
ar
X

iv
:1

31
0.

20
28

v1
  [

cs
.IT

]  
8 

O
ct

 2
01

3
SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING 1

Codebook-Based Opportunistic Interference
Alignment

Hyun Jong Yang,Member, IEEE, Bang Chul Jung,Member, IEEE,
Won-Yong Shin,Member, IEEE, and Arogyaswami Paulraj,Fellow, IEEE

Abstract

Opportunistic interference alignment (OIA) asymptotically achieves the optimal degrees-of-freedom (DoF) in
interfering multiple-access channels (IMACs) in a distributed fashion, as a certain user scaling condition is satisfied.
For the multiple-input multiple-output IMAC, it was shown that the singular value decomposition (SVD)-based
beamforming at the users fundamentally reduces the user scaling condition required to achieve any target DoF
compared to that for the single-input multiple-output IMAC. In this paper, we tackle two practical challenges of
the existing SVD-based OIA: 1) the need of full feedforward of the selected users’ beamforming weight vectors
and 2) a low rate achieved based on the exiting zero-forcing (ZF) receiver. We first propose a codebook-based OIA,
in which the weight vectors are chosen from a pre-defined codebook with a finite size so that information of the
weight vectors can be sent to the belonging BS with limited feedforward. We derive the codebook size required to
achieve the same user scaling condition as the SVD-based OIAcase for both Grassmannian and random codebooks.
Surprisingly, it is shown that the derived codebook size is the same for the two considered codebook approaches.
Second, we take into account an enhanced receiver at the basestations (BSs) in pursuit of improving the achievable
rate based on the ZF receiver. Assuming no collaboration between the BSs, the interfering links between a BS and
the selected users in neighboring cells are difficult to be acquired at the belonging BS. We propose the use of a
simple minimum Euclidean distance receiver operating withno information of the interfering links. With the help
of the OIA, we show that this new receiver asymptotically achieves the channel capacity as the number of users
increases.
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I. INTRODUCTION

Interference alignment (IA) [1], [2] is the key ingredient to achieve the optimal degrees-of-freedom
(DoF) for a variety of interference channel models. The conventional IA framework, however, has several
well-known practical challenges: global channel state information (CSI) and arbitrarily large frequency/time-
domain dimension extension. Recently, the concept of opportunistic interference alignment (OIA) was
introduced in [3], [4], for theK-cell single-input multiple-output (SIMO) interfering multiple-access
channel (IMAC), where there are oneM-antenna base station andN users in each cell. In the OIA
scheme for the SIMO IMAC,S (S ≤ M) users amongst theN users are opportunistically selected in
each cell in the sense that inter-cell interference is aligned at a pre-defined interference space. Even if
several studies have independently addressed one or a few ofthe practical problems (see [5], [6]), the OIA
scheme simultaneously resolves the aforementioned issues. Specifically, the OIA scheme operates with
i) local CSI acquired via pilot signaling, ii) no dimension extension in the time/frequency domain, iii)
no iterative optimization of precoders, and iv) no coordination between the users or the BSs. It has been
shown that there exists a trade-off between the the achievable DoF and the number of users, which can
be characterized by auser scaling condition[4], [7], [8]. Similarly, the analysis of the scaling condition
of some system parameters required to achieve a target performance have been widely studied to provide
a remarkable insight into the convergence rate to the targetperformance, e.g., the user scaling condition
to achieve target DoF for the IMAC [3], [4], [7], [8], the scaling condition of the number of feedback
bits to achieve the optimal DoF for multiple-input multiple-output (MIMO) interference channels [9],
[10], and the codebook size scaling condition to achieve thetarget achievable rate for limited feedback
MIMO systems [11]–[13]. For the SIMO IMAC, the OIA scheme asymptotically achievesKS DoF, for
0 < S ≤ M , if the number of per-cell users,N , scales faster than SNR(K−1)S [4], where SNR denotes
the received signal-to-noise ratio (SNR). Note that the optimal DoF is achieved whenS =M .

For the MIMO IMAC, where each user hasL antennas, the user scaling condition to achieveKS
DoF can be greatly reduced to SNR(K−1)S−L+1 with the use of singular value decomposition (SVD)-
based beamforming at each user, by further minimizing the generating interference level [7]. However,
to implement the SVD-based OIA with local CSI and no coordination between the users or the BSs,
each beamforming weight vector is computed at each user, andthen information of the selected users’
weight vectors should be sent to the corresponding BS for thecoherent detection. In addition, although
the OIA based on the zero-forcing (ZF) receiver at the BSs is sufficient to achieve the optimal DoF, its
achievable rate is in general far below the channel capacity, and the gap increases as the dimension of
channel matrices grows. In this paper, we would like to answer the aforementioned two practical issues
of the SVD-based OIA.

In recent cellular systems such as the 3GPP Long Term Evolution [14], each selected user should
transmit an uplink pilot (known as Sounding Reference Signal in 3GPP systems) so that the corresponding
BS estimates the uplink channel matrix, which is widely usedfor channel quality estimation, downlink
signal design assuming the channel reciprocity in time division duplexing (TDD) systems, etc. The effective
channel matrices rotated by the weight vectors should also be known so that the BSs perform coherent
detection—the matrices can be acquired by the BSs through either of the following two methods: i)
additional dedicated time/frequency pilot (known as Demodulation Reference Signal in 3GPP systems
[14]), where the pilots are rotated by weight vectors [15], [16] and ii) limited feedforward of the indices
of the weight vectors (as included in Downlink Control Information Format 4 [17]). For the first method,
however, the system capacity can be degraded as the number ofselected users increases due to the
increased pilot overhead [18], [19]. For a reliable transmission, the length of pilot signaling also needs
to be sufficiently long [20], [21]. Furthermore, in cellularnetworks, long training sequences or disjoint
pilot resources for all users in each cell are required to avoid the pilot contamination coming from the
inter-cell interference [22]. For these reasons, practical communication systems such as the 3GPP standard
allow highly limited resources for uplink pilot. On the other hand, the second method using the limited
feedforward is preferable especially for the MIMO IMAC in the sense that feedforward information can be
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flexibly multiplexed with uplink data requiring no additional pilot resource. Several studies [18], [19], [23]
have addressed the same issues on the feedforward of the weight vectors for multiuser MIMO systems,
and have proposed the design of codebook-based precoding matrices.

In the first part of this paper, we introduce a codebook-basedOIA scheme, where weight vectors
are chosen from a pre-defined codebook with a finite size such that information of the weight vectors
of selected users is sent to the corresponding BS via limitedfeedforward signaling. Two widely-used
codebooks, the Grassmannian and random codebooks, are used. Surprisingly, although the granularity of
the Grassmannian codebook is higher than that of the random codebook for a given codebook size, our
result indicates that for both codebook approaches, the codebook size, required to achieve the same user
scaling condition as the SVD-based OIA case, coincides. It is also shown that the required codebook size
in bits increases linearly with the number of transmit antennas and logarithmically with the received SNR,
i.e., the required codebook size scales asL log2 SNR.

In the second part, we propose a receiver design at the BSs in pursuit of improving the achievable
rate based on the ZF receiver. The design is challenging in the sense that local CSI and no coordination
between any BSs are assumed, thus resulting in no available information of the interfering links at each
BS. Thus, the maximum likelihood (ML) decoding is not possible at each BS since the covariance matrix
of the effective noise cannot be estimated due to no information of the interfering links. We propose the
use of a simple minimum Euclidean distance receiver, where the ML cost-function is used by assuming
the identity noise covariance matrix, which does not require information of the interfering links. We show
that this receiver asymptotically achieves the channel capacity as the number of users increases.

