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Discrete Signal Processing on Graphs:
Frequency Analysis
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Abstract—Signals and datasets that arise in physical and
engineering applications, as well as social, genetics, biomolecular,
and many other domains, are becoming increasingly larger and
more complex. In contrast to traditional time and image signals,
data in these domains are supported by arbitrary graphs. Signal
processing on graphs extends concepts and techniques from
traditional signal processing to data indexed by generic graphs.
This paper studies the concepts of low and high frequencies on
graphs, and low-, high-, and band-pass graph filters. In traditional
signal processing, there concepts are easily defined because of a
natural frequency ordering that has a physical interpretation.
For signals residing on graphs, in general, there is no obvious
frequency ordering. We propose a definition of total variation
for graph signals that naturally leads to a frequency ordering
on graphs and defines low-, high-, and band-pass graph signals
and filters. We study the design of graph filters with specified
frequency response, and illustrate our approach with applications
to sensor malfunction detection and data classification.

Keywords: Signal processing on graphs, graph filter, total
variation, filter design, regularization, low pass, high pass, band
pass.

I. INTRODUCTION

Signals indexed by graphs arise in many applications, in-
cluding the analysis of preferences and opinions in social
and economic networks [1]], [2], [3]; research in collaborative
activities, such as paper co-authorship and citations [4]; topics
and relevance of documents in the World Wide Web [3]], [6];
customer preferences for service providers; measurements from
sensor networks; interactions in molecular and gene regulatory
networks; and many others.

Signal processing on graphs extends the classical discrete
signal processing (DSP) theory for time signals and images [7]]
to signals indexed by vertices of a graph. There are two basic
approaches to signal processing on graphs. The first one uses
the graph Laplacian matrix as its basic building block (see a
recent review [8] and references therein). The second approach
adopts the adjacency matrix of the underlying graph as its
fundamental building block [9]], [10]], [L1]. Both frameworks
define several signal processing concepts similarly, but the
difference in their foundation leads to different techniques for
signal analysis and processing.

Methods for Laplacian-based graph signal analysis emerged
from research on the spectral graph theory [[12] and manifold
discovery and embedding [13], [[14]. Implicitly or explicitly,
in these works graphs discretize continuous high-dimensional
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manifolds from R™: graph vertices sample a manifold and
connect to nearest neighbors as determined by their geodesic
distances with respect to the underlying manifold. In this set-
ting, the graph Laplacian operator is the discrete counterpart to
the continuous Laplace-Beltrami operator on a manifold [12],
[L5].

This connection is propagated conceptually to Laplacian-
based methods for signal processing on graphs. For example,
the graph Fourier transform defined and considered in [3],
as well as [16], [L7], [18], [19], [20], [21], expands graph
signals in the eigenbasis of the graph Laplacian. This parallels
the classical Fourier transform that expands signals into the
basis of complex exponentials that are eigenfunctions of the
one-dimensional Laplace operator — the negative second order
derivative operator [8]. The frequencies are the eigenvalues
of the Laplace operator. Since the operator is symmetric and
positive semi-definite, graph frequencies are real-valued and
hence totally ordered. So, just like for time signals, the notions
of low and high frequencies are easily defined in this model.
However, due to the symmetry and positive semi-definiteness of
the operator, the Laplacian-based methods are only applicable
to undirected graphs with real, non-negative weights.

In [9], [10], [11] we take a different route. Our approach
is motivated by the algebraic signal processing (ASP) theory
introduced in [22], [23]], [24], [25], [26]; see also [27], [28],
[29], [30], [31]] for additional developments. In ASP, the shift
is the elementary non-trivial filter that generates, under an
appropriate notion of shift invariance, all linear shift-invariant
filters for a given class of signals. The key insight in [9] to
build the theory of signal processing on graphs is to identify
the shift operator. We adopted the weighted adjacency matrix of
the graph as the shift operator and then developed appropriate
concepts of z-transform, impulse and frequency response,
filtering, convolution, and Fourier transform. In particular, the
graph Fourier transform in this framework expands a graph
signal into a basis of eigenvectors of the adjacency matrix,
and the corresponding spectrum is given by the eigenvalues of
the adjacency matrix. This contrasts with the Laplacian-based
approach, where Fourier transform and spectrum are defined by
the eigenvectors and eigenvalues of the graph Laplacian, while
in our approach the eigenvectors and eigenvalues to expand
graph signals are obtained from the spectrum of the adjacency
matrix.

