
1

Sparsity-aware sphere decoding: Algorithms and

complexity analysis

Somsubhra Barik and Haris Vikalo, Member, IEEE

Abstract

Integer least-squares problems, concerned with solving a system of equations where the components of the

unknown vector are integer-valued, arise in a wide range of applications. In many scenarios the unknown vector

is sparse, i.e., a large fraction of its entries are zero. Examples include applications in wireless communications,

digital fingerprinting, and array-comparative genomic hybridization systems. Sphere decoding, commonly used for

solving integer least-squares problems, can utilize the knowledge about sparsity of the unknown vector to perform

computationally efficient search for the solution. In this paper, we formulate and analyze the sparsity-aware sphere

decoding algorithm that imposes `0-norm constraint on the admissible solution. Analytical expressions for the

expected complexity of the algorithm for alphabets typical of sparse channel estimation and source allocation

applications are derived and validated through extensive simulations. The results demonstrate superior performance

and speed of sparsity-aware sphere decoder compared to the conventional sparsity-unaware sphere decoding algo-

rithm. Moreover, variance of the complexity of the sparsity-aware sphere decoding algorithm for binary alphabets is

derived. The search space of the proposed algorithm can be further reduced by imposing lower bounds on the value

of the objective function. The algorithm is modified to allow for such a lower bounding technique and simulations

illustrating efficacy of the method are presented. Performance of the algorithm is demonstrated in an application

to sparse channel estimation, where it is shown that sparsity-aware sphere decoder performs close to theoretical

lower limits.
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Fig. 1: Illustration of the search for the closest lattice point. The black dots in both subfigures denote lattice points Hx. ×
marks the observed vector y. Subfigure (a) illustrates the scenario where all lattice points are admissible while (b) illustrates
the scenario where the unknown vector is sparse and thus not all lattice point can be the solution.

I. INTRODUCTION

Given a matrix H ∈ Rn×m and a vector y ∈ Rn×1, the integer least-squares (ILS) problem is concerned

with finding an m-dimensional vector x? comprising integer entries such that

x? = arg min
x∈Zm

‖y −Hx‖2
2, (1)

where Zm denotes the m-dimensional integer lattice. In many applications, the unknown vector x belongs

to a finite m-dimensional subset DmL of the infinite lattice Zm such that DmL has L elements per dimension,

i.e., each component of the unknown vector x can take one of L possible discrete values from the set

DL ⊂ Z. In multi-antenna communication systems, for instance, x ∈ DmL is the transmitted symbol while

the received signal y = Hx + ν is perturbed by the additive noise ν (hence, ν renders the system of

equations y ≈ Hx inconsistent). Note that the symbols in DmL form an m-dimensional rectangular lattice

and, therefore, Hx belongs to an n-dimensional lattice skewed in the direction of the eigenvectors of H.

An integer least-squares problem can be interpreted as the search for the nearest point in a given lattice,

commonly referred to as the closest lattice point problem [1]. Geometric interpretation of the integer

least-squares problem as the closest lattice point search is illustrated in Fig. 1(a).

Integer least-squares problems with sparse solutions arise in a broad range of applications including

multi-user detection in wireless communication systems [2], sparse array processing [3], collusion-resistant

digital fingerprinting [4], and array-comparative genomic hybridization microarrays [5]. Formally, a sparse

integer least-squares problem can be stated as the cardinality constrained optimization

min
x∈Dm

L

‖y −Hx‖2
2 (2)

subject to ‖x‖0 ≤ l,

where ‖·‖0 denotes the `0 norm of its argument and l is an upper bound on the number of non-zero entries
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of x. In this paper, we restrict our attention to the case where n ≥ m (all of the aforementioned applications

fall in this category). Note that (2) can be interpreted as a search for the lattice point Hx closest to the

given point y in a sparse lattice, where the sparsity constraint is explicitly stated as {x ∈ DmL | ‖x‖0 ≤ l}.

Search over a sparse lattice is illustrated in Fig. 1(b).

Finding the exact solution to (2) is computationally intensive (in fact, the closest lattice point problem is

known to be NP hard [6]). The sphere decoding algorithm, developed by Fincke and Pohst [7], efficiently

solves the ILS problem and provides optimal solution in a broad range of scenarios [8], [9], [10]. In

particular, it was shown in [9], [10] that if the sphere radius is chosen using the statistics of ν = y−Hx,

then the sphere decoding algorithm has an expected complexity that is practically feasible over a wide

range of problem parameters.

Recently, several variants of sphere decoder that exploit information about sparsity of the unknown

vector were proposed [3], [11], [2]. In [3], a modified sphere decoding algorithm with the `0-norm

constraint relaxed to an `1-norm regularizer was proposed. This scheme is only applicable to non-negative

alphabets, in which case ‖x‖1 can be decomposed into the sum of the components of x. In [11], a

generalized sphere decoding approach imposing an `1 constraint on the solution was adopted for sparse

integer least-square problems over binary alphabets. That work examines the case where n < m and

essentially considers compressed sensing scenario. An `0-norm regularized sphere decoder has been

proposed and studied in [2], where the regularizing parameter λ was chosen to be a function of the

prior probabilities of the activity of independent users in a multiuser detection environment. In contrast,

sphere decoder in the present manuscript directly imposes the `0-norm constraint on the unknown vector,

i.e., we perform no relaxation or regularization of the distance metric. Note that the closest point search in

a sparse lattice has previously been studied in [12] but sparsity there stems from the fact that not all lattice

points are valid codewords of linear block codes. In [13], a sparse integer least-squares problem arising in

the context of spatial modulation was studied for the special case of symbol vectors with single non-zero

entry; the method there does not rely on the branch-and-bound search typically used by sphere decoding.

Note that none of the previous works on characterizing complexity of sphere decoder (see, e.g., [14], [15],

[16] and the references therein) considered sparse integer least-squares problems except for [17], where

the worst-case complexity of sphere decoder in spatial modulation systems of [13] was studied. Finally,

we should also point out a considerable amount of related research on compressed sensing, where one is

interested in the recovery of an inherently sparse signal by using potentially far fewer measurements than
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what is typically needed for a signal which is not sparse [18]-[24].

The paper is organized as follows. In Section II, we review the sphere decoding algorithm and formalize

its sparsity-aware variant. Following the analysis framework in [9], [10], in Section III we derive the

expected complexity of the sparsity-aware sphere decoder for binary and ternary alphabets commonly

encountered in various applications. The derived analytical expressions are validated via simulations.

Section IV presents an expression for the variance of the complexity of the proposed algorithm for binary

alphabets. In Section V, the algorithm is modified by introducing an additional mechanism for pruning

nodes in the search tree, leading to a significant reduction of the number of points traversed and the overall

computational complexity. In Section VI, performance of the algorithm is demonstrated in an application

to sparse channel estimation. The paper is summarized in Section VII.

II. ALGORITHMS

In this section, we first briefly review the classical sphere decoding algorithm and then discuss its

modification that accounts for sparsity of the unknown vector.