Simulation results are provided to justify the derived userand codebook size scaling conditions and
to evaluate the performance of the minimum Euclidean distance receiver. A practical scenario, e.g., low
SNR, small codebook size, and a small number of users, is taken into account to show the robustness of
our scheme.

The remainder of this paper is organized as follows. SectionII describes the system and channel
models and Section III presents the proposed codebook-based OIA scheme. Section IV derives the user
and codebook size scaling conditions of the proposed OIA scheme along with two different codebooks
and Section V derives the asymptotic performance of the minimum Euclidean distance receiver. Section
VI performs the numerical evaluation. Section VII summarizes the paper with some concluding remarks.

Notations:C indicates the field of complex numbers.(·)T and(·)H denote the transpose and the conjugate
transpose, respectively.In is the (n× n)-dimensional identity matrix.

II. SYSTEM AND CHANNEL MODELS

Consider the TDD MIMO IMAC withK cells, each of which consists of a BS withM antennas andN
users, each havingL antennas, as depicted in Fig. 1. It is assumed that each selected user transmits a single
spatial stream. In each cell,S (S ≤ M) users are selected for uplink transmission. LetH

[i,j]
k ∈ CM×L

denote the channel matrix from userj in the ith cell to BSk. A frequency-flat fading and the reciprocity
between uplink and downlink channels are assumed. Each element ofH[i,j]

k is assumed to be an identical
and independent complex Gaussian random variable with zeromean and variance1/L. User j in the
ith cell estimates the uplink channel of its own link,H

[i,j]
k (k = 1, . . . , K), via downlink pilot signaling

transmitted from the BSs; that is, local CSI is utilized as in[6]. Without loss of generality, the indices of
the selected users in each cell are assumed to be(1, . . . , S) for notational simplicity. Then, the received
signal at BSi is expressed as:

yi =

S∑

j=1

H
[i,j]
i w[i,j]x[i,j] +

K∑

k=1,k 6=i

S∑

m=1

H
[k,m]
i w[k,m]x[k,m]

︸ ︷︷ ︸

inter-cell interference

+zi, (1)
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Fig. 1. The MIMO IMAC model.

wherew[i,j] ∈ CL×1 andx[i,j] are the weight vector and transmit symbol with unit average power at user
j in the ith cell, respectively, andzi ∈ CM×1 denotes the additive white Gaussian noise at BSi, with
zero mean and the covarianceN0IM .

III. PROPOSEDCODEBOOK-BASED OIA: OVERALL PROCEDURE

The proposed scheme essentially follows the same procedureas that of the SVD-based MIMO OIA
[7], [8] except for the weight vector design step. For the completeness of our achievability results, we
briefly describe the overall procedure for all the steps.

A. Offline Procedure - Reference Basis Broadcasting

The orthogonal reference basis matrix at BSk, to which the received interference vectors are aligned,
is denoted byQk = [qk,1, . . . ,qk,M−S] ∈ CM×(M−S). Here, BSk in the kth cell (k ∈ {1, . . . , K})
independently and randomly generatesqk,m ∈ C

M×1 (m = 1, . . . ,M − S) from the M-dimensional
sphere. BSk also finds the null space ofQk, defined byUk = [uk,1, . . . ,uk,S] , null(Qk), where
uk,i ∈ CM×1 is orthonormal, and then broadcasts it to all users. Note that this process is required only
once prior to data transmission and does not need to change with respect to channel instances.

B. Step 1 - Weight Vector Design

Let us denote the codebook set consisting ofNf elements asCf ,
{
c1, . . . , cNf

}
, wherec1, . . . , cNf

∈
CL×1 are chosen from theL-dimensional unit sphere. Then, the number of bits to representCf is denoted
by nf = ⌈log2Nf⌉. Let w[i,j] denote the weight vector at userj in the ith cell. Each user attempts to
minimize the leakage of interference (LIF)η[i,j] defined by [4], [7]

η[i,j] =
K∑

k=1,k 6=i

∥
∥
∥U

H
kH

[i,j]
k w[i,j]

∥
∥
∥

2

=
∥
∥G[i,j]w[i,j]

∥
∥
2
, (2)

whereG[i,j] is the stacked interference channel matrix given by

G[i,j] ,

[ (

U1
HH

[i,j]
1

)T
, . . . ,

(

Ui−1
HH

[i,j]
i−1

)T
,
(

Ui+1
HH

[i,j]
i+1

)T
, . . . ,

(

UK
HH

[i,j]
K

)T ]T
. (3)
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Let us denote the SVD ofG[i,j] by G[i,j] = E[i,j]Σ[i,j]V[i,j]H, whereE[i,j] ∈ C(K−1)S×L andV[i,j] ∈ CL×L

are left- and right-singular vectors ofG[i,j], respectively, consisting ofL orthonormal columns, andΣ[i,j] =

diag
(

σ
[i,j]
1 , . . . , σ

[i,j]
L

)

. Here,σ[i,j]
m denotes themth singular value ofG[i,j], whereσ[i,j]

1 ≥ · · · ≥ σ
[i,j]
L . Then,

w[i,j] is obtained fromw[i,j] = argmax1≤n≤Nf

∣
∣
∣
∣

(

v
[i,j]
L

)H

cn

∣
∣
∣
∣

2

. Clearly, the weight vector minimizingη[i,j]

is theLth column ofV[i,j], denoted byv[i,j]
L , and this precoding is subject to the SVD-based OIA.

C. Step 2 - User Selection

Each user reports its LIF metric in (2) to the corresponding BS, and then each BS selectsS users,
having the LIF metrics up to theSth smallest one, amongstN users in the cell. Subsequently, each
selected user forwards the index ofw[i,j] in the codebook to the belonging BS.

D. Step 3 - Uplink Transmission and Detection

If all the selected users transmit the uplink signals simultaneously, then the received signal at BSi is
given by (1). As in the SVD-based OIA [7], the linear ZF detection is sufficient to achieve the maximum
DoF. The decision statisticsri at BS i is obtained from

ri = [ri,1, . . . , ri,S]
T
, Fi

HUH
i yi, (4)

whereFi ∈ CS×S is the ZF equalizer defined by

Fi = [fi,1, . . . , fi,S]

,

([

Ui
HH

[i,1]
i w[i,1], . . . ,Ui

HH
[i,S]
i w[i,S]

]−1
)H

.

Note that multiplyingUi
H to yi cancels interference aligned atQi. The achievable rateR[i,j] is then given

by

R[i,j]=log2

(

1 + SINR[i,j]
)

=log2

(

1 +
SNR

‖fi,j‖
2+Ĩ [i,j]

)

, (5)

where SNR= 1/N0 and Ĩ [i,j] ,
∑K

k=1,k 6=i

∑S
m=1

∣
∣
∣fi,j

HUi
HH

[k,m]
i w[k,m]

∣
∣
∣

2

SNR.
Figure 2 illustrates the principle of the proposed signaling forK = 2, M = 3, andS = 2. If interference

H
[k,m]
i w[k,m] in (1) is perfectly aligned to the interference basisQi, i.e., H[k,m]

i w[k,m] ∈ span(Qi), then
interference inri of (4) vanishes becauseUH

i H
[k,m]
i w[k,m] = 0. As illustrated in Fig. 2, the value

‖UH
i H

[k,m]
i w[k,m]‖2 represents the amount of the signal transmitted from userm in the kth cell to BS

i that is not aligned to the interference reference basisQi. This misalignment becomes higher than the
SVD-based OIA case, due to the finite codebook size.

