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Abstract—This paper determines to within a single mea-
surement the minimum number of measurements required to
successfully reconstruct a signal drawn from a Gaussian mixture
model in the low-noise regime. The method is to develop
upper and lower bounds that are a function of the maximum
dimension of the linear subspaces spanned by the Gaussian
mixture components. The method not only reveals the existence
or absence of a minimum mean-squared error (MMSE) error
floor (phase transition) but also provides insight into the MMSE
decay via multivariate generalizations of the MMSE dimension
and the MMSE power offset, which are a function of the
interaction between the geometrical properties of the kernel and
the Gaussian mixture. These results apply not only to standard
linear random Gaussian measurements but also to linear kernels
that minimize the MMSE. It is shown that optimal kernels do not
change the number of measurements associated with the MMSE
phase transition, rather they affect the sensed power required
to achieve a target MMSE in the low-noise regime. Overall, our
bounds are tighter and sharper than standard bounds on the
minimum number of measurements needed to recover sparse
signals associated with a union of subspaces model, as they are
not asymptotic in the signal dimension or signal sparsity.

Index Terms—Compressive sensing, Gaussian mixtures, recon-
struction, classification, MMSE, MMSE decay, MMSE power
offset, phase transition, kernel design

I. INTRODUCTION

The foundation of the digital revolution is the Shannon-
Nyquist theorem, which provides a theoretical basis for digital
processing of analog signals: it states that the sampling rate
should be at least twice the Fourier bandwidth of the signal.
The discrete-time representation of a continuous-time signal,
which lies at the heart of analogue to digital conversion,
offers the means to resilient data communication, storage and
processing.
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It has been recognized recently that the so-called Nyquist
rate can be excessive in various emerging applications [1]–
[3]: this – in addition to representing a burden to analog-
to-digital converters [4], [5] – can also lead to a huge
number of samples that compromise communications, storage
and processing resources. Modern acquisition systems thus
adopt a two-step approach that involves both an analog-to-
digital conversion operation, whose purpose is to convert the
information-bearing signal from the analogue to the digital
domain, and a compression operation whose purpose is to offer
succinct (near lossless) representations of the data.

There has been a recent emergence of a new sensing
modality, emblematically known as Compressive Sensing
(CS) [6]–[8], that offers the means to simultaneously sense
and compress a signal without any loss of information (under
appropriate conditions on the signal model and measurement
process). The sensing process is based on the projection of
the signal of interest onto a set of vectors, which can be
either constituted randomly [6]–[10] or designed [11], [12],
and the recovery process is based on the resolution of an
inverse problem. It is well known that the reconstruction of
an n-dimensional signal that admits an s-sparse representation
in some orthonormal basis or frame, via `0-pseudonorm min-
imization algorithms, requires only s + 1 noiseless measure-
ments [13], [14]. However, there are no tractable algorithms
able to solve such a minimization problem. On the other hand,
`1 minimization methods [15] or iterative methods, like greedy
matching pursuit [16]–[18], provide reliable reconstruction
with overwhelming probability with only O(s log(n/s)) linear
random measurements or projections [6], [8], [10].

However, even in early CS studies, it has been recognized
that it is possible to derive better compression performance,
in terms of the minimum number of measurements necessary
to achieve perfect or nearly perfect reconstruction, by lever-
aging the fact that signals often obey models with additional
structure beyond conventional sparsity. Some popular models
that capture such additional structure include the union of sub-
spaces [19]–[22], wavelet trees [19], [23] or manifolds [24],
[25]. Within the union of subspaces model, the source signal
is assumed to belong to one out of a collection of K subspaces
with dimension less than or equal to s. Recovery of a signal
in a union of subspaces is equivalent to the reconstrution of
a block-sparse signal, when the individual subspaces in the
union of subspaces model are decomposable as the direct
sum of a given number of lower dimensional subspaces [21].
The minimum number of measurements required for reliable
reconstruction in such scenarios has been shown to be of
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the order O(s + log(2K)) [19] when using mixed `2/`1-
norm minimization [21]. On the other hand, tree models,
where the non-zero coefficients of the source signal are known
to be gathered into a rooted, connected, tree structure, can
describe the most relevant wavelet coefficients of piecewise
smooth signals or images [26]. In this case, the number of
measurements required for reliable reconstruction is of order
O(s) [23] by using a model-based version of the CoSaMP
algorithm [27]. Finally, in the case of Riemannian manifolds,
the minimum number of random projection measurements
needed for reliable reconstruction has been derived to be of
the order O(s log(nV Rτ−1)), where s is the dimension of the
manifold, τ−1 being its condition number, V being its volume
and R being its geodesic covering regularity [24].

Another very useful structured model is the Gaussian mix-
ture model (GMM) [25], [28]–[30]. GMMs are typically used
in conjunction with the Bayesian CS formalism that entails the
use of statistical descriptions of the source and a statistical
description of the measurement system in order to perform
reconstruction [31]. One important feature of these models
relates to the existence of efficient and optimal inversion proce-
dures, which can be expressed analytically in closed form [25].
The other important feature – in addition to the approximation
of any distribution with arbitrary precision [32] – relates to the
fact that these models have also been shown to provide state-
of-the-art results in various practical problems [29]. These
include problems in image processing such as interpolation,
zooming, deblurring [28]–[30] and dictionary learning [25].

A GMM also relates to the other well-known structured
models in the literature [19]–[22], [24], [25]. For example,
the GMM can be seen as a Bayesian counterpart of the union
of subspaces model (assuming each GMM mixture component
has a near-low-rank covariance matrix). In fact, a signal drawn
from a GMM lies in a union of subspaces, where each
subspace corresponds to the image of each class-conditioned
covariance matrix in the model1. In addition, a low-rank GMM
can also be seen as an approximation to a compact manifold.
Compact manifolds can be covered by a finite collection of
topological disks that can be represented by high-probability
ellipsoids living on the principal hyperplanes corresponding to
the different components of a low-rank GMM [25]. However,
we emphasize that adopting a GMM in lieu of the other
structured models has a specific advantage. Reconstruction of
a signal drawn from a GMM from compressive linear mea-
surements in Gaussian noise can be very effectively performed
via a closed-form inversion formula [25].

As such, and also in view of its practical relevance, this
paper studies in detail the behavior of the minimum mean-
squared error (MMSE) associated with the reconstruction of
a signal drawn from a GMM, based on a set of linear and
noisy compressive measurements. We consider the asymptotic
regime of low-noise, which is relevant in various signal and
image processing scenarios [33], [34]. The emphasis is to
understand, as a function of the properties of the linear
measurement kernel and the Gaussian mixture, whether the

1More generally, a signal drawn from a GMM model lies in a union of affine
spaces rather than linear subspaces, where each affine space is associated
with the mean and covariance of each class in the GMM model.