A. Sphere decoding algorithm

To find the closest point in an m-dimensional lattice, sphere decoder performs the search within an m-

dimensional sphere of radius d centered at the given point y ∈ Rn. In particular, to solve (1), the sphere

decoding algorithm searches over x such that d2 ≥ ‖y − Hx‖2. The search procedure is reminiscent

of the branch-and-bound optimization [25]. In a pre-processing step, one typically starts with the QR-

decomposition of H,

H = [Q1 Q2]

 R

0(n−m×m)

 , (3)

where R is the upper-triangular matrix and Q1 and Q2 are composed of the first m and the last n−m

orthonormal columns of Q, respectively. Therefore, we can rewrite the sphere constraint d2 ≥ ‖y−Hx‖2

as

d2 − ‖Q∗2y‖2 ≥ ‖z−Rx‖2
2, (4)
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Fig. 2: An illustration of the depth-first tree search of the sphere decoding algorithm when (a) the unknown vector is non-sparse
and (b) the unknown vector is sparse.

where z = Q∗1y. Now, (4) can be expanded to

d2 − ‖Q∗2y‖2 ≥ (zm −Rm,mxm)2 + (zm−1 −Rm−1,mxm −Rm−1,m−1xm−1)2 + · · · (5)

where xi and zi are the ith components of x and z, respectively, and Ri,j is the (i, j)th entry of R.

Note that the first term on the right-hand side (RHS) of (5) depends only on xm, the second term on

{xm, xm−1}, and so on. A necessary (but not sufficient) condition for Hx to lie inside the sphere is

d2 − ‖Q∗2y‖2 ≥ (zm − Rm,mxm)2. For every xm satisfying this condition, a stronger necessary condition

can be found by considering the first two terms on the RHS of (5) and imposing a condition that xm−1

should satisfy to lie within the sphere. One can proceed in a similar fashion to determine conditions

for xm−2, . . . , x1, thereby determining all the lattice points that satisfy d2 ≥ ‖y −Hx‖2
2. If no point is

found within the sphere, its radius is increased and the search is repeated. If multiple points satisfying

the constraint are found, then the one yielding the smallest value of the objective function is declared

the solution. Clearly, the choice of the radius is of critical importance for facilitating a computationally

efficient search. If d is too large, the search complexity may become infeasible, while if d is too small,

no lattice point will be found within the sphere. To this end, d can be chosen according to the statistics

of ν = y −Hx, hence providing probabilistic guarantee that a point is found inside the sphere [9].

The sphere decoding algorithm can be interpreted as a search on a tree, as illustrated in Fig. 2(a).

The nodes at the kth tree level represent k-dimensional points [xm−k+1 xm−k+2 . . . xm]T . The algorithm

uses aforementioned constraints to prune nodes from the tree, keeping only those that belong to the k-

dimensional sphere of radius d. Many variants of the basic sphere decoding have been developed [26],

[27] - [28].
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TABLE I: Sparsity-aware Sphere Decoding Algorithm

Input: Q = [Q1 Q2], R, y, z = Q∗1y, sphere radius d,
sparsity constraint l.

1. Initialize k ← m, d2
m ← d2 − ‖Q∗2y‖2,

zm|m+1 ← zm, lm ← 0 .
2. Update Interval UB(xk)←

⌊
(dk + zk|k+1)/Rk,k

⌋
,

LB(xk)←
⌈
(−dk + zk|k+1)/Rk,k

⌉
, xk ← LB(xk)− 1.

3. Update xk xk ← xk + 1. If xk ≤ UB(xk),
go to 4; else go to 5.
4. Check Sparsity If lk + I{xk 6=0} ≤ l,
lk ← lk + I{xk 6=0}, and go to 6; else go to 3.
5. Increase k k ← k + 1. If k = m+ 1, stop;
else, lk ← lk − I{xk 6=0} and go to 3.
6. Decrease k If k = 1, go to 7; else k ← k − 1,
zk|k+1 ← zk −

∑m
j=k+1Rk,jxj,

d2
k ← d2

k+1 −(zk+1|k+2 −Rk+1,k+1xk+1)2, and go to 2.
7. Solution found Save x and its distance from y,
d2
m − d2

1 + (z1 −R1,1 x1)2, lk ← lk − I{xk 6=0}
and go to 3.

B. Sparsity-aware sphere decoding

In scenarios where the unknown vector x is known to be sparse, imposing `0-norm constraint on x

improves the speed of the search since the necessary conditions that the components of x must satisfy

become more restrictive. Clearly, not all lattice points within the search sphere satisfy the sparsity constraint

and thus fewer points need to be examined in each step of the sparsity-aware sphere decoding algorithm.

We impose sparsity constraint on the components of x at each node of the search tree traversed by the

algorithm. Note that the number of non-zero symbols along the path from the root node to a given node is

a measure of the sparseness of the k-dimensional point associated with that node. Suppose that a node at

the kth level of the tree satisfies the sphere constraint. Sparsity constraint implies that, in addition to the

node being inside the sphere, the number of non-zero symbols along the path leading to the node must

not exceed an upper bound l. Hence, knowledge of sparsity allows us to impose more strict conditions on

the potential solutions to the integer least-squares problems, and the number of nodes that the algorithm

prunes is greater than that in the absence of sparsity (or in the absence of the knowledge about sparsity).

Table I formalizes the sparsity-aware sphere decoding algorithm with `0-norm constraint imposed on

the solution. Note that, in the pseudo-code, variable lk denotes the number of non-zero symbols selected
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in the first k− 1 levels. This variable is used to impose the sparsity constraint in Step 4 of the algorithm

(calculating lk and imposing the sparsity constraint requires only a minor increase in the number of

computations per node). Whenever the algorithm backtracks up a level in the tree, the value of lk is

adjusted to reflect sparseness of the current node (as indicated in Steps 5 and 7 of the algorithm). The

depth-first tree search of the sparsity-aware sphere decoding algorithm is illustrated in Figure 2(b), where

fewer points survive pruning than in Figure 2(a).

Remark 1: The algorithm in Table I relies on the original Fincke-Pohst strategy for conducting the tree

search [7]. There exist more efficient implementations such as the so-called Schnorr-Euchner variant of

sphere decoding where the search in each dimension k starts from the middle of the feasible interval for

xk and proceeds to explore remaining points in the interval in a “zig-zag” fashion (for details see, e.g.,

[1]). For computational benefits, one should combine such a search strategy with radius update, i.e., as

soon as a valid point xin inside the sphere is found, the algorithm should be restarted with the radius

equal to ‖y−Hxin‖. The expected complexity results derived in Section III are exact for the Fincke-Pohst

search strategy and can be viewed as an upper bound on the expected complexity of the Schnorr-Euchner

scheme with radius update.

Remark 2: The pseudo-code of the algorithm shown in Table I assumes an alphabet having unit spacing,

which can be generalized in a straightforward manner. For non-negative alphabets, the algorithm can be

further improved by imposing the condition that if a node at a given level violates the sparsity constraint,

then all the remaining nodes at that level will also violate the constraint. Details are omitted for brevity.

We should also point out that, in addition to helping improve computational complexity, utilizing

knowledge about sparseness of the unknown vector also improves accuracy of the algorithm. To illustrate

this, in Figure 3(a) we compare the error rate (i.e., the average fraction of the incorrectly inferred

components of x) performance of sparsity-aware sphere decoder with that of the classical (sparsity-

unaware) sphere decoding algorithm. In this figure, the error rate is plotted as a function of the sparsity

ratio l/m. We use a sparse binary alphabet, and simulate a system with m = n = 20 at SNR = 10 dB. The

classical sphere decoder is unaware of the sparseness of the unknown vector (i.e., it essentially assumes

l = 20). It is shown in the figure that the sparsity-aware sphere decoding algorithm performs exceptionally

well compared to classical sphere decoder for low values of l. As expected, the performance gap between

the two decoders diminishes if the unknown vector is less sparse. For a comparison, Figure 3(a) also shows

performance of the method where the relaxed version of the integer least-squares problem is solved via
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orthogonal matching pursuit (OMP) and the result is then rounded to the nearest integer in the symbol

space. It is worthwhile mentioning that the OMP method is sub-optimal since there are no guarantees

that it will find the closest lattice point. Therefore, its performance (as well as performances of other

sub-optimal schemes such as LASSO) is generally inferior to that of sparsity-aware sphere decoder, as

illustrated in Figure 3(a) - Figure 3(b). Figure 3(a) shows the error rates as the function of the relative

sparsity level l/m for m = n = 20. Figure 3(b) illustrates the same but for m = n = 40. Performances of

the considered algorithms in Figure 3(a) and Figure 3(b) exhibit the same trends – i.e., the performance

gap between sparsity-aware SD and classical SD widens as the sparsity ratio l/m reduces. Figure 4 shows

the error rate performance of sparsity-aware and classical sphere decoder, along with OMP, as a function

of SNR, while l is fixed at 5. In this figure too, sparsity-aware sphere decoder is seen to dramatically

outperform its classical counterpart as well as OMP.