The association of the graph shift with the adjacency matrix
is natural and has multiple intuitive interpretations. The graph
shift is an elementary filter, and its output is a graph signal
with the value at vertex n given approximately by a weighted
linear combination of the input signal values at neighbors
of n [9]. With appropriate edge weights, the graph shift can



be interpreted as a (minimum mean square) first-order linear
predictor [23], [9]. Another interpretation of the graph filter
comes from Markov chain theory [32]], where the adjacency
matrix represents the one-step transition probability matrix
of the chain governing its dynamics. Finally, the graph shift
can also be seen as a stencil approximation of the first-order
derivative on the graplﬂ

The last interpretation of the graph shift contrasts with the
corresponding interpretation of the graph Laplacian: the adja-
cency matrix is associated with a first-order differential opera-
tor, while the Laplacian, if viewed as a shift, is associated with
a second-order differential operator. In the one-dimensional
case, the eigenfunctions for both, the first order and second
order differential operators, are complex exponentials, since
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Interpreting the Laplacian as a shift introduces an even sym-
metry assumption into the corresponding signal model, and
for one-dimensional signals [25], this model assumes that the
signals are defined on lines of an image (undirected line graphs)
rather than on a time line (directed line graphs). The use of
the adjacency matrix as the graph shift does not impose such
assumptions, and the corresponding framework can be used for
arbitrary signals indexed by general graphs, regardless whether
these graphs have undirected or directed edges with real or
complex, non-negative or negative weights.

This paper is concerned with defining low and high fre-
quencies and low-, high-, and band-pass graph signals and
filters on generic graphs. In traditional discrete signal process-
ing (DSP), these concepts have an intuitive interpretation, since
the frequency contents of time series and digital images are
described by complex or real sinusoids that oscillate at different
rates [33l]. The oscillation rates provide a physical notion
of “low” and “high” frequencies: low-frequency components
oscillate less and high-frequency ones oscillate more. However,
these concepts do not have a similar interpretation on graphs,
and it is not obvious how to order graph frequencies to describe
the low- and high-frequency contents of a graph signal.

We present an ordering of the graph frequencies that is
based on how “oscillatory” the spectral components are with
respect to the indexing graph, i.e., how much they change
from a node to neighboring nodes. To quantify this amount,
we introduce the graph total variation function that measures
how much signal samples (values of a graph signal at a node)
vary in comparison to neighboring samples. This approach is
analogous to the classical DSP theory, where the oscillations
in time and image signals are also quantified by appropriately
defined total variations [33]. In Laplacian-based graph signal
processing [8], the authors choose to order frequencies based on
a quadratic form rather than on the total variation of the graph
signal. Once we have an ordering of the frequencies based on
the graph total variation function, we define the notions of low
and high frequencies, low-, high-, and band-pass graph signals,
and low-, high-, and band-pass graph filters. We demonstrate
that these concepts can be used effectively in sensor networks
analysis and classification of hyperlinked political blogs. In

I'This analogy is more intuitive to understand if the graph is regular.

our experiments, we show that naturally occurring graph sig-
nals, such as measurements of physical quantities collected
by sensor networks or labels for political blogs in a dataset,
tend to be low-frequency graph signals, while anomalies in
sensor measurements or missing data labels can amplify high-
frequency parts of the signals. We demonstrate how these
anomalies can be detected using appropriately designed high-
pass graph filters, and how unknown parts of graph signals
can be recovered with appropriately designed regularization
techniques.

Summary of the paper. In Section we present the
notation and review from [9]] the basics of discrete signal
processing on graphs (DSPg). In Section[[II] we define the local
and total variation for graph signals. In Section we use the
proposed total variation to impose an ordering on frequency
components from lowest to highest. In Section [V] we discuss
low-, high-, and band-pass graph filters and their design. In
Section we illustrate these concepts with applications to
corrupted measurement detection in sensor networks and data
classification, and provide experimental results for real-world
datasets. Finally, Section concludes the paper.

