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Abstract—We present a multiresolution classification frame-
work with semi-supervised learning on graphs with application
to the indirect bridge structural health monitoring. Classification
in real-world applications faces two main challenges: reliable fea-
tures can be hard to extract and few labeled signals are available
for training. We propose a novel classification framework to ad-
dress these problems: we use a multiresolution framework to deal
with nonstationarities in the signals and extract features in each
localized time-frequency region and semi-supervised learning to
train on both labeled and unlabeled signals. We further propose
an adaptive graph filter for semi-supervised classification that
allows for classifying unlabeled as well as unseen signals and for
correcting mislabeled signals. We validate the proposed frame-
work on indirect bridge structural health monitoring and show
that it performs significantly better than previous approaches.

Index Terms—Multiresolution classification, semi-supervised
learning, discrete signal processing on graphs, adaptive graph
filter, indirect bridge structural health monitoring.

I. INTRODUCTION

C LASSIFICATION is a signal processing task whose goal
is to design a map that associates each input signal with

a predefined class label. It is widely used in a number of real-
world applications, such as geophysical waveform classification
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[1], radar signal classification [2], structural health monitoring
[3], computer-aided diagnosis of medical images and classifica-
tion of biological images [4]–[6], among others. A generic clas-
sification system consists of a feature extractor and a classifier:
a feature extractor reduces the dimensionality of the problem,
while a classifier labels the features. In many real-world prob-
lems, however, reliable features can be hard to extract; for ex-
ample, different lighting conditions can derail robust face recog-
nition [7]. Moreover, few labeled signals could be available for
training as it could be either too time consuming or expensive
to label signals; for example, a research pathologist can spend
hours labeling one histology image only.
We study one such real-world classification problem, indi-

rect bridge structural health monitoring, in this paper. Assessing
and monitoring bridges have been intense areas of interest for
some time, especially in the aftermath of several bridge col-
lapses, such as the I-35 bridge over the Mississippi River on
Aug. 1, 2007, Shershan Bridge, Pakistan, Sept. 1 2007, Harp
Road Bridge, USA, Aug. 15 2007, Loncomilla Bridge, Chile,
Nov. 18, 2004. Significant efforts have been made to reduce
the number of structurally deficient bridges, however, near 11%
of bridges in the United States are actually structurally defi-
cient; there is thus a need for bridge health monitoring. The cur-
rent standard in bridge structural health monitoring is based on
visual inspections, which are time-consuming, subjective and
cannot be done frequently on all the bridges.
Sensor-based structural health monitoring systems have been

proposed to automate and improve on the visual inspection
process. One approach is to install an array of different sen-
sors, such as strain gauges and accelerometers, directly on the
bridge. The drawback is that such sensors still require a sophis-
ticated and expensive electronic infrastructure with installation,
maintenance and power support. Recently, indirect approaches
have been proposed [8]–[10] based on using moving vehicles
to collect acceleration signals from accelerometers inside
the vehicles, a more efficient solution that is expected to be
economically feasible (see Fig. 1).
Acceleration signals collected from existing structures are

often nonstationary and have relevant information that is present
in localized time-frequency regions; long-term behavior such as
the natural frequency and the harmonic frequencies can be ob-
served in the frequency domain, while the short-term behavior
such as bumps and local roughness can be observed in the time
domain. It is well known that multiresolution techniques, such
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Fig. 1. Indirect bridge structural health monitoring system. Acceleration sig-
nals are collected from a moving vehicle and sent to a classification system,
which identifies the bridge status and reports it to a transportation authority.

as wavelets, are suited to the analysis of such signals, allowing
for signal-adapted decompositions. In addition, on operational
bridges, signals are gathered frequently but visual inspections
typically occur only every two years, which naturally leads to
a small number of labeled signals and a large number of unla-
beled ones; this constraint calls for semi-supervised learning.
We thus propose a novel classification framework that takes

advantage of multiresolution classification [4], [11], which ex-
tracts hidden features in localized time-frequency regions (sub-
bands), and semi-supervised learning [12], which uses both la-
beled and unlabeled signals for classification; we make this pos-
sible by developing a semi-supervised weighting algorithm. In
the new framework, (1) each localized subband contributes to
the classification by its discriminative power; and (2) both la-
beled and unlabeled signals provide information.
Among semi-supervised classifiers, graph-based ones are

often used, because they are able to represent data with complex
structure. We thus propose a novel semi-supervised classifier,
adaptive graph filter; it extends the applications of discrete
signal processing on graphs [13] to classification [14]. A graph
structure is built by defining each node to be a signal in a given
dataset and each edge to be the similarity between each pair of
signals. The adaptive graph filter classifies signals by filtering
on the graph structure and propagating labels from labeled to
unlabeled signals. It thus allows for classifying unlabeled, but
also unseen signals (in which case we also add regression) and
for correcting mislabeled signals. Furthermore, we establish
the connection to the theory of diffusion maps [15] as well as
that of diffusion wavelets [16], which allows us to view the
adaptive graph filter as a multiresolution classifier on graphs;
the multiresolution nature of the framework is thus felt twofold.
We validate our proposed framework and algorithm on a lab-

scale bridge-vehicle dynamic system, and show excellent per-
formance. To show generality of the system without changing
the focus of the paper, we include results on additional datasets
on the reproducible research page for the paper [17].
Previous Work: Multiresolution classification was orig-