III. EXPECTED COMPLEXITY OF SPARSITY-AWARE SPHERE DECODING

As elaborated in [9], computational complexity of the sphere decoding algorithm depends on the

effective size of the search tree, i.e., the number of nodes in the tree visited by the algorithm during

the search for the optimal solution to the integer least-squares problem. If both H and ν are random

variables, so is the number of tree nodes visited by the algorithm. Therefore, it is meaningful to treat the

complexity as a random variable and characterize it via a distribution or its moments. This motivates the

study of the expected complexity of the sparsity-aware sphere decoding algorithm presented next.

Assume that ν = y−Hx (the perturbation noise) consists of independent, identically distributed entries

having Gaussian distribution N (0, σ2). Clearly, 1
σ2‖ν‖2 is a random variable following χ2

n distribution.

As argued in [9], if the radius of the search sphere is chosen as d2 = αnσ2, where α is such that

γ(αn
2
, n

2
) = 1− ε1 for small ε > 0, then with high probability the sphere decoding algorithm will visit at

least one lattice point. Moreover, with such a choice of the radius, the probability that an arbitrary lattice

point Hxa belongs to a

sphere Sd of radius d centered at y is

P(xa ∈ Sd) = P
(
‖y −Hxa‖2

2 ≤ d2
)

= γ

(
d2

2(σ2 + ‖xa − xt‖2)
,
n

2

)
, (6)

1γ(a, b) denotes the normalized incomplete gamma function.
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(a) (b)

Fig. 3: Error rate of sparsity-aware SD and classical SD as a function of the sparsity ratio l/m in subfigure (a) and (b) for
binary {0, 1} alphabet at SNR = 10 dB. For (a), m = n = 20 and for (b), m = n = 40. Performance of the suboptimal OMP
algorithm, where the integer constraint on the entries of x is relaxed and the solution to the relaxed problem is rounded off to
nearest integer in the alphabet, is also shown.

Fig. 4: Error rate of sparsity-aware SD and classical SD as a function of SNR for binary {0, 1} alphabet with m = n = 20
and l = 5. Performance of the suboptimal OMP algorithm, where the integer constraint on the entries of x is relaxed and the
solution to the relaxed problem is rounded off to nearest integer in the alphabet, is also shown.

where xt denotes the true value of the unknown vector x.

Let Nk be the random variable denoting the number of points in the tree visited by the sparsity-aware
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sphere decoding algorithm searching for an l-sparse solution to (2). It is easy to see that

E
[
Nk| xt, d2

]
=
∑
η

∑
xk
a : xk

a∈Dk
L,

‖xk
t−xk

a‖2=η

‖xk
a‖0≤l

γ
( d2

2(σ2 + η)
,
n−m+ k

2

)
, (7)

where xk denotes the vector consisting of the last k-entries of x, i.e., xk = [xm−k+1 · · · xm]. Note that

the inner sum in (7) is only over those xka that satisfy the sparsity constraint. Therefore, the expected

number of points visited by our sparsity-aware sphere decoder, averaged over all permissible xt, is given

by

E
[
Nk| d2

]
= E

[
E
[
Nk| xt, d2

]]
(8)

=
∑

xk
t :xk

t ∈Dk
L

‖xk
t ‖0≤l

p(xkt ) E
[
Nk| xt, d2

]
(9)

where the outer expectation in (8) is evaluated with respect to xt, and p(xkt ) in (9) denotes the probability

that xkt is the true value of xk. Note that without the sparsity constraint on xt, it would hold that p(xkt ) =

1/Lk, ∀k, where L denotes the alphabet size. However, due to the sparsity constraint, p(xkt ) is not

uniform. As an illustration, consider a simple example of the 2-dimensional 1-sparse set on the binary

{0, 1} alphabet comprising of vectors {(0, 0), (0, 1), (1, 0)}. If all xt are equally likely, it is easy to see that

the probability of x1
t is given by p(x1

t = 1) = 1/3 = 1− p(x1
t = 0). For a general l-sparse m-dimensional

constellation, the probability distribution p(xkt ) can be obtained by enumerating all k-dimensional vectors

in the set for k = 1, 2, · · · ,m.

Having determined expected number of lattice points visited by the sparsity-aware sphere decoding

algorithm, the average complexity can be expressed as

C(m, d2) =
m∑
k=1

f(k) E [Nk| d2] , (10)

where f(k) denotes the number of operations performed by the algorithm in the kth dimension.

The main challenge in evaluating (7) is to find an efficient enumeration of the symbol space, i.e.,

to determine the number of l-sparse vectors xka such that ‖xkt − xka‖2 = η for a given xkt . While this

enumeration appears to be difficult in general, it can be found in a closed form for some of the most

commonly encountered alphabets in sparse integer least square problems: the binary {0, 1} alphabet

(relevant to applications in [4], [29] and [30]) and the ternary {−1, 0, 1} alphabet (relevant to application
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in [5]). In the rest of this section, we provide closed form expressions of the expected complexity of

sparsity-aware sphere decoder for these alphabets.

A. Binary Alphabet {0,1}

Recall that computing (7) requires enumeration of the sparse symbol space, i.e., counting l-sparse

vectors xka ∈ DkL satisfying ‖xka − xkt ‖2 = η for a given l-sparse vector xkt ∈ DkL and η. Note that, for the

binary alphabet, condition ‖xkt − xka‖2
2 = η is equivalent to ‖xkt − xka‖0 = η. Let ‖xkt ‖0 = k1, and denote

the ith entry of xk as xk(i), i = 1, · · · , k. Furthermore, let ‖xt‖0 = k3.

Lemma 1: Given k1 = ‖xkt ‖0 and η, the number of k-dimensional lattice points xka with ‖xka‖0 = k2

such that ‖xka − xkt ‖2 = η is given by

g(k1, k2, k, η) =

(
k1

p

)(
k − k1

q

)
, (11)

where

p =
1

2
(η − (k2 − k1)), q = k − k2 − p, if k1 < k2

q =
1

2
(η − (k1 − k2)), p = k2 − q, if k1 ≥ k2

Proof: See Appendix A.