MMSE converges or does not converge to zero as the noise
power converges to zero, i.e. the MMSE phase transition. The
main contributions are:

• A bound on the number of linear random measurements
that are necessary to reconstruct perfectly a signal drawn
from a GMM in the low-noise regime;

• A bound on the number of linear random measurements
that are sufficient to reconstruct perfectly a signal drawn
from a GMM in the low-noise regime, by analyzing the
MMSE performance of a (sub-optimal) classification and
reconstruction strategy;

• Generalization of the bounds on the number of measure-
ments that are necessary and/or sufficient to reconstruct a
signal drawn from a GMM based on a set of noisy com-
pressive measurements, considering the scenario where
the linear measurement kernel is constituted randomly
and then extended to the case for which the linear
measurement kernel is designed to minimize the mean-
squared error;

• Characterization, whenever possible, of a more refined
behavior of the low-noise asymptotics of the MMSE, that
portray the existence or absence of an MMSE error floor
(the phase transition) as well as the MMSE decay, as a
function of the geometry of the kernel and the geometry
of the Gaussian mixture.

Overall, this contribution offers an analysis of the re-
construction performance and associated phase transitions
that, and in contrast with other results in the CS literature
(e.g. [6], [9], [19], [21]–[24], [35]–[40]), is non-asymptotic
in the signal dimension or the signal sparsity. Recent works
have also proposed the use of message passing and belief
propagation methods to increase the speed of reconstruction
algorithms [41]–[45]. However, these approaches have also
been studied under the large-system assumption. In particular,
message passing methods are proved to be computationally
efficient in large-scale applications, while guaranteeing reliable
reconstruction with a number of measurements n the same
order as `1-norm minimization [41], [43]. In fact, message
passing algorithms are shown to be equivalent to MMSE
estimation in the asymptotic large-system limit, when the
projection matrix is sparse and the inputs are independent
identically distributed (i.i.d.) with arbitrary distribution [42].

On the other hand, the analysis proposed in this paper is
based on models that naturally incorporate memory rather
than memoryless models, as opposed to previous contributions
in the literature on the information-theoretic characterization
of CS [38]–[40]. Memoryless models, however, have been
characterized in terms of the reconstruction MMSE in the
large-system limit. In particular, [46] shows that, in the large-
system limit, the overall mean-squared error (MSE) can be
decoupled into the MSE relative to the reconstruction of the
individual elements of the sparse signal, and such value admits
a single-letter characterization. This analysis is justified on
the basis of a heuristic method from statistical physics, the
replica method, but it can be proved rigorously for the case
of sparse measurement matrices. The replica method has been
shown to provide bounds that are in agreement with the exact
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analysis for the case of sparsity-pattern recovery in the low-
noise regime [47], and it has been used also to evaluate the
MSE associated to the maximum a posteriori (MAP) estimator
in the large system limit [48].

The remainder of the paper is organized as follows: Sec-
tion II introduces the system model and the main performance
quantities and definitions. The impact of a random linear
measurement kernel on the behavior of the MMSE and its
phase transition is investigated first for a signal drawn from
a Gaussian distribution in Section III, to develop essential
intuition; we then consider a signal drawn from a mixture
of Gaussian distributions in Section IV. The impact on the
phase transition of designing the measurement kernel is then
illustrated in Section V. Section VI exhibits various numerical
results both with synthetic and real data, illustrating the main
operational features of the problem. Section VII summarizes
the main contributions. For completeness, Appendix A collects
a number of useful Lemmas that are relevant for the proofs of
the main results reported in Appendices B and C.

We use the following notation: boldface upper-case letters
denote matrices (X) and boldface lower-case letters denote
column vectors (x); the context defines whether the quantities
are deterministic or random. The symbols In and 0m×n rep-
resent the identity matrix of dimension n×n and the all-zero-
entries matrix of dimension m × n, respectively (subscripts
will be dropped whenever the dimensions are clear from the
context). The expressions (·)†, tr(·), rank(·) represent the
transpose, trace and the rank operators, respectively. Im(·)
and Null(·) denote the (column) image and null space of a
matrix, respectively, (·)⊥ denotes the orthogonal complement
of a linear subspace, and dim(·) denotes the dimension of a
linear subspace. E [·] represents the expectation operator. The
Gaussian distribution with mean µ and covariance matrix Σ
is denoted by N (µ,Σ).

II. SYSTEM MODEL

We study the problem associated with the reconstruction of
a source signal x ∈ Rn from a set of ` < n noisy, linear
projections y ∈ R` where

y = Φ x + w, (1)

and Φ ∈ R`×n is the linear measurement kernel2 and
w ∼ N (0, σ2 · I`) is zero-mean, additive white Gaussian
noise (AWGN). We consider in Sections III and IV random
measurement kernel designs, where the entries of Φ are drawn
i.i.d. from a zero-mean, fixed-variance, Gaussian distribution,
which is common in the CS literature [6], [8]. However, we
also consider in Section V design of the measurement kernel
Φ, that aims to minimize the reconstruction error.

In this work we also concentrate on two particular distri-
butions for the source vector: a Gaussian distribution and a
GMM distribution (of course, the former is a special case of
the latter). For a Gaussian source vector, x ∼ N (µx,Σx)
where µx represents the mean and Σx represents the (possibly

2Throughout the paper, we will refer to Φ as the sensing matrix, measurement
matrix and kernel, interchangeably.

rank deficient) covariance matrix. We denote the eigenvalue
decomposition of the positive semidefinite covariance matrix

Σx = UxΛxU†x = Ux diag(λx1 , . . . , λxs , 0, . . . , 0) U†x, (2)

where the orthogonal matrix Ux contains the eigenvectors of
Σx, the diagonal matrix Λx = diag(λx1 , . . . , λxs , 0, . . . , 0)
contains the eigenvalues of Σx, λx1

≥ . . . ≥ λxs
> 0, and

s = rank(Σx) represents the rank of Σx.
For a GMM source, x ∼

∑
k pkN (µ

(k)
x ,Σ

(k)
x ), so that

the source vector is assumed to be drawn from one out
of K different classes with probability pk, k = 1, . . . ,K
where the distribution of the source vector conditioned on
the class k is Gaussian with mean µ

(k)
x and (possibly rank

deficient) covariance matrix Σ
(k)
x . We let sk = rank(Σ

(k)
x ),

skm = rank(Σ
(k)
x + Σ

(m)
x ) and smax = maxk sk.

A low-rank modeling approach, where sk < n for some
or all k, is the basis of the theory developed in Sections III,
IV and V. This implies that a realization of the source signal
lies on one out of the K affine subspaces associated with
the translation by the mean vector µ

(k)
x of the subspaces

corresponding to the images of the class-conditioned covari-
ance matrices Σ

(k)
x . Therefore, a signal drawn from a GMM

model can also be seen to lie on a union of subspaces
(or affine subspaces) [21]. However, the fact that natural
signals and images are not always exactly low-rank but rather
“approximately” low-rank is also discussed in the sequel (see
Section VI-B).

