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Abstract

In this paper, we investigate a new compressive sensing model for multi-channel sparse data where

each channel can be represented as a hierarchical tree and different channels are highly correlated. There-

fore, the full data could follow the forest structure and we call this property as forest sparsity. It exploits

both intra- and inter- channel correlations and enriches the family of existing model-based compressive

sensing theories. The proposed theory indicates that only O(Tk+ log(N/k)) measurements are required

for multi-channel data with forest sparsity, where T is the number of channels, N and k are the length

and sparsity number of each channel respectively. This result is much better than O(Tk + T log(N/k))

of tree sparsity, O(Tk + k log(N/k)) of joint sparsity, and far better than O(Tk + Tk log(N/k)) of

standard sparsity. In addition, we extend the forest sparsity theory to the multiple measurement vectors

problem, where the measurement matrix is a block-diagonal matrix. The result shows that the required

measurement bound can be the same as that for dense random measurement matrix, when the data shares

equal energy in each channel. A new algorithm is developed and applied on four example applications

to validate the benefit of the proposed model. Extensive experiments demonstrate the effectiveness and

efficiency of the proposed theory and algorithm.

Index Terms

forest sparsity, structured sparsity, compressed sensing, model-based compressive sensing, tree spar-

sity, joint sparsity
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I. INTRODUCTION

Sparsity techniques are becoming more and more popular in machine learning, statistics, medical

imaging and computer vision as the emerging of compressive sensing. Based on compressive sensing

theory [1], [2], a small number of measurements are enough to recover the original data, which is an

alternative to Shannon/Nyquist sampling theorem for sparse or compressible data acquisition.

A. Standard Sparsity and Algorithms

Suppose A ∈ RM×N is the sampling matrix and b ∈ RM is the measurement vector, the problem is to

recover the sparse data x ∈ RN by solving the linear system Ax = b. Sometimes the data is not sparse

but compressible under some base Φ such as wavelet, and the corresponding problem is AΦ−1θ = b

where θ denotes the set of wavelet coefficients. Although the problem is underdetermined, the data can

be perfectly reconstructed if the sampling matrix satisfy restricted isometry property (RIP) [3] and the

number of measurements is larger than O(k + k log(N/k)) for k-sparse data1 [4], [5].

To solve the underdetermined problem, we may find the sparsest solution via `0 norm regularization.

However, because the problem is NP-hard [6] and impractical for most applications , `1 norm regulariza-

tion methods such as the lasso [7] and basis pursuit (BP) [8] are first used to pursue the sparse solution.

It has been proved that the `1 norm regularization can exactly recover the sparse data for CS inverse

problem under mild conditions [1], [9]. Therefore, a lot of efficient algorithms have been proposed for

standard sparse recovery. Generally speaking, those algorithms can be classified into three groups: greedy

algorithms [10], [11], convex programming [12]–[14] and probability based methods [15], [16].

B. Joint Sparsity and Algorithms

Beyond standard sparsity, the non-zeros components of x often tend to be in some structures. This

comes to the concept of structured sparsity or model-based compressive sensing [17]–[19]. In contrast

to standard sparsity that only relies on the sparseness of the data, structured sparsity models exploit

both the non-zero values and the corresponding locations. For example, in the multiple measurement

vector (MMV) problem, the data is consisted of several vectors that share the same support 2. This is

called joint sparsity that widely arise in cognitive radio networks [20], direction-of-arrival estimation

in radar [21], multi-channel compressive sensing [22], [23] and medical imaging [24], [25]. If the data

1We mean there are at most k non-zero components in the data.
2The set of indices corresponding to the non-zero entries is often called the support
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X ∈ RTN×1 is consist of T k-sparse vectors, the measurement bound could be substantially reduced to

O(Tk + k log(N/q)) instead of O(Tk + Tk log(N/q)) for standard sparsity [17], [18], [26], [27].

A common way to implement joint sparsity in convex programming is to replace the `1 norm with `2,1

norm, which is the summation of `2 norms of the correlated entries [28], [29]. `2,1 norm for joint sparsity

has been used in many convex solvers and algorithms [25], [30]–[32]. In Bayesian sparse learning or

approximate message passing [33]–[35], data from all channels contribute to the estimation of parameters

or hidden variables in the sparse prior model.

C. Tree Sparsity and Algorithms

Another common structure would be the hierarchical tree structure, which has already been successfully

utilized in image compression [36], compressed imaging [37]–[40], and machine learning [41]. Most

nature signals/images are approximately tree-sparse under the wavelet basis. A typical relationship with

tree sparsity is that, if a node on the tree is non-zero, all of its ancestors leading to the root should be

non-zeros. For multi-channel data X = [x1;x2, ...;xT ]3 ∈ RNT×1, O(Tk + T log(N/k)) measurements

are required if each channel xt is tree-sparse.

Due to the overlapping and intricate structure of tree sparsity, it is much harder to implement. For

greedy algorithms, StructOMP [17] and TOMP [42] are developed for exploiting tree structure where the

coefficients are updated by only searching the subtree blocks instead of all subspace. In statistical models

[37], [38], hierarchical inference is used to model the tree structure, where the value of a node is not

independent but relies on the distribution or state of its parent. In convex programming [39], [43], due

to the tradeoff between the recovery accuracy and computational complexity, this is often approximated

as overlapping group sparsity [44], where each node and its parent are assigned into one group.

D. Forest Sparsity

Although both joint sparsity and tree sparsity have been widely studied, unfortunately, there is no work

that study the benefit of their combinations so far. Actually, in many multi-channel compressive sensing or

MMV problems, the data has joint sparsity across different channels and each channel itself is tree-sparse.