IV. A CHIEVABILITY RESULTS

It was shown in [7] that using the SVD-based OIA scheme leads to a comparatively less number of
users required to achieve the maximum DoF in the MIMO IMAC model. In this section, we derive the
number of feedforward bits required to achieve the same achievability as the SVD-based OIA case in
terms of the DoF and user scaling condition when two different types of codebook-based OIA schemes,
i.e., the Grassmannian and random codebook-based OIAs, areused.

In our analysis, we use the total DoF defined as [1]

DoF= lim
SNR→∞

∑K
i=1

∑S
j=1R

[i,j]

log2 SNR
,

whereR[i,j] is the achievable rate for userj in the ith cell and SNR= 1/N0.
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Fig. 2. The codebook-based OIA whereK = 2, M = 3, S = 2.

A. Grassmannian Codebook-Based OIA

We start with the following three lemmas which shall be used to establish our main theorem.
Lemma 1:For any given codebook, the LIF metricη[i,j] in (2) is upper-bounded by

η[i,j] ≤ σ
[i,j]
L

2
+ d[i,j]

2
σ
[i,j]
1

2
, (6)

whered[i,j] is the residual distance defined by

d[i,j] =

√

1−
∣
∣
∣w[i,j]Hv

[i,j]
L

∣
∣
∣

2

(7)

andσ[i,j]
m is themth singular value of the stacked interference channel matrix in (3).

Proof: Sincev
[i,j]
L is isotropically distributed over theL-dimensional sphere with identically and

isotropically distributed (i.i.d.) complex Gaussian channel matrices [24], the weight vectorw[i,j] chosen
from a codebook can be written byw[i,j] =

√

1− d[i,j]
2
v
[i,j]
L + d[i,j]t[i,j] [13], [25], where0 ≤ d[i,j]

2
≤ 1

accounts for the quantization error andt[i,j] is a unit-norm vector i.i.d. over null
(

v
[i,j]
L

)

. Then,η[i,j] in
(2) is bounded by

η[i,j] =

∥
∥
∥
∥

√

1− d[i,j]
2
G[i,j]v

[i,j]
L + d[i,j]G[i,j]t[i,j]

∥
∥
∥
∥

2

≤ (1− d[i,j]
2
)σ

[i,j]
L

2
+ d[i,j]

2 ∥
∥G[i,j]t[i,j]

∥
∥
2

≤ σ
[i,j]
L

2
+ d[i,j]

2
σ
[i,j]
1

2
, (8)

where (8) follows from
∥
∥G[i,j]t[i,j]

∥
∥
2
≤ σ

[i,j]
1

2
for any unit-norm vectort[i,j], which proves the lemma.

Now, we further bound the LIF metric for the Grassmannian codebook as follows.
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Lemma 2:By using the Grassmannian codebook,η[i,j] is further bounded byη[i,j] ≤ σ
[i,j]
L

2
+ νfσ

[i,j]
1

2
,

whereνf denotes the number of feedforward bits given by

νf =

(
1

Nf

)1/(L−1)

(9)

andNf is the number of elements in the codebook set.
Proof: The Grassmannian codebookCf is the set of codewords chosen by the optimal sphere packing

for the L-dimensional sphere; namely, the chordal distance of any two codewords is all the same, i.e.,√

1− |ciHcj|
2 = d for any i 6= j andd ≥ 0. Based on this property, the Rankin, Gilbert-Varshamov, and

Hamming bounds on the distance of the codebook give us [25], [26]

d[i,j]
2
≤ min

{

1

2
,
(L− 1)Nf

2L(Nf − 1)
,

(
1

Nf

)1/(L−1)
}

. (10)

For largeNf , the third term of (10) becomes dominant, thus providing an arbitrarily tight bound. Inserting
(10) to (6) proves the lemma.

From Lemma 2, we also have the following lemma.
Lemma 3:For the Grassmannian codebook, it follows thatη[i,j] ≤ η

[i,j]
GC where

η
[i,j]
GC =

{

C1νfσ
[i,j]
1

2
if σ[i,j]

L

2
≤ (1 + δ)νfσ

[i,j]
1

2

C2σ
[i,j]
L

2
otherwise,

(11)

for any constantδ ≥ 0 independent of SNR. Here,C1 = (2 + δ) and C2 = (1 + 1/(1 + δ)); thus,
1 ≤ C2 ≤ 2.

Now we are ready to show our first main theorem, which derives the number of feedforward bits,
required to achieve the same user scaling condition as the SVD-based OIA case, for the proposed OIA
with Grassmannian codebook.

Theorem 1:The codebook-based OIA with the optimal Grassmannian codebook Cf [24] achieves the
user scaling condition of the SVD-based OIA if1

nf = Ω(L log2 SNR) bits. (12)

Moreover, under the condition (12),KS DoF are achievable with high probability ifN = ω
(

SNR(K−1)S−L+1
)

.

Proof: Let us start from showing the following simple bound on SINR[i,j] in (5):

SINR[i,j] ≥
SNR/ ‖fi,j‖

2

1 + I [i,j]
, (13)

whereI [i,j] ,
∑K

k=1,k 6=i

∑S
m=1

∥
∥
∥Ui

HH
[k,m]
i w[k,m]

∥
∥
∥

2

SNR. Suppose thatI [i,j] ≤ ǫ for some constantǫ > 0

independent of the received SNR so that each user achieves 1 DoF. By this principle, we obtain a lower
bound on the achievable DoF for the codebook-based OIA as DoF≥ KS · P, where

P , lim
SNR→∞

Pr

{

I [i,j] ≤ ǫ, ∀userj and BSi, j ∈ S , {1, . . . , S}, i ∈ K , {1, . . . , K}

}

. (14)

From the fact that the sum of received interference at all theBSs is equivalent to the sum of the LIF
metrics [4], [7], i.e.,

K∑

i=1

K∑

k=1,k 6=i

S∑

m=1

∥
∥
∥Ui

HH
[k,m]
i w[i,j]

∥
∥
∥

2

=

K∑

i=1

S∑

j=1

η[i,j], (15)

1We use the following notation: i)f(x) = O(g(x)) means that there exist constantsM andm such thatf(x) ≤ Mg(x) for all x > m.
ii) f(x) = o(g(x)) means thatlim

x→∞

f(x)
g(x)

= 0. iii) f(x) = Ω(g(x)) if g(x) = O(f(x)). iv) f(x) = ω(g(x)) if g(x) = o(f(x)).
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we can boundP as

P ≥ lim
SNR→∞

Pr

{ K∑

i=1

S∑

j=1

I [i,j] ≤ ǫ

}

≥ lim
SNR→∞

Pr

{

η[i,j] ≤
ǫSNR−1

KS2
, ∀i ∈ K, ∀j ∈ S

}

. (16)

At this point, let us chooseNf such thatN1/(L−1)
f ≥ SNR(1+γ) for γ > 0, i.e.,

nf = log2Nf ≥ (1 + γ)(L− 1) log2 SNR, (17)

resulting in (12). From (9) and (17),νf is bounded by

νf = N
−1/(L−1)
f ≤ SNR−(1+γ). (18)

Now we consider the LIF-overestimating modification by using the upper boundη[i,j]GC in Lemma 3. From
η[i,j] ≤ η

[i,j]
GC and (16), we have

P ≥ lim
SNR→∞

Pr

{

η
[i,j]
GC ≤

ǫSNR−1

KS2
, ∀i ∈ K, ∀j ∈ S

}

. (19)

≥ PGC , lim
SNR→∞

Pr

{[

η
[i,j]
GC ≤

ǫSNR−1

KS2
, ∀i ∈ K, ∀j ∈ S

]