II. DISCRETE SIGNAL PROCESSING ON GRAPHS

In this section, we briefly review notation and main concepts
of the DSPg framework that are relevant to our work in this
paper. A complete introduction to the theory can be found
in [9f], [LO], [1L1].

A. Graph Signals

Signal processing on graphs is concerned with the analysis
and processing of datasets in which data elements can be
connected to each other according to some relational property.
This relation is expressed though a graph G = (V, A), where
V = {vo,...,vn—1} is a set of nodes and A is a weighted
adjacency matrix of the graph. Each data element corresponds
to node v,, (we also say the data element is indexed by v,),
and each weight A, ,,, € C of a directed edge from v,, to
v, reflects the degree of relation of the mth data element to
the nth one. Node v,, is an in-neighbor of v, and v,, is an
out-neighbor of v,, if A, ,,, # 0. All in-neighbors of v,, form
its in-neighborhood, and we denote a set of their indices as
N, ={m | A, # 0}. If the graph is undirected, the relation
goes both ways, A, ,, = A,, ,,, and the nodes are neighbors.

Using this graph, we refer to the dataset as a graph signal,
which is defined as a map

s : V—>C,
Up > Sp. 2

We assume that each dataset element s,, is a complex number.
Since each signal is isomorphic to a complex-valued vector
with N elements, we write graph signals as vectors

s = [so S1 sN_l]Te(CN.

However, we emphasize that each element s, is indexed by
node v,, of a given representation graph G = (V, A), as defined
by ([@). The space S of graph signals () is isomorphic to C¥,
and its dimension is dimS = N.



B. Graph Filters

In general, a graph filter is a system H(-) that takes a graph
signal s as an input, processes it, and produces another graph
signal § = H(s) as an output. A basic non-trivial filter defined
on a graph G = (V,A), called the graph shift, is a local
operation that replaces a signal value s,, at node v,, with the
linear combination of values at the neighbors of node v,,

§n: Z An,msm~ (3)

meN,

Hence, the output of the graph shift is given by the product of
the input signal with the adjacency matrix of the graph:

~ - - T

S = [50 sN_l] = As. 4@
The graph shift is the basic building block in DSPg.

All linear, shift-invarianﬂ graph filters in DSPg are polyno-
mials in the adjacency matrix A of the form [9]

R(A) = hoI+h A + ...+ hp A" (5)

The output of the filter (3) is the signal

Linear, shift-invariant graph filters possess a number of
useful properties. They have at most L < Na taps hy, where
Na = degma(z) is the degree of the minimal polynomiaﬂ
ma(z) of A. If a graph filter (3) is invertible, i.e., matrix
h(A) is non-singular, then its inverse is also a graph filter
g(A) = h(A)~! on the same graph G = (V, A). Finally, the
space of graph filters is an algebra, i.e., a vector space that is
simultaneously a ring.

These properties guarantee that multiplying A by any non-
zero constant does not change the set of corresponding linear,
shift-invariant graph filters. In particular, we can define the
normalized matrix

1
Anorm — A7 (6)
|)\max|

where Ap.x denotes the eigenvalue of A with the largest
magnitude, i.e.,

[Amax| = [Am| (7

for all 0 < m < M —1. The normalized matrix (6) has spectral
norm ||A"™||; = 1 that guarantees that the shifted signal
is not scaled up, since ||[A™™s||/||s|| < 1, and ensures the
numerical stability of computing with graph filters h(A"™).
In this paper, we use the graph shift A"™™ instead of A when
these guarantees are required.

2 Filters are linear if for a linear combination of inputs they produce the
same linear combination of outputs. Filters are shift-invariant if the result of
consecutive processing of a signal by multiple graph filters does not depend
on the order of processing; i.e., shift-invariant filters commute with each other.

3The minimal polynomial of A is the unique monic polynomial of the
smallest degree that annihilates A, i.e., ma (A) = 0 [34], [33].

C. Graph Fourier Transform

In general, a Fourier transform performs the expansion of
a signal into a Fourier basis of signals that are invariant to
filtering. In the DSPg framework, a graph Fourier basis corre-
sponds to the Jordan basis of the graph adjacency matrix A (the
Jordan decomposition is reviewed in Appendix A). Following
the DSP notation, distinct eigenvalues Mg, A\1,...,Ap—1 of
the adjacency matrix A are called the graph frequencies and
form the spectrum of the graph, and the Jordan eigenvectors
that correspond to a frequency J\,, are called the frequency
components corresponding to the mth frequency. Since mul-
tiple eigenvectors can correspond to the same eigenvalue, in
general, a graph frequency can have multiple graph frequency
components associated with it.