Note that this differs from C-HiLasso [45], where sparsity is assumed inside the groups. No method has

fully exploited both priors and no theory guarantees the performance. In practical applications, researchers

3In this article, [;] denotes concatenating the data vetically.
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and engineers have to choose either joint sparsity algorithms by giving up their intra tree-sparse prior,

or tree sparsity algorithms by ignoring their inter correlations.

In this paper, we propose a new sparsity model called forest sparsity to bridge this gap. It is a natural

extension of existing structured sparsity models by assuming that the data can be represented by a forest

of mutually connected trees. We give the mathematical definition of forest sparsity. Based on compressive

sensing theory, we prove that for a forest of T k-sparse trees, only O(Tk + log(N/k)) measurements

are required for successful recovery with high probability. That is much less than the bounds of joint

sparsity O(Tk + k log(N/k)) and tree sparsity O(Tk + T log(N/k)) on the same data. The theory is

further extended to the case on MMV problems, which is ignored in existing structured sparsity theories

[17]–[19]. Finally, we derive an efficient algorithm to optimize the forest sparsity model. The proposed

algorithm is applied on medical imaging applications such as multi-contrast magnetic resonance imaging

(MRI), parallel MRI (pMRI), as well as color images, multispectral image reconstruction. Extensive

experiments demonstrate the advantages of forest sparsity over the state-of-the-art methods in these

applications.

E. Paper Organization

The remainder of the paper is organized as follows. Existing works for standard sparsity, joint sparsity

and tree sparsity are reviewed in Section II. We will propose forest sparsity and give the benefit of

forest sparsity in Section III. An algorithm is presented in Section IV. We conduct experiments on four

applications compared with standard sparsity, joint sparsity, and tree sparsity algorithms in Section V.

And finally the conclusion is drawn in Section VI.

II. BACKGROUND AND RELATED WORK

In compressive sensing (CS), the capture of a sparse signal and compression are integrated into a

single process [2], [3]. We do not capture sparse data x ∈ RN directly but rather capture M < N

linear measurements b = Ax based on a measurement matrix A ∈ RM×N . To stably recover the k-sparse

data x from M measurements, the measurement matrix A is required to satisfy the Restricted Isometry

Property (RIP) [3]. Let Ωk denote the union k-dimensional subspaces where x lives in.

Definition 1: (k-RIP) An M × N matrix A has the k-restricted isometry property with restricted

isometry constant 1 > δk > 0, if for all x ∈ Ωk, and

(1− δk)||x||22 ≤ ||Ax||22 ≤ (1 + δk)||x||22. (1)
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CS result shows that, if M = O(k + k log(N/k)), a sub-Gaussian random matrix4 A can satisfy the

RIP with high probability [47], [48].

Recently, structured sparsity theories demonstrate that when there is some structured prior information

(e.g. group, tree, graph) in x, the measurement bound could be reduced [17], [18]. Suppose x is in the

union of subspaces A, then the k-RIP can be extended to the A-RIP [48]:

Definition 2: (A-RIP) An M × N matrix A has the A-restricted isometry property with restricted

isometry constant 1 > δA > 0, if for all x ∈ A, and

(1− δA)||x||22 ≤ ||Ax||22 ≤ (1 + δA)||x||22. (2)

A-RIP property has been proved to be sufficient for robust recovery of structured-sparse signals under

noisy conditions [18]. The required number of measurements M has been quantified for a sub-Gaussian

random matrix A that has the A-RIP [48]:

Theorem 1: (A-RIP) Let A be the union of L subspaces of k dimension in RN . For any t > 0, let

M ≥ 2

cδAk

(ln(2L) + k ln
12

δAk

+ t), (3)

then there exists a constant c > 0 and a randomly generated sub-Gaussian matrix A ∈ RM×N satisfies

the A-RIP with probability at least 1− e−t.

From (3), we could intuitively observe that M can be less by reducing the number of subspaces

A. It coincides with the intuition that the result will be improved when more priors are utilized. For

standard k-sparse data, there is no more constraint to reduce the number of possible subspaces CkN . Let

L = CkN ≈ (eN/k)k, the CS result for standard sparsity can be derived from Theorem 1.

Now we consider structured sparse data. Following [18], if a k-sparse data x ∈ RN can form a tree

or can be sparsely represented as a tree under one orthogonal sparse basis Φ (e.g. wavelet), and the k

non-zero components naturally form a subtree, then it is called tree-sparse data.

Definition 3: Tree-sparse data in RN is defined as

Tk={x = Φ−1θ: θ|ΩC = 0, |Ω| = k, where Ω forms a connected subtree. }.

Here Ω ⊆ {1, 2, ..., N} denotes a subspace of the data as and the support is in Ω. ΩC denotes the

complement of Ω and θ denotes the coefficients under Φ. It implies that, if an entry of θ is in Ω , all its

ancestors on the tree must be in Ω.

For tree-sparse data, we say it has the tree sparsity property. Most natural signals or images have

tree sparsity property, since they can be sparsely represented with the wavelet tree structure. Specially,

4It includes Gaussian and Bernoulli random matrices etc. [46].
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the wavelet coefficients of a 1D signal form a binary tree and those of a 2D image yield a quadtree. If

the union of all subspaces are denoted by ΩTree, it is obviously that ΩTree ⊂ Ωk and the number of

subspaces LTree < CkN .

Theorem 2: For tree-sparse data, there exists a sub-Gaussian random matrix A ∈ RM×N that has

the Tk-RIP with probability 1− e−t if the number of measurements satisfies that:

M ≥



2
c1δTk

(k + ln(N/(k + 1)) + k ln(12/δTk)

+ ln 2 + t) if k ≤ blog2Nc ,
2

c1δTk

(k ln 4 + ln(c2N/k) + k ln(12/δTk)

+ ln 2 + t) if k > blog2Nc .

(4)

where c1 and c2 denote absolute constants.