inally proposed for bioimaging applications with excellent
performance on classifying images of protein subcellular lo-
cations [4], developmental stages of Drosophila embryos [5],
germ layer components in teratomas [6], and even fingerprint
recognition [18]. Previous work on semi-supervised learning
includes generative mixture models with expectation maxi-
mization, co-training, transductive support vector machine and

graph-based approaches [12], each of which makes specific
assumptions on how to use unlabeled signals to help classi-
fication. Signal processing on graphs has been proposed as a
framework to build tools to analyze structured signals and is a
rather recent development [13], [19]. Indirect bridge structural
health monitoring determines the state of the bridge by using
advanced signal processing techniques to analyze vibrational
signals collected from the dynamic responses of vehicles
traversing a bridge [9], [10], [20]–[22].
Contributions: Our contributions are as follows:
• A novel classification framework that combines multires-
olution classification with semi-supervised learning.

• A novel semi-supervised classifier, adaptive graph filter,
which allows for classifying unlabeled as well as unseen
signals and for correcting mislabeled signals.

• A promising solution to indirect bridge health monitoring
validated on a lab-scale bridge-vehicle dynamic system.

Outline of the Paper: Section II states the problem and briefly
reviewsmultiresolution classification, semi-supervised learning
and signal processing on graphs; Section III describes our pro-
posed framework for semi-supervised multiresolution classifi-
cation, while Section IV describes our proposed adaptive graph
filter for semi-supervised classification. The algorithms are val-
idated in Section V on acceleration signals collected from a
lab-scale bridge-vehicle dynamic system. Section VI concludes
with discussion and pointers to future directions.

II. BACKGROUND AND PROBLEM FORMULATION

In this section, we cover the background material necessary
for the rest of the paper. We start with the classification problem
and then a supervised classification framework, multiresolution
classification system. Next, we introduce signal processing on
graphs, which lays a foundation for our proposed semi-super-
vised classifier. Finally, we overview semi-supervised learning,
which we will use in Section III.

A. Classification

The goal of classification is to label signals as belonging to
one of a number of given classes [23]. Let
be the given dataset with signals, the first
belonging to the labeled dataset , and
the last belonging to the unlabeled dataset

. Thus, the inputs to the classifier are the dataset
and the ground-truth labels for
the labeled dataset , while the outputs are the estimated labels

for the unlabeled dataset
(see Table I and Algorithm 1). Note that we categorize signals
as labeled, unlabeled and unseen. Both labeled and unlabeled
signals are observed in the dataset; while unseen signals are not
in the current dataset.
We formulate the problem as designing a map that associates

an input signal to a class label with a certain confidence. That is,
we view the label as a confidence vector , where the th
component, , is the confidence that a signal belongs to the th
class. The confidence vector for a labeled signal ,
is the ground-truth vector, , with 0s everywhere except 1
in position indicating membership in class . The ground-truth
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TABLE I
PARAMETERS USED IN A GENERIC CLASSIFICATION SYSTEM

Algorithm 1: Generic classification

Input input dataset

ground-truth labels for

Output estimated labels for

Function C

feature extraction

classification

return

matrix of size collects
all ground-truth vectors as its rows.
Typically, a generic classification system will have an inter-

mediate block between the input and the output, a feature ex-
tractor F, aimed at reducing the dimensionality of the problem;
this is followed by a classifier C. If the classifier is supervised,
we denote it by SC (see Fig. 2 and Algorithm 1).

B. Multiresolution Classification

Multiresolution classification is a supervised classifica-
tion framework (see Fig. 2). It decomposes a signal into
localized space-frequency subbands using multiresolution
transforms, both bases and frames [24]–[29]. In each subband,
multiresolution classification extracts features, classifies them,
and produces a local classification decision. A supervised
weighting algorithm combines all local decisions into a global
decision. This process implicitly mimics the use of wavelet
packets, a data-adaptive multiresolution technique [30], and is
summarized in Algorithm 2.
1) Multiresolution Decomposition: Multiresolution classi-

fication starts with the decomposition of signals using a given
multiresolution transform into several localized space-fre-
quency subbands. For the th signal, the multiresolution
coefficients in the th subband are

Fig. 2. Supervised multiresolution classification decomposes a signal into
localized space-frequency subbands using a given multiresolution transform,
followed by feature extraction and supervised classification in each subband,
yielding a local classification decision. A supervised weighting algorithm
combines all local decisions into a global decision.

where is the multiresolution transform function in that sub-
band. It is implemented using a signal processing device called
a filter bank; we have a choice of a number of multiresolution
transforms D available, both nonredundant (bases) as well as re-
dundant ones (frames) [24]–[29].
2) Feature Extraction: In each subband, features are ex-

tracted depending on the application at hand. These features can
be generic features, such as texture, Gabor, etc. [31]–[38], or
can be designed using expert knowledge [39]–[42]. For the th
signal, the feature vector in subband is

where is the feature extraction function in that subband; dif-
ferent subbands can use different feature extraction functions.
3) Supervised Classification: In each subband, the features

extracted in the previous stage are fed into a supervised classi-
fier. The classifier can be any state-of-the-art classifier, such as
logistic regression or support vector machine [23]. For the th
signal, the confidence vector in the th subband is

where is the supervised classification function in that
subband; different subbands can use different classification
functions.
4) Supervised Weighting: To combine the subbands’ classi-

fication decisions, we collect subbands’ individual confidence
vectors into a confidence matrix , and define the
weighting function SW as that taking weighted subbands’ in-
dividual confidence vectors and producing a single confidence
vector,