As reviewed in Appendix A, Jordan eigenvectors form the
columns of the matrix V in the Jordan decomposition

A=VIV!.
Hence, the graph Fourier transform of a graph signal s is

s=Fs,

®

where F = V! is the graph Fourier transform matrix.
The values 3, of the signal’s graph Fourier transform (8)
characterize the frequency content of the signal s.

The inverse graph Fourier transform is given by

s=F!§=Vs. 9)
It reconstructs the original signal from its frequency contents
by constructing a linear combination of frequency components
weighted by the signal’s Fourier transform coefficients.

D. Frequency Response

The graph Fourier transform also allows us to charac-
terize the effect of a filter on the frequency content of an
input signal. As follows from (3)) and (§), as well as @7) in
Appendix A,

S=h(A)s=F 'h(J)Fs & F5=h(J)s. (10)

Hence, the frequency content of the output signal is obtained
by multiplying the frequency content of the input signal by the
block diagonal matrix

h(JTD,o ()‘0))
h(3) =
h(JTJ\l—l,Dlu—l (/\JVI—I))

We call this matrix the graph frequency response of the filter
h(A), and denote it as

h(A) = h(J). (1D
Notice that extends the convolution theorem from clas-
sical signal processing [7]] to graphs, since filtering a signal on
a graph is equivalent in the frequency domain to multiplying
the signal’s spectrum by the frequency response of the filter.
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Fig. 1.  Traditional graph representation for a finite discrete periodic time
series of length V.

E. Consistency with the Classical DSP

The DSPg framework is consistent with the classical DSP
theory. Finite (or periodic) time series can be represented by
the directed cycle graph shown in Fig. [I] see [24], [9]. The
direction of the edges represents the flow of time from past to
future, and the edge from the last vertex vy _1 to vy captures
the periodic signal extension sy = sg for time series. The
adjacency matrix of the graph in Fig. [l|is the N x N cyclic
permutation matrix

12)
1

Substituting (I2) into the graph shift @) yields the standard
time delay

gn = Sn—1 mod N- (13)

The matrix (T2) is diagonalizable. Its eigendecomposition,
which coincides with the Jordan decomposition {7), is

o—i 210
1

€=n

DFT,/ DFTy,

efj 27 ( JZ\\,P 1)
where DFT  is the discrete Fourier transform matrix. Thus,
as expected, the graph Fourier transform for signals indexed
by the graph in Fig. |I|is F = DFT, and the corresponding
frequencies areﬂ for0<n <N,

eI ",

(14)

III. TOTAL VARIATION ON GRAPHS

In this section, we define he total variation on graph signals
that is based on the concept of graph shift.

In classical DSP, the total variation (TV) of a discrete signal
is defined as the sum of magnitudes of differences between two
consecutive signal samples [33]:

TV(s) = Z |sn — Sn_1|.

n

5)

For a finite time series, the periodicity condition s, =
Sn mod N yields a modified definition

N-1
TV(S) - Z |5n —Sn—1 mod N|~ (16)
n=0
“In DSP, the ratio Qﬁn in the exponent (T4) sometimes is also called

frequency. In this case, the frequencies are /N real numbers between 0 and
27. However, to remain consistent with the discussion in this paper, we refer
to the exponentials (T4) as frequencies, and view them as complex numbers
of magnitude 1 residing on the unit circle in the complex plane.

The total variation (I3) and (I6) for time series or space
signals, such as images, has an intuitive interpretation: it com-
pares how the signal varies with time or space. These concepts
lie at the heart of many applications of DSP, including signal
regularization and denoising [33]], [36]], image compression [37]
and others.