We use the MMSE to assess the level of distortion incurred
in the reconstruction of the original source vector x from the
projections vector y in the CS model in (1), which is given
by:

MMSE = E
[
‖x− x̂(y)‖2

]
, (3)

where
x̂(y) = E [x|y] . (4)

We focus on the characterization of the behavior of the
MMSE in the low-noise regime, i.e., for σ2 → 0, which
represents the regime with most operational relevance in many
signal and image processing applications (the noise magnitude
typically considered for these applications is σ2 = −60
dB [33], [34]). This includes the characterization of an asymp-
totic expansion of the MMSE as σ2 → 0 together with
the characterization of the phase transition of the MMSE as
σ2 → 0. The MMSE phase transition, in line with other
results in the literature [37], [38], corresponds to the minimum
number of measurements that guarantee perfect reconstruction
in the low-noise regime.

III. GAUSSIAN SOURCES

We first consider the characterization of the MMSE phase
transition and a low-noise MMSE expansion associated with
a linearly and compressively measured signal drawn from a
Gaussian source. Such characterizations, which can be crisply
expressed in terms of the geometry of the measurement kernel,
the geometry of the source and their interplay, pave the way to
the characterization of the MMSE phase transition associated
with GMM sources.
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For a Gaussian source with mean µx and covariance matrix
Σx, in the presence of zero-mean, additive Gaussian noise
with covariance matrix σ2I, the conditional mean estimator
can be expressed as follows [49]:

x̂(y) =W(y) = µx + W(y −Φµx), (5)

where W = ΣxΦ†(σ2I + ΦΣxΦ†)−1 corresponds to the
Wiener filter associated with a Gaussian source with mean
zero and covariance Σx, and the MMSE can also be expressed
in closed form as follows [49]:

MMSEG(σ2) = tr
(
Σx −ΣxΦ†

(
σ2I + ΦΣxΦ†

)−1
ΦΣx

)
,

(6)
where we explicitly highlight the dependence of the MMSE
on the measurement noise variance σ2, assuming a fixed
Gaussian source with covariance Σx. The following theorem
now reveals the asymptotic behavior of the MMSE in the low-
noise regime. We define

Σ = Σ
1
2
x Φ†ΦΣ

1
2
x = UΛU†, (7)

where Σ
1
2
x is the (positive semidefinite) matrix square root of

Σx, U is an orthogonal matrix that contains the eigenvectors
of Σ, Λ = diag(

√
λ1, . . . ,

√
λ`′ , 0, . . . , 0) is a diagonal matrix

that contains the eigenvalues of Σ, λ1 ≥ . . . ≥ λ`′ > 0
and `′ = rank(Σ). Note also that, when the entries of the
measurement kernel Φ are drawn i.i.d. from a zero-mean,
fixed-variance, Gaussian distribution, the rank of Σ is equal
to `′ = rank(Σ) = min{s, `}, with probability 1.

Theorem 1: Consider the linear measurement model in (1)
where x ∼ N (µx,Σx), s = rank(Σx) and ` is the number
of measurements. The first-order, low-noise expansion of the
MMSE is given by:

MMSEG(σ2) =MG
∞ +DG · σ2 + o

(
σ2
)
. (8)

The zero-order term in the expansion, which relates to the
MMSE floor, is given by:

MG
∞ = lim

σ2→0
MMSEG(σ2) =

s∑
i=`′+1

u†iΣxui, (9)

where the vectors u`′+1, . . . ,us form an orthonormal basis of
the linear subspace Null(Σ)∩Null(Σx)⊥, and the coefficient
of the first-order term in the expansion is given by:

DG =

`′∑
i=1

1

λi
u†iΣxui, (10)

where u1, . . . ,u`′ are eigenvectors of Σ corresponding to the
positive eigenvalues λ1, . . . , λ`′ .

Proof: The proof of this Theorem is provided in Ap-
pendix B.

The value of the zero-order term is clearly zero if ` ≥ s
and it is non-zero otherwise with its value dictacted by the
interaction of the geometry of the source with the geometry
of the measurement kernel, as portrayed via (9) and (7). The
value of the coefficient of the first-order term is non-zero with
its value depending as well on the interaction of the description
of the source and of the kernel.

Theorem 1 and (8), (9) and (10) then lead to the conclusions:
• When ` < s the number of measurements is not sufficient

to capture the full range of the source, so that the
reconstruction is not perfect (MG

∞ 6= 0). On the other
hand, when ` ≥ s such a number of measurements
capture completely the source information leading to
perfect reconstruction (MG

∞ = 0) in the low-noise
regime. That is, one requires the number of linear random
measurements to be greater than or equal to the dimension
of the subspace spanned by the source for the phase
transition to occur.

• When ` ≥ s, the rate of decay of the MMSE is O
(
σ2
)

as σ2 → 0, as in the scalar case [50]. On the other
hand, the power offset of the MMSE on a 10 · log10

1
σ2 –

scale is dictated by the quantity 10 · log10DG. In fact, the
quantity DG, which represents the multivariate Gaussian
counterpart of the MMSE dimension put forth in [50],
distinguishes MMSE expansions associated with differ-
ent realizations of the measurement kernel and different
source covariances.

• Of particular interest, the presence or absence of a MMSE
floor depends only on the relation between the number
of measurements ` and the rank of the source covariance
s. On the other hand, the exact value of the MMSE
floor (when ` < s) and the MMSE power offset (when
` ≥ s) depends on the relation between the geometry of
the random measurement kernel and the geometry of the
source.

IV. GMM SOURCES

We are now ready to consider the characterization of MMSE
phase transitions associated with a linearly and compressively
measured signal drawn from a GMM source. In particular,
and in view of the lack of a closed-form tractable MMSE
expression, we derive necessary and sufficient conditions for
the phase transitions to occur via bounds to the MMSE
for GMM sources, which will be denoted by the symbol
MMSEGM(σ2).

A. Necessary condition

The necessary condition on the number of random linear
measurements (components of Φ constituted at random) for
the MMSE phase transition to occur is based on the analysis
of a lower bound to the MMSE. We express the lower bound
in terms of the Gaussian MMSE associated to the actual class
from which each signal realization is drawn. Namely, we have

MMSEGM(σ2) = E
[
‖x− x̂(y)‖2

]
(11)

=

K∑
k=1

pk E
[
‖x− x̂(y)‖2|c = k

]
(12)

≥
∑
k

pk MMSEG
k (σ2) = MSELB(σ2), (13)

where MMSEG
k (σ2) denotes the MMSE associated with the

reconstruction of Gaussian signals x in class c = k from the
measurement vector y. Note that the equality in (12) is due to
the total probability formula and the inequality in (13) follows
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from the optimality of the MMSE estimator (5) for a single
Gaussian source.

Via the analysis of MSELB(σ2), we obtain immediately the
following necessary condition on the number of random linear
measurements for the true MMSE to approach zero.