For both case, we have M = O(k+log(N/k)). Similar conclusion has been drawn in previous articles

[17] [18].

So far, we have reviewed standard sparsity and tree sparsity on single channel data. For multi-channel

data that contains T channels or vectors (i.e. X = [x1;x2; ...;xT ] ∈ RNT×1), each of which is standardly

k-sparse, the bound for the number of measurement should be O(Tk+Tk log(N/k)). If each channel is

tree-sparse and independently, the measurement bound for a sub-Gaussian random matrix A ∈ RTM×TN

is TM = O(Tk + T log(N/k)).

It is important to note that the T-channel k-sparse data has sparsity Tk but not k. Different from the

above independent channels, another case is that all channels of the data may be highly correlated, which

corresponds to joint sparse data:

Definition 4: Joint-sparse data is defined as

JT,k={X = [x1;x2; ...;xT ]: xi = Φ−1θi, θi|ΩC = 0, |Ω| = k, i = 1, 2, ..., T } .

Similar as tree-sparse data, joint-sparse data has the joint sparsity property. It has to be clarified that

joint sparsity does not rely on tree sparsity. The former utilizes the structure across different channels,

while the later utilizes the structure within each channel. Previous works implies that the minimum

measurement bound for such joint sparse data is TM = O(Tk + k log(N/k)) [17], [18], [26].

III. FOREST SPARSITY

In practical applications, it happens usually that multi-channel images, such as color images, multi-

spectral images and MR images, have the joint sparsity and tree sparsity simultaneously. It is because:

(a) the wavelet coefficients of each channel naturally yield a quadtree; (b) all channels represent the

same physical objects (e.g. nature scenes or human organs), and the wavelet coefficients of each channel

September 17, 2018 DRAFT



7

tend to be large/small simultaneously due to same boundaries of the objects. Therefore, the support of

such data is consist of several connected trees and like a forest. Fig. 1 shows the forest structure in

multi-contrast MR images. We could find that the non-zero coefficients are not random distributed but

forms a connected forest. Unfortunately, existing tree-based algorithms can only recover multi-channel

data channel-by-channel separately, and it is unknown how to model the tree structure in existing joint

sparsity algorithms. In addition, there are no theoretical results in previous works showing how much

better the recovery can be improved by fully exploiting the prior information.

(a) (b) (c)

Fig. 1. Forest structure on multi-contrast MR images. (a) Three multi-contrast MR images. (b) The wavelet coefficients of

the images. Each coefficient tends to be consistent with its parent and children, and the coefficients across different trees at the

same position. (c) One joint parent-child group across different trees that used in our algorithm.

Motivated by this limitation, we extend previous works to a more special but widely existed case. For

multi-channel data, if it is jointly sparse, and more importantly, the common support of different channels

yields a subtree structure, we call this kind of data forest-sparse data:

Definition 5: Forest-sparse data is defined as

FT,k={X = [x1;x2; ...;xT ]: xi = Φ−1θi, θi|ΩC = 0, |Ω| = k, where Ω forms a connected subtree,

i = 1, 2, ..., T } .

Similarly, the forest-sparse data has forest sparsity property. This definition implies that if the coeffi-

cients at the same position across different channels are non-zeros, all their ancestor coefficients are all

non-zeros. Learning with forest sparsity, we search the sparsest solution that follow the forest structure

in the CS inverse problem. Any solution that violates the assumption will be penalized. Intuitively, the

solution will be more accurate. We obtain our main result in the following theorem:
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Theorem 3: For forest-sparse data, there exists a sub-Gaussian random matrix A ∈ RTM×TN that

has the FT,k-RIP with probability 1− e−t if the number of measurements satisfies that:

TM ≥



2
c1δFT,k

(k + ln(N/(k + 1)) + Tk ln(12/δFT,k
)

+ ln 2 + t) if k ≤ blog2Nc ,
2

c1δFT,k

(k ln 4 + ln((c2N)/k) + Tk ln(12/δFT,k
)

+ ln 2 + t) if k > blog2Nc .

(5)

where c1 and c2 are absolute constants.

For both cases, the bound is reduced to M = O(Tk + log(N/k)). The proofs of Lemma 1 as well

as Lemma 2, 4 are included in the appendices. Using the FT,k-RIP, forest-sparse data can be robustly

recovered from noisy compressive measurements.

Table I lists all the measurement bounds for the forest-sparse data with different models. Standard

sparsity model only exploits the sparseness while no prior information about the locations of the non-

zero elements is involved. It is the classical but worst model for forest-sparse data. These location priors

are partially utilized in joint sparsity and tree sparsity models. One of them only studies the correlations

across channels, while the other one only learns the intra structure. Our result is significantly better than

those of joint sparsity and tree sparsity, and far better than that of standard sparsity, especially when N/k

is large. Only the proposed model fully exploits all these structures.

TABLE I

MEASUREMENT BOUNDS FOR FOREST-SPARSE DATA

Sparse Models Measurement Bounds

Standard Sparsity O(Tk + Tk log(N/k))

Joint Sparsity O(Tk + k log(N/k))

Tree Sparsity O(Tk + T log(N/k))

Forest Sparsity O(Tk + log(N/k))

So far, we have analyzed the result by forest sparsity over previous results. In all these results, the

measurement matrix A is assumed to be a dense sub-Gaussian matrix. However, in many practical

problems, each data channel xt ∈ RN is measured by a distinct compressive matrix A′t ∈ RM×N ,

t = 1, 2, ..., T , which are called multiple measurement vectors (MMV) problems or multi-task learning
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( e.g., [22], [49], [50]). Here and later, we assume that {A′t}Tt=1 follow the same distribution but may

be different. Therefore, the matrix A is actually a block-diagonal matrix rather than a dense matrix. The

linear system b = Ax can be written as:
b1

b2

...

bT

 =


A′1

A′2

...