Here, the weight vector assigns a weight to each sub-
band according to its discriminative power; thus tells us how
reliable subband is. The weight vector is found by optimizing
a supervised weighting objective function

(1)

with the constraint . In other words, the optimal
weight vector is the one found to be the most reliable over la-
beled signals only. After weighting, we compute the global de-
cision as

(2)
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Algorithm 2: Multiresolution classification

Input input dataset

ground-truth labels for

Output estimated labels for

Parameters per subband

multiresolution function

multiresolution
coefficients

feature extraction
function

feature vector

supervised classification
function

confidence vector

for all subbands

SW supervised weighting
function

confidence matrix

weight vector,

final confidence vector

Function MRC

multiresolution
decomposition

feature extraction

supervised classification

supervised weighting

return

Note that in this section we overloaded the symbol , hope-
fully without confusion; is the th component of the confi-
dence vector , while is the confidence vector of subband .

C. Signal Processing on Graphs

With the development of social, biological, and physical net-
works, signals with complex structure are arising. Traditional
discrete signal processing is mainly suited to processing reg-
ularly sampled low-dimensional signals, such as discrete time
and space signals. To mitigate the problem, signal processing
on graphs is emerging as a tool to analyze high-dimensional sig-
nals with irregular structure [19], [43], [44], defined on a more
general domain.
We focus here on one of the recent developments, discrete

signal processing on graphs [13]. The dataset is represented by
a , where is the set of nodes

representing signals and is a graph shift describing
the relational dependencies among the nodes. The graph shift
is not necessarily an adjacency matrix nor does it necessarily

have a probabilistic meaning. A graph signal is then defined
as the following map:

where is the dimension of the graph signal on each node. A
linear shift-invariant system, or, a graph filter, is defined as

(3)

with .
Then, a graph filter applied to a graph signal

produces an output, which is again a graph signal,

Discrete signal processing on graphs then defines a series of
standard signal processing concepts including the graph Fourier
transform, frequency, spectrum, spectral decomposition, and
impulse and frequency responses [13].

D. Semi-Supervised Learning

Traditional classifiers typically fall under supervised
learning, with only labeled signals to train. In many real-world
applications, however, a large number of labeled signals is
not available, which can cause overfitting. Semi-supervised
learning is a technique for training classifiers with both labeled
and unlabeled signals, which assumes that unlabeled signals can
provide distribution information to build a stronger classifier.
Some well-known semi-supervised learning algorithms include
generative mixture models with expectation maximization,
co-training and graph-based approaches [12]. Generative mix-
ture models with expectation maximization assume that classes
produce well clustered signals, and that with large number of
unlabeled signals, the mixture components can be identified
[45]. Co-training assumes that the features are sufficiently
discriminative that they can be split into two sets, with each
set being able to build a good classifier [46]. Graph-based
approaches assume that while the measured signals are defined
in a high-dimensional space, they exist in a low-dimensional
manifold; a graph is then constructed by measuring the sim-
ilarity of each pair of signals, and those deemed similar are
labeled as belonging to the same class [47].
We focus here on label propagation, one of the graph-based

approaches. Label propagation classifies signals by under-
standing how labels propagate on a graph; two methods are in
use, diffusion functions [48] and harmonic functions [49], [50].
Both methods work based on propagating the known labels
on the transition matrices. Diffusion functions propagate those
labels a finite number of times without any intervention. Har-
monic functions, on the other hand, correct the known labels
to the initial values after each propagation and propagate an
infinite number of times. The advantage of harmonic functions
is that the known labels keep pushing the decision boundaries
to low-density gaps. The drawback is that if the known labels
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are not reliable, harmonic functions may keep diffusing wrong
information.

III. SEMI-SUPERVISED MULTIRESOLUTION CLASSIFICATION

Multiresolution classification analyzes data to uncover
hidden information; in its original form, it uses supervised
classification, and can thus train only on labeled signals. When
the labeled dataset is small or contains improperly labeled
signals, the classification boundary and the weights assigned
to subbands can be unreliable. Semi-supervised learning, on
the other hand, uses the entire dataset to help classification,
but works on one resolution level only. We thus propose to
merge these two concepts and gain the best of both worlds: a
semi-supervised multiresolution classifier. We stress here that
this is not a simple combination of known techniques, as there
is no known way to weigh subband decisions for unlabeled
signals; this is one of our contributions.

A. Semi-Supervised Classification

Fig. 3 summarizes our proposed framework; the multireso-
lution decomposition and feature extraction blocks from Fig. 2
work as before. The first change is that the supervised classifi-
cation block is replaced by a semi-supervised one so we can use
both labeled and unlabeled signals to make a labeling decision
in each subband. For the th signal, the confidence vector in the
th subband is now

(4)

where is the semi-supervised classification function in
subband . As for supervised classification, SSC can be chosen
from a variety of approaches; we propose a new one, adaptive
graph filter, described in Section IV.