Theorem 2: Consider the linear measurement model in (1)
where x ∼

∑
k pkN (µ

(k)
x ,Σ

(k)
x ), smax = maxk sk, with

sk = rank(Σ
(k)
x ), and ` is the number of measurements. Then,

with probability 1, it follows that:

lim
σ2→0

MMSEGM(σ2) = 0⇒ ` ≥ smax. (14)

Proof: It is evident that if MMSEG
k (σ2) → 0 as

σ2 → 0, for all k, then MSELB(σ2) → 0 as σ2 → 0.
Theorem 1 proves that a necessary and sufficient condi-
tion for limσ2→0 MMSEG

k (σ2) = 0 to hold with probabil-
ity 1 is that ` ≥ sk; therefore, a necessary condition for
limσ2→0 MMSEGM(σ2) = 0 to hold with probability 1 is that
` ≥ smax = maxk sk.

An immediate corollary is the following first-order, low-
noise expansion for the lower-bound of the MMSE for GMM
inputs:

MSELB(σ2) =
∑
k

pkMG
∞k

+

(∑
k

pk DG
k

)
σ2 + o

(
σ2
)
,

(15)
where MG

∞k
and DG

k are the zero and first-order terms of the
expansion of the Gaussian MMSE corresponding to class k.

B. Sufficient condition
The sufficient condition on the number of random linear

measurements for the MMSE phase transition to occur is based
instead on the analysis of an upper bound to the MMSE.
We construct such an MMSE upper bound – denoted as
MSECR(σ2) – by using a (sub-optimal) classify and recon-
struct procedure3:

1) First, we obtain an estimate of the signal class by the
MAP classifier as follows:

ĉ = arg max
k

p(y|c = k)pk, (16)

where the variable ĉ represents the estimate of the signal
class, the random variable c represents the actual signal
class and p(y|c = k) denotes the conditioned probability
density function (pdf) of the measurement vector y given
the signal class k;

2) Then, we recontruct the source vector x from the
measurement vector y by using the conditional mean
estimator associated with the class estimate ĉ as follows:

x̂(y, c = ĉ) =Wĉ(y) = µ(ĉ)
x + Wĉ(y−Φµ(ĉ)

x ). (17)

Note that a similar approach has been shown to offer state-
of-the-art performance in the reconstruction of signals drawn
from GMM sources from compressive measurements [29],
[30].

3Note that the classify and reconstruct procedure is presented here as a math-
ematical tool to determine an upper bound to the number of measurements
needed to obtain perfect reconstruction when using the optimal conditional
mean estimator.

The optimality of the conditional mean estimator together
with the (in general) sub-optimality of the classify and recon-
struction approach leads immediately to the fact that:

MMSEGM(σ2) ≤ MSECR(σ2). (18)

The analysis of the classify and reconstruct MMSE, which
is aided by recent results on the characterization of the perfor-
mance of GMM classification problems from noisy compres-
sive measurements [51], then leads to the following sufficient
condition on the number of random linear measurements for
the true MMSE to approach zero.

Theorem 3: Consider the linear measurement model in (1)
where x ∼

∑
k pkN (µ

(k)
x ,Σ

(k)
x ), smax = maxk sk, with

sk = rank(Σ
(k)
x ), and ` is the number of measurements. Then,

with probability 1, it holds:

` > smax ⇒ lim
σ2→0

MMSEGM(σ2) = 0. (19)

Proof: The proof of this Theorem is provided in Ap-
pendix C.

C. The MMSE phase transition

The characterization of the MMSE phase transition follows
by combining the results encapsulated in Theorems 2 and 3. In
particular, it is possible to construct a sharp characterization of
the transition that is accurate within one measurement where:
• When ` < smax, the function MMSEGM(σ2) converges

to an error floor as σ2 → 0;
• When ` > smax, the function MMSEGM(σ2) converges

to zero as σ2 → 0;
• When ` = smax, the function MMSEGM(σ2) may or may

not approach zero as σ2 → 0, depending on the exact
class dependent source covariances (see Section VI).

Note that – akin to the Gaussian result – one requires the
number of linear random measurements to be greater than the
largest of the dimensions of the subspaces spanned by the
class dependent source covariances for the phase transition to
occur. This is due to the fact that – as reported in Appendix C
– with such a number of measurements one is able to classify
perfectly and thereby to reconstruct perfectly in the low-
noise regime. Note also that the classify and reconstruct
procedure is nearly “phase transition” optimal: the number
of measurements required by such a procedure differs at
most by one measurement from the number of measurements
required by the optimal conditional mean estimation strategy.
This also provides a rationale for the state-of-the-art results
reported in [29], [30], which are based on the use of the class
conditioned Wiener filters for reconstruction and the detection
of the a posteriori most probable class of the signal.

V. FROM RANDOM TO DESIGNED KERNELS

The emphasis of Sections III and IV has been on the
derivation of necessary and sufficient conditions on the number
of linear random measurements for the MMSE phase transition
to occur. However, in view of recent interest on the design of
linear measurements in the literature [11], [12], [33], [34],
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[52], it is also natural to ask whether designed kernels have
an impact on such bounds.

In particular, we seek to characterize the impact on the
MMSE phase transition of kernels designed via the following
optimization problem:

minimize
Φ

MMSE(σ2,Φ)

subject to tr
(
ΦΦ†

)
≤ `

(20)

where the constraint guarantees that, on average, the rows
of the designed kernel have unit `2-norm. Note that, for the
sake of clarity, we now express explicitly that the MMSE is a
function of the linear measurement kernel.

We start by showcasing the optimal linear kernel design
for a Gaussian source, where “optimality” is defined by the
optimization problem in (20), which follows immediately by
leveraging results on the joint optimization of transmitter and
receiver for coherent multiple input multiple output (MIMO)
transmission [53].

Theorem 4: Consider the linear measurement model in (1)
where x ∼ N (µx,Σx), s = rank(Σx) and ` is the number of
measurements. Then, the measurement kernel Φ? that solves
the optimization problem in (20) can be expressed as follows:

Φ? =
[
diag

(√
λ?Φ,1, . . . ,

√
λ?Φ,`

)
0`×(n−`)

]
U†x, (21)

where the squared singular values of Φ? are obtained through
the water-filling principle [54] as follows

λ?Φ,i =

[
η − σ2

λx,i

]+
, (22)

and η > 0 is such that
∑`
i=1 λ

?
Φ,i ≤ ` and [x]+ = max{x, 0}.

Proof: The problem of finding the projection matrix
which minimizes the reconstruction MMSE for Gaussian input
signals can be mapped, with appropriate modifications, to
the problem of finding the linear precoder which minimizes
the MMSE of a MIMO transmission system. In particular,
the object function of this minimization problem is a Schur-
concave function of the MMSE matrix and the optimal lin-
ear precoder is shown to diagonalize the MIMO channel
matrix [53, Theroem 1]. This implies that, in our scenario,
the designed kernel right singular vectors correspond to the
source covariance eigenvectors, i.e., that the measurement
kernel that minimizes the MMSE exposes the modes of the
source covariance4. Then, the fact that the squared singular
values of Φ? obey the water-filing type of interpretation in
(22) follows from the Karush-Kuhn-Tucker (KKT) conditions
associated with the optimization problem yielded by taking
the kernel right singular vectors to correspond to the source
covariance eigenvectors.