Note that for a given xkt and k2, the possible values of η belong to the set S = {|k1 − k2|, |k1 − k2|+

2, · · · ,min (k1 + k2, k)}. Then, (7) can be written as

E[Nk| xt, d2] =

min(k,l)∑
k2=0

∑
η∈S

γ

(
d2

2(σ2 + η)
,
n−m+ k

2

)
g(k1, k2, k, η). (12)

Finally, outer expectation in (8) is enumerated as follows. Total number of sparse binary vectors xkt

for a given k can be parameterized by k1 and k3. For xt to be l-sparse, 0 ≤ k3 ≤ l and for each k3, it

should hold that (k3 − (m− k))+ ≤ k1 ≤ min (k, k3). The number of xt vectors for each pair of values

of k3 and k1 is then given by
(
k
k1

)(
m−k
k3−k1

)
. Therefore, the total number of all possible l-sparse vectors xt

is given as N =
∑
k3,k1

(
k
k1

)(
m−k
k3−k1

)
and (9) can be written in terms of k3 and k1 as

E
[
Nk| d2

]
=

1

N

∑
k3,k1

(
k

k1

)(
m− k
k3 − k1

)
E
[
Nk| xt, d2

]
(13)

where the summations are evaluated over respective ranges as described above.
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Theorem 1: The expected number of tree points examined by the sparsity-aware sphere decoding

algorithm while solving (2) over a binary alphabet is

E
[
Nk|d2

]
=

1

N

l∑
k3=0

min (k,k3)∑
k1=(k3−(m−k))+

(
k

k1

)(
m− k
k3 − k1

)[min(k,l)∑
k2=0

∑
η∈S

γ

(
d2

2(σ2 + η)
,
n−m+ k

2

)
g(k1, k2, k, η)

]
,

(14)

where d denotes the search radius and g(k1, k2, k, η) is defined in (11).

Proof: The proof follows from (7) and Lemma 1.

Remark: Note that (14) has important implications on the worst-case complexity of the sparsity-aware

sphere decoding algorithm. Assume, for the sake of argument, that the radius d of the sphere is sufficiently

large to cover the entire lattice. In the absence of the radius constraint, pruning of the search tree happens

only when the sparsity constraint is violated, and hence (12) reduces to

E
[
Nk| xt, d2

]
=

min(k,`)∑
k2=0

∑
η∈S

g(k1, k2, k, η)

=

min(k,`)∑
k2=0

(
k

k2

)
. (15)

Expression (15) essentially represents the worst-case scenario where a brute-force search over all l-sparse

signals is required, leading to a complexity exponential in k. For k < l, this is clearly the case. For

k ≥ l, the partial sum of binomial coefficients in (15) cannot be computed in a closed form but its various

approximations and bounds exists in literature. For example, it has been shown in [31] that the partial

sum of binomial coefficients in (15) grows exponentially in k if l = k/a for a constant a ≥ 2. A corollary

to this result states that if a is an unbounded, monotonically increasing function, the sum in (15) does

not grow exponentially in k. Therefore, unless the fraction of the non-zero components of x becomes

vanishingly small as the dimension of x grows, the worst-case complexity of the sparsity-aware sphere

decoding algorithm is exponential in m (the length of x).

Also note that if xt is l-sparse but the sparsity constraint is not invoked at the decoder (i.e., the decoder

is sparsity-unaware), then (12) is reduced to

E
[
Nk| xt, d2

]
=

k∑
k2=0

∑
η∈S

γ

(
d2

2(σ2 + η)
,
n−m+ k

2

)
g(k1, k2, k, η). (16)
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Clearly, (16) is an upper bound for (12), and hence exploiting sparsity information enables reduction of

the expected complexity.

B. Ternary Alphabet {-1,0,1}

Define the support sets Sj(xkt ) of xkt for j ∈ {−1, 0, 1} and let a = |S1(xkt )|. Unlike the binary case,

here we evaluate (7) by reversing the order of summation, i.e., by enumerating all possible l-sparse vectors

xka and then summing over all η such that ‖xkt − xka‖2
2 = η. To this end, let us introduce

pi,j =
∑

r∈Si(xk
t )

I{xk
a(r)=j}, i, j ∈ {−1, 0, 1}. (17)

In words, pi,j denote the number of symbols j in xka in the positions where xkt has symbol i. It is easy

to see that
∑

i

∑
j pi,j = k and, furthermore,

∑
j

pi,j =


a, i = 1

k1 − a, i = −1

k − k1, i = 0.

(18)

where k1 = ‖xkt ‖0. Given pi,j , η can be written as

η =
∑
i,j

pi,j |i− j|2. (19)

Lemma 2: Given k1 = ‖xkt ‖0 and η, the number of k-dimensional lattice points xka with ‖xka‖0 = k2

such that ‖xka − xkt ‖2 = η is given by

g1(k1, k2, k, pij) =

(
a

p1,0

)(
a− p1,0
p1,−1

)(
k1 − a
p−1,0

)(
k1 − a− p−1,0

p−1,1

)(
k − k1

k2 − (k1 − p−1,0 − p1,0)

)
2k2−(k1−p−1,0−p1,0), (20)

for k1 ≤ k2 and

g2(k1, k2, k, pij) =

(
k − k1

p0,1 + p0,−1

)(
a

p1,−1

)(
a− p1,−1

p1,1

)(
k1 − a
p−1,1

)(
k1 − a− p−1,1

k2 − (p0,1 + p0,−1 + p1,−1 + p1,1 + p−1,1)

)
2p0,1+p0,−1 ,

(21)

for k1 > k2.

Proof: See Appendix B.

Similar to the binary case, it can be shown that the total number of l-sparse vectors xt is given

by
(
k
a

)(
k−a
k1−a

)(
m−k
k3−k1

)
2k3−k1 , where k3 = ‖xt‖0, 0 ≤ k3 ≤ l, (l − (m− k))+ ≤ k1 ≤ min (k, k3) and
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0 ≤ a ≤ k1. Therefore, (9) can be written in this case as

E[Nk | d2] =
1

N

∑
k3,k1,a

(
k

a

)(
k − a
k1 − a

)(
m− k
k3 − k1

)
2k3−k1 E[Nk| xkt , d2],

where N is the number of all l-sparse vectors xt, given by N =
∑

k3,k1,a

(
k
a

)(
k−a
k1−a

)(
m−k
k3−k1

)
2k3−k1 , and the

summations are evaluated over respective ranges as described above.

Theorem 2: The expected number of tree points examined by the sparsity-aware sphere decoding

algorithm while solving (2) over a ternary alphabet is

E[Nk| d2] =
1

N

l∑
k3=0

min (k,k3)∑
k1=(l−(m−k))+

k1∑
a=0

(
k

a

)(
k − a
k1 − a

)(
m− k
k3 − k1

)
2k3−k1

×

[
k1−1∑
k2=0

∑
pi,j : k1>k2

γ

(
d2

2(σ2 + η)
,
n−m+ k

2

)
g2(k1, k2, k, pi,j)

+

min (k,l)∑
k2=k1

∑
pi,j : k1≤k2

γ

(
d2

2(σ2 + η)
,
n−m+ k

2

)
g1(k1, k2, k, pi,j)

]
(22)

where the value of η is given by (19).

Proof: The proof follows from (7) and Lemma 2.

C. Results

It is useful to define the complexity exponent, ec = logC(m, d2)/ logm, as a measure of complexity of

the algorithm. To validate the derived theoretical expressions for the expected complexity of the sparsity-

aware sphere decoding algorithm, we compare them with empirically evaluated complexity exponents.

The results are shown in Fig. 5. Here, parameters of the simulated system are m = n = 20 and l = 5.

The empirical expected complexity is obtained by averaging over 1000 Monte Carlo runs. As can be seen

in in Fig. 5, the theoretical expressions derived in this section exactly match empirical results and are

hence corroborated.

Fig. 6 compares the complexity exponent of sparsity-aware sphere decoder with that of the classical

(sparsity-unaware) sphere decoding algorithm for m = n = 20, l = 5 and binary {0, 1} alphabet. Similar

to Fig. 3(a) and 3(b), classical sphere decoder assumes the unknown vector to be non-sparse. As can be

seen from the plot, the complexity of sparsity-aware sphere decoder is less than that of classical decoder,

with the gap being more significant at lower values of signal-to-noise ratios (SNRs) and decreasing as
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Fig. 5: Complexity exponent as a function of SNR for m = n = 20, l = 5 for binary {0, 1} and ternary {−1, 0, 1} alphabets.

