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Abstract—In a MIMO radar network the multiple transmit
elements may emit waveforms that differ on power and band-
width. In this paper, we are asking, given that these two resources
are limited, what is the optimal power, optimal bandwidth
and optimal joint power and bandwidth allocation for best
localization of multiple targets. The well known Crámer-Rao
lower bound for target localization accuracy is used as a figure
of merit and approximate solutions are found by minimizing a
sequence of convex problems. Their quality is assessed through
extensive numerical simulations and with the help of a lower-
bound on the true solution. Simulations results reveal that
bandwidth allocation policies have a definitely stronger impact
on performance than power.

Index Terms—Multiple-input multiple-output (MIMO) radar,
power allocation, bandwidth allocation, Crámer-Rao lower bound
(CRLB), nonconvex optimization.

I. INTRODUCTION

In a MIMO radar architecture, transmit elements emit their
respective signals, which are subsequently scattered by targets
in the field of view towards receive elements. The elements
at the receive and the transmit ends may be colocated, so that
the transmit-receive paths generated by each target share the
same phase and amplitude [1–3]. Conversely, if the antenna
elements are widely spaced, then they view the targets from
different aspect angles, making these (substantially diverse)
paths exhibit different amplitudes [4–7]. In either case, the sig-
nals emitted by the transmitters can be chosen independently,
thus adding degrees of freedom [8] as a precious resource for
such tasks as targets localization and tracking. Due to the lack
in angle diversity in the case of colocated antennas, a point
target model is suitable, thus enabling coherent processing that
exploits the phase coherence between the paths [3, 9, 10]. In
contrast, in the widely spaced elements case, the point target
model breaks down in favor of an extended target model [11],
because targets display different radar cross-sections (RCS)
in different directions. In this case, processing is non-coherent
and angular diversity becomes an object of interest [4, 12, 13].

In a non-coherent MIMO system where phase is not pre-
served across the elements, and if the system elements are
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time-synchronized, targets may be localized by multilateration
[14, 15] or more computation-intensive techniques such as
Direct Position Determination (PDP) [16]. When the target
reflections towards different directions are unknown, perfor-
mance is enhanced by illuminating the target from different
angles, and averaging the target scintillations [7]. In this
work, we are concerned with improving the accuracy of the
localization of a detected, stationary target. The premise of the
work is that, judicious allocation of system resources, power
and bandwidth, has an impact on the accuracy of localization.
We formulate cost functions, develop algorithms and analyze
performance of resource allocation methods addressing the
question of optimal resource allocation for target localization
with non-coherent MIMO radar.

Besides high-accuracy localization, resource-aware design
is of importance in surveillance radars with mounted mobiles
stations powered off-grid, as it can be found in network-centric
warfare [17]. Such a configuration with multiple transmitters
and receivers is robust to the loss of nodes, e.g. due to hostile
action. Furthermore, resource management is an essential
part of military operations in hostile environments, where
low-probability-of-intercept operation may be required [18].
Another growing field where non-coherent MIMO might be
applied, is ultra wide band (UWB) radar sensor networks
[19], which usually operate under severe power constraints
because they reuse wireless communications equipment or
operate in unregulated frequencies. The ability of UWB to
perform through-the-wall detection makes it an attractive tool
for detecting intruders in buildings [20]. Another example of
non-coherent radar localization, very similar to our system as
it will become clear in the next paragraphs, is presented in
[21], where an air traffic control radar uses multiple trans-
mitters operating at different frequencies, and multilateration
techniques are used for tracking.

A criterion for measuring the target location accuracy is
necessary for allocating the resources. As a cost function,
we choose the Crámer-Rao lower bound (CRLB) for the
estimation of a target location in a distributed architecture
derived in [22]. An advantage of this cost function is that
it is in closed form, thus making it suitable for algebraic
manipulations. Also, the CRLB is known to provide a tight
lower bound on the error of an unbiased estimator at high
signal-to-noise ratio (SNR) [13, 26], and this is the SNR
regime in which we operate. And lastly, another important
particularity of this CRLB is that, under the assumption of full
orthogonality between transmitted signals, it depends only on
the two parameters of interest: power and effective bandwidth
(see [29] for the definition of effective bandwidth). It is shown
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in [41] that this CRLB is the product of two factors, which
capture the nature of the localization error: one is the CRLB
of time delay estimation by a single sensor, and the second
is a term known as Geometric Dilution of Precision (GDOP),
which depends on the number of transmit and receive elements
and their locations. Tight bounds are also available for lower
SNR, such as the Barankin [27] and Ziv-Zakai [28] bounds,
however, they entail more complicated expressions not suitable
to serve as cost functions.

In a configuration with multiple transmitters, the emitted
signals may easily interfere with each other, hence the im-
plementation of such techniques relies on orthogonality or
low crosscorrelation of the received waveformss. This enables
to separate incoming signals from different transmitters. One
way to achieve orthogonality is by assigning different, disjoint
transmission bandwidths to the active transmitters, as in a
traditional netted radar [30]. In telecommunications field,
this method is known as Frequency-Division Multiple Access
(FDMA). Other schemes for multiple waveforms with low
auto- and cross-correlations are proposed in [31–33]. FDMA
has some advantages over other multiple-emitter schemes:
signal separation relies on simple filtering and the bandwidths
of the transmitters can be flexibly changed without breaking
the orthogonality of the signals.

