We then analgzeathvergence of the decomposition approach. Both
methods require the same type of operations at each iter#étie computation of the gradient of the smooth function
f, and of the proximal operator correspondingcdg, which means that they have the same computational cost
per iteration. However, we show that smoothing convergstefahan decomposition based methods. Specifically,
the smoothing-based algorithm is guaranteed to generateoptimal solution withinO(1/¢) iterations, whereas
the decomposition-based approach requivés/<!-%) iterations. We prove the results by analyzing SFISTA and
DFISTA for the general probleri (IL3), however, the same amalyan be easily extended to other optimal first-order
methods, such as the one described id [22].

A. Convergence of the Smoothing-Based Method
For SFISTA the sequencle} satisfies the following relationship [25]:

92 (ij.+ Hfillg) Ay
Hy(zk) — Huy(2,) < (k+1)2 )

where A, is an upper bound on the expressiph, — =] with &, being an arbitrary optimal solution of the

(26)

smoothed probleni (16), ang, is the initial point of the algorithm. Of course, this ratecoivergence is problematic
since we are more interested in bounding the expressiary,) — H rather than the expressidi, (x) — H,.(&,,),
which is in terms of the smoothed problem. Hefg stands for the optimal value for original nonsmooth problem

(@I3). For that, we can use the following result framl[24].

Theorem I11.1. [24] Let {z;} be the sequence generated by applying MFISTA to the pro@nLet x, be the
initial point and let# denote the optimal solution dfL3). Ane-optimal solution of(@3), i.e. |H (zx) — H ()| < &,

is obtained in the smoothing-based method using MFISTA aftenost

—1 — 1

iterations with chosen as
LT e (28)
Lg IIDI3Ly + VIIDI3Lg + Ly e

in which L, and Ly s are the Lipschitz constants gfand the gradient function of in (I3), andA; = ||zo—&,|2-

We usez,, to denote the optimal solution of problef@g).

Remarks: For analysis sparse recovery using SFISTA,= Apz and Ly = ||A||%, which can be plugged into

the expressions in the theorem.

B. Convergence of the Decomposition-Based Method

A key property of the decomposition modgl{17) is that its imial value is bounded above by the optimal value
H in the original problem[{Z3).
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11

Lemma IIl.1. Let G, be the optimal value of problefi7) and H be the optimal value of probleff3). Then
G, < H.
Proof: The proof follows from adding the constraiat= D*x to the optimization:

o B
Gy =, _min_ {f(@)+9() + £z - D"l

N

min_{f(@)+ (=) + L)z - D*e[3]

T xeR™,zeRP z=D*z
= min {f(z) +g(D @)}, (29)

which is equal toH.
The next theorem is our main convergence result estabfjstiiat ans-optimal solution can be reached after
O(1/€%) iterations. By assuming that the functiofi@ndg are nonnegative, which is not an unusual assumption,

we have the following theorem.

Theorem I11.2. Let {xy, z} be the sequences generated by applying MFISTATR) with both f and g both
being nonnegative functions. The initial point is taken(asg, zo) with zo = D*z. Let & denote the optimal
solution of the original problenfI3). An e-optimal solution of problenfI3), i.e. |H (x}) — H(z)| < ¢, is obtained

using the decomposition-based method after at most

{ 16/ + [DIPA:H(@o) L, 2/ Ivsha }
ax JSI: TR

K= (30)

iterations of MFISTA withp chosen as
2/3
_ Lg \% 2H($0)K2 ! (31)
PT\20+DPA: )
Here L, and Ly are the Lipschitz constants fgrand the gradient function of in (I3), and Ay = ||zo — 2,3 +

llz0 — 2,|/3. We usez,, 2, to denote the optimal solutions @17).