Fig. 6: Comparison of the complexity exponent of sparsity-aware sphere decoder and classical (sparsity-unaware) sphere
decoder for m = n = 20, l = 5 and binary {0, 1} alphabet.

SNR increases. This is expected because, for low SNRs, radius of the sphere is large and the complexity

of sparsity-aware sphere decoder approaches that of performing an exhaustive search for the closest point.

Since the cardinality of the sparse set in this example is significantly smaller than that of the full lattice,

the complexity gap between two algorithms is pronounced. However, for high SNRs, the sphere often

contains very few lattice point (occasionally only one), and hence the difference between the complexity

exponents of the two algorithms reduces. Also note that the complexity of sparsity-aware sphere decoder

decreases with l since the sparsity constraint further reduces the number of points that will be in a sphere
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of a given radius.

IV. VARIANCE ANALYSIS

In this section, we characterize the second-order moment of the complexity of sparsity-aware sphere

decoder. The following analysis is restricted to the binary alphabet, but it can be extended to more

general alphabets in a relatively straightforward manner. It has been shown in [10] that the variance of

the complexity of the sphere decoding algorithm is given by

σ2
sparse =

m∑
k=1

m∑
l=1

(E[NkNl]− E[Nk]E[Nl]) f(k)f(l), (23)

where Nk and f(k) have same meanings as in Section III. Note that (23) applies to the sparsity-aware

sphere decoder as well, but E[Nk], E[Nl], and E[NkNl] differ from those for the classical (sparsity-unaware)

algorithm. In Section III, we found an expression for the expected number of points E[Nk] visited by the

sparsity-aware sphere decoding algorithm. Therefore, to evaluate (23), what remains to be determined is

E[NkNl], i.e., the correlation between the number of pairs of points of dimensions k and l lying inside a

sphere of radius d. Let each of these points be l′-sparse.

Given H = QR, and using (4), the correlation between Nk and Nl can be found as [10]

E[NkNl] =
∑

xB∈Dk
L

∑
xC∈Dl

L

P
(
tb ≤ d2, tc ≤ d2

)
, (24)

where tb = ‖zk − R(k, k)xB‖2, tc = ‖zl − R(l, l)xC‖2, xB and xC are arbitrary k and l dimensional

l′-sparse vectors having entries from DL, and R(p, p) is given by the following partition of R,

R =

 R(m− p,m− p) R(m− p, p)

0p×(m−p) R(p, p)

 (25)

for p = 1, . . . ,m. Let xkt be the k-dimensional sub-vector of the true solution, and define xb = xkt − xB

and xc = xlt − xC . Depending on whether xb = xkc or not, the summand in (24) is given by [10]:

1) If xb = xkc ,

P
(
tb ≤ d2, tc ≤ d2

)
= γ

(
d2

2(σ2 + ‖xc‖2)
,
l

2

)
(26)

2) If xb 6= xkc ,

P(tb ≤ d2, tc ≤ d2) =

∫ d2

tb=0

∫ d2

tc=0

φ(tb, tc)dtbdtc, (27)
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where φ(tb, tc) is given by (28), and where abb = ‖xb‖2 + σ2, acc = ‖xkc‖2 + σ2, abc = x∗bx
k
c + σ2,

and ∆ = abbacc − a2
bc.

The number of pairs of points (xB,xC) over which the summation in (24) is evaluated depends on

the specific symbol alphabet. Here we outline how to enumerate the total number of such pairs for

the binary alphabet {0, 1}. Let us assume, without a loss of generality, that k ≤ l. As shown in [10],

p (tb ≤ d2, tc ≤ d2) is a function of ‖xb‖2, ‖xkc‖2, ‖xc‖2 and x?bx
k
c . Therefore, we can evaluate (24) by

counting the number of all possible solutions (xb,xc) to the system of equations

‖xb‖2 = β, ‖xc‖2 = η, ‖xkc‖2 = γ, and x?bx
k
c = δ, (29)

where β, η, γ and δ are integer numbers satisfying the constraints imposed by the dimensions k and l.

Unlike the scenario studied in [10], the space of permissible solutions to our problem is not isotropic

(due to sparsity constraint). Note that since xB and xC belong to {0, 1} alphabet, xb and xc are k and

l-dimensional vectors with entries from the set {−1, 0, 1}. Moreover, each of these vectors is 2l′-sparse.

For the binary alphabet, `0 norm is equivalent to `2 norm. Therefore, the range of values that β = ‖xb‖0

can take is S(β)= {0, 1, . . . ,min (k, 2l′)} and, similarly, the range of values that η = ‖xc‖0 can take is

S(η) = {0, 1, . . . ,min (l, 2l′)}. It is straightforward to see that for a given value of η, the range of γ

is defined by S(γ|η) = {(η − (l − k))+, . . . ,min (η, k)}, where (a)+ = a if a ≥ 0, 0 otherwise. Now,

non-zero entries (−1 and 1) in xkc and xc – let us denote their number by γ and η, respectively – can be

arranged in
(
l−k
η−γ

)(
k
γ

)
ways. Therefore, the number of possible l-dimensional vectors xc with ‖xc‖0 = η

and ‖xkc‖0 = γ is given by

∑
η∈S(η)

∑
γ∈S(γ|η)

(
l−k
η−γ

)(
k
γ

)
2η. (30)

For any given xkc and δ = x?bx
k
c , we proceed by finding the number of possible pairs (xb,xc) satisfying

the conditions (29). A close inspection of the definitions of xb and xc reveals that δ corresponds to the

number of positions (out of k) where the entries of xb and xkc can take values (1, 1) or (−1,−1). Let us

φ(tb, tc) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

dωbdωce
−jωbtb−jωctc

∆k/2
[(

abb
∆
− 2jωc

) (
acc
∆
− 2jωb

)
− a2bc

∆2

]k/2
(
1− 2jωc(σ

2 + ‖xkc‖2)
)k/2

(1− 2jωc(σ2 + ‖xc‖2))l/2
, (28)
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define

u =
∑

t∈S1(xk
c )

I{xb(t)=1} and v =
∑

t∈S−1(xk
c )

I{xb(t)=−1},

where S1(xkc ) and S−1(xkc ) denote sets of indices of entries in xkc valued 1 and −1, respectively. Clearly,

we have δ = u + v. Let a = |S1(xkc )|. Now, u 1’s and v −1’s in xb can be arranged in
(
a
u

)(
γ−a
v

)
ways,

while the remaining β − (u + v) non-zero entries of xb can be arranged in k − γ zero-valued positions

of xkc in
(

k−γ
β−(u+v)

)
2β−(u+v) ways. Therefore, the number of possible k-dimensional vectors xb satisfying

(29) for a given xkc is
(
a
u

)(
γ−a
v

)(
k−γ

β−(u+v)

)
2β−(u+v).

All that remains to be done now is to define the admissible range of values of u and v. It can be easily

shown that the set for u is given by S(u|a, β) = {(β−(k−a))+, . . . ,min (β, a)}. For each u ∈ S(u|a, β),

v can take values from the set S(v|u, a, β, γ) = {(β − (u+ k − γ))+, . . . ,min (γ − a, β − u)}.

Using above results and (30), the total number of possible solutions to the set of equations (29) is given

by

g(β, η, γ, a, u, v) =

(
l − k
η − γ

)(
k

γ

)(
γ

a

)(
a

u

)(
γ − a
v

)(
k − γ
β − δ

)
2η−γ+β−δ, (31)

where δ = u+ v. For l < k, the set of equations (29) are changed to

‖xc‖2 = β, ‖xb‖2 = η, ‖xlb‖2 = γ and x?cx
l
b = δ, (32)

and the roles of l and k are reversed in (31).