&
[

σ
[i,j]
L

2
≥(1 + δ)νfσ

[i,j]
1

2
, ∀i ∈ K, ∀j ∈ N , {1, . . . , N}

]}

. (20)

From the principle Pr(A ∩ B) = Pr(B)− Pr(Ac ∩ B) for setsA andB, (20) can be rewritten as

PGC = lim
SNR→∞

Pr
{

σ
[i,j]
L

2
≥ (1 + δ)νfσ

[i,j]
1

2
, ∀i ∈ K, ∀j ∈ N

}

︸ ︷︷ ︸

,pc

(21)

− lim
SNR→∞

Pr

{[

there exist less thanS users per cell such thatη[i,j]GC ≤
ǫSNR−1

KS2

]

&
[

σ
[i,j]
L

2
≥(1 + δ)νfσ

[i,j]
1

2
, ∀i ∈ K, ∀j ∈ N

]}

= lim
SNR→∞

pc − lim
SNR→∞

S−1∑

m=0

(
N
m

)[

Pr

{

η
[i,j]
GC ≤

ǫSNR−1

KS2
& (1 + δ)νfσ

[i,j]
1

2
≤ σ

[i,j]
L

2
}]m

×

[

Pr

{

(1 + δ)νfσ
[i,j]
1

2
≤ σ

[i,j]
L

2
&
ǫSNR−1

C2KS2
≤ σ

[i,j]
L

2
}

︸ ︷︷ ︸

,Po

]N−m

(22)

≥ lim
SNR→∞

pc − lim
SNR→∞

S−1∑

m=0

NmPo
N−m, (23)

where (22) follows from the fact that the statistics of each user is independent of each other, and (23)

follows from Pr
{

η
[i,j]
GC ≤ ǫSNR−1

KS2 & (1 + δ)νfσ
[i,j]
1

2
≤ σ

[i,j]
L

2
}

≤ 1 and

(
N
i

)

= N !
i!(N−i)!

≤ N i.

For the rest of the proof, we show that (23) tends to one under certain conditions. In Appendix A, we
first show that for givenγ > 0 andδ > 0, it follows that

lim
SNR→∞

pc = 1, if N = O
(

SNR(1+β)((K−1)S−L+1)
)

whereβ < γ.
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Now we show that the second term of (23) tends to zero as the SNRincreases. From the fact that
Pr{[A ≤ B]&[C ≤ B]} = Pr{[A ≤ B]|A ≥ C}Pr{A ≥ C}+Pr{[C ≤ B]|A < C}Pr{A < C} for random
variablesA, B, andC, the probabilityPo can be written as

Po =Pr

{

(1 + δ)νfσ
[i,j]
1

2
≤ σ

[i,j]
L

2
∣
∣
∣(1 + δ)νfσ

[i,j]
1

2
≥
ǫSNR−1

C2KS2

}

· p′o

+ Pr

{
ǫSNR−1

C2KS2
≤ σ

[i,j]
L

2
∣
∣
∣(1 + δ)νfσ

[i,j]
1

2
<
ǫSNR−1

C2KS2

}

· (1− p′o)

wherep′o = Pr
{

(1 + δ)νfσ
[i,j]
1

2
≥ ǫSNR−1

C2KS2

}

. From (18), for any given channel instance, we have

lim
SNR→∞

p′o ≤ lim
SNR→∞

Pr

{

(1 + δ)SNR−(1+γ)σ
[i,j]
1

2
≥
ǫSNR−1

C2KS2

}

= lim
SNR→∞

Pr

{

σ
[i,j]
1

2
≥

ǫSNRγ

(1 + δ)C2KS2

}

= 0,

which results in

lim
SNR→∞

Po = lim
SNR→∞

Pr

{
ǫSNR−1

C2KS2
≤ σ

[i,j]
L

2
}

.

From [27, Theorem 4], we have

Pr

{
ǫSNR−1

C2KS2
≤ σ

[i,j]
L

2
}

= 1− α

(
ǫ

C2KS2

)ψ

SNR−ψ + o
(
SNR−ψ

)
, (24)

whereψ , (K − 1)S−L+1 andα > 0 is a constant determined byK, S, andL. Applying (24) to (23)
yields

P ≥ PGC ≥ lim
SNR→∞

pc − lim
SNR→∞

S−1∑

i=0

Nm

[

1− α

(
ǫ

C2KS2

)ψ

SNR−ψ + o
(
SNR−ψ

)

]N−m

. (25)

For given γ and 0 < β < γ, let us chooseN = O
(

SNR(1+β)((K−1)S−L+1)
)

. Then, from (24), it
follows that limSNR→∞ pc = 1. On the other hand, the second term of (25) tends to zero because

Nm increases polynomially with SNR for givenm while

[

1− α
(

ǫ
C2KS2

)ψ

SNR−ψ + o
(
SNR−ψ

)
]N−m

decreases exponentially with SNR. Thus,P tends to one, which means thatKS DoF are achievable.
As assumed earlier, note that our analysis holds forβ < γ. However, it is obvious that assuming either

the conditionN = O
(

SNR(1+β)((K−1)S−L+1)
)

for any β ≥ γ or N = ω
(

SNR(K−1)S−L+1
)

leads to the
same or higher DoF compared to the case for0 ≤ β < γ, due to the fact that increasingN for given
nf and SNR values yields a reduced LIF and thus an increased achievable rate for all the selected users.
Since the maximum achievable DoF are upper-bounded byKS for given S, the last argument indicates
thatKS DoF are achievable ifnf = Ω(L log2 SNR) andN = ω

(

SNR(K−1)S−L+1
)

, which completes the
proof.

Theorem 1 indicates thatnf should scale with SNR so as to achieve the target DoF under thesame
user scaling condition as the SVD-based OIA case, and that from (17), no more feedforward bits than
(1 + γ)(L− 1) log2 SNR are indeed required. The derivednf scaling condition is proportional toL and
log2 SNR, which is consistent with the previous results on the number of feedback bits required to avoid
performance loss due to the finite codebook size in a variety of limited feedback systems [9], [13], [24].
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B. Random Codebook-Based OIA

For a random codebook scenario, each elementcn of Cf (n ∈ {1, . . . , Nf}) is chosen independently
and isotropically from theL-dimensional sphere. The following second main theorem shows that the same
user scaling condition as the Grassmannian codebook-basedOIA case is obtained even with the random
codebook-based OIA.

Theorem 2:The codebook-based OIA with a random codebook achievesKS DoF with high probability
if N = ω

(

SNR(K−1)S−L+1
)

andnf = Ω(L log2 SNR) bits.
Proof: Since equations (13)–(16) also hold for the random codebookapproach, we only show that

P in (14) tends to one under two conditionsN = ω
(

SNR(K−1)S−L+1
)

andnf = Ω(L log2 SNR). Unlike

the Grassmannian codebook, the residual distanced[i,j] in (7) is now a random variable and thus is
unbounded. Note that the cumulative density function (CDF)of the squared chordal distance between
any two independent unit random vectors chosen isotropically from theL-dimensional sphere is given by
β(L − 1, 1), whereβ(x, y) =

∫ 1

0
tx−1(1 − t)y−1dt is the beta function [13]. Sinced[i,j]

2
for the random

codebook is the minimum ofNf independent random variables with distributionβ(L− 1, 1), the CDF of
d[i,j]

2
is given by

Pr
{

d[i,j]
2
≤ z
}

= 1−
(
1− zL−1

)Nf . (26)

Now, let us again consider the following modification for given channel instance:
i) if d[i,j]

2
≤ SNR−(1+γ) for all i andj, then the same LIF-overestimating modification as the Grassman-

nian codebook case is used, where the LIF values are replacedwith their upper bounds. Specifically,
from Lemma 1, we shall use the following upper bound onη[i,j]:

η
[i,j]
RC =

{

C3d
[i,j]2σ

[i,j]
1

2
if σ[i,j]

L

2
≤(1 + δ′)d[i,j]

2
σ
[i,j]
1

2

C4σ
[i,j]
L

2
otherwise,

(27)

for any constantδ′ ≥ 0 independent of SNR, whereC3 = (2 + δ′) andC4 = (1 + 1/(1 + δ′)); thus,
1 ≤ C4 ≤ 2,

ii) otherwise, i.e., ifd[i,j]
2
> SNR−(1+γ) for any i or j, then we drop the case by assuming 0 DoF for

this case.
Let us define the eventD as

D =
{
d[i,j]

2
≤ SNR−(1+γ), ∀i ∈ K = {1, . . . , K}, ∀j ∈ N = {1, . . . , N}

}
.