It is now straightforward to show that kernel design does
not impact the phase transition of the MMSE associated with
Gaussian sources. However, and despite the fact that kernel
design does not affect the number of measurements necessary

4In general, when the additive Gaussian noise w has a non diagonal covariance
matrix Σw , the measurement kernel Φ? can be shown to expose and align
the modes of both the input source and the noise, as observed for the
measurement kernel which maximizes the mutual information between x
and y [33].

to observe the phase transition, we also show that there is value
in using designed kernels in lieu of random ones because one
can thus improve reconstruction performance in terms both of
a lower error floor (if present) and a lower power offset.

Theorem 5: Consider the linear measurement model in (1)
where x ∼ N (µx,Σx), s = rank(Σx), ` is the number of
measurements and Φ = Φ?, where Φ? solves the optimization
problem in (20). Then, the first-order, low-noise expansion of
the MMSE is given by:

MMSEG(σ2,Φ?) =MGD
∞ +DGD · σ2 + o(σ2). (23)

where

MGD
∞ =

s∑
i=`′+1

λx,i , DGD = (`′)2/` (24)

and `′ = min{s, `}.
Proof: On substituting the expression of Φ? in (21) into

(6), it is possible to expand the MMSE associated with the
optimal linear kernel design as follows:

MMSEG(σ2,Φ?) =

`′∑
i=1

λx,i

1 + 1
σ2λx,iλ?Φ,i

+

s∑
i=`′+1

λx,i. (25)

Observe that in the limit σ2 → 0, it follows from (22) that
λ?Φ,i = `/`′ for i = 1, . . . , `′ and λ?Φ,i = 0 for i = `′, . . . , `.
Moreover, notice also that the second term in (25) is identically
equal to zero if and only if ` ≥ s.

Note that when ` < s the error floor corresponds to the
source power that the kernel fails to capture in view of its
compressive nature. On the other hand, when ` ≥ s the MMSE
decay associated with an optimal kernel is equal to that of a
random one, i.e. O(σ2), but the MMSE power offset is lower:
it is only a function of the number of measurements and the
dimension of the subspace spanned by the source, indepen-
dently of the exact form of the eigenvectors or eigenvalues of
the source covariance.

Finally, it is also straightforward to show that kernel design
does not impact the phase transition of the MMSE associated
with GMM sources. The minimum number of measurements
required to perfectly reconstruct the signal in the low-noise
regime is also ` > smax in this case. However, careful kernel
design can increase the system performance by guaranteeing
lower error floors and power offsets.

The method leveraged to prove this result is also based
on the analysis of lower and upper bounds to the MMSE
associated with the reconstruction of signals drawn from a
GMM source that are sensed now via the optimal linear kernel
design. In particular, we consider a lower bound – which we
denote by MSELBD(σ2) – which is expressed in terms of the
value of the MMSE corresponding to the actual Gaussian class
from which each realization of the input signal is drawn and
the corresponding optimal kernel Φ?

k in (21). Then,

MMSEGM(σ2,Φ?) ≥ MSELBD(σ2) (26)

=
∑
k

pk MMSEG
k (σ2,Φ?

k). (27)

We also consider a trivial upper bound: the MMSE associated
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with the optimal kernel design can always be upper bounded
by the MMSE associated with a random kernel design.

Theorem 6: Consider the linear measurement model in (1)
where x ∼

∑
k pkN (µ

(k)
x ,Σ

(k)
x ), smax = maxk sk, with

sk = rank(Σ
(k)
x ), ` is the number of measurements and

Φ = Φ?, where Φ? that solves the optimization problem in
(20). Then, it holds

lim
σ2→0

MMSEGM(σ2,Φ?) = 0⇒ ` ≥ smax, (28)

and
` > smax ⇒ lim

σ2→0
MMSEGM(σ2,Φ?) = 0. (29)

Proof: It is possible to prove the sufficient condition (29)
by observing that

MMSEGM(σ2,Φ?) ≤ MMSEGM(σ2,Φ) (30)

for all possible measurement matrices Φ that verify the trace
constraint in (20). Among them, we can consider random
kernels with Gaussian, zero-mean and fixed-variance, i.i.d.
entries and we can obtain the sufficient condition by leveraging
directly the result in Theorem 3. On the other hand, in order to
prove the necessary condition (28), consider the lower bound
in (27) and observe that

MMSEG
k (σ2,Φ?

k) ≤ MMSEG
k (σ2,Φ) (31)

for all possible measurement matrices Φ that verify the trace
constraint in (20). Also in this case, we can consider random
kernels with Gaussian, zero-mean and fixed-variance, i.i.d.
entries. Then, it is possible prove (28) by leveraging the
necessary condition embedded in Theorem 5, that is,

lim
σ2→0

MMSEG
k (σ2,Φ) = 0⇒ ` ≥ sk. (32)

In view of (23) and (27), the low-noise expansion of the
proposed lower bound is given by:

MSELBD(σ2) =
∑
k

pkMGD
∞k

+

(∑
k

pkDGD
k

)
σ2 + o(σ2),

(33)
where MGD

∞k
and DGD

k are the zero-order term and the
coefficient of the first-order term of the expansion of the
Gaussian MMSE corresponding to class k. We also conclude
that, though kernel design may not increase the MMSE decay
rate beyond O(σ2), it can have an impact on the MMSE power
offset associated with GMM sources.

It is important to note though that this analysis has con-
centrated on offline designs where the ` measurements are
designed concurrently [33], [52], rather than online kernel
designs that entail a sequential design of the measurements
by leveraging information derived from previous measure-
ments [30], [33], [55]. It is possible that such online designs
have an impact on the phase transition.

VI. NUMERICAL RESULTS

We now provide results both with synthetic and real data to
illustrate the theory. Recovery is based upon the conditional
expectation, which is analytic for the case of GMM priors,
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Fig. 1. MMSE vs. 1/σ2 for different numbers of random measurements ` =
2, 3, 4, 5 for a Gaussian source with n = 5 and s = 4. Actual MMSE (solid
lines) and low-noise, first-order expansions (dashed lines).

and optimal in terms of mean-squared error. In all simulations
we use random measurement kernels, where the entries of the
kernel are realizations of i.i.d. Gaussian random variables with
zero mean and unit variance which are subsequently normal-
ized by a scaling factor that guarantees that tr

(
Φ†Φ

)
≤ `.

A. Synthetic data

Fig. 1 shows the MMSE vs. 1/σ2 for a Gaussian source
with dimension n = 5 and rank s = 4. We confirm that the
MMSE phase transition occurs with ` = 4 measurements. We
also confirm that the first-order expansion in (8) captures well
the behavior of the MMSE, both in the presence and absence
of an error floor, for values of 1/σ2 larger than 20-30 dB. In
fact, such noise amplitudes are already well below 1/σ2 = 60
dB, which is a noise level with operational significance for
various image processing applications [33], [34]. Note also that
by taking the number of measurements to be greater than the
number of measurements that achieves the phase transition we
do not affect the MMSE decay but we only affect the MMSE
power offset.