B. Semi-Supervised Weighting

We now explain how to build a semi-supervised weighting
block, that is, how to weigh decisions from all the subbands to
get a global decision in a semi-supervised manner.
Labeled signals contribute to weighting directly by fitting

their confidence vectors from all the subbands to the ground
truth; unlabeled signals cannot do the same as they do not have
the ground truth. We thus face the task of finding a way to
measure the confidence of labeling an unlabeled signal. The
simplest way would be just to assign the label of the largest
component in the confidence vector. We encounter a problem,
however; for example, let and

be confidence vectors for two
signals. While we can label as Class 1 easily, it is clearly
hard to make a decision for . This maximum confidence
measure would assign both signals to Class 1, however, be-
cause it does not take into account the rest of the confidence
in the confidence vector. A way to rectify that would be to
use Shannon entropy; if the entropy is small (less uncertainty,
high confidence), it is easy to assign a label to the signal, and
vice versa. We still face a problem in the above case because
the Shannon entropy tells us that we can label with higher
confidence (less uncertainty) as its entropy, ,

Fig. 3. Semi-supervised multiresolution classification. Supervised classifica-
tion and weighting algorithm in Fig. 2 are replaced with their semi-supervised
counterparts so that unlabeled data can contribute to classification.

is lower than that for . To resolve this issue,
we modify the Shannon entropy measure as,

(5)

where is the indicator function of an interval
with the first and second largest element in ,

respectively, is the threshold, and is a penalty function
that is large when the first and second largest elements are close.
In other words, when the difference between the two largest
elements is large, the first term in (5) takes over and

; when, on the other hand, the difference between the
two largest elements is small, the second term in (5) takes over
and the uncertainty is large.
We can now use this new uncertainty measure to say that

the uncertainty of the th subband in labeling the th signal is
. Assuming that each signal contributes equally to its

subband, we define the uncertainty of each subband as the mean
of the uncertainty of all the confidence vectors,

We now define the discriminative power of the th subband
to be the confidence

(6)

where is the decay coefficient that controls the distribution of
the discriminant power from all the subbands. When the uncer-
tainty of a subband is large, the confidence is small and the sub-
band gets assigned a low weight, and vice versa. Confidences
from all the subbands are collected into a vector ; note that

.
We now find the weight vector by optimizing a semi-super-

vised weighting objective function,

(7)

with the constraint , and where is
the labeling ratio. The first term in (7) represents the contribu-
tion from all labeled signals and is a scaled version of (1). The
second term in (7) represents the contribution from all unlabeled
signals; to obtain it, we fit weights to subbands’ confidences.We
use the labeling ratio to balance these two terms. Since this is a
convex optimization problem, it is numerically efficient to ob-
tain the global optimum by any standard convex optimization
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Algorithm 3: Semi-supervised multiresolution classification

Input input dataset

ground-truth labels for

Output estimated labels for

Parameters per subband

multiresolution
function

multiresolution
coefficients

feature extraction
function

feature vector

semi-supervised
classification function

confidence vector

for all subbands

SSW semi-supervised
weighting function

confidence matrix

weight vector,

final confidence vector

Function SSMRC

multiresolution
decomposition

feature extraction

semi-supervised
classification

semi-supervised
weighting

return

package. As in (2), after weighting, we compute the global de-
cision as

(8)

where (see Algorithm 3).

IV. ADAPTIVE GRAPH FILTER

The idea of using a graph filter as a binary classifier was
first proposed in [13]. For practical applications, however, its

use is limited: First, it can only perform binary classification;
then, it trains the filter coefficients by choosing a local optimum;
and finally, it cannot classify unseen signals. Here, we propose
an adaptive graph filter as a semi-supervised classifier in (4)
that resolves these problems; we also connect this new adaptive
graph filter to diffusion maps and diffusion wavelets.
In (4), for the signal and subband , the inputs to the semi-

supervised classifier are the feature vector and the ground-
truth matrix , and the output is the confidence vector . For
simplicity, in this section we omit the subband index and write

; it should be understood, however, that an adaptive
graph filter is applied in each subband.

A. Graph Filtering as Semi-Supervised Classification

We start by outlining the basic idea, followed by detailed de-
velopments. Let the input graph signal be a prior confidence ma-
trix formed from the ground-truth matrix and the graph shift be
the Hermitian transpose of the transition matrix. An adaptive
graph filter is then built by combining a series of graph shifts.
The filter coefficients of the graph filter are trained by fitting
the estimated results to the known labels and minimizing the la-
beling uncertainty. The output graph signal after filtering is the
posterior confidence matrix whose th row will be the desired
confidence vector .
Let be a graph with a set of fea-

ture vectors in the given subband for the entire dataset. Because
we want to be able to represent directed graphs, we propose the
graph shift to be

(9)

where is a local distance measurement, such as the norm or
the cosine distance, and is a scaling coefficient, which controls
the bandwidth. The graph shift we defined here is the Hermitian
transpose of the transition matrix of the graph. The graph shift
thus has a probabilistic interpretation: gives the probability
that the th node jumps to the th node in one step [51].
We now build a graph filter as in (3), except that, because of

the dependencies on the data in (9), this is an adaptive graph
filter,

(10)

Note that we omit the 0th term since, as we will see, it does
not contribute to classification. The graph filter thus represents
the relational dependencies among signals represented via their
feature vectors.
Let the graph signal be the confidence matrix of all the sig-

nals on the graph, called prior confidence matrix, that is, the
following map:
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defined as

,

In other words, the first rows of are the confidence ma-
trix representing the labeled dataset, while the other rows
are all zeros representing the unlabeled dataset. The prior confi-
dence matrix thus starts with the prior knowledge on the labeled
dataset (the ground-truth matrix) and without any knowledge on
the unlabeled dataset.
By applying adaptive graph filtering now, the ground truth

propagates from the labeled dataset to unlabeled dataset; the
output graph signal, or, the posterior confidence matrix, is ob-
tained as