A′T




x1

x2

...

xT

 (6)

The non-diagonal blocks in A are all zeros. Intuitively, such block-diagonal matrices have no better results

than the dense matrices that discussed above, due to the less randomness. Unfortunately, the performance

of the random block-diagonal matrices has not been analyzed on structured sparse data before, as all

existing structured sparsity theories concentrate on the dense random matrix [17]–[19]. In this article, we

extend the theoretical result to the block-diagonal matrix in the MMV problems.

Theorem 4: For forest-sparse data, there exists a block-diagonal matrix A composed by sub-Gaussian

random matrices {A′t}Tt=1 as in (6), that has the FT,k-RIP with probability 1 − e−t if the number of

measurements satisfies that:

TM ≥



2T
c1W

(ln 2 + ln(N/(k + 1)) + Tk ln(12/δFT,k
)

+k + t), if k ≤ blog2Nc ,
2T
c1W

(ln 2 + ln((c3N)/k) + Tk ln(12/δFT,k
)

+k ln 4 + t), if k > blog2Nc .

(7)

where W = min(c2
2δ

2
FT,k

Γ2, c2δFT,k
Γ∞); Γ2 =

(
∑T

t=1 ||xt||22)2∑T
t=1 ||xt||42

and Γ∞ =
∑T

t=1 ||xt||22
maxT

t=1 ||xt||22
; c1, c2 and c3 are

absolute constants.

For both cases, the bound can be written as TM = O(T
2k+T log(N/k)
min(Γ2,Γ∞) ). In contrast to previous results on

dense matrices with i.i.d sub-Gaussian entries, this bound also depends on the energy of the data. It is not

hard to find that 1 ≤ Γ2 ≤ T and 1 ≤ Γ∞ ≤ T . In the best case, when ||x1||2 = ||x2||2 = ... = ||xT ||2 and

Γ2 = Γ∞ = T , the measurement bound is TM = O(Tk + log(N/k). It shows a similar performance as

the dense sub-Gaussian matrix in Theorem 3. In the worst case, the energy of the data concentrate on one

single channel/task, i.e., all ||xt||2 = 0 except a single index ||xt′ ||2 6= 0. The measurement bound then

is TM = O(T 2k + T log(N/k), which is even worse than that in Theorem 2 for independent tree sparse

channels. Even for the same block-diagonal matrix, the analysis makes clear that its performance may

varies significantly depending on the data being measured. In the worst case, their measurement bound can

increase T times. However, the increased factor T/min(c2
2δ

2Γ2, c2δΓ∞) for block-diagonal matrices also
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applies to standard sparse data, joint sparse data and tree sparse data. For the same measurement matrix

and the same data, the advantage of forest sparsity still exists. Due to this reason, we do not evaluate the

term min(c2
2δ

2Γ2, c2δΓ∞) in the experiments, while focus our interest on comparing different sparsity

models on the same data.

IV. ALGORITHM

In this article, the forest structure is approximated as overlapping group sparsity [44] with mixed

`2,1 norm. Although it may not be the best approximation, it is enough to demonstrate the benefit of

forest sparsity. To evaluate the forest sparsity model, we need to compare different models via a similar

framework. From the definition of forest-sparse data, we could find that a coefficient is large/small, its

parent and ”neighbors”5 also tend to be large/small. All parent-child pairs in the same position across

different channels are assigned into one group, and the problem becomes overlapping group sparsity

regularization. Similar scheme has been used in approximating tree sparsity [39], [40], where each node

and its parent are assigned into one group. We write the approximated problem as:

min
x

1

2
||Ax− b||22 + λ

∑
g∈G
||(Φx)g||2 (8)

where g denotes one of the coefficient groups discussed above (an example is demonstrated in Fig.1(c)),

(·)g denotes the coefficients in group g and G is the set of all groups.

The mixed `2,1 norm encourages all the components in the same group g to be zeros or non-zeros

simultaneously. With our group configuration, it encourages forest sparsity. We present an efficient

implementation based on fast iterative shrinkage-thresholding algorithm (FISTA) [12] framework for this

problem. This is because FISTA can be easily applied for standard sparsity and joint sparsity, which could

make the validation of the benefit of the proposed model more convenient. In addition, the formulation

(8) can be easily extended to the combination of total variation (TV) via the Fast Composite Splitting

Algorithms (FCSA) scheme [51]. Note that other algorithms may be used to solve the forest sparsity

problems, e.g. [32], [44], [52], but determining the optimal algorithm for forest sparsity is not the scope

of this article.

FISTA [12] is a accelerated version of proximal method which minimizes the object function with the

following form:

min{F (x) = f(x) + g(x)} (9)

5Parent denotes the parent node on the same channel while neighbors mean coefficients at the same position on other channels.
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where f(x) is a convex smooth function with Lipschitz constant Lf and g(x) is a convex but usually

nonsmooth function. It comes to the original FISTA when f(x) = 1
2 ||Ax − b||

2
2 and g(x) = λ‖Φx‖1,

which is summarized in Algorithm 1, where, AT denotes the transpose of A.

Algorithm 1 FISTA [12]
Input: ρ = 1/Lf , λ, n = 1, t1 = 1 r1 = x0

while not meet the stopping criterion do

y = rn − ρAT (Arn − b)

x = arg minx{ 1
2ρ‖x− y‖

2 + λ‖Φx‖1}

tn+1 = 1 +
√

1 + 4(tn)2/2

rn+1 = xn + tn−1
tn+1 (xn − xn−1)

n = n+ 1

end while

For the second step, there is closed form solution by soft-thresholding. For joint sparsity problem where

g(x) = λ‖Φx‖2,1, the second step also has closed form solution. We call the version as FISTA Joint for

joint sparsity. However, for the problem (8) with overlapped groups, we can not directly apply FISTA to

solve it.