The variation (I6) compares two consecutive signal samples
and calculates a cumulative magnitude of the signal change
over time. In terms of the time shift (I3), we can say that
the total variation compares a signal s to its shifted version:
the smaller the difference between the original signal and the
shifted one, the lower the signal’s variation. Using the cyclic
permutation matrix (I2)), we can write (T6) as

TV(s) = [ls — s, - (17)

The total variation measures the difference between the
signal samples at each vertex and at its neighbor on the graph
that represents finite time series in Fig. [T}

The DSPg generalizes the DSP theory from lines and regular
lattices to arbitrary graphs. Hence, we extend to an
arbitrary graph G = (V, A) by defining the total variation on
a graph as a measure of similarity between a graph signal and
its shifted version (@):

Definition 1 (Total Variation on Graphs): The total varia-
tion on a graph (TVg) of a graph signal s is defined as

TVg(s) = [|s — A™™s|], . (18)

The definition uses the normalized adjacency matrix A™™ to
guarantee that the shifted signal is properly scaled for compar-
ison with the original signal, as discussed in Section [[I-B}

The intuition behind Definition [1|is supported by the under-
lying mathematical model. Similarly to the calculus on discrete
signals that defines the discretized derivative as V,(s) =
Sp — Sp—1 [33l], in DSPg the derivative (and the gradient) of
a graph signal at the nth vertex is defined by the graph shift
Anorm as

ds
dvy, -

Vn(s) =sn— > AlMs,,.
meN,

19)

The local variation of the signal at vertex v, is the magnitude
|V (s)| of the corresponding gradient, and the total variation
is the sum of local variations for all vertices [33]], [8]. In
particular, if we define the discrete p-Dirichlet form

e
Sp(s) ==Y |Va(s)", (20)
p n=0
then for p = 1 the form
N—-1
Si(s) = > [Vals)] 1)
n=0

N-1

= D | D AlRsm
n=0 meN,

= |ls—Amms]),

defines the total variation of the graph signal s. It coincides
with Definition [Il



The total variation defined through the 1-Dirichlet form (21)
depends on the definition of the signal gradient at a graph
vertex. For finite time DSP, the gradient is defined by the
discretized derivative V,,(s) = s, — sp—1 [33] and yields
the total variation (I7). The DSPg extends the notion of the
shift to (3), which leads to the gradient (T9) and the total
variation (T8).

Remark. In [8], the frequencies are ordered using a 2-
Dirichlet form, i.e., a quadratic function.

IV. Low AND HIGH FREQUENCIES ON GRAPHS

In this section, we use the total variation to introduce an
ordering on frequencies that leads to the definition of low and
high frequencies on graphs. We demonstrate that this ordering
is unique for graphs with real spectra and not unique for graphs
with complex spectra.

A. Variation of the Graph Fourier Basis

As discussed in Section |lI} the graph Fourier basis for an
arbitrary graph is given by the Jordan basis of the adjacency
matrix A. Consider an eigenvalue A of A, and let v =
Vo, V1,...,Vr—1 be aJordan chain of generalized eigenvectors
that corresponds to this eigenvalue. Let the indicator function

. 0,
i, =
L,

specify whether v,. is a proper eigenvector of A or a general-
ized one. Then we can write the condition (@3) on generalized
eigenvectors (see Appendix A) as

r=20
1<r<R

Av, = v, +1i,v,_1. (22)

Using (22), we write the total variation (I8) of the general-
ized eigenvector v, as

TVg (Vr) = HV,. - Anormer1 (23)
= ||v,— Av,
‘)\max| 1
A i,
= Ve — v ——Vr — 77— Vr-1
‘)\max| |>\max| 1

In particular, when v, is a proper eigenvector of A, i.e. r =0
and vg = v, we have ig = 0. In this case, it follows from @])
that the total variation of the eigenvector v is

A
‘Amax‘

When a frequency component is a proper eigenvector of the
adjacency matrix A, its total variation is determined by the
corresponding eigenvalue, since we can scale all eigenvectors
to have the same ¢;-norm. Moreover, all proper eigenvectors
corresponding to the same eigenvalue have the same total
variation. However, when a frequency component is not a
proper eigenvector, we must use (23) to compare its variation
with other frequency components. Finally, it follows from
for [|v|[; =1 that

TVa(v) = |1 - vl - (24)

TVa(v) = |1 <1+ <2

|)\max| |)\max‘
Hence, the total variation of a normalized proper eigenvector
is a real number between 0 and 2.