From η[i,j] ≤ η
[i,j]
RC , we have

P ≥ lim
SNR→∞

Pr

{

η[i,j] ≤
ǫSNR−1

KS2
, ∀i ∈ K, ∀j ∈ S = {1, . . . , S}

}

≥ PRC , lim
SNR→∞

Pr{D} · Pr

{

η
[i,j]
RC ≤

ǫSNR−1

KS2
, ∀i ∈ K, ∀j ∈ S

∣
∣
∣
∣
D

}

.

From (26) and the inequality(1− x)y > 1− xy for any 0 < x < 1 < y, we have

Pr{D} =

(

1−

(

1−
(

SNR−(1+γ)
)L−1

)Nf

)KN

> 1−KN
(

1− SNR−(1+γ)(L−1)
)Nf

. (28)

Let us chooseN such thatN scales polynomially with SNR. IfNf scales faster than SNR(1+γ)(L−1),

then the second term of (28) vanishes as the SNR increases, because
(

1− SNR−(1+γ)(L−1)
)Nf

decreases
exponentially with SNR whileN increases polynomially with SNR.
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Now recall that for the Grassmannian codebook approach,d[i,j]
2

is bounded byd[i,j]
2
≤ νf ≤ SNR−(1+γ)

along with the choice ofnf ≥ (1 + γ)(L− 1) log2 SNR, and that our achievability proof is based on the
upper bound on the LIF metric in (11). IfD holds, then the upper bound in (27) is identical to (11), and
thus it is not difficult to show that ifN = O

(

SNR(1+β)((K−1)S−L+1)
)

for any 0 < β < γ, then

lim
SNR→∞

Pr

{

η
[i,j]
RC ≤

ǫSNR−1

KS2
, ∀i ∈ K, ∀j ∈ S

∣
∣
∣
∣
D

}

= 1, (29)

as shown in (19)–(25). From (28) and (29), choosing the two conditionsnf = log2Nf ≥ (1 + γ)(L −

1) log2 (SNR), i.e., nf = Ω(L log2(SNR)), andN = O
(

SNR(1+β)((K−1)S−L+1)
)

for any 0 < β < γ,
the probabilityPRC tends to one for increasing SNR. Note that taking the limit ofN polynomially
increasing with SNR comes merely from the strict condition of D. Since increasingN for given nf
lowers the LIF and thereby increases the achievable rate foreach selected user,P tends to one for any
N = ω

(

SNR(K−1)S−L+1
)

, which completes the proof.
Interestingly, Theorem 2 indicates that the requirednf for the random codebook is the same as that for

the Grassmannian codebook. This is an encouraging result since analytical construction methods of the
Grassmannian codebook for largenf have been unknown, and even its numerical construction requires
excessive computational complexity. We complete the achievability discussion by providing the following
remarks.

Remark 1 (Random vs. Grassmannian codebook):In the previous work on limited feedback systems,
the performance analysis has focused on the average SNR or the average rate loss [28]. It has been known
that the Grassmannian codebook outperforms the random codebook in the average sense. However, in our
OIA framework, the focus is on the asymptotic performance for increasing SNR, and it turns out that
the asymptotic behavior is the same for the two codebook approaches. In fact, our result is consistent
with the previous work on limited feedback systems (see [29]), where the performance gap between two
codebooks was shown to be negligible as the number of feedback bits increases.

Remark 2 (Comparison to the MIMO broadcasting channel):For the MIMO broadcasting channel with
limited feedback, where the transmitter hasL antennas employing the random codebook, it was shown
in [13] that the achievable rate loss for each user, denoted by ∆R, coming from the finite size of the
codebook is given by∆ < log2

(
1 + SNR· 2−nf/(L−1)

)
. Thus, to achieve the maximum DoF for each

user, or to make the rate loss negligible as the SNR increases, the term SNR· 2−nf/(L−1) should remain
constant for increasing SNR. That is,nf should scale faster than(L− 1) log2 SNR. Although the system
model and signaling methodology under consideration are different from our setting, Theorems 1 and 2
are consistent with this previous result.

V. ASYMPTOTICALLY OPTIMAL RECEIVER DESIGN AT THE BSS

While using the ZF receiver is sufficient to achieve the maximum DoF, we study the design of an
enhanced receiver at the BSs in pursuit of improving the achievable rate. Recall that each BS is not
assumed to have CSI of the cross-links from the users in the other cells, because no coordination between
BSs is assumed. In this section, the main challenge is thus todecode the desired symbols with no CSI
of the cross-links at the receivers. For convenience, let usrewrite the received signal at BSi in (1) as

yi = H̃
(c)
i xi +

K∑

k=1,k 6=i

S∑

m=1

H
[k,m]
i w[k,m]x[k,m] + zi, (30)

where H̃
(c)
i ,

[

H
[i,1]
i w[i,1], . . .H

[i,S]
i w[i,S]

]

∈ CM×S and xi ,
[
x[i,1], . . . , x[i,S]

]T
∈ CS×1. The channel

capacityIC is given by [30]

IC = log2 det

(

R−1/2
c H̃

(c)
i

(

H̃
(c)
i

)H
R−1/2
c + IM

)

, (31)
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where

Rc =

K∑

k=1,k 6=i

S∑

m=1

H
[k,m]
i w[k,m]

(

H
[k,m]
i w[k,m]

)H
+N0IM , (32)

which is not available at BSi due to the assumption of unknown inter-cell interfering links. The channel
capacityIC is achievable with the optimal ML decoder

x̂ML
i = argmin

x

(

yi − H̃
(c)
i x
)H

R−1
c

(

yi − H̃
(c)
i x
)

, (33)

which is infeasible to implement due to unknownRc. After nulling interference by multiplyingUi, the
received signal is given by

ỹi = UH
i yi = H̃ixi +

K∑

k=1,k 6=i

S∑

m=1

UH
i H

[k,m]
i w[k,m]x[k,m] +UH

i zi

︸ ︷︷ ︸

z̃i

, (34)

whereH̃i ,

[

UH
i H

[i,1]
i w[i,1], . . .UH

i H
[i,S]
i w[i,S]

]

∈ CS×S and z̃i ∈ CS×1 represents the effective noise. Let
us denote the covariance matrix of the effective noise afterinterference nulling by

R , E
{
z̃iz̃i

H
}

=

K∑

k=1,k 6=i

S∑

m=1

UH
i H

[k,m]
i w[k,m]

(

UH
i H

[k,m]
i w[k,m]

)H
+N0IS. (35)

Then, the ML decoder for the modified channel (34) becomesargmin
x

(

ỹi − H̃ix
)H

R−1
(

ỹi − H̃ix
)