In order to transfer the problem (8) to non-overlapping version, we introduce a binary matrix G ∈

RD×TN (D > TN ) to duplicate the overlapped coefficients. Each row of G only contains one 1 and

all else are 0s. The 1 appears in the i-th column corresponds to the i-th coefficient of Φx. Intuitively,

if the coefficient is included in j groups, G will contains j such rows. An auxiliary variable z is used

to constrain GΦx. This scheme is widely utilized in the alternating direction method (ADM) [32]. The

alternating formulation becomes:

min
x,z
{1

2
‖Ax− b‖22 + λ

∑
g∈G
||zg||2 +

γ

2
||z −GΦx||22} (10)

where γ is another positive parameter. We iteratively solve this alternative formulation by minimizing x

and z subproblems respectively. For the z subproblem:

ẑg = arg min
zg
{λ||zg||2 +

γ

2
||zg − (GΦx)g||22}, g ∈ G (11)

which has the closed form solution:
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ẑg = max(||(GΦx)g||2 −
λ

γ
, 0)

(GΦx)g
||(GΦx)g||2

, g ∈ G (12)

We denote it as a shrinkgroup operation. For the x-subproblem:

x̂ = arg min
x
{1

2
‖Ax− b‖22 +

γ

2
||z −GΦx||22} (13)

The optimal solution is x = (ATA + λΦTGTGΦ)−1(AT b + λΦTGT z), which contains a large scale

inverse problem. Actually, this problem can be efficient solved by various methods. In order to compare

with FISTA and FISTA Joint, we apply FISTA to solve (13). This could demonstrate the benefit of forest

sparsity more clearly. Let f(x) = 1
2‖Ax − b‖

2
2 + λ

2 ||z − GΦx||22 and g(x) = 0. Supposing its Lipschitz

constant to be Lf , the whole algorithm is summarized in Algorithm 2.

Algorithm 2 FISTA Forest
Input: ρ = 1/Lf , r1 = x0, t1 = 1, λ, γ, n = 1

while not meet the stopping criterion do

z = shrinkgroup(GΦxn−1, λ/γ)

xn = rn − ρ[AT (Arn − b) + γΦTGT (GΦrn − z)]

tn+1 = [1 +
√

1 + 4(tn)2]/2

rn+1 = xn + tn−1
tn+1 (xn − xn−1)

n = n+ 1

end while

For the first step, we solve (11) while 1
2‖Ax− b‖

2
2 keeps the same. The object function value in (10)

decreases. For the second step, (13) is solved by FISTA iteratively while λ
∑

g∈G ||zg||2 keeps the same.

Therefore, the object function value in (10) decreases in each iteration and the algorithm is convergent.

Algorithm 2 is also used to implement tree sparsity by recovering the data channel-by-channel separately.

We call it FISTA Tree.

In some practical applications, the data tends to be forest-sparse but not strictly. We can soften and

complement the forest assumption with other penalties, such as joint `2,1 norm or TV. For example, after

combining TV, problem (10) becomes:

min
x,z
{1

2
‖Ax− b‖22 + λ

∑
g∈G
||zg||2 +

γ

2
||z −GΦx||22

+µ||x||TV } (14)
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where ||x||TV =
∑TN

i=1

√
(∇1xi)2 + (∇2xi)2; ∇1 and ∇2 denote the forward finite difference operators

on the first and second coordinates respectively; µ is a positive parameter. Compared with Algorithm 2,

we only need to set g(x) = µ||x||TV and the corresponding subproblem has already been solved [12],

[51], [53]. This TV combined algorithm is called FCSA Forest, which will be used in the experiments.

To avoid repetition, it is not listed.

V. APPLICATIONS AND EXPERIMENTS

We conduct experiments on the RGB color image, multi-contrast MR images, MR image of multi-

channel coils and the multispectral image to validate the benefit of forest sparsity. All experiments are

conducted on a desktop with 3.4GHz Intel core i7 3770 CPU. Matlab version is 7.8(2009a). If the

sampling matrix A is M by N , the sampling ratio is defined as M/N . All measurements are mixed with

Gaussian white noise of 0.01 standard deviation. Signal-to-Noise Ratio (SNR) is used as the metric for

evaluations:

SNR = 10 log10(Vs/Vn) (15)

where Vn is the Mean Square Error between the original data x0 and the reconstructed x; Vs = var(x0)

denotes the power level of the original data where var(x0) denotes the variance of the values in x0.

A. Multi-contrast MRI

Multi-contrast MRI is a popular technique to aid clinical diagnosis. For example T1 weighted MR

images could distinguish fat from water, with water appearing darker and fat brighter. In T2 weighted

images fat is darker and water is lighter, which is better suited to imaging edema. Although with different

intensities, T1/T2 or proton-density weighted MR images are scanned at the same anatomical position.

Therefore they are not independent but highly correlated. Multi-contrast MR images are typically forest-

sparse under the wavelet basis. Suppose {xt}Tt=1 ∈ RN are the multi-contrast images for the same

anatomical cross section and {bt}Tt=1 are the corresponding undersampled data in Fourier domain, the

forest-sparse reconstruction can be formulated as:

x̂ = arg min
x
‖Φx‖F ,T + λ

T∑
s=1

‖Rtxt − bt‖2 (16)

where x is the vertorized data of [x1, ..., xT ] and Rt is the measurement matrix for the image xt. This is an

extension of conventional CS-MRI [54]. Fig. 1 shows an example of the forest structure in multi-contrast

MR images.
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Fig. 2. (a)-(c) the original multi-constrast images and (d) the sampling mask.