Proof: Since the monotone version of FISTA is applied we have
fl@e) + 9(zi) + gllzk — D x5
=Gp(xr, 21) < Gy, 20) = f(20) + g(D*x0) = H(20). (32)
With the assumption that and g are nonnegative, it follows that
5z — D3 < H(wo),

and therefore

2H(x
|zx — D xy||2 < 75) o) (33)

The gradient off (z) + 5||z — D*x||3, is Lipschitz continuous with parametéky s + p(1 + || D||3)). According
to [25], by applying MFISTA, we obtain a sequenfery, z;)} satisfying

., _ 2(Lyy + p(1 + [|D]3)A
Go(Tr, z1) — G, < (Lvy (k2 |D]|2)) 2
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Using lemmdTI[.1 and the notation
A=2Lyshs, B =2(1+ DAz,

we have

. A+ pB
Gp(cck,zk) —H S ka

. (34)
We therefore conclude that
H(xy) =f(xr) + g(Dxy)

=f(zx) + g(zk) + 9g(D k) — g(21)

SGP(:Bk, Zk) + Lgsz - D*iL‘ng

. A+B )

<H + k;’ + Lyllzx — D a2
. A4 pB 2H (x

<H+ 21, 2H(@o)

P
The first inequality follows from the Lipschitz conditionrfthe functiong, the second inequality is obtained from

(34), and the last inequality is a result 6f133).

We now seek the “bestp that minimizes the upper bound, or equivalently, minimites term

A+pB 2H(xg) A D
———+1L =—+Cp+ — 35
ER p R Nz (35)
whereC' = k% andD = L,+/2H (z). Setting the derivative to zero, the optimal valuepak p = (%)2/3, and
~ A
H(xp) < H+ =t 2013 D3, (36)
Therefore, to obtain an-optimal solution, it is enough that
A e 2BY3D?3 ¢
72 < 3 T el < 3 (37)
or
4312B12D 24
k >max ,
el.s \/g
164/(1 D|2A2H L, 2\/Lv¢A
_max{ VA+IDPAH o)Ly 2v/Tvs 2} , (38)
el Ve

completing the proof.

Remarks:
1. As in SFISTA, when treating the analysis sparse recovesplem, L, = Apz and Lvs = || A3, which again
can be plugged into the expressions in the theorem.
2. MFISTA is applied in SFISTA and DFISTA to guarantee a mathtcal rigorous proof, i.e. the existence of
equation[(3R). In real application, FISTA without monotareerations can also be applied to yield corresponding

smoothing and decomposition based algorithms.
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Comparing the results of smoothing-based and decompediased methods, we immediately conclude that the
smoothing-based method is preferable. First, it requirdy @(1/¢) iterations to obtain ar-optimal solution
whereas the decomposition approach necessitateégs>/?) iterations. Note that both bounds are better than the
boundO(1/£?) corresponding to general sub-gradient schemes for nortnepdimization. Second, the bound in
the smoothing approach depends\p(f, and not onL,, as when using decomposition methods. This is important
since, for example, when(z) = ||z||1, we haveL, = p%. In the smoothing approach the dependencyas of

the formp® and notp?, as when using the decomposition algorithm.

IV. PERFORMANCEBOUNDS

We now turn to analyze the recovery performance of analy8iS30 when smoothing and decomposition are
applied. As we have seen, both transformations lead to tine $ALASSO problem in{5). Our main result in this
section shows that the reconstruction obtained by solviAgAESO is stable wherD*x has rapidly decreasing
coefficients and the noise in the modél (1) is small enough.g@uformance bound also depends on the choice of
parameten in the objective function. Before stating the main theorems first introduce a definition and some
useful lemmas, whose proofs are detailed in the Appendix.

To ensure stable recovery, we require that the madrigatisfies the D-RIP:

Definition IV.1. (D-RIP) [12]. The measurement matriA obeys the restricted isometry property adaptedo
with constanto, if

(1= o)lvl3 < [|Av]3 < (1 + o4)llv]l3 (39)

holds for allv € ¥, = {y : y = Dx and ||x||o < s}. In other words,X; is the union of subspaces spanned by

all subsets o columns ofD.
The following lemma provides a useful inequality for magscsatisfying D-RIP.

Lemma IV.1. Let A satisfy the D-RIP with parameter,s, and assume that, v € ¥,. Then,
Re(Au, Av) > —oos||u|2]|v]]2 + Rel{u, v). (40)

In the following, &, denotes the optimal solution of RALASSQI (5) ardis the original signal in the linear
model [1); we also usk to represent the reconstruction erfor= &, —x. Let 7 be the indices of coefficients with
s largest magnitudes in the vect®*x, and denote the complement fby 7°¢. Setting7, = 7, we decompose
Ty into sets of sizes where7; denotes the locations of thelargest coefficients iD%-.x, 7; denote the next
largest coefficients and so on. Finally, we &t = 7o U 7T7.