(25)

B. Frequency Ordering

The total variation of the Fourier basis, given by (23)
and (24), allows us to order the graph frequency components
in the order of increasing variation. Following DSP conven-
tion, we call frequency components with smaller variations
low frequencies and components with higher variations high
frequencies.

Here, we determine the frequency ordering induced by
the total variation (24) for graphs that have diagonalizable
adjacency matrices, i.e., only have proper eigenvectors. This
ordering can be similarly extended to graphs with non-
diagonalizable adjacency matrices using the generalized eigen-
vector variation (23)).

The following theorem establishes the relative ordering of
two distinct real frequencies.

Theorem 1: Consider two distinct real eigenvalues \,,,, A, €
R of the adjacency matrix A with corresponding eigenvectors
v, and v,. If the eigenvalues are ordered as

Am < An, (26)
then the total variations of their eigenvectors satisfy
TVg(vm) > TVa(vy). 27

Proof: Since the eigenvalues are real, it follows from (26])
that the difference between the total variations of the two
eigenvectors satisfies

Am An
TVa(vy) —TVe(v,) = |1 - | —-1- =2
o) ~Tatin) = |- pg] 1= ot
() (o)
|)\max| |Amax|
An — Am
= fnTim s,
|>\max|
which yields (27). Here, equality (a) follows from (7). [

As follows from Theorem [T} if a graph has a real spectrum
and its frequencies are ordered as

Ao > A >...>AM_1, (28)

then )y represents the lowest frequency and Ap;_1 is the
highest frequency. Moreover, the ordering is a unique or-
dering of all frequencies from lowest to highest. This frequency
ordering for matrices with real spectra is visualized in Fig. 2(a)]

The next theorem extends Theorem [ and establishes the
relative ordering of two distinct frequencies corresponding to
complex eigenvalues.

Theorem 2: Consider two distinct complex eigenvalues
Am, An € C of the adjacency matrix A. Let v, and v,, be
the corresponding eigenvectors. The total variations of these
eigenvectors satisfy

TVa(vin) < TVg(vy) (29)

if the eigenvalue A, is located closer to the value |\y.| on
the complex plane than the eigenvalue \,,.

Proof: This result follows immediately from the interpre-
tation of the total variation (24) as a distance function on the
complex plane. Since A\yax # 0 (otherwise A would have been
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Fig. 2. Frequency ordering from low frequencies (LF) to high frequencies
(HF) for graphs with real and complex spectra.

a zero matrix), multiplying both sides of 29) by |Amax| yields
the equivalent inequality

‘|)\max| - Am < ‘|>\max| - A

The expressions on both sides of are the distances from
Am and A, to |Apax| on the complex plane. [ ]
As follows from Theorem [2] frequencies of a graph with a
complex spectrum are ordered by their distance from |Apax|- As
a result, in contrast to the graphs with real spectra, the induced
ordering of complex frequencies from lowest to highest is not
unique, since distinct complex frequencies can yield the same
total variation for their corresponding frequency components.
In particular, all eigenvalues lying on a circle of radius p
centered at point |Apx| on the complex plane have the same
total variation p/|Amax|. It also follows from (7)) that all graph
frequencies \,, can lie only inside and on the boundary of the
circle with radius | Ay, |. The frequency ordering for adjacency
matrices with complex spectra is visualized in Fig. 2(b)]
Consistency with DSP theory. The frequency ordering
induced by the total variation (I8) is consistent with classical
DSP. Recall from (T4) that the cycle graph in Fig. [T, which
represents finite time series, has a complex spectrum

Ap = e~ iR

(30)

for 0 < n < N. Hence, the total variation of the nth frequency
component is

TVg(vn) = ‘1—6 I

2mn

= ‘l—cos‘ bm— .

Hence, the frequencies A, and Ay _,, have the same variation,
and the induced order from lowest to highest frequencies is
A0s A1, AN—1, A2, AN—2, ..., with the lowest frequency corre-
sponding to Ay = 1 and the highest frequency corresponding to
Any2 = —1 for even N or A(y+1)/2 for odd N. This ordering

Im

A o

Re

Fig. 3. Frequency ordering for finite discrete periodic time series. Frequencies
Am and Ay _,,, have the same total variations since they lie on the same circle
centered around 1.

is visualized in Fig. 3] and it is the conventional frequency
ordering in DSP [7].