(11)

where the th row of the posterior confidence matrix is the
desired confidence vector . Note that graph filtering propa-
gates the labeling information not only from the labeled signals
to the unlabeled signals, but among the labeled signals as well,
giving the mislabeled signals a chance to be corrected, and con-
sequently providing robustness in classification. In other words,
we do not fully trust the initial labels and use the graph structure
to help us arrive at the final labels.
One issue left to address is how to choose the filter coeffi-

cients . We rewrite (11) as

(12)

where (a) follows from (10) and is the confidence
matrix for the th graph shift defined as . For each
, the desired confidence vector ( th row of ) is thus a
weighted linear combination of corresponding rows from each
graph shift . Since a confidence vector may not sum to 1 after
graph filtering, we normalize each confidence vector as

This normalization does not influence the classification result
because we assign the label of the largest component in the con-
fidence vector; the normalization does help calculate the uncer-
tainty measure in (5). It is now clear why we omitted the 0th
term in (10); since , it does not contribute to propa-
gating information from the labeled to the unlabeled data. Fit-
ting these estimates to the known labels and minimizing the la-
beling uncertainty is identical to the semi-supervised weighting
we performed in the last section. We can thus use the same min-
imization as in (7),

(13)

where with the constraint

is the labeling ratio as in (7), is a
confidence matrix of the th signal that collects the graph

shifts’ individual confidence vectors, and
collects the discriminative powers of each graph shift,

where M is the uncertainty measurement as in (5) and is the
decay coefficient as in (6). Note that, to solve (13), we use the
same method as we did to solve (7).
In the first term of (13), we fit the estimated confidence vec-

tors to the ground-truth vectors by changing the filter coeffi-
cients. This is another reason we omit the 0th term in (10).

B. Regression: Handling Unseen Data

As defined, adaptive graph filtering can only handle signals
in the given dataset; should an unseen signal appear, the graph
would need to be rebuilt and the filter coefficients retrained, at
a significant computational cost. To handle unseen signals, we
introduce regression.
We assume that each signal is randomly sampled from some

continuous distribution and that the signals with the same label
originate from the same distribution (recall that signals here are
subband feature vectors). If we use the given signals and their
posterior confidence vectors to estimate the distributions,
we can label those unseen signals originating from these distri-
butions. The task is thus to design a regression function to map
the unseen signals to their posterior confidence vectors.
Given the subband feature vectors and their

posterior confidence vectors , for a batch of unseen signals
, the posterior confidence matrix for the

unseen signals is

(14)

where is a generic form of the smoothing matrix
determined by some regression technique, such as polynomial
regression, spline regression or kernel regression [52]. For the
regularized reproducing kernel regression, a valid kernel func-
tion is first chosen to measure the inner product of
and in a higher-dimensional space, and then, the smoothing
matrix is defined as

where is a regularization parameter, is an
identity matrix,

, and .
The smoothing matrix calculates the relational dependencies
between the unseen and given signals. Closer dependencies
lead to higher values in the smoothing matrix. Because of this,
the generic regression model predicts the posterior confidence
vector of the new signal by weighing the posterior confidence
vectors of the given signals locally, which means that the
signals close by have similar posterior confidence vectors.
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Fig. 4. Adaptive graph filter. Labeled and unlabeled signals are fed into the
graph filtering block that outputs the estimated labels for unlabeled signals.
Based on existing labeled and unlabeled signals, graph filtering generates the
smoothing matrix for the regression block. Unseen signals are fed into the re-
gression block that outputs the estimated labels for unseen signals.

The forms of one step of graph filtering (11) and one step
of regression (14) are similar. While both of these assume that
similar signals have similar confidence vectors, their goals are
different: the graph filtering step builds the relationship between
unlabeled and labeled signals and produces labels from limited
label information, while the regression step builds the relation-
ship among the signals with the same label and connects unseen
signals to their confidence vectors. Therefore, adding regression
to graph filtering creates an adaptive graph filter that not only
propagates the labeling information within a given dataset, but
across unseen signals as well (see Fig. 4).
Adaptive graph filter serves as a semi-supervised plugin

method for classification. The traditional plugin methods esti-
mate the unknown quantities in the Bayes’ rule and plug them
in for classification [53]; in the other words, they are equivalent
to the regression block of adaptive graph filter. For instance, to
label the th signal, we first estimate the confidence vector
by using some regression techniques on the labeled dataset and
then plug in (2) to do classification. Without a large number
of labeled signals, however, the traditional plugin methods
fail to train a robust regression model, which further causes a
poor classification performance [54]; this is the reason why we
does not use regression in the first place. Adaptive graph filter
solves this problem by producing labels for unlabeled signals in
the filtering step, such that both labeled and unlabeled signals
contribute to the smooth matrix in the regression step.

C. Cost Analysis

The adaptive graph filter contains two steps: filtering and
regression. In the filtering step, the computation involves the
graph shift construction with the cost of

, the diffusion operation with the cost
of , and the weighting operation with the cost of

, for a total cost of
. In the regression step, the bulk of the cost comes from

the construction of the smooth matrix and the inverse it involves
with the cost of

Algorithm 4: Adaptive graph filter
Input input dataset

prior confidence matrix

Output posterior confidence
matrix

Parameters graph shift

local distance

scaling coefficient

filter coefficients

Function

graph shift construction

filter coefficient
optimization

diffusion

weighting

return

and the matrix multiplication in (14) with the cost of ,
for a total cost of .