Fig. 2 now shows the values of the MMSE for a 2-
classes GMM input with n = 4, p1 = p2 = 0.5, means
µ

(1)
x = µ

(2)
x = 0, and covariances drawn from a central

Wishart distribution [56, p. 84] with dimension 4 and degrees
of freedom 2, so that s1 = s2 = 2. We report the actual value
of MMSEGM(σ2), the lower bound MSELB(σ2), and the clas-
sify and reconstruct upper bound MSECR(σ2). We also report
another MMSE upper bound associated with a linear estimator,
i.e., the linear minimum mean-squared error (LMMSE) [57].
We notice that when ` = 2 the lower bound converges to
zero as σ2 → 0, whereas the classify and reconstruct upper
bound converges to an error floor. However, it appears that
the classify and reconstruct upper bound captures better the
features of the actual MMSE, which also exhibits an error
floor. On the other hand, notice that when ` ≥ 3 both the lower
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Fig. 2. MMSE vs. 1/σ2 for different numbers of random measurements ` =
2, 3, 4 for a 2-classes GMM source with s1 = s2 = 2. Actual MMSE (solid
lines), lower bound (dashed lines), CR upper bound (dashed-dotted lines) and
LMMSE upper bound (triangles).

and upper bound converge to zero as σ2 → 0, as expected. It is
also interesting to observe that the LMMSE upper bound does
not describe crisply the MMSE phase transition: it is in fact
possible to show by leveraging the previous machinery that
such a sub-optimal estimator requires the number of random
measurements to be larger than or equal to the dimension
of the direct sum of the subspaces spanned by the different
signals in the different classes for a MMSE phase transition
to occur.

Another interesting feature relates to the fact that when
` = 3 both the upper bound to the MMSE and the actual
MMSE are O(σ) as σ2 → 0 whereas when ` > 3 the upper
and lower bound to the MMSE and the actual MMSE are
O(σ2) as σ2 → 0. This behavior appears to be related to
the fact that when ` = 3 or ` > 3 the misclassification
probability of the optimal MAP classifier, which is also used
in the classify and reconstruction procedure, approaches zero
as σ2 → 0 with different decays [51]. This behavior stands
in contrast to the scalar case [50] and implies that the MMSE
dimension corresponding to the mixture of Gaussian vectors
is not equal to the mixture of the MMSE dimensions of the
individual Gaussian vectors: this is only true when the first-
order expansions of lower and the upper bound coincide.

B. Real data

The phase transition phenomena can also be observed in
the reconstruction of real imagery data. As an example, we
consider a 256× 256 cropped version of the image “barbara”.
The input x, in this case, represents 8 × 8 non-overlapping
patches extracted from the image. The source is described by
a 20-classes GMM prior that is obtained by training the non-
parametric, Bayesian, dictionary learning algorithm described
in [25] over 100,000 patches randomly extracted from 500
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Fig. 3. PSNR vs. 1/σ2. Image “barbara.png”, projected onto a GMM model
with smax = 14.

images in the Berkeley Segmentation Dataset5. Note that the
image “barbara” is not in the training ensemble. The so
obtained GMM prior has full rank, class conditioned input
covariance matrices Σ

(k)
x . In order to fit the trained GMM

to the low-rank model (or, equivalently, to the model of a
union of subspaces), which is the basis of our theory, only
the first smax = 14 principal components of each class-
conditioned input covariance matrix are retained, and the
remaining 50 eigenvalues of each covariance matrix are set
to be equal to zero. Moreover, our test image is modified
by projecting each patch extracted from the image “barbara”
onto the 14-dimensional sub-space corresponding to the low-
rank input covariance matrix of the class associated with
that particular patch. Note that projecting the image onto the
lower dimensional subspaces does not introduce substantial
distortion. In fact, the peak signal-to-noise ratio (PSNR) of
the projected image with respect to the original ground truth
in this case is equal to 77.3 dB6. This is a manifestation of the
fact that natural images are well represented by “almost low-
rank” GMM priors, and the eigenvalues of the corresponding
class conditioned input covariance matrices decay rapidly.
This underscores that the low-rank GMM representation is a
good model for patches extracted from natural imagery, and
therefore of significant practical value.

Reconstruction of the vectors x from the compressive mea-
surements y is performed by the conditional mean estimator
corresponding to the trained GMM prior after taking the
14 principal components, which can be written in closed-
form [25].

Fig. 3 shows the PSNR vs. 1/σ2 for different numbers of
compressive measurements. It is possible to clearly observe

5http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/
resources.html

6The PSNR values obtained by choosing smax = 13 and smax = 15 are
76.9 dB and 78 dB, respectively. On the other hand, setting smax = 10
reduces the PSNR to 75.2 dB and it induces visible distortion effects.
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Fig. 4. Barbara. The right hand column contains the non-compressed image “barbara.png” after projection onto a GMM model with smax = 14. The three
rows correspond to ` = 8, 12, 16 random measurements, from the top to the bottom. The first three columns, from left to right, correspond to the noise levels
1/σ2 = 20, 40, 60 dB.

the phase transition when ` > smax and that, similarly to what
has been noted in Fig. 2, the PSNR increases approximately
as O(1/σ) when ` = 15, and as O(1/σ2) when ` > 15.
Finally, in Fig. 4 are reported some reconstruction examples.
The right hand column contains the image “barbara” projected
onto the union of 14-dimensional subspaces that characterize
the GMM prior. The three rows correspond to ` = 8, 12, 16
random measurements, from the top to the bottom. The first
three columns, from left to right, correspond to the noise levels
1/σ2 = 20, 40, 60 dB. When the number of measurements
is below the phase transition, perfect reconstruction is not
possible, even when σ2 → 0: this is particularly evident by
observing the high-frequency content of the image. On the
other hand, when ` = 16, a clear phase transition is observable.

It is also relevant to reflect further on the fact that our
theory applies only to low-rank rather than the so-called
“approximately” low-rank models. Arguably, a GMM model
trained with natural images is not exactly low-rank, as real
signals do not perfectly lie on the union of low-dimensional
subspaces [25]. In fact, it is typical to describe the class con-
ditioned covariance matrices associated with a GMM model
as follows:

Σ(k)
x = Σ̄(k)

x + ε In, (34)

where the matrix Σ̄
(k)
x is exactly low-rank, and the matrix

ε In accounts for model mismatch between real data and
their projection onto the principal components that contain
the large majority of the information associated to the data.
Given the fact that the compressive sensing model in (1) with
w ∼ N (0, σ2 I) and full-rank GMM with class conditioned
covariances Σ

(k)
x is mathematically equivalent to the compres-

sive sensing model in (1) with w ∼ N (0, εΦΦ† + σ2 I) and
low-rank GMM with class conditioned covariances Σ̄

(k)
x , then

it is possible to appreciate the impact of model mismatch on
the theory.