Using the result of Lemm@TV1 and the inequalitls. k|2 + || D3 k|2 < V2| D% hl|; sinceTy and 7y are

disjoint, we have the following lemma.
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Lemma IV.2. (D-RIP property) Let h = &, — « be the reconstruction error in RALASSE). We assume thatt
satisfies the D-RIP with parametes, and D is a tight frame. Then,

Re(Ah, ADD3. h)

* -1 * *
>(1 = 02,)[|D;, hll5 — V25~ 200,]| D7 hll2|| D71 (41)
Finally, the lemmas below show that the reconstructionrelirand | D-. k||, can not be very large.

Lemma IV.3. (Optimality condition) The optimal solutionz, for RALASSQ) satisfies

1
|ID*A* Ah|| o < (5 + || D*D| 1,1) A (42)
Lemma IV.4. (Cone constraint) The optimal solutior,, for RALASS() satisfies the following cone constraint,
* A * *
[ D7kl < ;p+3|\DTh||1 + 4| D71 (43)

We are now ready to state our main result.

Theorem IV.1. Let A be anm x n measurement matri¥) an arbitrary n x p tight frame, and letA satisfy the D-
RIP withoa5 < 0.1907. Consider the measuremet= Az +w, wherew is noise that satisfiebD* A*w||», < %
Then the solutiorz, to RALASSO[D) satisfies

. | D@ — (D*x)s1 Ap
- < Covsh+C C 44
2, —zl2 < CovsA + Ch /s + 2\/5/), (44)
for the decomposition transformation and
. D*x — (D*x), A
&, — zll2 < Cov/ar+ G, | \(f Jlls 2. (45)

for the smoothing transformation. Hef@*x), is the vector consisting of the largesentries of D*x in magnitude,

C; and C, are constants depending en,, and C,, depends oy, and |[D*D||1 1.

Proof: The proof follows mainly from the ideas inl[9], [28], and peads in two steps. First, we try to show that
D*h inside7o; is bounded by the terms dD*h outside the sef. Then we show thaD3-.h is essentially small.
From Lemmd V.2,

Re(Ah, ADD%. h)
>(1 — 09,) || D3, Bl|3 — V25~ 200,]| D hlo|| Dich)s. (46)
Using the fact thaRe(x,y) < |[(x,y)| < ||z|/1||y]|-, We obtain that
Re(Ah, ADD’. h) =Re(D*A*Ah, D%. h)
<|[D*A* Ah|||| D7, k1

<V2sco)\|| D5, b2, (47)
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with ¢g = 3 + ||[D*D||1,1. The second inequality is a result of LemialV.3 and the fhet {{ D5 hll; <
\/%HDi}thg, in which 25 is the number of nonzero terms 4. h. Combining [46) and (47), we get

\/%/\Co + ﬁS_%UQSHD;-Ch”l

D% hljs < 48
| D3, hll2 < — (48)

Then the second step bouni®-.h||,. From [48),

D7kl <V's| D7h|ls < /s[| D7, Al
_V2seo + V20| Dbl 9)
1- 02s
Finally, using LemmalIVi and (39),
. A 3v2Asco + 3V 200 || Db .

1Dyehly < 5p+ DERCEIIODERD | g pg g, (50)

Sinceosy, < 0.1907, we havel — (1 + 3\/5)0—23 > 0. Rearranging terms, the above inequality becomes

1Dkl

1—0’25 A 3\/5)\SCO—|—4(1—0'25)||D$—C.’1}H1
< —p )
1—(1+3v2)o2s p 1—(1+3V2)0s
We now derive the bound on the reconstruction error. Usirgrésults of[(48) and (51), we get

(51)

Ir]ls =|D* k> < || D5, hlla + > | D7 Rll2
Jj>2
_V2sheo + V25~ 3 095|| Di-oh|y N
- 1- 02s

7| Dy.hl),
coM/2s N (V2 = 1)oas + 1)s~ 2 || D3k
_1 — 02s 1 — 02s

|ID*x — (D*x)|1 Ap
< .
<Cov/s\ + Cy 7 + Cs NT

The first equality follows from the assumption thBk is a tight frame so thaD D* = I. The first inequality is