In this paper, we are asking what are the optimal power
allocation, bandwidth allocation and joint power bandwidth
allocation to minimize the CRLB on the localization of mul-
tiple targets. In our model a fusion center performs resource
allocations based on past localization estimates. Power allo-
cation methods for localizing a single target can be found in
[23, 24]. The present work extends these results considerably
by adding multiple targets, bandwidth allocation and joint
power-bandwidth allocation. Initial results on the material con-
tained in this paper can be found in our conference publication
[25].

Power and/or bandwidth allocation problems are formulated
as constrained optimizations, where we seek to minimize a
function based on the CRLB, given constraints on the total
power and bandwidth. These problems turn out to be non-
convex, hence efficient techniques for solving convex problems
do not apply. Instead we opt for an approach based on
Sequential Parametric Convex Approximation (SPCA) [36].
In SPCA are devised a sequence of convexified problems that
lead to an approximate solution of the allocation problem.

The main contributions of the paper are:
a) Formulation of a new unified framework for three re-

source allocation problems: optimal power allocation
for a fixed bandwidth, optimal bandwidth allocation
for a fixed total power, and optimal joint power and
bandwidth allocations.

b) Development of efficient algorithms for solving
power and/or bandwidth allocation problems for
static targets. Initial estimates of the targets locations
are used as inputs to the optimization algorithms.
The algorithms rely on SPCA framework in which
a series of iterations pass to each other solutions of
convexified allocation problems

c) Obtaining lower-bounds on the optimum value of

the cost function of the optimization problems. The
lower-bounds provide a certificate that can confirm
that the allocations resulting from our algorithms are
close to the optimal one.

The paper is organized as follows. Section II explains
the signal model. Section III presents the different resource
allocation problems considered in this article and reformulates
them so that we only need to solve one problem. Section IV
is devoted to finding an approximate solution and section V
provides a tool for assessing the quality of the solution.
Simulations and analysis of the solutions are provided in
sections VI.

II. SIGNAL MODEL

Consider a MIMO-radar network consisting of M trans-
mitters, located at {(xtx

m, y
tx
m)}Mm=1, N receivers, located

at {(xrx
n , y

rx
n )}Nn=1, and Q stationary targets, located at

{(xtar
q , y

tar
q )}Qq=1. Denote dtx

m,q and drx
q,n the Euclidean distances

from transmitter m to target q and from target q to receiver n,
respectively. Let {sm(t)}Mm=1 be the transmitted pulses, where
each pulse sm(t) has bandwidth wm, energy Em and time
duration Tm. Assuming a fixed pulse repetition fr frequency,
the pulse energy Em is connected to the average power pm
through the formula pm = Emfr. For later use, we define the
power vector p = [p1, . . . , pM ]> and the effective bandwidths
vector w = [w1, . . . , wM ]>. The transmitted signals are
assumed narrowband in the sense that a target’s frequency
response (for a given transmitter-receiver pair) is represented
by a complex-valued scalar. For sufficiently spaced sensors, the
target returns vary among pairs, thus each target is modeled as
a collection of MN reflection coefficients. In this work, target
returns are assumed deterministic and unknown. The low-pass
signal observed at the n-th receiver is written as

rn(t) =

Q∑
q=1

M∑
m=1

√
αmqnEmhmqnsm(t− τmqn) + en(t) (1)

where fc is the carrier frequency, c the speed of light,

αmqn =
1

4πdtx
m,q

2

1

4πdrx
q,n

2

1

4πf2c

models the pathloss along the path transmitter m – target q –
receiver n. The time delay along the path is τmqn, and hmqn
represents the targets complex gains. The signal propagation is
assumed to occur in free-space, and the noise en(t) is assumed
Gaussian and white (AWGN) with constant power spectral
density N0.

The unknown parameters in (1) are the target locations
{(xtar

q , y
tar
q )}Qq=1 and the MQN complex gains hmqn. The goal

of the radar system is to estimate the target location, with
the complex gains hmqn serving as nuisance parameters. Our
objective is to allocate resources (power and/or bandwidth)
to system elements, to optimize the target localization perfor-
mance, using the CRLB as the optimization metric.

In the case of a single target, the CRLB is a 2× 2 matrix,
obtained by inverting the Fisher information matrix (FIM),
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whose diagonal elements are the lower-bounds on the vari-
ances of respectively the target location estimate along the x-
axis (var(x̂tar)) and y-axis (var(ŷtar)). The trace of this matrix
represents a lower-bound on the mean square error (MSE)
of the target location estimate, i.e. var(x̂tar

q ) + var(ŷtar
q ) ≥

tr{Cq} , Tq , where Cq is the CRLB matrix of a target
located at {(xtar

q , y
tar
q )}. An expression for the trace of the

CRLB for localizing a single target using a single observation
is derived in [22]:

var(x̂tar
q ) + var(ŷtar

q ) ≥ Tq =
(aq + bq)

>
(diagw)

2
p

p> (diagw)
2
Hq (diagw)

2
p
(2)