The data is extracted from the SRI24 Multi-Channel Brain Atlas Dataset [55]. In the Fourier domain, we

randomly obtain more samples in low frequencies and less samples in higher frequencies. This sampling

scheme has been widely used for CS-MRI [51], [54], [56]. Fig. 2 shows the original multi-contrast MR

images and the sampling mask.

We compare four algorithms on this dataset: FISTA, FISTA Joint, FISTA Tree and FISTA Forest.

The parameter λ is set 0.035, and γ is set to 0.5λ. We run each algorithm 400 iterations. Fig. 3 (a)

demonstrates the performance comparisons among different algorithms. From the figure, we could observe

that modeling with forest sparsity achieves the highest SNR after convergence. Although the algorithm

for forest sparsity takes more time due to the overlapping structure, it always outperforms all others in

terms of accuracy.

In addition, as total variation is very popular in CS-MRI [25], [51], [54], we compare our FCSA Forest

algorithm with FCSA [51] (TV is combined in FISTA), FCSA Joint [25] (TV is combined in FISTA Joint)

and FCSA Tree. The parameter µ for TV is set 0.001, the same as that in previous works [51], [56]. Fig.

3 (b) demonstrates the performance comparison including TV regularization. Compared with Fig. 3 (a),

all algorithms improve at different degrees. However, the ranking does not change, which validates the

superiority of forest sparsity. As FCSA has been proved to be better than other algorithms for general

compressive sensing MRI (CS-MRI) [54], [56], [57] and FCSA Joint [25] better than [24], [58] in multi-

contrast MRI, the proposed method further improves CS-MRI and make it more feasible than before.

In order to validate the benefit of forest sparsity in terms of measurement number, we conduct an

experiment to reconstruct multi-contrast MR images from different sampling ratios. Fig. 4 demonstrates

the final results of four algorithms with sampling ratio from 16% to 26%. With more sampling, all

algorithms have better performance. However, The forest sparsity algorithm always achieves the best

reconstruction. For the same reconstruction accuracy, the FISTA Forest algorithm only requires about

16% measurements to achieve SNR 28, which is approximately 2%, 3%, 5% less than that of FISTA Joint,

FISTA Tree and FISTA respectively. More results of forest sparsity on multi-contrast MRI can be found
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Fig. 3. Performance comparisons among different algorithms. (a) Multi-constrast MR images reconstruction with 20% sampling.

Their final SNRs are 28.05, 29.69, 29.22 and 30.42 respectively. The time costs are 13.11s, 14.43s, 22.08s and 25.11s respectively.

(b) Multi-constrast MR images reconstruction with 20% sampling by both wavelet sparsity and TV regularization. Their final

SNRs are 28.75, 30.30, 29.65 and 30.83 respectively. The time costs are 19.00s, 19.68s, 29.11s and 31.41s respectively.

in [59].
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Fig. 4. Reconstruction performance with different sampling ratios.

B. parallel MRI

To improve the scanning speed of MRI, an efficient and feasible way is to acquire the data in

parallel with multi-channel coils. The scanning time depends on the number of measurements in Fourier

domain, and it will be significantly reduced when each coil only acquires a small fraction of the whole

measurements. The bottleneck is how to reconstruct the original MR image efficiently and precisely. This

issue is called pMRI in literature. Sparsity techniques have been used to improve the classical method
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SENSE [60]. However, when the coil sensitivity can not be estimated precisely, the final image would

contain visual artifacts. Unlike previous CS-SENSE [61] which reconstructs the images of multi-coils

individually, calibrationless parallel MRI [62], [63] recovers the aliased images of all coils jointly by

assuming the data is jointly sparse.

Let T equal to the number of coils and bt be the measurement vector from coil t. It is therefore the

same CS problem as (16). The final result of CaLM-MRI is obtained by a sum of square (SoS) approach

without coil sensitivity and SENSE encoding. It shows comparable results with those methods which

need precise coil configuration. As shown in Fig. 5, the appearances of different images obtained from

multi-coils are very similar. This method can be improved with forest sparsity, since the images follow

the forest sparsity assumption.

(a) (b) (c) (d)

Fig. 5. The aliased MR images of multi-coils. Due to the different locations of the coils, they have different sensitivities to

the same image.

There are two steps for compressive sensing pMRI reconstruction in CaLM-MRI [62]: 1) the aliased

images are recovered from the undersampled Fourier signals of different coil channels by CS methods;

2) The final image for clinical diagnosis is synthesized by the recovered aliased images using the sum-

of-square (SoS) approach. As discussed above, these aliased images should be forest-sparse under the

wavelet basis. We compare our algorithm with FISTA Joint and SPGL1 [31] which solves the joint `2,1

norm problem in CaLM-MRI. For the second step, all methods use the SoS approach from the aliased

images that they recovered. All algorithms run enough time until it has converged.

Table II and Table III show all the comprehensive comparisons among these algorithms. For the same

algorithm, more measurements or more number of coils tend to increase the SNRs of aliased images,

although it does not result in linear improvement for the final image reconstruction. Another observation

is that FISTA Joint and SPGL1 have similar performance in terms of SNR on this data. This is because

both of them solve the same joint sparsity problem, even with different schemes. Upgrading the model
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TABLE II

COMPARISONS OF SNRS (dB) ON DIFFERENT SAMPLING RATIOS WITH 4 COILS

sampling ratios 25% 20% 17% 15%

SNR of SPGL1 26.72 24.59 23.08 22.31

Aliased Images FISTA Joint 26.95 24.73 23.06 22.21

FISTA Forest 27.47 25.22 23.37 22.59

SNR of SPGL1 20.64 20.35 19.12 18.64

Final Image FISTA Joint 20.79 20.41 19.75 18.49

FISTA Forest 22.62 22.29 21.03 20.47

TABLE III

COMPARISONS OF SNRS (dB) ON DIFFERENT NUMBER OF COILS WITH 20% SAMPLING

number of coils 2 4 6 8

SNR of SPGL1 23.33 24.61 24.74 25.16

Aliased Images FISTA Joint 23.41 24.71 24.89 25.23

FISTA Forest 24.25 25.12 25.29 25.52

SNR of SPGL1 21.76 18.95 21.05 21.32

Final Image FISTA Joint 21.90 18.94 21.15 21.87

FISTA Forest 22.44 22.22 22.52 22.52

to forest sparsity, significant improvement can be gained. Finally, it is unknown how to combine TV

in SPGL1. However, both FISTA Joint and FISTA Forest can easily combine TV, which can further

enhance the results [25].