Finally, using (24), the correlation between Nk and Nl is given by

E[NkNl] =
∑

η,γ,β,a,p,q

g(β, η, γ, a, u, v) P(tb ≤ d2, tc ≤ d2), (33)

where the summation in (33) is taken over respective sets for the variables as given by S(η),S(γ|η), . . . ,

S(v|u, a, β, γ), etc. Substituting (33) and (9) in (23), we obtain the expression for the variance of the

complexity of the sparsity-aware sphere decoding algorithm for binary alphabet.

V. SPEEDING-UP SPARSITY-AWARE SPHERE DECODER USING LOWER BOUNDS ON THE OBJECTIVE

FUNCTION

In this section, we present a method for reducing complexity of the sparsity-aware sphere decoding

algorithm by performing additional pruning of the nodes from the search tree. In particular, motivated by
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the lower bounding idea of [32] and observing that the solution to the `1-norm regularized relaxed version

of the optimization problem (2) can be obtained relatively inexpensively, we formulate a technique capable

of significant reduction of the total number of tree points that are visited during the sparsity-aware sphere

decoder search.

For convenience, let za:b denote the vector comprising entries of z indexed a through b, a ≤ b. Similarly,

let Aa:c,b:d denote the sub-matrix of A collecting entries with indices (a, b) (in the upper-left corner)

through (c, d) (in the bottom-right corner), a ≤ c, b ≤ d. Let Q1, Q2, and R be the matrices defined in

Section II-A. Using the triangular property of R and defining z = Q?
1y, we can rewrite (4) as

d2 ≥ ‖zk:m −Rk:m,k:mxk:m‖2 + ‖z1:k−1 −R1:k−1,1:k−1x1:k−1 −R1:k−1,k:mxk:m‖2, (34)

for any 2 ≤ k ≤ m. Note that, when the sphere decoding algorithm visits a node at the kth level of

the search tree, vector xk+1:m is already chosen and the only variable component in the first term on the

right-hand side of (34) is xk. Now, if we could replace the second term on the right-hand side of (34) by

its lower bound Lk(z,R,xk:m, l̃k), defined by

Lk(z,R,xk:m, l̃k) = min
x∈Dk−1

L
‖x‖0≤l̃k

‖w1:k−1 −R1:k−1,1:k−1x‖2 (35)

where l̃k = (l − ‖xk:m‖0)+ and w1:k−1 = z1:k−1 − R1:k−1,k:mxk:m, we would obtain a more rigorous

constraint on xk and hence traverse the search tree more efficiently, pruning more points. In particular,

we now may require that

d2 − Lk(z,R,xk:m, l̃k) ≥ ‖zk:m −Rk:m,k:mxk:m‖2,

which is a more strict constraint on xk than the one used by the original sphere decoder,

d′
2 ≥ ‖zk:m −Rk:m,k:mxk:m‖2,

leading to a search where fewer tree points are being visited by the algorithm. Since the second term on

the right-hand side of (34) is replaced by its lower bound, it is guaranteed that the optimal point will not

be discarded due to having a more rigorous constraint.

Note that the minimization in (35) is a sparse integer least squares problem with an adaptively updated

sparsity constraint l̃k = (l− ‖xk:m‖0)+, i.e., the number of allowed non-zero entries in x1:k−1 is adjusted
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TABLE II: Reduced-complexity sparsity-aware sphere decoding algorithm using lower bounds on the objective function.

Input: Q = [Q1 Q2], R, y, z = Q∗1y, sphere radius d,
sparsity constraint l.

1. Initialize k ← m, d2
m ← d2 − ‖Q∗2y‖2,

zm|m+1 ← zm, lm ← 0 .
2. Update Interval UB(xk)←

⌊
(dk + zk|k+1)/Rk,k

⌋
,

LB(xk)←
⌈
(−dk + zk|k+1)/Rk,k

⌉
, xk ← LB(xk)− 1.

3. Update xk xk ← xk + 1. If xk ≤ UB(xk),
go to 4; else go to 6.
4. Check Sparsity If lk + I{xk 6=0} > l, go to 3;
else if k > 1, go to 5; else lk ← lk + I{xk 6=0}, and go to 7.
5. Lower Bound l̃k ← l − (lk + I{xk 6=0}), and
compute L = L(z, R,xk:m, l̃k).
If L+ (zk|k+1 −Rk,kxk)

2 ≤ d2
k, lk ← lk + I{xk 6=0}

and go to 7; else go to 3.
6. Increase k k ← k + 1. If k = m+ 1, stop;
else, lk ← lk − I{xk 6=0} and go to 3.
7. Decrease k If k = 1, go to 8; else k ← k − 1,
zk|k+1 ← zk −

∑m
j=k+1Rk,jxj,

d2
k ← d2

k+1 −(zk+1|k+2 −Rk+1,k+1xk+1)2, and go to 2.
8. Solution found Save x and its distance from y,
d2
m − d2

1 + (z1 −R1,1 x1)2, lk ← lk − I{xk 6=0} and go to 3.

according to the number of non-zero entries in already selected xk:m. Clearly, it must be satisfied that

l̃2 ≤ l̃3 ≤ . . . ≤ l̃m. Having l̃k = 0 for any k implies that no more non-zero elements can be chosen as

the components of the unknown vector at levels beyond the kth, and the remaining entries are all valued

0.

The modified algorithm is presented in Table II.

A. Computation of the lower bound Lk(z,R,xk:m, l̃k)

The technique described in this section leads to a reduction in the total number of search tree nodes

visited by the sparsity-aware sphere decoding algorithm. However, this comes at an additional complexity

incurred by computing the lower bound Lk(z,R,xk:m, l̃k) in (35). Therefore, the benefit of additional

pruning must outweigh the cost of computing the aforementioned lower bound that enables the pruning.

Clearly, finding exact solution to the minimization problem in (35) is equivalent to solving the original

problem (2). As an alternative, we may relax the minimization in (35) by introducing x ∈ Rk−1 and then
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solve

min
x∈Rk−1

‖x‖0≤l̃k

‖w1:k−1 −R1:k−1,1:k−1x‖2 (36)

Minimization (36) can be solved using a number of techniques. To this end, we rely on the computationally

efficient orthogonal matching pursuit (OMP) method and round off each entry of the final solution to its

nearest discrete value in DL. Details about the OMP algorithm are omitted for brevity and can be found

in [36].

B. Simulations

We demonstrate the improvement in computational complexity of the modified sparsity-aware sphere

decoding algorithm, where the lower bound in the relaxed problem (36) is obtained by the OMP method.

The results are shown in Figure 7 for m = n = 40, l = 5, and binary {0, 1} alphabet. The subplot on

the left compares the average number of points in the tree searched by the two variants of the algorithm

(i.e., with and without using the lower-bounding technique). The subplot on the right shows the total flop

count on the average for the two methods. Clearly, for the considered range of parameters, the proposed

modification of the algorithm enables significant computational savings over sparsity-aware sphere decoder

from Section II.

Remark: Note that the method presented in this section could benefit the complexity of sparsity-aware

sphere decoder at low to moderate SNRs, where the search sphere contains a large number of points and

hence pruning tree nodes using the considered lower bound may help. However, in high SNR regime, the

sphere radius is so small that only few points lie inside the sphere and the cost of running OMP to find

lower bounds may outweigh the benefit due to additional pruning.