The symbol (·)> denotes the transpose operator, Hq =
(0.5aqb

>
q + 0.5bqa

>
q − cqc

>
q ), and aq, bq and cq are length

M vectors defined as follows:

aq = η



N∑
n=1

α1qn|h1qn|2
(
xtx
1 − xtar

q

dtx
1,q

+
xrx
n − xtar

q

drx
q,n

)2

...
N∑
n=1

αMqn|hMqn|2
(
xtx
M − ytar

q

dtx
M,q

+
yrx
n − ytar

q

drx
q,n

)2



bq = η



N∑
n=1

α1qn|h1qn|2
(
ytx
1 − xtar

q

dtx
1,q

+
xrx
n − xtar

q

drx
q,n

)2

...
N∑
n=1

αMqn|hMqn|2
(
xtx
M − xtar

q

dtx
M,q

+
xrx
n − xtar

q

drx
q,n

)2


(3)

cq = η


N∑

n=1
α1qn|h1qn|2

(
xtx
1−xtar

q

dtx
1,q

+
xrx
n−xtar

q
drx
q,n

)(
ytx
1−xtar

q

dtx
1,q

+
xrx
n−xtar

q
drx
q,n

)
...

N∑
n=1

αMqn|hMqn|2
(

xtx
M−ytar

q

dtx
M,q

+
yrx
n−ytar

q
drx
q,n

)(
xtx
M−xtar

q

dtx
M,q

+
xrx
n−xtar

q
drx
q,n

)


The constant η is given by η = 8π2

c2frN0
. The vectors (3)

relate the CRLB parameter Tq to the sensors locations, target
location, target gain, and pathloss. Note that the matrix Hq is
symmetric.

Computation of the CRLB for localizing Q targets requires
inverting a 2Q×2Q FIM which is a complicated mathematical
operation. To simplify the matrix inversion, we make the
following assumption which makes the FIM approximately
block diagonal (see [34]):∫ ∞

−∞
sm(t− τmqn)s∗m(t− τmq′n) dt ≈ 0 (4)

for any pair of targets q 6= q′, and for any transmitter m and
receiver n. Let C denote the CRLB matrix for multiple targets,
then assuming (4), the FIM becomes a block diagonal matrix,
that can be easily inversed, and leads to a CRLB matrix for
multiple targets C whose main diagonal is

diag
(
C
)
≈ [diag (C1) , . . . ,diag (CQ)] , diag (C) (5)

where operator diag takes the main diagonal of the matrix
between the brackets. The lower bounds on the variances of

the targets locations estimates are obtained by taking the sum
of the diagonal elements corresponding to the respective target

var(x̂tar
q ) + var(ŷtar

q ) ≥ diag
(
C
)
2(q−1)+1

+ diag
(
C
)
2q

, T q
(6)

where the subindex selects the components in diag
(
C
)
.

Hence, if (4) is satisfied, combining (5) and (6) results in
T q ≈ Tq . In section VI, the validity of this approximation will
be assessed by evaluating T q and Tq for multiple scenarios and
allocations.

III. RESOURCE ALLOCATION

A. Problem formulation

In this section we formulate several optimization problems
that minimize the lower-bounds on the MSE (which are tight
under a high-SNR regime) of the targets locations (2) given
constraints on power and bandwidth. These lower-bounds form
a length Q vector function [C1(p,w), . . . ,CQ(p,w)], where
the dependency on the transmitters powers and bandwidths
is made explicit. A standard technique for minimizing a
vector function is known as scalarization [38], and it consists
in minimizing a scalar function whose input is the vector
function. In this regard a common requirement is ensuring that
the localization error of any target is not too large. This can
be cast as minimizing the worst CRLB on the variance of all
target locations estimates, a criterion known in the literature
as minimax. The worst MSE among all targets is written as
the scalar function maxq T q . According to this, a possible
objective function f to minimize is

f(p,w) = max
q∈{1,...,Q}

T q(p,w) (7)

We refer from now on to this cost function as the “maximum
CRLB”. However, because T q lacks an easy-manipulable
algebraic expression, we rely to its approximation

f(p,w) = max
q∈{1,...,Q}

Tq(p,w) (8)

which will be referred as the “approximate maximum CRLB”.
Three allocation problems can now be formally stated using
this objective function:

Problem 1 (Power allocation): Given a total power P
and a fixed bandwidth w per transmitter, the optimal power
allocation is the solution popt to

popt =


min
p

max
q∈{1,...,Q}

Tq(p, w1)

s.t. 1>p ≤ P
p ≥ 0

where minp means “minimize with respect to p”, s.t. is the
abbreviation for “subject to”, 1 and 0 are the all-ones and all-
zeros vectors respectively and ≤ is component-wise “smaller
or equal than”.
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Problem 2 (Bandwidth allocation): Given a uniform power
allocation p and a total bandwidth B, the bandwidth alloca-
tion is the solution wopt to

wopt =


min
w

max
q∈{1,...,Q}

Tq(p1,w)

s.t. 1>w ≤ B
w ≥ 0

Problem 3 (Joint power and bandwidth allocation): Given
a total power P and bandwidth B, the power and bandwidth
allocations are the solution (pjopt,w

j
opt) to

(
pjopt,w

j
opt

)
=


min
p,w

max
q∈{1,...,Q}

Tq(p,w)

s.t. 1>p ≤ P
1>w ≤ B
p,w ≥ 0

In all of the above problems, we minimize function (8),
which depends on the targets locations through Tq (2). The tar-
get locations are not known, otherwise we would not allocate
power and/or bandwidth to improve the localization accuracy.
Thus from now on we assume that the target locations in Tq
are coarse estimates obtained in previous cycles and denoted
[x̃tar

1 , ỹ
tar
1 , . . . , x̃

tar
Q , ỹ

tar
Q ].