,

which is also infeasible to implement since the termUH
i H

[k,m]
i w[k,m] (k ∈ {1, . . . , i − 1, i + 1, . . . , K},

m ∈ {1, . . . , S}) is not available at BSi.
As an alternative approach, we now introduce the following minimum Euclidean distance receiver after

interference nulling at BSi:
x̂i = arg

x
min

∥
∥
∥ỹi − H̃ix

∥
∥
∥ . (36)

It is worth noting that the receiver in (36) is not universally optimal sinceR is not an identity matrix
for given channel instance. Now, we show the achievable ratebased on the use of the receiver in (36).
The maximum achievable rate of any suboptimal receiver, referred to asmismatch capacity[31], [32], is
lower-bounded by the generalized mutual information, defined as [31], [32]

IGMI = sup
θ≥0

I(θ), (37)

where

I(θ) , E



log2
Q(ỹi|xi)θ

E
[

Q(ỹi|xi)θ
∣
∣ỹi, H̃i

]

∣
∣
∣
∣
H̃i



 (38)

andQ(ỹi|xi) is the decoding metric expressed in probability. The following lemma characterizes the GMI
of the decoder with mismatched noise covariance matrix.

Lemma 4:Consider the modified channel (34) and the decoding metric with mismatched noise covari-
ance matrixR̂, given by

Q(ỹi|xi) = exp
(

−(ỹi − H̃ixi)
HR̂−1(ỹi − H̃ixi)

)

. (39)
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Then, the GMIIGMI based on the metric (39) is given by (37), whereI(θ) for given R̂ is expressed as

I(θ) = −
θ

log 2
tr(R̂−1/2RR̂−1/2) +

θ

log 2

[

tr
(

Ω−1R̂−1
(

H̃iH̃
H
i +R

))]

+ log2 det(Ω), (40)

R is given by (35), andΩ , θR̂−1H̃iH̃
H
i + IS.

Proof: See Appendix II.
We remark that ifR = R̂, then it is obvious to showIGMI = I(θ = 1). In this case, using (40),I(θ = 1)

can be simplified toI(θ = 1) = log2 det(R
−1H̃iH̃

H
i + IS), which is equal to the channel capacity. The

following theorem characterizes the achievable rate of theproposed minimum Euclidean distance decoder.
Theorem 3 (Asymptotic capacity):The GMI IGMI of the codebook-based OIA using the minimum

Euclidean distance receiver in (36) is given by

IGMI = sup
θ≥0

−
θ

log 2
tr(N−1

0 R) +
θ

log 2

[

tr
(

N−1
0 Ω′−1

(

H̃iH̃
H
i +R

))]

+ log2 det(Ω
′), (41)

which asymptotically achieves the channel capacityIC if N = ω
(

SNR(K−1)S−L+1
)

andnf = Ω(L log2(SNR)),

whereΩ′ = θN−1
0 H̃iH̃

H
i + IS.

Proof: The decoder in (36) is equivalent to the one that utilizes thedecoding metricQ(ỹi|xi) in
(39) with R̂ = N0IS. From Lemma 4, the GMI based the minimum Euclidean distance decoder is thus
given by (41).

Now, we show that asN increases,IGMI approachesIC with increasing SNR. Recall that the user
selection and weight vector design are performed such that interference is aligned to the reference basis
matrix Qi ∈ CM×(M−S) as much as possible. From Theorem 1 and 2, ifN = ω

(

SNR(K−1)S−L+1
)

and

nf = Ω(L log2(SNR)), then the sum of received interference aligned toUi can be made arbitrarily small
with high probability, thereby resulting in

H
[k,m]
i w[k,m] ∈ span(Qi) (42)

from the fact that the interference term of (30) is given by
∑K

k=1,k 6=i

∑S
m=1H

[k,m]
i w[k,m]x[k,m]. Since

UH
i H

[k,m]
i w[k,m] = 0, the interference term of (34) is canceled out, and thus it follows thatR → R̂ = N0IS.

In this case, we have
IGMI → I∗GMI = log2 det

(

N−1
0 H̃iH̃

H
i + IS

)

. (43)

Now we prove thatI∗GMI in (43) asymptotically achievesIC. Since[Ui,Qi] ∈ CM×M is an orthogonal
matrix, I∗GMI can be rewritten as

I∗GMI = log2 det

(

N−1
0 UH

i H̃
(c)
i

(

H̃
(c)
i

)H
Ui + IS

)

,

= log2 det

([

N0
−1UH

i H̃
(c)
i

(

H̃
(c)
i

)H
Ui 0

0 0

]

+IM

)

= log2 det

(

[Ui,Qi] ·

[

N0
−1UH

i H̃
(c)
i

(

H̃
(c)
i

)H
Ui 0

0 0

]

· [Ui,Qi]
H + IM

)

= log2 det

(

DH̃
(c)
i

(

H̃
(c)
i

)H
D + IM

)

, (44)

where

D = [Ui,Qi]

[

N
−1/2
0 IS 0

0 0

]

[Ui,Qi]
H = N

−1/2
0 UiUi

H.
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From the fact that from (42),H[k,m]
i w[k,m] can be represented as a linear combination ofqi,1, . . . ,qi,M−S,

Rc in (32) is written as

Rc =
K∑

k=1,k 6=i

S∑

m=1

M−S∑

l=1

M−S∑

t=1

ξ̃
[k,m]
l,t qi,lq

H
i,t +N0IM

=

M−S∑

l=1

M−S∑

t=1

ξl,tqi,lq
H
i,t +N0IM

=

M−S∑

l=1

M−S∑

t=1

ξl,tqi,lq
H
i,t +N0[Qi,Ui] · [Qi,Ui]

H

= [Qi,Ui] ·

[
Ξ 0

0 N0IS

]

· [Qi,Ui]
H,

where ξ̃[k,m]
l,t denotes the component coefficient ofH

[k,m]
i w[k,m] on qi,lq

H
i,t, ξl,t =

∑K
k=1,k 6=i

∑S
m=1 ξ̃

[k,m]
l,t ,

and

Ξ =







ξ1,1 +N0 ξ1,2 · · · ξ1,M−S

ξ2,1 ξ2,2 +N0 · · · ξ2,M−S
...

. . .
...

...
ξM−S,1 ξM−S,2 · · · ξM−S,M−S +N0






.

Since each coefficientξl,t is chosen from a continuous distribution,Ξ has full rank almost surely, and
thus is invertible. Therefore, we get

R−1/2
c = [Qi,Ui]

[
Ξ−1/2 0

0 N0
−1/2IS

]

[Qi,Ui]
H.

For given channel instance, asN0 decreases,R−1/2
c becomes

R−1/2
c → N0

−1/2UiUi
H. (45)

Applying the asymptoticR−1/2
c of (45) to (31) finally yieldsIC, which is equal toI∗GMI of (44). This

completes the proof.
As shown in Theorem 3, the minimum Euclidean distance receiver asymptotically achieves the channel

capacity even without any coordination between the BSs or users. However, it is worth noting that if the
interference alignment level is too low due to smallN or nf to satisfy the conditions in Theorems 1 and
2, then the achievable rate in (41) may be lower than that based on the ZF receiver. Thus, in smallN
andnf regimes, there may exist crossovers, where the achievable rate of the two schemes is switched,
which will be shown in Section VI via numerical evaluation. We conclude our discussion on the receiver
design with the following remark.

Remark 3 (DoF achievability of the optimal receiver):Even with the use of the ML receiver in (33)
based on full knowledge ofRc, the user andnf scaling conditions to achieveKS DoF are the same as
those based of the ZF receiver case, which make the amount of interference bounded even for increasing
SNR.