C. Color Image Reconstruction

Color images captured by optical camera can be represented as combinations of red, green, blue three

colors. Different colors synthesized by these three colors seems realistic to human eyes. By observing

the color channels are highly correlated, joint sparsity prior is utilized in recent recovery [23]. Modeling

with `2,1 norm regularization can gain additional SNR to standard `1 norm regularization. Further more,

each color channel tends to be wavelet tree-sparse. If we model the problem with forest sparsity, this

result would be reasonably better.
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Fig. 6. Visual comparisons on the lena image reconstruction after 50 iterations with about 20% sampling. (a) the original image

and the patch detail; (b) recovered by FISTA; (c) recovered by FISTA Joint; (d) the patch details for each recovered image; (e)

recovered by FISTA Tree; (f) recovered by FISTA Forest. Their SNRs are 16.65, 17.41, 17.66 and 18.92, respectively.

For color images, we compare our algorithm with FISTA, FISTA Joint and FISTA Tree. Fig. 6 shows

the visual results recovered by different sparse penalties. Only after 50 iterations, the image recovered

by our algorithm is very close to the original one with the fewest artifacts (shown in the zoomed region

of interest).

D. Multispectral Image Reconstruction

Different from common color images, a multispectral or hyperspectral image is consisted of much more

bands, which provides both spatial and spectral representations of scenes. It is widely utilized on remote

sensing with applications to agriculture, environment detection etc.. However, the collection of large

amount of data costs both huge imaging time and storage space. By compressive sensing data acquisition,

the cost of imaging for remote sensing data could be significantly reduced [64]. Like RGB images, the

bands of multispectral image should represent the same scene. Each band has tree sparsity property.

Therefore, they follow the forest sparsity assumption. Fig. 7 shows bands 6 to 14 of a multispectral
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Fig. 7. The original multispectral image: band 6 to band 14.

image of 1992 AVIRIS Indian Pine Test Site 3 6.
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Fig. 8. Multispectral image reconstruction results by different sparse models with about 20% sampling.

For multispectral image, we test a dataset of 1992 AVIRIS image Indian Pine Test Site 3 (examples

shown in Fig. 7). It is a 2× 2 mile portion of Northwest Tippecanoe County of Indiana. There are total

6The data is downloaded from https://engineering.purdue.edu

/∼biehl/MultiSpec/hyperspectral.html
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220 bands. Each band is recovered separately for standard sparsity and tree sparsity, while every 3 bands

are reconstructed simultaneously by joint-sparse model and forest-sparse model. Each image is cropped

to 128× 128 for convenience. The number of wavelet decomposition levels is set to 3. The SNRs of all

recovered images for band 6 to 66 are shown in Fig. 8. One could observe that modeling with forest

sparsity always achieves the highest SNRs, which validates the benefit of forest sparsity.

VI. CONCLUSION

In this paper, we have proposed a novel model forest sparsity for sparse learning and compressive

sensing. This model enriches the family of structured sparsity and can be widely applied on numerous

fields of sparse regularization problems. The benefit of the proposed model has been theoretically proved

and empirically validated in practical applications. Under compressive sensing assumptions, significant

reduction of measurements is achieved with forest sparsity compared with standard sparsity, joint sparsity

or independent tree sparsity. A fast algorithm is developed to efficiently solve the forest sparsity problem.

While applying it on practical applications such as multi-contrast MRI, pMRI, multispectral image and

color image reconstruction, extensive experiments demonstrate the superiority of forest sparsity over

standard sparsity, joint sparsity and tree sparsity in terms of both accuracy and computational complexity.

APPENDIX A

PROOF OF THEOREM 2

The proof is conducted on the binary tree case for convenience. The bound for quadtree can be easily

extended.

First, we need to figure out the number of subtrees (size k) of a binary tree (size N ). Note that the

root of the subtrees should be the binary tree’s root.

Case 1: when k ≤ blog2Nc, the number of subtrees of size k is just the Catalan number:

LT =
1

k + 1

(
2k

k

)
≤ (2e)k

k + 1
≤ ekN

k + 1
. (17)
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Case 2: when k > blog2Nc, the number of subtrees of size k should follow [18]:

LT ≤
4k

k
(

6√
πk

ln
log2N

blog2 kc)
+

128

e2 blog2 kc
)

≤ 4k

k
(
c1 log2N

blog2 kc)
+

c2

blog2 kc
)

≤ 4k

k

c1 log2(c3N)

log2 k

≤ 4k(c4N)

k
. (18)

where c1, c2, c3, c4 are some constants. Therefore we have:

LT ≤

 ekN
k+1 if k ≤ blog2Nc ,

4k(c4N)
k if k > blog2Nc .

(19)

According to Theorem 1:

M ≥ 2

cδ
(ln(2L) + k ln

12

δ
+ t). (20)

With (20), the number of measurements should satisfy:

M ≥



2
cδTk

(k + ln(N/(k + 1)) + k ln(12/δTk)

+ ln 2 + t) if k ≤ blog2Nc ,
2

cδTk

(k ln 4 + ln(c4N/k) + k ln(12/δTk)

+ ln 2 + t) if k > blog2Nc .