(52)

the result of the triangle inequality. The second inequdbilows from (48) and the fact that -, HD*T], hlls <
s | D% k|1, which is proved in equatio_(58) in the Appendix. The conttan the final result are given by

4v/2¢q

1 (1+3vV2)o
C4A((V2 = 1)oas +1)
TS (1 +3VR)00
(V2= 1)o2s +1

1—(143v2)o2
To obtain the error bound for the smoothing transformatienreplacep with 1/ in the result.]]
Choosingp — oo in RALASSO [B) leads to the ALASSO problem for which= D*x. We then have the

following result.

Co

2
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Theorem IV.2. Let A be anm x n measurement matriX) an arbitrary n x p tight frame, and letA satisfy the D-

RIP with oo < 0.1907. Consider the measuremet Az + w, wherew is noise that satisfieD* A*w||», < %

Then the solutior to ALASSCH) satisfies

|D*x — (D*x)s||1
/s )

where (D*x) is the vector consisting of the largestentries of D*x in magnitude,C; is a constant depending

& — )2 < Cov/sh+Cy (53)

on oy, and Cyy depends oy, and |[D*D||y 1.

Remarks:
1. When the noise in the system is zero, we can)sat a positive value which is arbitrarily close to zero. The

solutionz then satisfies|z — x| < Ol%’ which parallels the result for the noiseless synthesisehod

in [9].
2. WhenD* is a tight frame, we havé® D* = I. Therefore by lettingg = D*x, we can reformulate the original
analysis model as

min 2| ADw bl + Aol (54)

Assuming that the noise term satisfies thenorm constraint|w||2 < e, we have
D" A"wlo < | D" A%w|]2 < [ D*A%|2]|lw]]2 < e[ D" A"|5. (55)
When A satisfies D-RIP withrg, < 0.1907, by letting A = 2¢||D* A*||, we have

. . . ~ ~ v — (v)s
6= ol < 1D Jalle ~ all < Goe + G 212l 56)

This result has a form similar to the reconstruction erraurisbshown in[[9]. However, the specific constants are
different since in[[9] the matrixXA D is required to satisfy the RIP, whereas in our paper we requily that the
D-RIP is satisfied.

3. A similar performance bound is introduced [n][28] and shdw be valid whenrs, < 0.25. Using Corollary
3.4 in [35], this is equivalent to2s < 0.0833. Thus the results in Theorem V.2 allow for a looser conatrain
ALASSO recovery.

4. The performance bound of Theorém IV.1 implies that a laadwice of p, or a smaller parametar, leads
to a smaller reconstruction error bound. This trend is tivelisince largep or small i results in smaller model
inaccuracy. However, a larger or a smallery leads to a larger Lipschitz constant and thus results in eslow
convergence according to Theorémlll.1. The idea of parantetgtinuation [[36] can be introduced to bgthand

1 to accelerate the convergence while obtaining a desireshstiwiction accuracy. More details will be given in

the next section.

V. NUMERICAL RESULTS

In the numerical examples, we use both randomly generatiedasiel MRI image reconstruction to demonstrate

that SFISTA performs better than DFISTA. In the last examydealso introduce a continuation technique to further
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speed up convergence of the smoothing-based method. Weefuwompare SFISTA with the existing methods in
[18], [20], [23] using MRI image reconstruction, and show édvantages.

A. Randomly Generated Data in a Noiseless Case

Fig. 1: Reconstruction error of SFISTA

Fig. 2: Reconstruction error of DFISTA

In this simulation, the entries in thes x n measurement matriXd were randomly generated according to a
normal distribution. The: x p matrix D is a random tight frame. First we generategan matrix whose elements
follow an i.i.d Gaussian distribution. Then QR factoripatiwas performed on this random matrix to yield the
tight frame D with DD* = I (D* comprises the firsh columns from@, which was generated from the QR

factorization).
In the simulation we let, = 120 andp = 144, and we also set the values of and the number of zero terms

named! in D*x according to the following formula:

m=an, |=n—[m. (57)
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We varieda andj3 from 0.1 to 1, with a step sizé).05. We setA = 0.004, p = 10~3\~! for the smoothing-based
method, ancp = 103\ for the decomposition-based method. For every combinaifom and 3, we ran a Monte
Carlo simulation 50 times. Each algorithm ran 000 iterations, and we computed the average reconstruction
error. The reconstruction error is defined A;ﬁ””, in which & is the reconstructed signal using smoothing or
decomposition and: is the original signal in[{1).