B. Unified framework

Next, we rewrite the three previous allocation problems
in a unified form. Such reformulation enables us to find an
approximate solution to all three problems using the same
mathematical tools. In order to write the allocation problems
in this unified form, we first need to perform some algebraic
manipulations. We start by enunciating the following lemma:

Lemma 1 (Scaling): For any constants α, β > 0, the lower-
bound on the MSE of a target location meets the following
scaling property

Tq(αp, βw) =
1

αβ2
Tq(p,w)

Proof: It suffices to expand Tq(αp, βw) using (2).
Applying Lemma 1 to Problems 1 and 2, simplifies the

respective objective functions by moving from scaling the ar-
gument to scaling the full function. The following proposition
will be applied to simplify Problem 3:

Proposition 1 : The power pjopt and bandwidth wj
opt solutions

to Problem 3 are related through

wj
opt =

B

P
pjopt

Proof: See Appendix A.
Knowing beforehand how the power (pjopt) and bandwidth

(wj
opt) solutions relate to each other for Problem 3, we can

restrict the feasible set of Problem 3 to points satisfying
w = B

P p. Performing such substitution for vector w in

Problem 3, transforms it into an optimization problem with
only one vector variable p instead of two,

pjopt =


min
p

max
q∈{1,...,Q}

Tq(p,p)

s.t. 1>p ≤ P
p ≥ 0

(9)

where wj
opt is recovered by applying Proposition 1.

At this point, it has been shown that the specific values of
bandwidth per user (w) and power per user (p) in Problems 1
and 2, do not change the solutions, and consequently Prob-
lems 1 and 2 can be solved with w = p = 1. Additionally
thanks to Proposition 1, Problem 3 has been rewritten in a
more compact form (9). Notice that except for the problem
specific constants P and B, Problems 1, 2 and 3 (expressed
as (9)) have similar objective functions and constraints. In fact,
upon introducing the function

gq(y, k) =
(aq + bq)

>
(diagy)

k
y

y> (diagy)
k
Hq (diagy)

k
y

(10)

that closely resembles that of Tq in (2), the three problems
can be dealt with in a unified manner through

min
y

max
q∈{1,...,Q}

gq(y, k)

s.t. 1>y ≤ D
y ≥ 0

(11)

Denoting the optimal solution yopt, it is easily verified that:
• Let

y = p D = P k = 0 (12a)

then popt = yopt
• Let

y = w D = B k = 1 (12b)

then wopt = yopt
• Let

y = p D = P k = 2 (12c)

then (pjopt,w
j
opt) = (yopt,

B
P yopt)

(12a)(12b)(12c)

An optimization problem where the max operator appears
in the constraints, instead of being in the objective function
like in problem (11), is in general easier to solve. For instance
if a problem had constraint maxq∈{1,...,Q} gq(y, k) ≤ 1, then
the max operator may be avoided by expressing the constraint

gq(y, k) ≤ 1 for all q = 1, . . . , Q (13)

It turns out that the solution to the optimization problem,

min
y

1>y

s.t. max
q∈{1,...,Q}

gq(y, k) ≤ 1

y ≥ 0

(14)

which has no max operator in the objective function, can be
closely related to that of problem (11) as established by the
following proposition:
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Proposition 2 : The solution to problem (11) is the same than
for problem (14) except for a scaling factor.

Proof: See Appendix B.
Writing the constraints of problem (14) in the form of (13),

and expressing gq(y, k) using (10), problem (14) is rewritten
as

Problem 4 (Canonical problem)

min
y

1>y

s.t. (aq + bq)
>
(diagy)

k
y ≤ y> (diagy)

k
Hq (diagy)

k
y

for all q = 1, . . . , Q (15)
y ≥ 0

Problem 4 is the final form we seek to attain in this
section, however, the scaling constant relating its solution to
the solution of problem (11) is still unknown. For this purpose
we enunciate the following lemma

Lemma 2 : Constraint 1>y ≤ D in problem (11) is active
at the solution yopt.

Proof: The proof is done by contradiction. Assume there
exists a minimum point y′ such that 1>y′ < D, i.e. constraint
is not active. Define y∗ = D

1>y′
y′. From the definition of

gq(y, k) in (10)

max
q
gq(y

∗, k) =

(
1>y′

D

)k+1

max
q
gq(y

′, k) < max
q
gq(y

′, k)

This contradicts the assumption that the CRLB achieves its
minimum at y′. It follows that the power constraint evaluated
at the optimal point must be active.