VI. NUMERICAL RESULTS

In this section, we run computer simulations to verify the performance of the proposed two types of
codebook-based OIA schemes, i.e., the Grassmannian and random codebook-based OIAs, for finite system
parameters SNR,N , andnf . For comparison, the max-SNR scheme was used, in which each user employs
eigen-beamforming in terms of maximizing its received SNR and the belonging BS selects theS users
who have the SNR values up to theSth largest one. The SVD-based OIA scheme in [7] is also compared
as a baseline method.
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Figures 3 show a log-log plot of the sum-LIF (or equivalently, the sum of generating interference)
versusN for the MIMO IMAC with K = 2, M = 3, L = 2, and (a)S = 2 or (b) S = 3. From Theorems
1 and 2, the system parameterS governs the trade-off between the achievable DoF and the number of
users required to guarantee such DoF [4], [7].2 It is seen that the sum-LIF increases asS grows for any
given scheme. However, as addressed in [4], [7], note that a smaller LIF does not necessarily leads to
a higher achievable rate, especially in the high SNR regime.In addition, the trade-off betweennf and
the sum-LIF is clearly seen from Fig. 3. Although the sum-LIFlevel of the codebook-based OIA scheme
decreases asnf increases, its decreasing rate of the sum-LIF with respect to N , representing the slope
of the sum-LIF curve, slightly differs from that of the SVD-based OIA unlessnf increases according to
increasingN .

Figure 4 illustrates a linear-log plot of the sum-LIF versusnf whenK = 2, M = 3, L = 2, S = 2
andN = 100. As expected from Theorems 1 and 2, it is seen that the decreasing rate of the sum-LIF is
almost the same for both codebook-based OIA schemes. Asnf increases, even with finiteN , the sum-LIF
level for both codebook-based OIA schemes becomes close to that for the SVD-based OIA.

Figures 5 depicts the achievable rate versus SNR whenK = 2, M = 3, L = 2, S = 2, and (a)N = 20
or (b)N = 100. We consider the following four receiver structures for theproposed codebook-based OIA:

• Scheme 1: ZF receiver with the Grassmannian codebook (dashed line)
• Scheme 2: ZF receiver with the random codebook (x)
• Scheme 3: minimum Euclidean distance receiver with the Grassmannian codebook (solid line)
• Scheme 4: minimum Euclidean distance receiver with the random codebook (o)

A relationship between the sum-rate for givenN and the number of feedforward bits,nf , is observed.
It is first seen that asnf = 8, the proposed codebook-based OIA schemes closely obtain the achievable
rate of the SVD-based OIA. It is also seen that the gain comingfrom the Grassmannian codebook over
the the random codebook is marginal. From Theorem 3, we remark that the achievable rate based on
the minimum Euclidean distance receiver asymptotically achieves the channel capacity if interference
H

[k,m]
i w[k,m] is perfectly aligned toQi at BS i; that is, the covariance matrix of interference in (35),

∑K
k=1,k 6=i

∑S
m=1U

H
i H

[k,m]
i w[k,m]

(

UH
i H

[k,m]
i w[k,m]

)H
, becomes negligible compared toN0IS due to the

fact that interference is sufficiently aligned for largeN . In addition, it is observed that in the low to mid
SNR regimes, using the minimum Euclidean distance receiverleads to a higher sum rate than the ZF
receiver case even for practicalN . However, as the SNR increases beyond a certain point, i.e.,in the
high SNR regime, the covariance matrix of interference becomes dominant, thus yielding a performance
degradation of the minimum Euclidean distance receiver. Onthe other hand, since the ZF receiver has no
such limitation, its achievable rate increases with SNR. Inconsequence, for givenN , there exist crossovers,
where the achievable rate of the two schemes is switched. It is furthermore seen that whenN increases,
these crossovers appear at higher SNRs, because our system is less affected by the covariance matrix of
interference owing to a better interference alignment.

Figure 6 shows a log-linear plot of the achievable rate versus N whenK = 2, M = 3, L = 2, S = 2,
SNR=20dB, andnf = 6 when the random codebook is used. As shown in Theorem 3, it is seen that the
GMI of the codebook-based OIA using the minimum Euclidean distance receiver asymptotically achieves
the channel capacity asN increases. On the other hand, the achievable rate of the codebook-based OIA
using the ZF receiver exhibits a constant gap even in largeN regime, compared to that of the minimum
Euclidean distance receiver. This observation is consistent with previous results on the single-user MIMO
channel, showing that there exists a constant SNR gap between the channel capacity and the achievable
rate based on the ZF receiver in the high SNR regime.

2While the sum-LIF withS = 1 is lowest compared to the cases withS = 2 andS = 3, the case withS = 1 provides the smallest
achievable DoF. For more discussions about optimizingS, we refer to [7].
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Fig. 3. The sum-LIF versusN whenK = 2, M = 3, andL = 2. (a) S = 2. (b) S = 3.
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VII. CONCLUSION

For the MIMO IMAC, we have proposed two different types of codebook-based OIA methods and
analyzed the codebook size required to achieve the same userscaling condition and DoF as the SVD-
based OIA case. We have shown that the required codebook sizescaling is the same for both of the
random and Grassmannian codebooks. In addition, we have shown that the simple minimum Euclidean
distance receiver operating even with no CSI of inter-cell interfering links achieves the channel capacity as
N increases. Numerical examples have shown that it suffices for finite nf to almost obtain the achievable
rate of the SVD-based OIA, e.g., the case wherenf = 8 andL = 2, and that the minimum Euclidean
distance receiver enhances the achievable rate based on theZF receiver especially in the low to mid SNR
regimes.

APPENDIX I
PROOF OF(24)

By usingνf ≤ SNR−(1+γ) in (18), pc defined in (21) can be lower-bounded by

pc ≥ Pr
{

σ
[i,j]
L

2
≥ (1 + δ)σ

[i,j]
1

2
SNR−(1+γ), ∀i ∈ K, j ∈ N

}

=

(

Pr

{

σ
[i,j]
1

2

σ
[i,j]
L

2 ≤ (1 + δ)−1SNR1+γ

})KN

, (46)

where (46) comes from the fact thatG[i,j] is independent for differenti or j, and thus their singular values

are independent for different users. Note thatσ
[i,j]
1

2

σ
[i,j]
L

2 is the condition number ofG[i,j]HG[i,j]. At this point,

we introduce the following lemma on the CDF of the condition number.

Lemma 5:The CDF of σ
[i,j]
1

2

σ
[i,j]
L

2 , denoted byFc(x), is lower-bounded by

Fc(x) ≥ 1− ρx−((K−1)S−L+1), (47)

whereρ is a constant determined byK, S, andL.
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Proof: Since each channel coefficient is assumed to be chosen from a continuous distribution,G[i,j]

has full rank almost surely [33]. Moreover, assuming that(K − 1)S > L, G[i,j]HG[i,j] is the full-rank
central Wishart matrix, i.e.,G[i,j]HG[i,j] ∼ CWL ((K − 1)S, IL). Using the high-tail distribution of the

complementary CDF in [34, Theorem 4], the CDF is bounded by (47), whereρ =
(
∑L

l=1 κlµl

)

. Here,κl =
(−1)l(l−1)/2

((K−1)S−L+1)!
and µl =

∫∞

0
λ
((K−1)S−L+1)
1 gL−1,(K−1)S(λ1)dλ1, whereλ1 , σ

[i,j]
1

2
and gL−1,(K−1)S(·) de-

notes the distribution of the largest eigenvalue of a reduced Wishart matrixG̃ ∼ CWL−1 ((K − 1)S, IL−1).
Thus,ρ is determined only byK, S, andL.