For example, consider our earlier testing model with im-
ages that are not projected onto lower-dimensional union of
subspaces. It is evident that the reconstruction PSNR would
now be upper bounded as σ2 → 0 for all ` < n, in view
of the noise amplification from σ2 to roughly7 1/(σ2 + ε).
This also leads to the conclusions that the performance of the
“approximately” low-rank model as σ2 → 0 is comparable
to the performance of the low-rank model with 1/σ2 = 1/ε.
That is, operating an “approximately” low-rank model at a

7In fact, the noise power depends also on the value of tr(ΦΦ†). However,
when the entries of Φ are i.i.d., zero-mean, Gaussian, the matrix ΦΦ†

approximates well the identity matrix.
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certain σ2 leads to a performance that is comparable to that
of operating a low-rank model at σ2 + ε.

Nonetheless, it is worth noting that natural images projected
on low-rank union of subspaces turn out to be very good
approximations of the original images, as it was shown for
the case of the image “barbara” (see Fig. 4), thus validating
the effectiveness of this model in representing real data.

VII. CONCLUSION

The principal contribution is a non-asymptotic (in the num-
ber of dimensions) characterization of MMSE phase tran-
sitions associated with the reconstruction of GMM signals
from noisy compressive measurements. In particular, it has
been shown that with either random or optimal kernel designs
it is sufficient to take the number of measurements to be
strictly greater than the largest dimension of the sub-spaces
spanned by the class-conditioned signals in the GMM model
– a dual of sparsity – for a phase transition to occur. It
has also been shown that additional measurements and/or
designed measurements translate only onto (occasionally) an
improved MMSE decay or an improved MMSE power offset
in the low-noise regime. Another interesting by-product of the
contribution is the fact that a (sub-optimal) classify and re-
construction procedure is nearly phase-transition optimal. This
also provides a rationale for the state-of-the-art performance
of similar reconstruction procedures, as reported in the recent
literature [29], [30].

APPENDIX A
USEFUL LEMMAS

Lemma 1: Let A ∈ Rn×n be a positive semidefinite matrix.
Then, for all x ∈ Rn,

Ax = 0⇔ x†Ax = 0. (35)

Proof: If x†Ax = 0, then, ‖A 1
2 x‖2 = 0, in which

A
1
2 is the positive semidefinite matrix square root of A.

Therefore, A
1
2 x = 0, which also implies Ax = 0. The

opposite implication in (35) is straightforward.
Lemma 2: Given two positive semidefinite matrices,

A1,A2 ∈ Rn×n, with ranks s1 and s2, respectively, and
s12 = rank(A1 + A2), then

s1 + s2
2

= s12 ⇔ Null(A1) = Null(A2)

⇔ Im(A1) = Im(A2) (36)

Proof: First, it is easy to show that

Null(A1 + A2) = Null(A1) ∩Null(A2), (37)

by leveraging Lemma 1 and considering that x†(A1+A2)x =
0 if and only if x†A1x = 0 and x†A1x = 0. Therefore,
dim Null(A1 + A2) ≤ dim Null(A1) and dim Null(A1 +
A2) ≤ dim Null(A2), which immediately implies s12 ≥
max{s1, s2}, and, in our case, s1 = s2 = s12. As a
consequence, we have that

dim Null(A1) = dim Null(A2) = dim Null(A1 + A2),
(38)

which can be combined with (37) to give

Null(A1) = Null(A2). (39)

Moreover, the last part of (36) can be easily obtained by
observing that the image of a positive semidefinite matrix is
the orthogonal complement of its null space.

Lemma 3: Let A ∈ Rn×n be a positive semidefinite matrix
with s = rank(A) and let x ∈ Rn. Then,

rank(A + xx†) = s+ 1⇔ x /∈ Im(A). (40)

Proof: First, note that rank(A + xx†) ≤ s + 1 [58,
§0.4.5.d]. Then, the proof is based on expressing A in
terms of its eigenvalues λAi and eigenvectors uAi as A =∑
i λAiuAiu

†
Ai

.

APPENDIX B
PROOF OF THEOREM 1

We can rewrite the expression of the MMSE for Gaussian
input sources in (6) by making use of the cyclic property of
the trace and the matrix inversion Lemma [58, §0.7.4]

I−A†(AA† + c−1I)−1A = (cI + A†A)−1, (41)

with A = ΦΣ
1
2
x , as

MMSEG(σ2) = tr

(
Σx

(
I + 1/σ2Σ

1
2
x Φ†ΦΣ

1
2
x

)−1)
(42)

= tr
(
ΣxU

(
I + 1/σ2Λ

)−1
U†
)

(43)

= tr
(
ΣxUΛ̃U†

)
, (44)

where we have used the eigenvalue decomposition of
Σ in (7) and introduced the diagonal matrix Λ̃ =

diag
(

1
1+λ1/σ2 , . . . ,

1
1+λ`′/σ

2 , 1, . . . , 1
)

. Note now that the
eigenvalue decomposition of a positive semidefinite matrix can
also be written as

A = UAΛAU†A =
∑
i

λA,iuA,iu
†
A,i, (45)

in which uA,i is the i-th column of UA. Therefore, the MMSE
for Gaussian inputs can be expressed as

MMSEG(σ2) =

`′∑
i=1

1

1 + λi/σ2
u†iΣxui +

n∑
i=`′+1

u†iΣxui

(46)
where u1, . . . ,u`′ are the eigenvectors of Σ correspond-
ing to the positive eigenvalues λ1, . . . , λ`′ and the vectors
u`′+1, . . . ,un can form any orthonormal basis of the null
space Null(Σ), which has dimension dim(Null(Σ)) = n− `′.
The first term in (46) tends to zero when σ2 → 0, so
that the phase transition of the MMSE is determined by the
second term, which can be characterized on the basis of the
description of the two null spaces Null(Σ) and Null(Σx). In
particular, note that

Null(Σx) ⊆ Null(Σ), (47)

as for each v ∈ Rn such that Σxv = 0, it holds also
Σv = 0, since Σ

1
2
x v = 0. Therefore, we can choose the basis
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u`′+1, . . . ,un as follows. The last n−s vectors us+1, . . . ,un
form an othonormal basis of of the space Null(Σx) and the
remaining vectors u`′+1, . . . ,us form an orthonormal basis of
Null(Σ) ∩Null(Σx)⊥. Then, we can write (46) as

MMSEG(σ2) =

`′∑
i=1

1

1 + λi/σ2
u†iΣxui +

s∑
i=`′+1

u†iΣxui.