(21)

For both cases, we have M = O(k + log(N/k)) as the minimum number of measurements. Similar

bound also has been proved in previous papers [18] [17].

APPENDIX B

PROOF OF THEOREM 3

If the data is forest-sparse, the support set of different trees are dependent. It means if the support set for

one tree is fixed, then all support sets for other trees are fixed. Accordingly, the number of combinations

is still LT . Note that the sparsity number is Tk as there are T trees. Therefore,

TM ≥



2
cδFT,k

(k + ln(N/(k + 1)) + Tk ln(12/δFT,k
)

+ ln 2 + t) if k ≤ blog2Nc ,
2

cδFT,k

(k ln 4 + ln((c4N)/k) + Tk ln(12/δFT,k
)

+ ln 2 + t) if k > blog2Nc .

(22)

For both cases, the bound is reduced to TM = O(Tk + log(N/k)).
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APPENDIX C

PROOF OF THEOREM 4

We first derive the sufficient condition that guarantees the RIP for block-diagonal matrices.

Theorem 5. Let a matrix A ∈ RTM×TN be composed by sub-Gaussian random matrices {A′t ∈

RM×N}Tt=1 as in (6). For any fixed subset S ⊂ {1, 2, ..., TN} with |S| = TK and 0 < δ < 1, we have

with probability exceeding 1− 2(12/δ)TKe−c1
M

2
min(c22δ

2Γ2,c2δΓ∞):

(1− δ)||X||2 ≤ ||ASX||2 ≤ (1 + δ)||X||2, (23)

for all X = [x1;x2; ...;xT ] ∈ RTk×1. c1 and c2 are absolute constants, Γ2 =
(
∑T

t=1 ||xt||22)2∑T
t=1 ||xt||42

and Γ∞ =∑T
t=1 ||xt||22

maxT
t=1 ||xt||22

.

Proof. Let’s denote X̄ = X/||X||2 and we have ||X̄||2 = 1. We choose a finite set of points Q = {qi},

such that qi ∈ RTk×1 and ||qi||2 = 1 for all i. We have mini ||X̄ − qi||2 ≤ ε1 and covering number

satisfies |Q| ≤ (1 + 2/ε1)TK for any ε1 > 0 (see Chap 13 of [65]).

As the block-diagonal matrix A is composed by sub-Gaussian random matrices, we have for each i

and any ε2 > 0:

P(|||Aqi||22 − ||qi||22| ≥ε2||qi||22)

≤ 2e−c1
M

2
min(c22ε

2
2Γ2,c2ε2Γ∞), (24)

with Γ2 and Γ∞ defined above. This probability is indicated in Theorem III.1 of [66].

Taking union bound, we obtain with probability exceeding 1− 2(1 + 2/ε1)TKe−c1
M

2
min(c22ε

2
2Γ2,c2ε2Γ∞):

(1− ε2) ≤ ||ASqi||22 ≤ (1 + ε2), for all qi ∈ Q, (25)

which gives

(1− ε2) ≤ ||ASqi||2 ≤ (1 + ε2), for all qi ∈ Q. (26)

Now we define ρ as the smallest nonnegative number such that

||ASX̄||2 ≤ (1 + ρ), (27)

for all X̄ ∈ RTk×1 and ||X̄||2 = 1. We have

||ASX̄||2 ≤ ||ASqi||2 + ||As(X̄ − qi)||2

≤ ||ASqi||2 + ||As(X̄ − qi)||2

≤ (1 + ε2) + (1 + ρ)ε1. (28)
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As ρ as the smallest nonnegative number for (27), we have:

1 + ρ ≤ (1 + ε2) + (1 + ρ)ε1, (29)

and

ρ ≤ (ε1 + ε2)/(1− ε1). (30)

Note the above result holds for any ε1 and ε2. We choose ε1 = δ/4 and ε2 = δ/2. Since 0 < δ < 1, it

is easy to see that ρ ≤ δ, which proves

||ASX̄||2 ≤ (1 + δ). (31)

Similar, (1− δ) ≤ ||ASX̄||2 can be proved using the same way. Finally, we obtain with probability

exceeding 1− 2(12/δ)TKe−c1
M

2
min(c22δ

2Γ2,c2δΓ∞):

(1− δ) ≤ ||ASX||2
||X||2

≤ (1 + δ), (32)

which completes the proof as 1 + 2/ε1 = (δ + 8)/δ ≤ 12/δ.

Based on this theorem, we know that any Tk-sparse X ∈ RTN×1 satisfies

(1− δ)||X||2 ≤ ||AX||2 ≤ (1 + δ)||X||2, (33)

with probability exceeding 1− 2(12/δ)TKe−c1
M

2
min(c22δ

2Γ2,c2δΓ∞).

Suppose there are L combinations of such set S, from appendix A and B we know that

L ≤

 ekN
k+1 if k ≤ blog2Nc ,

4k(c4N)
k if k > blog2Nc .

(34)

for forest sparse data.

By taking the union bound, we known that (23) fails with probability less than

2L(12/δFT,k
)TKe

−c1 M

2
min(c22δ

2
FT,k

Γ2,c2δFT,k
Γ∞) ≤ e−t, (35)

which gives

TM ≥



2T (ln 2+k+ln(N/(k+1))+Tk ln(12/δFT,k
)+t)

c1 min(c22δ
2
FT,k

Γ2,c2δFT,k
Γ∞) ,

if k ≤ blog2Nc ,
2T (ln 2+k ln 4+ln((c3N)/k)+Tk ln(12/δFT,k

)+t)

c1 min(c22δ
2
FT,k

Γ2,c2δFT,k
Γ∞) ,

if k > blog2Nc .

(36)

From this one theorem 4 can be easily derived. For both cases, the bound can be written as TM =

O(T
2k+T log(N/k)
min(Γ2,Γ∞) ).
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