Now, from Lemma 5, (46) is further bounded by

pc≥
(

1−ρ(1 + δ)(K−1)S+L−1SNR−(1+γ)((K−1)S−L+1)
)KN

≥ 1−ρKN(1 + δ)(K−1)S+L−1SNR−(1+γ)((K−1)S−L+1), (48)

where (48) follows from(1 − x)y > 1 − xy for any 0 < x < 1 < y. Therefore, ifN scales slower than

SNR(1+γ)((K−1)S−L+1) for givenγ, i.e.,N = O
(

SNR(1+β)((K−1)S−L+1)
)

whereβ < γ, thenlimSNR→∞ pc →

1 for any givenδ, which proves the argument (24).

APPENDIX II
PROOF OFLEMMA 4

Let us first consider the numerator of the logarithmic term in(38) as follows.

E
[

log2Q(ỹi|xi)
θ|H̃i

]

= −
θ

log 2
E
[

(ỹi − H̃ixi)
HR̂−1(ỹi − H̃ixi)

∣
∣H̃i

]

= −
θ

log 2
E
[

z̃H
i R̂

−1z̃i
∣
∣H̃i

]

= −
θ

log 2
tr(R̂−1/2RR̂−1/2), (49)

where (49) follows fromE[zHAz] = tr(A1/2RA1/2) for any random vectorz with E{zzH} = R and
E{z} = 0 and for any conjugate symmetric matrixA.

Let us turn to the denominator of the logarithmic term in (38). Here, given thatH̃i and ỹi are
deterministic, the expectation is taken overxi. Sincexi is anS-dimensional complex Gaussian random
vector, i.e., the probability density function ofxi is given by1/πS exp (−‖xi‖

2), we have

E
[

Q(ỹi|xi)
θ
∣
∣ỹi, H̃i

]

=

∫

exp
(

−θ(ỹi − H̃ixi)
HR̂−1(ỹi − H̃ixi)

) 1

πS
exp

(
−‖xi‖

2
)
dxi

=
1

πS

∫

exp
(
−θ(ỹi − H̃ixi)

HR̂−1(ỹi − H̃ixi)− ‖xi‖
2
)
dxi

=
1

πS

∫

exp (−A) dxi. (50)

Here,A can be further expressed as

A , θ(ỹi − H̃ixi)
HR̂−1(ỹi − H̃ixi) + ‖xi‖

2

= xH
i (θH̃

H
i R̂

−1H̃i + IS)xi − θỹH
i R̂

−1H̃ixi − θxH
i H̃

H
i R̂

−1ỹi + θỹH
i R̂

−1ỹi. (51)

Letting Ω̃ = θH̃H
i R̂

−1H̃i + IS, it follows that

A =
∥
∥
∥Ω̃

1/2
xi −Cỹi

∥
∥
∥

2

+ θỹH
i R̂

−1ỹi − ỹH
i C

HCỹi, (52)
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whereC is given byC = θΩ̃
−1/2

H̃H
i R̂

−1, which comes from the equivalence of (51) and (52). Now let
us further simplify the last two terms of (52) as

θỹH
i R̂

−1ỹi − ỹH
i C

HCỹi = θỹH
i

(

R̂−1 − θR̂−1H̃iΩ̃
−1
H̃H
i R̂

−1
)

ỹi

= θỹH
i R̂

−1/2
(

IS − θR̂−1/2H̃iΩ̃
−1
H̃H
i R̂

−1/2
)

R̂−1/2ỹi.

Without loss of generality, it follows that̂R−1/2H̃i = ΦΛTH, whereΦ ∈ C
S×S and T ∈ C

S×S are
orthogonal matrices andΛ is an (S × S)-dimensional diagonal matrix. Then, we get

Ω̃ = θH̃H
i R̂

−1H̃i + IS = T
(
θΛ2 + IS

)
TH. (53)

Inserting (53) toR̂−1/2H̃iΩ̃
−1
H̃H
i R̂

−1/2 gives us

R̂−1/2H̃iΩ̃
−1
H̃H
i R̂

−1/2 = ΦΛ2
(
θΛ2 + IS

)−1
ΦH,

which yields

θỹH
i R̂

−1ỹi − ỹH
i C

HCỹi = θỹH
i R̂

−1/2Φ
(

IS − θΛ2
(
θΛ2 + IS

)−1
)

ΦHR̂−1/2ỹi

= θỹH
i R̂

−1/2Φ
(
θΛ2 + IS

)−1
ΦHR̂−1/2ỹi (54)

= θỹH
i R̂

−1/2
(

θR̂−1/2H̃iH̃
H
i R̂

−1/2 + IS

)−1

R̂−1/2ỹi

= θỹH
i

(

θH̃iH̃
H
i + R̂

)−1

ỹi

= θỹH
i Ω

−1R̂−1ỹi, (55)

where (54) follows immediately from evaluating the diagonal terms, and (55) follows fromΩ , θR̂−1H̃iH̃
H
i +

IS. Inserting (55) and (52) to (50) gives us

E
[

Q(ỹi|xi)
θ|ỹi, H̃i

]

=
1

πS

∫

exp

(

−
∥
∥
∥Ω̃

1/2
xi−Cỹi

∥
∥
∥

2

−θỹH
i Ω

−1R̂−1ỹi

)

dxi

=
1

πS
exp

(

−θỹH
i Ω

−1R̂−1ỹi

)∫

exp

(

−
∥
∥
∥Ω̃

1/2
xi −Cỹi

∥
∥
∥

2
)

dxi

=
1

πS
exp

(

−θỹH
i Ω

−1R̂−1ỹi

)

πS det
(

Ω̃
−1
)

(56)

= exp
(

−θỹH
i Ω

−1R̂−1ỹi

)

det
(
Ω−1

)
, (57)

where (56) follows from the fact that forx,m ∈ CS×1 and conjugate symmetricA,B ∈ CS×S,
∫

exp
(
−(Ax−m)HB−1(Ax−m)

)
dx

=

∫

exp
(
−(x−A−1m)HAHB−1A(x−A−1m)

)
dx

= πS det
(
A−1B(AH)−1

)
,

and (57) follows fromdet(Ω̃) = det(Ω). Inserting (49) and (57) to (38) gives us

I(θ) = −
θ

log 2
tr(R̂−1/2RR̂−1/2)− E

[

log2

(

exp
(

−θỹH
i Ω

−1R̂−1ỹi

)

det
(
Ω−1

)) ∣
∣H̃i

]

= −
θ

log 2
tr(R̂−1/2RR̂−1/2) +

θ

log 2
E
[

ỹH
i Ω

−1R̂−1ỹi
∣
∣H̃i

]

+ log2 det(Ω).
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From

E
[

ỹH
i Ω

−1R̂−1ỹi
∣
∣H̃i

]

= E
[(

xH
i H̃

H
i + zH

i

)

Ω−1R̂−1
(

H̃ixi + zi

)]

= tr
(

Ω−1R̂−1H̃iH̃
H
i

)

+ tr
(

Ω−1R̂−1R
)

,

we finally have

I(θ) = −
θ

log 2
tr(R̂−1/2RR̂−1/2) +

θ

log 2

[
tr
(

Ω−1R̂−1H̃iH̃
H
i

)

+ tr
(

Ω−1R̂−1R
)]

+ log2 det(Ω),

which completes the proof of the lemma.
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Fig. 5. The achievable rate versus SNR whenK = 2, M = 3, L = 2, andS = 2. (a) N = 20. (b) N = 100.
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