(48)
Observe that, when ` ≥ s, then `′ = ` ≥ s, and the second
term in (48) is identically equally to zero, as the linear space
Null(Σ) ∩ Null(Σx)⊥ contains only the zero vector, and the
Gaussian MMSE tends to zero when σ2 → 0. On the other
hand, if ` < s, by Lemma 1, u†iΣxui > 0, for i = `′+1, . . . , s
and the MMSE is characterized by an error floor in the low-
noise regime. Specifically, we can expand the Gaussian MMSE
as

MMSEG(σ2) =MG
∞ +DG · σ2 + o

(
σ2
)

(49)

where

MG
∞ =

s∑
i=`′+1

u†iΣxui, , DG =

`′∑
i=1

1

λi
u†iΣxui. (50)

APPENDIX C
PROOF OF THEOREM 3

The proof is based on the analysis of the upper bound on
MMSEGM(σ2) obtained by considering the mean-squared er-
ror associated to the classify and reconstruct decoder described
in Section IV-B. The value of such upper bound is given by

MSECR(σ2) =
∑
k

pk
∑
m

pĉ|c(m|k)

·E
[
‖x−Wm(y)‖2|ĉ = m, c = k

]
(51)

=
∑
k

pkpĉ|c(k|k)E
[
‖x−Wk(y)‖2|ĉ = c = k

]
+
∑
k

pk
∑
m 6=k

pĉ|c(m|k)

·E
[
‖x−Wm(y)‖2|ĉ = m, c = k

]
, (52)

where we have denoted by pĉ|c(m|k) the probability that the
MAP classifier yields ĉ = m given that the actual input class
is c = k. The first term, then, can be upper bounded by using
the law of total probability, and we obtain

MSECR(σ2) ≤
∑
k

pk E
[
‖x−Wk(y)‖2|c = k

]
+
∑
k

pk
∑
m6=k

pĉ|c(m|k)

·E
[
‖x−Wm(y)‖2|ĉ = m, c = k

]
(53)

= MSELB(σ2)

+
∑
k

pk
∑
m6=k

pĉ|c(m|k)

·E
[
‖x−Wm(y)‖2|ĉ = m, c = k

]
, (54)

where MSELB(σ2) is the lower bound to the MMSE, which
has been shown to approach zero when σ2 → 0, since we are
assuming here that ` > smax.

Then, we need to show that, when m 6= k,

lim
σ2→0

pĉ|c(m|k)E
[
‖x−Wm(y)‖2|ĉ = m, c = k

]
= 0, (55)

and we consider separately in the remainder of this Appendix
the two cases for which the subspaces corresponding to
the images of the input covariance matrices of class k and
m completely overlap or not. In other terms, we consider
separately the cases in which the affine spaces spanned by the
signals in class k and class m differ only for a fixed translation
or not.

A. Non-overlapping case: sk+sm
2 < skm

In this case, given that ` > smax, by leveraging the results
in [51, Theorem 2], we can state that

lim
σ2→0

pĉ|c(m|k) = 0. (56)

The misclassification probability pĉ|c(m|k) is the measure of
the set representing the decision region of the MAP classifier
associated with class m with respect to the Gaussian measure
corresponding to the Gaussian distribution

N
([

µk

0

]
,

[
Σ

(k)
x 0
0 σ2 · I

])
. (57)

Moreover it can be shown that, in the limit σ2 → 0, the product
in (55) is upper bounded by the integral of a measurable
function over a set with measure zero, which is then equal
to zero.

B. Overlapping case: sk+sm
2 = skm

Observe that, in this case, Lemma 2 states that Im(Σ
(k)
x +

Σ
(m)
x ) = Im(Σ

(k)
x ) = Im(Σ

(m)
x ). Then, we further consider

two separate cases: i) the difference of the mean vectors of
classes k and m lies on the subspace spanned by the covariance
matrices of the two classes and ii) the difference of the mean
vectors of classes k and m does not lie on the subspace
spanned by the covariance matrices of the two classes. We
consider first the case in which

µ(k)
x − µ(m)

x /∈ Im(Σ(k)
x + Σ(m)

x ). (58)

For simplicity of notation, we introduce the symbol Mkm =

(µ
(k)
x − µ

(m)
x )(µ

(k)
x − µ

(m)
x )† and we can show that, with

probability 1,

rank(Φ(Σ(k)
x + Σ(m)

x + Mkm)Φ†) = skm + 1, (59)

as, by Lemma 3, rank(Σ
(k)
x + Σ

(m)
x + Mkm) = skm + 1 and

` > skm. This implies that, using again Lemma 3, we have

Φ(µ(k)
x − µ(m)

x ) /∈ Im(Φ(Σ(k)
x + Σ(m)

x )Φ†). (60)

Therefore, by using the result in [51, Theorem 3], we can state
that limσ2→0 pĉ|c(m|k) = 0, and, by using a similar proof to
that presented in the previous paragraphs, we can show that
(55) is satisfied also in this case.

Consider now the case for which

µ(k)
x − µ(m)

x ∈ Im(Σ(k)
x + Σ(m)

x ) = Im(Σ(m)
x ). (61)
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Here, the misclassification probability is not guaranteed to
approach zero when σ2 → 0, and we have to resort to a
different proof technique. The rationale behind this proof is
that also the mismatched mean-squared error approaches zero
in the low-noise regime, provided that the signals in the actual
class k and the mismatched class m span the same space.

By using the law of total probability we can write

pĉ|c(m|k)E
[
‖x−Wm(y)‖2|ĉ = m, c = k

]
≤ MSEMIS

km (σ2)
(62)

where MSEMIS
km (σ2) = E

[
‖x−Wm(y)‖2|c = k

]
is the mis-

matched mean-squared error incurred when estimating signals
drawn from the Gaussian class k with the conditional mean
estimator associated with class m.

Observe that, on denoting by Σ
(k)
y = Iσ2 + ΦΣ

(k)
x Φ† the

covariance matrix of the measurement vector y conditioned
on class k, we can write

MSEMIS
km (σ2) = E

[
tr
(

(x−Wm(y)) (x−Wm(y))
†
)
|c = k

]
= tr

(
Σ(k)

x

)
− 2tr

(
WkΣ

(k)
y W†

m

)
tr
(
WmΣ(k)

y W†
m

)
+ tr (Mkm)

−2tr
(
MkmΦ†W†

m

)
+tr

(
ΦWmMkmΦ†W†

m

)
. (63)

In order to prove that MSEMIS
km (σ2) approaches zero when

σ2 → 0, we can show the following four identities:

lim
σ2→0

tr
(
WkΣ

(k)
y W†

m

)
= tr(Σ(k)

x ); (64)

lim
σ2→0

tr
(
WmΣ(k)

y W†
m

)
= tr(Σ(k)

x ); (65)

lim
σ2→0

tr
(
MkmW†

m

)
= tr (Mkm) ; (66)

lim
σ2→0

tr
(
WmΦMkmΦ†W†

m

)
= tr (Mkm) . (67)

Specifically, we can leverage the inversion Lemma [58]

A(Ic−1 + BA)−1B = I− (I + cAB)−1, (68)

with A = Φ† and B = ΦΣ
(m)
x , and write

tr
(
WkΣ

(k)
y W†

m

)
= tr

(
Σ(k)

x Φ†(Iσ2 + ΦΣ(m)
x Φ†)−1

ΦΣ(m)
x

)
(69)

= tr
(
Σ(k)

x

)
−tr

(
Σ(k)

x (I +
1

σ2
Φ†ΦΣ(m)

x )−1
)
. (70)

Then, by noting that the matrix Φ†ΦΣ
(m)
x is diagonalizable

with probability 1, and by following steps similar to those
adopted in the proof of Theorem 1, we are able to prove (64).
Finally, also (65), (66) and (67) are proved by following a
completely similar approach.
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