D. Relation to Diffusion Maps

We now analyze the adaptive graph filter by connecting it to
diffusion maps and show that it reconstructs a robust diffusion
map with more flexibility.
1) Diffusion Maps: The diffusion maps are coordinates that

provide efficient geometric descriptions of signals and are built
based on the singular value decomposition of the transition
matrix.
Let be the adjacency matrix of a graph, the diagonal

matrix whose th element is and
the transition matrix. Recall that each element of measures the
likelihood of getting from one data point to another in one step;
each element of measures the likelihood of getting from one
data point to another in steps. The diffusion distance between
two signals in step is then defined as

(15)

where and are th and th rows of , respectively.
Since the diffusion distance takes into account all paths of length
from to , it is robust to noise perturbation and outliers. Note
that the diffusion distance can also be calculated using the
norm.
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Since the transition matrix is asymmetric, we introduce a nor-
malized transition matrix , which, since sym-
metric, can be factored as

where is an orthogonal matrix and
are the singular values; moreover,
. We then decompose the transition matrix as

(16)

where , and
. Note that and

share the same eigenvalues. The underlying diffusion map for
step and node is now defined as

(17)

If we define the diffusion space to be the space spanned by the
columns of , then, the diffusion map gives the coordi-
nates of diffused times in that space.
Using diffusion maps, the diffusion distance is simply

where (a) follows from (15); (b) from (16); and (c) from the
orthogonality of . Thus, by varying the diffu-
sion maps allow us to find an alternate representation that might
better separate the data, for example.
2) Relation to the Adaptive Graph Filter: We now show how,

by using the adaptive graph filter, we construct diffusion maps
that allow for more flexibility. Recall that our adaptive graph
filter in (10) uses the graph shift that is a Hermitian transpose
of the transition matrix . Thus, applying (16) to (10), we get

(18)

with .
If we define the diffusion space to be the space spanned by

the columns of , then, we define a diffusion map to be

(19)

Thus, the construction of an adaptive graph filter allows for con-
tinuous change of the coordinates in the diffusion space, pro-
viding flexibility in finding the best representation in a data-
adapted fashion; this adaptivity is reflected by subscript in

. This is in contrast to only discrete changes allowed by
(17).
We illustrate the above discussion with an example. Let

, and
. The distance between and in this step

is , smaller than the distance between and
. Diffusing once, we get

, and . The distance
between and in this step is , larger than the
distance between and . In other words, by
changing the power , distances change in the diffusion space.
Since can only be an integer, it is not possible, for example,
to make the distances between and , and and be the
same. By using the adaptive graph filter, however, we can find
the optimal filter coefficients to match such a requirement using
(13).

E. Relation to Diffusion Wavelets

We now analyze the adaptive graph filter by connecting it
to diffusion wavelets and show that it performs multiresolution
classification on graphs.
1) Diffusion Wavelets: Diffusion wavelets are a multiscale

framework to analyze signals with complex structures [16].
They can be seen as an extension of the classical wavelet
theory, where, the diffusion wavelet basis is learned from the
geometry of the signal structure in a data-adapted fashion. The
diffusion wavelet basis is constructed by dilation using the
dyadic powers of the transition matrix, the idea being that they
propagate local relationships to global relationships throughout
the graph.
Given a graph, at the th resolution level, we have , as

the transition matrix, . Since the second singular
value of the transition matrix is less than 1 to keep the graph
connected, only the first singular value is 1. Consequently, if
the transition matrix is raised to a high power, all the singular
values disappear except for the first one,

When , the transition matrix measures local pairwise
similarities; increasing the power gradually decreases the rank
of the transition matrix and causes local information of the
graph to be missed since the resolution on the graph changes
from finest to the coarsest. Thus, by changing , we can both
perform a multiresolution analysis as well as do it in a compu-
tationally efficient manner.
2) Relation to the Adaptive Graph Filter: The adaptive graph

filter in (10) is formed as a linear combination of graph shifts
raised to power . When is large, become a low-rank

matrix describing the global information of the graph, just as
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Fig. 5. The lab-scale bridge (from [21] with permission).

does for diffusion wavelets. Each corresponds to a dif-
ferent resolution on the graph, and thus, adaptive graph filter
actually performs multiresolution classification on the graph. It
weighs the classification results from each resolution to produce
the global result. The filter coefficients represent the discrimi-
native power of each resolution. This also explains why the ob-
jective functions to optimize the filter coefficients in (7) and the
weights of each subband in (13) are the same.

V. EXPERIMENTAL RESULTS

In this section, we validate the proposed framework on indi-
rect bridge structural health monitoring, and show that it per-
forms remarkably better than previous approaches.

A. Dataset

To study the bridge behavior under various conditions com-
prehensively, a lab-scale bridge-vehicle dynamic system was
built; see Fig. 5. Accelerometers were installed on a vehicle
that moves across the bridge; acceleration signals were then
collected from those accelerometers. We collected 30 acceler-
ation signals for each of 13 different bridge conditions, 8 dif-
ferent speeds, from 1 m/s to 2.75 m/s with increments of 0.25
m/s, and 2 vehicles with different weights, 4.8 kg and 5.2 kg
respectively, for a total of 6240 acceleration signals. The 13
bridge conditions included one pristine condition and 4 different
damage severities for each of 3 different damage proxy sce-
narios. These damage proxy scenarios simulate possible damage
on the bridge. For example, varying rotational restraints simu-
lates rubber bearings becoming stiffer in time or corrosion of
rocker supports; there were four of these, at one corner, two,
three, and four. Another four scenarios were modeled by adding
one or two dampers at quarter span of the bridge, two at quarter
span and two at midspan, and finally, two each at quarter, mid,
and three-quarter span. The final four scenarios were modeled
by adding mass at midspan, of 50 g, 100 g, 200 g, and 300 g.
For more details, see [21].