Thus by Lemma 2 and Proposition 1, if y′ is solution of
problem (11), then a solution to Problem 4 is given by

yopt =
D

1>y′
y′

Using this result we can now solve Problem 4 and relate it
to the solution of problem (11), which relates in turn, is related
to the original Problems 1-3 via (12). Putting it all together,
we obtain the direct link between Problem 4 which we plan
to solve and the original Problems 1-3. Given the solution to
Problem 4, y′, the solutions to Problems 1, 2 or 3, depending
on the value of k, can be obtained as follows:

Problem 1 Problem 2

popt =
P

1>y′
y′
∣∣∣∣
k=0

wopt =
B

1>y′
y′
∣∣∣∣
k=1

Problem 3

pjopt =
P

1>y′
y′
∣∣∣∣
k=2

wj
opt =

B

1>y′
y′
∣∣∣∣
k=2

(16)

IV. PROPOSED APPROXIMATE SOLUTION

Currently our goal is to find an approximate solution to
Problem 4 for any k ∈ {0, 1, 2}. It is not difficult to see that for
Problem 4, the objective function is linear, constraints (15) are
polynomials of 2nd (case k = 0), 4th (k = 1) or 6th (k = 2)

order, and the last constraint is linear. The problem would fit in
the framework of convex optimization, for which very efficient
techniques exist [38], if (15) were convex. However, this is true
only for some very particular cases of Hq . Therefore we have
to rely on techniques designed for nonconvex optimization. In
most cases such techniques do not lead to the global minimum.
Moreover, the computational cost of such techniques grows
exponentially with the dimension of the problem.

An alternative approach is to approximate the original
problem with a sequence of convex problems. An approach
firstly proposed in [35], and later referred to as Sequential
Parametric Convex Approximation (SPCA) [36]. To explain
SPCA, we start by observing that any constraint in Problem 4
may be written as h(y) ≤ 0, where h will be called the
constraint function. If h is a convex function, then h(y) ≤ 0
is a convex constraint. The main idea of SPCA is that at
each iteration, each of the nonconvex constraints functions in
Problem 4 is replaced by a convex approximation. To construct
such approximation, the nonconvex function is decomposed
into a sum of a convex and a concave function. The concave
function is linearized around a point as proposed in [37]. At
each iteration, the algorithm solves the approximate convex
problem. It stops when there is no further improvement in the
objective function. The solution at each iteration is passed to
the next iteration as the linearization point. Convergence of
this algorithm is ensured at least to a local minimum [35].

As mentioned previously, the first step is to decompose
the nonconvex constraints functions in Problem 4 into a sum
of a convex and a concave function. Accomplishing this for
(15) is not straightforward. First, we introduce a vector of
slack variables z = [z1, . . . , zM ]>, which are linked to the
components of y by zm = yk+1

m . Problem 4 is recast as

min
y,z

1>y

s.t. (aq + bq)
>
z− z>Hqz ≤ 0 for q = 1, . . . , Q (17a)

zm − yk+1
m = 0 for m = 1, . . . ,M (17b)

y, z ≥ 0

The advantage of this new problem over Problem 4 is that
(17a) is now in a quadratic form, and a simple way to decom-
pose a quadratic function into a convex plus concave function
is to separate matrix Hq into a sum of a nonnegative-definite
(H+

q ) and a nonpositive-definite (H−q ) matrix. Concerning the
newly introduced constraint (17b), notice that if we relax it
by putting zm − yk+1

m ≤ 0 instead, then it is also a sum of a
convex (zm) and a concave (−yk+1

m ) function:

min
y,z

1>y

s.t. (aq + bq)
>
z− z>H−q z− z>H+

q z ≤ 0 (18a)

for q = 1, . . . , Q

zm − yk+1
m ≤ 0 for m = 1, . . . ,M (18b)

y, z ≥ 0

Lemma 3 : The optimal solution to problem (18) always
satisfies (18b) with equality, and therefore it is also the optimal
solution to problem (17).
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Proof: Assume that is a solution (yopt, zopt) such that for
some component m satisfies zoptm < (yoptm )k+1. Then we can
define another point (y′, zopt) such that the mth component of
y′ is y′m = (zoptm )

1
k+1 < yoptm and the remaining components

are y′m = yoptm . This point satisfies zm − yk+1
m ≤ 0 with

equality and gives a smaller value for the objective function,
contradicting the fact that (yopt, zopt) is a solution.

Given that problem (18)’s constraints are separated into
convex and concave functions, we can then convexify the
problem by linearizing the concave parts, −z>H+

q z in (18a)
and −yk+1

m in (18b) around a point (y(n), z(n)). Linearization
may be implemented by a first order Taylor expansion, where
n indexes the iteration. The optimization problem becomes
then:

min
y,z

1>y (19a)

s.t. (aq + bq)
>
z− z>H−q z− z>(n)H

+
q (2z− z(n)) ≤ 0

for q = 1, . . . , Q (19b)

zm + kyk+1
(n),m − (k + 1)yk(n),mxm ≤ 0 (19c)

for m = 1, . . . ,M

y, z ≥ 0

The feasible set of problem (19) is convex, and in addition,
it is a subset of the feasible set of problem (18). To confirm
this point, notice the constraint function in (19c) is equal or
larger than the constraint function in (18b) for all (y, z), and
therefore, the set of points satisfying constraint (19c) is a
subset of the one defined by (18b). The set of points defined by
(19c) is also a subset of (18a). Therefore any solution resulting
from solving the approximate problem (19b) is in the feasible
set of problem (18a), and consequently of Problem 4.

Algorithm : First, depending if we are allocating power
(Problem 1), bandwidth (Problem 2) or joint power-bandwidth
(Problem 3) we set k in (19) to 0, 1 or 2 respectively. The
algorithm consists in solving a series of convex problems (19).
The solution (y(i), z(i)) to (19) at each iteration i is passed
to the next iteration i + 1 and used as a linearization point
for (19). For the initialization step we choose the uniform
allocation y(0), z(0) ∝ 1 as the linearization point because it
treats all transmitters equally. The algorithm stops when the
value in the cost function (19a) does not change substantially.
After denoting y′ the solution to (19) in the last iteration, the
allocation vector is recovered via (16).