VI. AN APPLICATION: SPARSE CHANNEL ESTIMATION VIA SPARSITY-AWARE SPHERE DECODING

In this section, we consider the application of the proposed sparsity-aware sphere decoding algorithm

to the classical problem of sparse channel estimation (see, e.g., [30] and the references therein) and

benchmark its performance against state-of-the-art alternative techniques. In estimation of sparse channel,

impulse response of a channel having a given delay spread is described by only few non-zero taps and

the estimation goal is to determine the values of those taps. This problem is often encountered in digital

television and underwater acoustic communications [33] where the channel is naturally sparse, i.e., most of
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Fig. 7: Computational complexity of sparsity-aware sphere decoder with (blue) and without (red) lower bounding technique,
m = n = 40, l = 5, binary {0, 1} alphabet. The plot on the left compares average number of the tree points visited by the
algorithm and the plot on the right compares average flop count.

the channel energy is concentrated in few samples of the impulse response. Sparse estimation also comes

up in ultra-wideband communications where only dominant multipath components are estimated, leading

to a sparse characterization of the channel. In [30], the sparse channel estimation is formulated as an On-

Off Keying (OOK) problem by decoupling the estimation into zero-tap detection followed by structured

estimation of the values of the non-zero taps. Sphere decoding based zero-tap detection is among several

methodologies considered in [30]. We show that our sparsity-aware sphere decoding algorithm enables

performance matching that of the best previously developed schemes, and comes close to the fundamental

performance limits.

A. System model

To learn the sparse channel impulse response, we transmit a known training sequence and observe the

received signal. Let {ui}Mi=1 denote the finite-length training data sequence and let ui = 0 if i > M or

i < 0. Assume that the channel has impulse response of length L ( > M ) and let h = [h1 h2 . . . hL]T

denote the vector of the impulse response coefficients. The real-valued observations are collected into a

vector x = [x1 x2 . . . xM+L−1], and the relation between h and x is given by

xj =
L∑
i=1

hiuj−i+1 + νj,
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for j = 1, . . . ,M +L− 1, with νj assumed to be independent, identically distributed zero-mean Gaussian

noise of variance σ2. Alternatively, (37) can be written as the matrix-vector product

x = Uh + ν, (37)

where

U =



u1 0

u2
. . .

... . . . u1

uM u2

. . . ...

0 uM


and ν =


ν1

ν2

...

νM+L−1


.

Note that the channel vector can be represented as h = diag(h)b, where b ∈ {0, 1}L has non-zero entries

that indicate positions of the non-zero coefficients in h, and diag(h) is a diagonal matrix with entries from

h.

B. Sparsity-aware sphere decoder for channel estimation

Let ĥ denote the least-squares solution of (37). Then the zero-tap detection problem can be formulated

as the following optimization [30]

b̂ = arg min
b∈{0,1}L

‖x−Udiag(ĥ)b‖2. (38)

In [30], the sphere decoding algorithm was used to solve (38) and find the point in the lattice Udiag(ĥ)

closest to x. The solution b̂ is then used to refine the channel estimate ĥ and form a so-called structured

estimate ĥ∗ via the least-squares method. As an alternative, we employ the sparsity-aware sphere decoding

from Section II-B to solve (38). The channel order, denoted by m#, is assumed known to the receiver.

Then, (38) can be restated as

b̂ = arg min
b∈{0,1}L

‖b‖0 ≤ m#

‖x−Udiag(ĥ)b‖2. (39)

Remarks: Various methods for estimating the channel order at the receiver exist in literature. In [34],

information theoretic criteria including Minimum Description Length (MDL) and Akaike Information

Criterion (AIC) have been considered for determining the number of sources in sparse array processing
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Fig. 8: Comparison of normalized mean-squared error (MSE) for sparsity-aware SD, OMP and classical SD schemes for
zero-tap detection, L = 20,M = 6,m# = 3. The MSE of an oracle estimator and the CRLB for structured estimate are also
plotted for comparison.

Fig. 9: Comparison of complexity exponents for average flop counts of sparsity-aware SD, OMP and classical SD schemes
for zero-tap detection, L = 20,M = 6,m# = 3.

[3]. In [35], a criterion for channel order estimation using least squares blind identification and equalization

costs for SIMO channels was proposed. Often, information about the channel order is obtained from past

history or data records.
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C. Simulations

Performance of the sparsity-aware sphere decoding algorithm applied for sparse channel estimation is

demonstrated in Fig. 8, where we plot the normalized mean-squared-error (MSE) of competing channel

estimation schemes as a function of SNR. The normalized MSE is defined as MSE = 1/T
∑T

t=1 ‖ht −

ĥt‖2/‖ht‖2, where T is the total number of Monte Carlo iterations and ht and ĥt are the vectors of actual

channel coefficients and their estimates in the tth iteration of the estimation procedure, respectively. The

values of L, M and the channel order m# are 20, 6 and 3, respectively. The training sequence is formed

by taking M samples of constant modulus. The non-zero coefficients of ht are assumed to independent

standard normal variables.

To solve the sparse channel estimation problem and obtain the MSE shown in Fig. 8, we employed

the sparsity-aware sphere decoder from Section III with radius update for faster run times. The MSE

performance of the classical sphere decoding algorithm and structured estimate obtained via orthogonal

matching pursuit (OMP) [36] are among those shown in Fig 8. It is clear from this figure that sparsity-

aware sphere decoder using knowledge of channel order performs significantly better than the classical

sphere decoding adopted in [30]. The MSE of the oracle estimator and the theoretical performance limit in

the form of Cramer Rao lower bound (CRLB) [30] are also plotted in the same figure. Oracle estimator is

the structured least-square estimator with known locations of non-zero channel taps. In [37], it was shown

that OMP matches the best performance among sparse channel estimation methods that use knowledge

of true channel order. Clearly, over a wide range of signal-to-noise ratios (SNRs), the sparsity-aware

sphere decoder significantly outperforms the OMP algorithm, with the performance gap increasing with

SNR. In addition, we plot complexity exponents (evaluated using the average flop counts incurred by the

algorithms applied to sparse channel estimation problem) in Fig. 9. It can be seen from this figure that

sparsity-aware sphere decoding runs faster than the classical sphere decoder. The OMP algorithm is the

fastest but its accuracy is inferior to sparsity-aware sphere decoding.

VII. CONCLUSION

Sparsity-aware sphere decoder presented and analyzed in this paper has been motivated by the recent

emergence of applications which require finding the solution to sparse integer least-squares problems. The

sparsity-aware sphere decoding algorithm exploits sparsity information to prune nodes from the search

tree that would have otherwise been visited by the classical sphere decoder. Imposing sparsity constraints
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requires minor additional computations, but due to more aggressive tree pruning, leads to significant

improvements in complexity while improving accuracy. We analyzed computational complexity of the

sparsity-aware sphere decoding algorithm and found its first and second-order moments (i.e., the mean

and the variance of the random variable representing the complexity of the proposed algorithm). An

application to sparse channel estimation demonstrated the efficacy of the algorithm.

To further reduce the computational complexity of the algorithm, we imposed a lower bound on a

part of the objective function at each stage and used it to make the sphere constraint more restrictive.

The lower bound was posed as an `1-norm regularized relaxed version of the sparse integer least-squares

problem, and efficiently computed using the orthogonal matching pursuit technique. As simulation results

demonstrate, the proposed method may lead to significant computational savings over straightforward

sparsity-aware sphere decoding.