B. Experimental Setup

Given a specific vehicle driven at a specific speed, we want to
classify 13 bridge conditions, in particular, with a low labeling
ratio. We consider 16 vehicle-speed combinations for each of

TABLE II
PARAMETERS USED IN THE EXPERIMENTS

which there are 30 acceleration signals for each of the 13 sce-
narios; the final accuracy is the average over the 13 scenarios;
the baseline accuracy is thus %.
We choose a Coiflet filter bank [55] with 4 levels (for a total

of 15 subbands) in the multiresolution block [24], principal
component analysis [23] in the feature extraction block, radius
kernel support vector machine [56] in the supervised classifica-
tion block, and adaptive graph filtering in the semi-supervised
classification block. In each subband, we use the coefficients
that preserve roughly 95% of energy after principal component
analysis as the feature vector for each signal. We construct the
graph by choosing as the cosine distance, defined as [57]

and in (9). The length of
the adaptive graph filter is . In the semi-supervised
weighting function, we choose the penalty threshold
and the penalty function in (5). The
decay coefficient is chosen to minimize (7) and (13). To
solve (7) and (13), we used CVX, a package for specifying and
solving convex programs [58], [59]. We performed a 30-fold
cross-validation. Table II summarizes all the parameters at
a glance. The details about the setting of parameters see a
reproducible research page [17]. Note that in semi-supervised
classification, we train the model based on both labeled and a
large number of unlabeled signals without considering unseen
signals, we thus do not have to worry about data snooping and
overfitting.
We compare our method, semi-supervised multiresolution

classification with adaptive graph filtering, against:
• Generic classification with kernel support vector machine,
diffusion functions, harmonic functions, and adaptive
graph filtering.

• Supervised multiresolution classification with kernel sup-
port vector machine.
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TABLE III
ACCURACY COMPARISON OF VEHICLES (V) 1 AND 2, WITH SPEEDS (S)

, AND LABELING RATIO OF 10%

• Semi-supervised multiresolution classification with dif-
fusion functions, harmonic functions, and adaptive graph
filtering.

We use the following shorthands in figures and tables: S for su-
pervised (if with another acronym) or speed (if without another
acronym), SS for semi-supervised, no MRC for generic classifi-
cation, MRC for multiresolution classification, SVM for kernel
support vector machine, DF for diffusion functions, HF for har-
monic functions, AGF for adaptive graph filtering, and V for
vehicle.

C. Classification Results

We validate our method from three standpoints: (1) the per-
formance of the semi-supervised multiresolution classification
framework; (2) the ability of adaptive graph filtering to handle
mislabeled signals; and (3) the ability of adaptive graph filtering
to handle unseen signals.
1) Semi-Supervised Multiresolution Classification: We vali-

date the proposed framework, semi-supervised multiresolution
classification, by comparing it to generic classification and su-
pervised multiresolution classification with a low labeling ratio
of 10% (see Table III).
We detect three trends, the first two of which validate each

component of the framework (multiresolution classification
and semi-supervised learning), while the third validates the
entire framework: (1) Multiresolution framework improves
classification accuracy (darker columns 7–10 versus lighter
columns 3–6): supervised multiresolution classifier (MRC
SVM, dark red column 6) performs better than the corre-
sponding supervised generic classifier (SVM, light red column
2) and each semi-supervised multiresolution classifier (MRC
DF, HF, and AGF, dark blue columns 8–10) performs better
than the corresponding semi-supervised generic classifier (DF,
HF, and AGF, light blue columns 4–6). (2) Semi-supervised
learning improves classification accuracy (blue columns versus
red columns): each semi-supervised generic classifier (DF, HF,
and AGF, light blue columns 4–6) performs better than the
supervised generic classifier (SVM, light red column 3) and
each semi-supervised multiresolution classifier (MRC DF, HF,
and AGF, dark blue columns 8–10) performs better than the

Fig. 6. Trend 1: Multiresolution framework improves classification accuracy.
Comparison of supervised classifiers. (a) Vehicle 1. (b) Vehicle 2.

Fig. 7. Trend 1: Multiresolution framework improves classification accuracy.
Comparison of semi-supervised classifiers. (a) Vehicle 1. (b) Vehicle 2.

supervised multiresolution classifier (MRC SVM, dark red
column 7). (3) Multiresolution framework with semi-super-
vised learning (MRC DF, HF, and AGF, dark blue columns
8–10) improves classification accuracy over the supervised
generic classifier (SVM, light red column 3) by %.
We further validate these trends under different labeling ra-

tios. Figs. 6–9 show the dependence of classification accuracy
on the labeling ratio for 2 vehicles averaged across 8 speeds.
Figs. 6 and 7 validate Trend 1 for supervised (SVM) and semi-
supervised (AGF) classifiers. In each case and for both vehi-
cles, multiresolution framework improves classification accu-
racy across all labeling ratios.
Fig. 8 validates Trend 2 for supervised (SVM) and semi-su-

pervised (AGF) multiresolution classifiers. For both vehicles,
semi-supervised learning improves classification accuracy
across all labeling ratios. Moreover, as the labeling ratio
decreases, accuracy drops sharply for multiresolution-based
SVM; performance of the multiresolution-based adaptive graph
filter stays relatively flat, however, even at very low labeling
ratios.
Fig. 9 validates Trend 3 for semi-supervised (AGF) multires-

olution classifier and generic supervised classifier (SVM). For
both vehicles, semi-supervised multiresolution classifier with
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Fig. 8. Trend 2: Semi-supervised learning improves classification accuracy.
Comparison of multiresolution classifiers. (a) Vehicle 1. (b) Vehicle 2.