V. LOWER BOUND ON THE ACCURACY OF THE OPTIMAL
ALLOCATIONS

The previous section provided an algorithm that finds
approximate solutions to Problems 1 to 3. In this section,
we provide a method for assessing their quality. We denote
optimal solutions popt, wopt and (pjopt,w

j
opt), and approx-

imate solutions p̃opt, w̃opt and (p̃jopt, w̃
j
opt) obtained using

the algorithm in the previous section, to Problems 1, 2 and 3
respectively. Obviously the objective function of Problems 1,
2 and 3 evaluated at the approximate solutions, are equal or

larger than if it they were evaluated at the optimal points:

max
q
Tq(p̃opt, w1) ≥ max

q
Tq(popt, w1) ≥ Lp (20)

max
q
Tq(p1, w̃opt) ≥ max

q
Tq(p1,wopt) ≥ Lb

max
q
Tq(p̃

j
opt, w̃

j
opt) ≥ max

q
Tq(p

j
opt,w

j
opt) ≥ Lj

where Lp, Lb and Lj are some lower-bounds on the unknown
global minimums. This section is devoted to developing these
lower-bounds, and their usefulness is explained in the fol-
lowing example. Assume that for Problem 1 (power alloca-
tion) the lower-bound is tight to our approximate minimum
maxq Tq(p̃opt, w1) ≈ Lp, then by (20) we can conclude that
our approximate minimum is very close to the global minimum
maxq Tq(p̃opt, w1) ≈ maxq Tq(popt, w1) ≈ Lp. However,
nothing can be asserted if maxq Tq(p̃opt, w1)� Lp.

Instead of finding lower-bounds for the global minimum
of Problems 1, 2 and 3 separately, we rely on the following
proposition to simplify the process:

Proposition 3 : Let Lc denote a lower-bound to the global
minimum of Problem 4. Then we can obtain lower-bounds, Lp,
Lb and Lj , to the global minimums of Problems 1, 2 and 3
respectively, through the following equations

Lp =
Lc
Pw2

∣∣∣∣
k=0

, Lb =
L2
c

pB2

∣∣∣∣
k=1

, Lj =
L3
c

PB2

∣∣∣∣
k=2

(21)

Therefore it suffices to find a lower-bound (Lc) for Prob-
lem 4. The following lemma is needed for the proof of
Proposition 3.

Lemma 4 : Constraint (15) in Problem 4 must be active when
evaluated at the solution.

Proof of Lemma 4: Assume there exists a min-
imum point y′ such that maxq gq(y

′, k) < 1. Define
y∗ = [maxq gq(y

′, k)]
1

k+1y′. From (10) we can derive that
maxq gq(y

∗, k) = 1, thus it satisfies the constraints of the
optimization problem (14). Next

1>y∗ =

[
max

q∈{1,...,Q}
gq(y

′, k)

] 1
k+1

1>y′ < 1>y′

This contradicts the assumption that the problem achieves its
minimum at y′. It follows that (14) evaluated at the optimal
point must be active.

Proof of Proposition 3: The proof is done, only, for
Problem 1’s lower-bound Lp. For Problems 2 and 3, the proof
follows the same steps with very minor differences and are
omitted here for brevity. Recall that, according to (16), the
solution of Problem 1 is directly related to the solution of
Problem 4 by popt = P

1>y′
y′|k=0. Substituting popt in the

global minimum (20) of Problem 1 results in

max
q
Tq(popt, w1) =

1>y′

Pw2
max
q
Tq(y

′,1)

∣∣∣∣
k=0

where we made used of Lemma 1 to simplify it. By Lemma 4
it can be farther reduced to maxq Tq(popt, w1) =

1>y′

Pw2 |k=0.
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By definition Lc is a lower-bound of the global minimum of
Problem 4, so it must satisfy Lc ≤ 1>y′, which leads to

max
q
Tq(popt, w1) ≥

Lc
Pw2

∣∣∣∣
k=0

The right side is obviously a lower-bound to global minimum
of Problem 1 and proves the first equality in Proposition 3.

To get a lower-bound Lc, we apply a series of relaxations
on the feasible set of Problem 4 in order to obtain another
optimization problem whose solution can be computed, and
whose global minimum is equal or smaller than that of Prob-
lem 4. This global minimum then constitutes a lower bound
to the minimum of Problem 4, which will be denoted by Lc.
To that end, the first step consists in making a variable vector
substitution zm = yk+1

m for all m = 1, . . . ,M in Problem 4.
Such operation does not change the global minimum of the
problem.

min
z

M∑
m=1

k+1
√
zm (22)

s.t. (aq + bq)
>
z ≤ z>Hqz for q = 1, . . . , Q (23)

z ≥ 0

Where z = [z1, . . . , zM ]>. It is easy to verify that an equal or
smaller objective function to that of (22) for all values of zm
is

k+1
√
1>z (24)

Let z′ denote the solution to problem (23) with the new
objective function (24) instead of (22). The minimum will be
equal or smaller than that of Problem 4, i.e. k+1

√
1>z′ ≤ 1>y′.