As part of future work, in addition to first and second-order moments of the complexity of sparsity-aware

sphere decoder analyzed in this manuscript, it would be beneficial to further characterize the complexity

by, for example, exploring higher-order moments and its tail distribution. Moreover, for the lower-bound

based speed-up of the algorithm, it is of interest to explore alternative relaxations of integer least-squares

problems as well as investigate fast methods for solving such relaxations. Finally, applying the proposed

techniques to solve various practical problems and exploiting structural properties of those problems to

further improve the complexity and performance are of potential interest.
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APPENDIX

A. Proof of Lemma 1

We consider the two cases separately.

1) k1 < k2.

Define the support set of xkt as Sj(xkt ) = {i : xkt (i) = j}, j ∈ {0, 1}. Let us define

p =
∑

i∈S1(xk
t )

I{xk
a(i)=0}, q =

∑
i∈S0(xk

t )

I{xk
a(i)=0}. (40)
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In words, p and q denote the number of 0’s in xka in the indices where the entries of xkt are equal to 1

and 0, respectively. Now, the p zeros can be ordered over the support2 of xkt in
(
k1
p

)
different ways. For

each such arrangement, the q zeros can be ordered over the complement of the support of xkt (i.e., over

S0(xkt )) in
(
k−k1
q

)
different ways. Therefore, the total number of ways of arranging p and q zeros in xka

over 1’s and 0’s of xkt , respectively, is
(
k1
p

)(
k−k1
q

)
. The condition ‖xkt − xka‖0 = η implies that

η = p+ (k − k1 − q) or p = (η − (k2 − k1))/2,

which is the desired result.

2) k1 ≥ k2.

Let us define

p =
∑

i∈S1(xk
t )

I{xk
a(i)=1}, q =

∑
i∈S0(xk

t )

I{xk
a(i)=1}. (41)

Here, p and q denote the number of 1’s in xka in the indices where the entries of xkt are equal to 1 and 0,

respectively. The q 1’s can be ordered over the complement of the support of xkt in
(
k−k1
q

)
ways. For each

such arrangement, the remaining p 1’s can be ordered over the support of xkt in
(
k1
p

)
ways. Therefore, the

total number of ways of arranging p and q 1’s in xka over 1’s and 0’s of xkt , respectively, is
(
k1
p

)(
k−k1
q

)
.

The condition ‖xkt − xka‖0 = η implies that

η = (k1 − p) + q or q = (η − (k1 − k2))/2,

which is the desired result.

B. Proof of Lemma 2

Recall that pi,j denotes the number of symbols j in xka in the positions where xkt has symbol i, and that

k1 = ‖xkt ‖0, k2 = ‖xka‖0. To enumerate all possible l-sparse vectors xka, we need to determine possible

alignments of elements in xkt and xka. Define p = p0,1 + p0,−1. We consider the following two cases

separately.

1) k1 ≤ k2.

The following observations can be made:

2Here, the support of a vector is the set of indices of its non-zero components.
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(a) The number of ways in which p1,0 0’s in xka can be aligned with components in xkt that are equal

to 1 is
(
a
p1,0

)
, where p1,0 ∈ {0, 1, · · · ,min (a, k − k2)}. Then, the number of ways in which p1,−1

−1’s in xka can be aligned with the components in xkt that are equal to 1 is
(
a−p1,0
p1,−1

)
, where p1,−1 ∈

{0, 1, · · · , a−p1,0}. Having fixed the positions of 0’s and −1’s, the remaining p1,1 = (a−p1,0−p1,−1)

entries of xka that are equal to 1 can be aligned with the components in xkt that are equal to 1 in only

one way.

(b) Continuing the same type of arguments as above, the number of ways in which p−1,0 0’s in xka can

be aligned with components in xkt that are equal to −1 is
(
k1−a
p−1,0

)
, where p−1,0 ∈

{0, 1, · · · ,min (k1 − a, k − k2 − p1,0)}. Following such an arrangement, the number of ways in which

p−1,1 1’s in xka can be aligned with the components in xkt that are equal to −1 is
(
k1−a−p−1,0

p−1,1

)
,

where p−1,1 ∈ {0, 1, · · · , k1 − a− p−1,0}. Once the positions of 0’s and 1’s are fixed, the remaining

p−1,−1 = k1−a−p−1,1−p−1,0 entries of xka that are equal to −1 can be aligned with the components

in xkt that are equal to −1 in only one way.

(c) Given (a), (b), the remaining p = k2 − (k1 − p−1,0 − p1,0) non-zero entries of xka can be aligned

with k−k1 zero-valued entries of xkt in
(

k−k1
k2−(k1−p−1,0−p1,0)

)
ways. Since there are 2 types of non-zero

symbol (1 and −1), there will be 2k2−(k1−p−1,0−p1,0) combinations in total.

Summarizing (a)-(c), we can enumerate vectors xka (over parameters k1, k2 and pi,j) as

g1(k1, k2, k, pij) =

(
a

p1,0

)(
a− p1,0
p1,−1

)(
k1 − a
p−1,0

)(
k1 − a− p−1,0

p−1,1

)(
k − k1

k2 − (k1 − p−1,0 − p1,0)

)
2k2−(k1−p−1,0−p1,0),

which is same as (20).

2) k1 > k2.

The following observations can be made:

(a) The number of ways in which p = p0,1+p0,−1 non-zero elements in xka can be aligned with components

in xkt that are equal to 0 is
(
k−k1
p

)
, where p ∈ {0, 1, · · · ,min (k2, k − k1)}. Since there are two non-

zero symbols (−1 and 1), there are 2p ways to arrange them. Having set positions and order of

non-zero elements in xka, the positions of 0’s are uniquely determined. Next, we turn our attention

to the non-zero elements of xkt .

(b) The number of ways in which p1,−1 −1’s in xka can be aligned with components in xkt that are

equal to 1 is
(

a
p1,−1

)
, where p1,−1 = {0, 1, · · · ,min (a, k2 − p)}. Then, the number of ways in which
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p1,1 1’s in xka can be aligned with the components in xkt that are equal to 1 is
(
a−p1,−1

p1,1

)
, where

p1,1 ∈ {(k2 − (k1 − a)− (p+ p1,−1)), · · · ,min (a− p1,−1, k2 − (p+ p1,−1))}. Having fixed positions

of −1’s and 1’s, the remaining p1,0 = (a − p1,−1 − p1,1) entries of xka that are equal to 0 can be

aligned with the components in xkt that are equal to 1 in only one way.

(c) Continuing the same type of arguments as above, the number of ways in which p−1,1 1’s in xka can

be aligned with components in xkt that are equal to −1 is
(
k1−a
p−1,1

)
, where p−1,1 ∈ {0, 1, · · · ,

min (k2 − p− p1,−1 − p1,1, k1 − a)}. Following such an arrangement, the number of ways in which

p−1,−1 = k2− (p+p1,−1 +p1,1 +p−1,1) −1’s in xka can be aligned with the components in xkt that are

equal to −1 is
(

k1−a−p−1,1

k2−(p+p1,−1+p1,1+p−1,1)

)
. Once the positions of −1’s and 1’s are fixed, the remaining

p−1,0 = (k − k2 − p1,0 − p0,0) entries of xka that are equal to 0 can be aligned with the components

in xkt that are equal to −1 in only one way.

Summarizing (a)-(c), we can enumerate vectors xka (over parameters k1, k2 and pi,j) as

g2(k1, k2, k, pij) =

(
k − k1

p0,1 + p0,−1

)(
a

p1,−1

)(
a− p1,−1

p1,1

)(
k1 − a
p−1,1

)(
k1 − a− p−1,1

k2 − (p0,1 + p0,−1 + p1,−1 + p1,1 + p−1,1)

)
2p0,1+p0,−1 ,

which is same as (21).
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