The average reconstruction error for smoothing and decsitipo are plotted in Figd]1 arld 2, respectively.
White pixels present low reconstruction error whereaslklzigrels mean high error. Evidently, see that with same

number of iterations, SFISTA results in a better reconsimnahan DFISTA.

B. MRI Image Reconstruction in a Noisy Case

—a— DFISTAp=10%A
— % -SFISTAp=10"2A""
—— DFISTAp=10°A
- 4 -SFISTAp=10"\"1
—<— DFISTAp=10"A

- e -SFISTAp=10"2" ||

Objective Function F(x)

%
Fhaieee
WX ©
) ®
AA 2

A

. . . . . . . . .
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Iteration Number

Fig. 3: The objective function for MRI reconstruction on $pd_ogan.

—
—e— DFISTAp=10%A
— % -SFISTAP=10"2A"%
—«— DFISTAp=10°A
~ 4 -SFISTAp=10 27
—<—DFISTAp=10A  [{
- © -SFISTAp=10"\"*

. . . . . . . . .
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Iteration Number

Fig. 4: Reconstruction error for SFISTA and DFISTA with @ifént parameters.
The next numerical experiment was performed on a n@igy x 256 Shepp Logan phantom. The image scale
was normalized td0, 1]. The additive noise followed a zero-mean Gaussian distabuwvith standard deviation
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o = 0.001. Due to the high cost of sampling in MRI, we only observed aitiich number of radial lines of the
phantom’s 2D discrete Fourier transform. The matfX consists of all vertical and horizontal gradients, which
leads to a spars®*xz. We let A\ = 0.001 in the optimization. We tested this MRI scenario wijthvalues of
1072275 1073A7 1, 1074\~ for SFISTA andp = 102\, p = 103X, 10\ for DFISTA. We took the samples along
15 radial lines to test these two methods.

In Fig.[3 we plot the objective || Az — b[|3 + A|D*z||; as a function of the iteration number. It can be seen
that the objective function of SFISTA decreases more rgptthn DFISTA. Furthermore, with smallerand larger
1, DFISTA and SFISTA converge faster. Then we computed thenstcuction error. Here we see that smaljler
and largerp lead to a more accurate reconstruction. We can see that Sri&iverges faster than DFISTA, which
follows the convergence results in Section III.

Next, we compared SFISTA with the nonlinear conjugate gnatiescend (CGD) algorithm proposed’inl[23]. The
CGD also needs to introduce a smoothing transformation pocgmate the term|D*z||, and in this simulation
the Moreau envelop with = 10~*X\~! was used to smooth this term. We can see from[Fig. 5 that SFt®Merges
faster than the CGD in terms of CPU time. CGD is slower becaussach iteration, backtracking line-search is

required, which reduces the algorithm efficiency.

Error E(x)

---cGDbp=10"7t
——SFISTAR=10""A"*

. .
0 50 100 150 200 250
CPU Time(sec.)

Fig. 5: Reconstruction error for SFISTA and CGD with respgec€PU time.
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C. Acceleration by Continuation

Algorithm 3: Continuation with SFISTA

Input: x, the starting parameter = o,
the ending parameter; and~y > 1.
Step 1.run SFISTA withy and initial pointa.
Step 2.Get the solutione* and letx = «*, u = /7.
until.  p < py.

To accelerate convergence and increase the accuracy aefsteaction, we consider continuation on the parameter
1 for SFISTA, or onp for DFISTA. From Theorerfi IV]1, we see that smalleresults in a smaller reconstruction
error. At the same time, smallgrleads to a larger Lipschitz constaii - in Theoreni I[1, and thus results in slower
convergence. The idea of continuation is to solve a sequefrgimilar problems while using the previous solution as
a warm start. Taking the smoothing-based method as an egamgican run SFISTA withy; > o > ps, - -+ > puy.