As the root is a monotonically increasing function, suppressing
it from the objective function (24) still leads to the same
solution z′, and therefore we can simplify Problem (22)-(23)
to

min
z

1>z

s.t. (aq + bq)
>
z ≤ z>Hqz for q = 1, . . . , Q (25)

z ≥ 0

We relax now the feasible set of problem (25) by removing
Q− 1 constraints from (25):

min
z

1>z

s.t. (aq + bq)
>
z ≤ z>Hqz

z ≥ 0

(26)

Here q takes only one value between 1 and Q. Call z′q the
solution to problem (26). Because problem (26) is a relaxation
of problem (25), its minimum satisfies 1>z′q ≤ 1>z′. It
turns out that this problem has the same algebraic form as
the power allocation problem in [23] (Section III.A.2), where
an exact solution is provided by solving the Karush-Kuhn-
Tucker conditions [39]. If we solve it for all possible values
of q ∈ {1, . . . , Q}, then we can obtain the tighter inequality
maxq(1

>z′q) ≤ 1>z′. Putting this together with the fact that

k+1
√
1>z′ ≤ 1>y′, we obtain the desired computable lower-

bound for Problem 4’s global minimum:

Lc = k+1

√
max

q∈{1,...,Q}
1>z′q ≤ 1>y′ (27)

Combining (27) with (21), the final expressions for the
lower-bounds of Problems 1, 2 and 3 are

Lp =
maxq 1

>z′q
Pw2

, Lb =
maxq 1

>z′q
pB2

, Lj =
maxq 1

>z′q
PB2

Quite relevant is that if these lower-bounds are tight to the
minimums of Problems 1, 2 and 3, it suggests that bandwidth
has a bigger impact than power because the bandwidth vari-
ables w and B appear as quadratic terms in comparison to p
and P .

VI. NUMERICAL RESULTS

The numerical examples presented in this section were
obtained with five transmitters, five receivers and four targets.
The choice of the number of elements enables sufficient choice
for resource allocation, while not making the system overly
complex. The total bandwidth available to the network is set
to 3MHz. The average power available for the network is an
adjustable parameter. The pulse repetition frequency is set to
5 kHz, which is sufficient for unambiguous range estimation in
our setup. The targets are static. We choose a pulse integration
time of 10ms.

The proposed allocation algorithms assign power and/or
bandwidth depending on the specific locations of the elements
and the reflection coefficients of the targets. To avoid obtaining
results that are specific to a particular layout, each point in the
figures that are to follow is formed as averaging results of 1000
simulations. For each simulation, the transmitters, receivers
and targets are positioned randomly in a 20 km× 20 km area,
according to a uniform distribution. The reflection coefficients
of the targets are drawn from a complex random variable with
variance 10m2. Performance was evaluated from the average
of 1000 values of the cost function (7). Each value represents
an optimal allocation of power, bandwidth, or joint power-
bandwidth for an instantiation of targets locations, reflection
coefficients and noise.

A. Resource allocation for different SNR values

Fig. 1 presents the square root of the max CRLB as a func-
tion of the relative SNR for four different case studies: power
and bandwidth evenly distributed among transmitters, power
allocation, bandwidth allocation, and joint power-bandwidth
allocation. As expected, the joint allocation performs the best
decreasing the cost function by 70% compared to uniform
allocation, which has the worst performance. Bandwidth al-
location is second best and power allocation is just slightly
better than uniform allocation, with decreases in the cost of
50% and 10%, respectively. Increasing the SNR improves the
localization accuracy for all methods.

To validate the results based on the CRLB, localization
errors are computed also for a multilateration algorithm im-
plemented to estimate the target locations. Multilateration is
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Fig. 2. Square root maximum localization error vs. SNR after resource
allocation.

comprised of three steps. In the first step, the time of arrivals
(TOA’s) of the transmitted pulses are estimated at all the
receivers. Here, we apply the WRELAX algorithm [40] to
perform the task. The TOA information is then transmitted to a
fusion center, where an algorithm associates TOA’s to targets.
Finally, using the TOA’s, the target locations are estimated
using the BLUE method in [41]. For the simulation we chose
for pulse shape the square root of the Hamming window in
the frequency domain [42], which can be shown to have a
good mainlobe to secondary lobe ratio necessary for TOA
estimation. For a given simulation all elements are positioned
randomly in the area. After positioning the elements, we run
the allocation algorithms, then simulate the signals at the
receivers and preform target localization by multilateration. To
compare it with the cost function (7), we save the maximum
localization error among all targets and average it for all 1000
instantiations.

Fig. 2 plots the square root of the maximum localization
error versus SNR. Here an increase of 1 dB is simply used
to denote an increase of 1 dB in total power. Obviously the
localization error decreases with the increase in SNR. A
threshold effect is observed approximately at around 4 dB of

0%

10%

20%

30%

40%

50%

60%

70%

Power Bandwidth Joint power and
bandwidth

Allocation 

1 2 3 4 5Number of transmitters: 

Fig. 3. Relative frequencies of the number of active transmitters.

relative SNR with slight variations for the different allocation
algorithms. On the right of this threshold the maximum local-
ization error tightens over the maximum CRLB in Fig. 1, even
though it still maintains a gap for all SNR values. The reason
for this gap is, to the best knowledge of the authors, because
there do not exist multilateration techniques that converge to
the CRLB in the presence of multiple targets.