Fig. 9. Trend 3: Multiresolution framework with semi-supervised learning im-
proves classification accuracy. (a) Vehicle 1. (b) Vehicle 2.

adaptive graph filtering dramatically improves classification ac-
curacy across all labeling ratios.
2) Ability of Adaptive Graph Filtering to Handle Mislabeled

Signals: In real-world problems, some of the labeled signals
could be unreliable for different reasons, for example, negli-
gence or uncertainty. As mentioned in Section IV.A, one of the
advantages of using adaptive graph filtering is to provide ro-
bustness to mislabeling. To validate that, we randomly mislabel
a fraction of labeled signals, feed them into the classifiers to-
gether with correctly labeled signals, and compare the fault tol-
erances of the three semi-supervised classifiers. Tables IV and
V show results where 20% of signals are labeled, with 15.38%
and 33.33% of these labeled signals mislabeled, respectively.
The trends from before still hold: Multiresolution framework
improves classification accuracy (darker columns 6–8 versus
lighter columns 3–5). Among the semi-supervised multiresolu-
tion classifiers, adaptive graph filtering (AGF, dark columns 8)
performs the best in each case. Moreover, as the ratio of mis-
labeled signals increases from 15.38% to 33.33%, the perfor-
mance of adaptive graph filtering is relatively unaffected, while
the performance of the other two semi-supervised classifiers,
diffusion functions and harmonic functions, decreases dramat-
ically. We thus conclude that the semi-supervised multiresolu-

TABLE IV
ROBUSTNESS TO MISLABELED SIGNALS: ACCURACY COMPARISON OF

VEHICLES (V) 1 AND 2, WITH SPEEDS (S) , WITH LABELING RATIO
OF 20% AND MISSLABELING RATIO OF 15.38%

TABLE V
ROBUSTNESS TO MISLABELED SIGNALS: ACCURACY COMPARISON OF

VEHICLES (V) 1 AND 2, WITH SPEEDS (S) , WITH LABELING RATIO
OF 20% AND MISSLABELING RATIO OF 33.33%

tion classification using adaptive graph filtering is robust to mis-
labeled signals.
3) Ability of Adaptive Graph Filtering to Handle Unseen Sig-

nals: Finally, to validate the claim from Section IV.B that using
regression allows us to handle unseen signals, we keep a por-
tion of signals as unseen signals. For each vehicle and speed, we
have 13 damage scenarios with 30 signals for each for a total of
390 available signals. We assign of these to be unseen,
leaving us with total signals, out of which we label

. We thus have 4% (13/325) labeled and 20% (65/325)
unseen signals. Table VI shows results for both the generic clas-
sifier (lighter columns 3–4) and semi-supervised multiresolu-
tion classifiers with adaptive graph filtering (darker columns
5–6). In each case, we compare accuracies of unla-
beled signals as well as of unseen signals. Although
the unseen signals never appear in the filtering stage, classifica-
tion accuracy is close to that of unlabeled signals. If the signal
set is sufficiently large, the adaptive graph filter learns the distri-
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TABLE VI
ROBUSTNESS TO UNSEEN SIGNALS: ACCURACY COMPARISON OF VEHICLES
(V) 1 AND 2, WITH SPEEDS (S) , LABELING RATIO OF 4% AND

RATIO OF UNSEEN SIGNALS OF 20%

bution of signals from both labeled and unlabeled signals, which
it then uses for the unseen signals.

VI. CONCLUSIONS AND FUTURE WORK

We presented a novel classification framework that combines
multiresolution classification with semi-supervised learning;
adaptive graph filtering for semi-supervised classification that
allows for classifying unlabeled as well as unseen signals
and for correcting mislabeled signals; and solution to indirect
bridge structural health monitoring.
The proposed framework builds upon supervised multireso-

lution classification, which extracts hidden features in localized
time-frequency subbands, and semi-supervised learning, which
uses both labeled and unlabeled signals. We link the two via a
novel weighting algorithm that combines information from all
the subbands of all the signals to make a global decision in a
semi-supervised fashion. We propose a novel semi-supervised
classifier, adaptive graph filter; also, the first real application of
signal processing on graphs. We further connect it to diffusion
maps and diffusion wavelets and show that it performs multires-
olution classification on graphs.
We validate the proposed framework on the task of indirect

bridge structural health monitoring and show that: (1) multires-
olution framework on its own, (2) semi-supervised learning on
its own, and (3) the two together, all improve classification ac-
curacy. Furthermore, we show that adaptive graph filtering has
the ability to handle unlabeled, mislabeled as well as unseen sig-
nals. Applications to different physiclal situations are illustrated
in [17].
Some near-future tasks are to use more features in each time-

frequency subband, prune wavelet packet tree to achieve faster
implementation and test the framework on real-world bridge-
vehicle dynamic systems.
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