The continuation method is given in Algorithm 3. The alglamit for applying continuation on DFISTA is the same.

Error E(x)

- = GIST
* SFISTA Without Cont

—— SFISTA With Cont.

- - =SALSA

N N , , . . ,
0 20 40 60 80 100 120 140 160 180 200
CPU Time (sec.)

Fig. 6: Convergence comparison among SFISTA with and witlvoutinuation, GIST and SALSA.

We tested the algorithm on the Shepp Logan image from theiquesubsection with the same setting, using
SFISTA with uy = 107*A\~! and standard SFISTA with = 10~*A\~!. We implemented the generalized iterative
soft-thresholding algorithm (GIST) from [20]. We also inded an ADMM-based method, i.e. the split augmented
Lagrangian shrinkage algorithm (SALSA) [18]. SALSA reasrsolving the proximal operator ¢D*z||;, which
is nontrivial. In this simulation, we implementeld iterations of the Fast GP algorithin [25] to approximate this
proximal operator. Without solving the proximal operatraetly, the ADMM-based method can converge very fast
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Fig. 7: Reconstructed Shepp Logan with SFISTA using coation.

while the accuracy of reconstruction is compromised as wesh Figure 6. In this figure we plot the reconstruction
error for these four algorithms. It also shows that contiimmahelps speed up the convergence and exhibits better
performance then GIST. The reconstructed Shepp Logan @mansing continuation is presented in Hig. 7, with

reconstruction erro8.17%.

VI. CONCLUSION

In this paper, we proposed methods based on MFISTA to sotvarialysis LASSO optimization problem. Since
the proximal operator in MFISTA foff D*z||; does not have a closed-form solution, we presented two rdstho
SFISTA and DFISTA, using smoothing and decomposition retigady, to transform the original sparse recovery
problem into a smooth counterpart. We analyzed the connemef SFISTA and DFISTA and showed that SFISTA
converges faster in general nonsmooth optimization probléNe also derived a bound on the performance for
both approaches assuming a tight frame and D-RIP. Our metwede demonstrated via several simulations. With

the application of parameter continuation, these two @lgms are suitable to solve large scale problems.

APPENDIX

Proof of Lemma[VI} Without loss of generality we assume that||; = 1 and||v||s = 1. By the definition of
D-RIP, we have

Re(Au, Av) = {]| Au+ Av|} ~ || Au — A|3)

> (1= o) fu -+ 0l — (14 02)fu — w])
= — 025 + Re(u, v).

Now it is easy to extend this equation to get the desired tesul

Proof of Lemma[lV:Z2} From the definition of7; we have

1
DT, hlls <572 D7, bl
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for all j > 2. Summingj = 2,3,... leads to

S ID5 ks <573 S ID3 kI = 57| D3kl (58)

j>2 j>1
Now, considering the fact thdD is a tight frame, i.e.DD* = I, and that the D-RIP holds,
Re(Ah, ADD3. h)
=Re(ADDj, h, ADDj, h)+ Y Re(ADD}h, ADDj, h)
j>2

>(1-03)|DD, h|3+ > Re(ADD; h, ADD3, h)

Jj=2

+Y Re(ADDj.h, ADD’. h)
Jj=2

Using the result from Lemma 1M 1, we can bound the last twangen the above inequality; hence, we derive
Re(Ah, ADD. h)
>(1 - 02,)| DD, h|3+ > Re(DDj.h, DD h)
j>2

+> _Re(DDj.h, DD} h)

Jj=2

— 02,| DD k2 Y | DD A2

Jj>2
— 02| DD5; k|2 Y || DD A2
j=2
=(1 — 02,) | DD7;, b3 + Re <Z DD; h, DD*Tmh>
j=2
— 025(||DD5, hll2 + | DD5, hll2) Y | DD5- k|2 (59)

§>2
By definition of 7;, we have

Re <Z DD7 h, DD*Tmh> = Re(h — DD, h,DDZ. h)
Jj=2
= | D7, ki3 = | DD7, hl3.
Combining this equation wit{ {$9) results in
Re(Ah, ADDZ. h)
>|| DD, |5 — 025 | DD, hl3 + | D7, bll5 — [ DD7,, k|3