B. Number of active transmitters
The resource allocation algorithms distribute among the

transmitters power, bandwidth, or both. Fig. 3 plots the relative
frequency of the number of active transmitters (transmitters
whose assigned power and bandwidth is different than zero)
for the three types of resource allocation. The SNR is not
specified because, for all allocations the SNR simply scales
the amount of resources to be assigned, but does not change
which transmitters are selected.

C. Numerical evaluation of the approximations
The purpose of this section is to validate two approximations

used in this paper. The first one is due to the fact that the
resource allocation algorithms employ an approximate closed-
form formula for the CRLB of multiple targets (5) as explained
in section II. The second approximation was to consider
that the solutions of our algorithms are almost as good as
the optimal (but unknown) solutions. For this purpose we
developed the lower-bounds in Section V.

We perform simulations for all three types of resource
allocations, and plot in Fig. 4, the maximum CRLB (7), the
approximate maximum CRLB (8), and the lower-bound on
the optimal CRLB for a prescribed total power. The figure
shows how the approximate maximum CRLB and the true
maximum CRLB do not vary more than 10%. It also shows
how the lower-bound is tight to the approximate maximum
CRLB for the case of power allocation, thus in this case the
algorithm is performing optimally. For the bandwidth and joint
allocation cases, the lower-bound is not as tight, being the
separation greater for the joint case, meaning another joint
power-bandwidth allocation algorithm could perhaps perform
slightly better.
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VII. CONCLUSIONS

Three approximate solutions for the allocation of power
or/and bandwidth are provided given that transmitters access
the medium using disjoint bandwidths of the spectrum. Ex-
tensive simulations are run on the performance of resource
allocation for different SNR’s in terms of the theoretical CRLB
and tested by a multilateration algorithm. The best accuracy is
achieved by jointly optimizing power and bandwidth allocation
among the MIMO radar elements, being bandwidth a much
more valuable resource than power.

APPENDIX A

The power allocation pjopt and the bandwidth allocation
wj
opt as solutions for Problem 3 must satisfy pjopt ≤ P and

wj
opt ≤ B, and must be colinear. To prove the latter we define

two colinear allocations p̂ and ŵ whose m-th components are
defined as

p̂(m) =
P

M∑
i=1

(
pjopt(i)

) 1
3
(
wjopt(i)

) 2
3

(
pjopt(m)

) 1
3
(
wjopt(m)

) 2
3

ŵ(m) =
B

M∑
i=1

(
pjopt(i)

) 1
3
(
wjopt(i)

) 2
3

(
pjopt(m)

) 1
3
(
wjopt(m)

) 2
3

The cost (8) associated to these new allocations can be written
in terms of the cost function of the previous allocations using
(2)

g(p̂, ŵ) =

[
M∑
i=1

(
pjopt(i)

) 1
3
(
wjopt(i)

) 2
3

]3
PB2

g(pjopt,w
j
opt) (28)

By Hölder’s inequality [43], and using the fact that
pjopt(i), w

j
opt(i) ≥ 0, the numerator in the above fraction

satisfies[
M∑
i=1

(
pjopt(i)

) 1
3
(
wjopt(i)

) 2
3

]3
≤
[
(1>pjopt)

1
3 (1>wj

opt)
2
3

]3

Since the allocations must satisfy 1>pjopt ≤ P and wj
opt ≤ B,

it follows easily that
[
(1>pjopt)

1
3 (1>wj

opt)
2
3

]3
≤ PB2, and

therefore (28) reads

g(p̂, ŵ) ≤ g(pjopt,w
j
opt)

Thus for any power and bandwidth allocation, it exists always
a colinear alternative solution (p̂, ŵ) performing equal or bet-
ter, and such that ŵ = B

P p̂. Hence, the solution (pjopt,w
j
opt)

must also satisfy this property, i.e. wj
opt =

B
P p

j
opt.

APPENDIX B

The proof of Proposition 2 is by contradiction. Call y′ the
solution to problem (14). Suppose that problem (11) admits a
solution y∗ that is better than any scaled copy of y′ satisfying
the constraints of problem (11); i.e. y∗ better than αy′ for any
α such that 0 < α < D

1>y′
. As a better solution, the objective

function evaluated at y∗ must be smaller than evaluated at
αy′: maxq gq(y

∗, k) < maxq gq(αy
′, k) for α ∈ [0, D

1>y′
].

For the right side of this inequality, using the definition of
g(y, k) (10), we can put the constant α as a factor in front
of the max operator: maxq gq(y

∗, k) < 1
αk+1 maxq gq(y

′, k).
The most limiting value of α is α = D

1>y′
, thus leading to

max
q
gq(y

∗, k) <

(
1>y′

D

)k+1

max
q
gq(y

′, k) ≤
(
1>y′

D

)k+1

(29)
where we use the fact that y′ must satisfy the constraints
of problem (14), i.e. maxq gq(y

′, k) ≤ 1. The allocation
policy y′′ = [maxq gq(y

∗, k)]1/k+1y∗ based on y∗, satisfies
gq(y

′′, k) = 1. Computing the sum of y′′’s components and
making use of (29) it is obtained

1>y′′ =

[
max
q
gq(y

∗, k)

]1/k+1

1>y∗ <
1>y′

D
1>y∗ (30)

Because y∗ is a solution to problem (11) it satisfies 1>y∗ ≤
D, and consequently in (30), 1>y′′ < 1>y′. This indicates
that y′′, rather than y′, is a solution to problem (11) and
contradicts the original hypothesis.
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