— 02:(|DD;hl2 + | DD hl|2) Y [ DD b2,

j>2
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Using the fact that wheD is a tight frame | DD hl» < || DX hll2, we have
Re(Ah, ADDZ. h)

>(1 - 02)| D, hll3 — 00 (| D3 ko + [ D3 Bll2) 311D o
j=>2

Since || D, b2 + || D% k|2 < v2|| D hl|> (becuasel, and7; are disjoint), we conclude that
Re(Ah, ADD%. h)
>(1 = 09,)| D7;, hl3 = V202| D3, hll2 Y | D7 B2,
§>2
which along with inequality[(38) yields the desired restiltegn by
Re(Ah, ADD%. h)

* -1 * *
>(1 - 02,)|| D5, k3 = VEs~ 05| D, hllo| D<Al

Proof of Lemma[lV.3] The subgradient optimality condition for RALASSQ (5) cae ftated as
A*(Az, - b) +pD(D*z,— 2,) =0, (60)
v+ p(2, - D*%,) =0, (61)
wherew is a subgradient of the functidhz||; and consequentlfv||., < 1. Combining [6D) and{81), we have
A*(Az, — b) = ADv.
Multiplying both sides byD*, we get
| D* A" (A, — bl
=AD" Dvlloc < A[D*Dllog,00 = A[|[D*D|11. (62)

The first inequality follows from the fact thafv||. < 1. With the assumption thatD* A*w|| < 4, and the

triangle inequality, we have
| D*A* Ah||

<|[|D*A™(Az - b)|o + | D" A"(AZ), — b) ||

1

Proof of Lemma[lV4t Sincez, and z, solve the optimization problem RALASSQI (5), we have,
1, .. . 1 P
S 4@, = BlE + Xzl + 561 D", — 2,13

1 .
< §||A$ — |3+ A|D*z||x.
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Sinceb = Az +w andh = z, — x, it follows that
1 2 P 1 * 2 P
31 AR —wliz + |2, [l + 5ol D &, — 2,12
1 *
< 5”“’”% + A D |
Expanding and rearranging the terms in the above equatierget
1 2 IS 1 s 5112
FIARlz + A2l + 5 pll D™, = 2,12
< Re(Ah,w) + | D*z||1,

Using [€1) to replace the terms wit}),, we have
2
+ 5[) —v

1 A
—||AR|3 D*z,— =
slanlz A D, - 2o ’

1 H/\

1 2

< Re(Ah,w) + \||D*z||;.
Since||D*z, — 3v|1 > | D*&,[1 — 2|1, we have

17

1 .
SIARIE + XD,

/\2 2 .
< —|vl1 - 2—p|\v|\§ + Re(Ah,w) + \|D*z|[,
/\2p
< o, + Re(Ah,w) + \|D*x| ;. (64)

The second inequality follows from the fact th%z{Hle — %Hv”% is maximized when every element ofe R?

is 1. Now, with the assumption thdD is a tight frame, we have the following relation:
Re(Ah,w) + M|D*z|; =Re(D*h, D* A*w) + \||D*z||,
<[ID*h[1[[D*A*w|[o + Al D" |1

This inequality follows from the fact thate(x, y) < ||(x, y)|| < ||]/1]|y||- Using the assumption thaD* A* w|| .. <
A
2, we get \

Re(Ah, w) + A|D ||y < S| D"kl + M| D"l (65)

Applying inequalities[(64) and (65), we have

* A 1 * A
NID* &,y <1 | AR + D", |,
/\2
§2—pp + Re(Ah,w) + \|D x|y

_2 p 2 L n 1 L T 1,

* 4 A 1 * *
[D*2, < i 1Dl +[ID"]s.
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Since we havéh = z, — x, it follows that
|D*h+ Dl < Sp+ 51D R + D",
and hence

|D5h + Dl + || Dk + Di.x|
< 5,0 g ID7hls + 5 I D7chll + [ Dyl + | Dol

Applying the triangle inequality to the left handside of abanequality, we results in

— [[DFh|1 + [[ D7y + [ DFchly — || Dy
A1, 1., . .
<Pt 5 ID7hll+ S Dby + [ D7l + | D71

After rearranging the terms, we have the following cone tairs,

* A * *
[DFchl: < ri 3|[D7h|l1 + 4| DFez|:. (66)
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