C. Frequency Ordering Based on Quadratic Form

Here we compare our ordering of the frequencies based
on the total variation with an ordering based on using the 2-
Dirichlet form, p = 2, like in [§]]. Taking p = 2 in 20), we
get

1 N-
Sa(s) = 5 Z
1 norm
= S lls—Arms|3 G1)
1
_ is (I _Anorm)H (I _Anorm) s
This quadratic form defines the seminorm
lIsll = v/Sa(s), (32)

since (I —Ar™) (T _Amom) js a positive-semidefinite ma-
trix. The rationale in [8]] is that the quadratic form is small when
signal values are close to the corresponding linear combinations
of their neighbors’ values, and large otherwise.

We introduce an ordering of the graph Fourier basis from
lowest to highest frequencies based on the graph shift quadratic
form. As we demonstrate next, this ordering coincides with the
ordering induced by the total variation.

The quadratic form (31)) of an eigenvector v that corresponds
to the eigenvalue A is

1

S2v) = 5llv— ATV
A 2
= |1- vl|, . (33)
I)\max| || H2

Consider two real eigenvalues \,, and \,, with correspond-
ing eigenvectors v,, and v,. If these eigenvalues satisfy
Am < An, then it follows from (33) that

Am | P
satv) a0 = 1= pg] i

2 2

< () ()

|/\max‘ |>\max|

A — Am

= T 5 -2 max

T O + A — 2 Amax]) > 0



Hence, Sy(vy,) > Sz2(vy), and we obtain a reformulation
of Theorem [I] for the graph shift quadratic form. As a con-
sequence, arranging frequency components in the increasing
order of their graph shift quadratic form leads to the same
ordering of frequencies from lowest to highest as the total
variation.

A similar reformulation of Theorem [2] for the graph shift
quadratic form is demonstrated analogously, which leads to the
same ordering of complex frequencies as the ordering induced
by the total variation.

V. FILTER DESIGN

When a graph signal is processed by a graph filter, its
frequency content changes according to the frequency re-
sponse of the filter. Similarly to classical DSP, we can
characterize graph filters as low-, high-, and band-pass filters
based on their frequency response.

A. Low-, High-, and Band-pass Graph Filters

Following the DSP convention, we call filters low-pass if
they do not significantly affect the frequency content of low-
frequency signals but attenuate, i.e., reduce, the magnitude
of high-frequency signals. Analogously, high-pass filters pass
high-frequency signals while attenuating low-frequency ones,
and band-pass filters pass signals with frequency content within
a specified frequency band while attenuating all others.

The action of a graph filter h(A) of the form (3) on the
frequency content of a graph signal s is completely specified
by its frequency response (TI)). For simplicity of presentation,
we discuss here graphs with diagonalizable adjacency matrices,
for which is a diagonal matrix with h(\,,) on the main
diagonal, 0 < m < M. In this case, the Fourier transform
coefficients of the filtered signal

5 =h(A)s

are the Fourier transform coefficients of the input signal mul-
tiplied element-wise by the frequency response of the filter:

h(Xo) h(Xo)30

w)
I

Fs = .
h(An-1) h(Anr—1)Sn—1

Hence, to attenuate the frequency content of a signal inside a
specific part of the spectrum, we should design a filter A(A)
that for corresponding frequencies A, satisfies A(\,,) = 0.

Consider an example of ideal low-pass and high-pass filters
h(A) and g(A). Let the cut-off frequency Ay equal to the
median of the bandwidth, i.e., be such that exactly half of
frequencies \,, are lower frequencies than .. The frequency
responses of these filters are defined as

17 )\m > )‘CUU

34
0,  Am < A G4

h(Am) =1 =9(Am) = {

As we demonstrate next, the design of such filters, as well as
any low-, high-, and band-pass graph filters, is a linear problem.

B. Frequency Response Design for Graph Filters

A graph filter can be defined through its frequency response
h(A\n,) at its distinct frequencies A,,, m =0,..., M —1. Since
a graph filter () is a polynomial of degree L, the construction
of a filter with frequency response h(\,,) = a,, corresponds
to inverse polynomial interpolation, i.e., solving a system of

M linear equations with L 4+ 1 unknowns hg, ..., hp:
ho+h1>\o+...+hL)\£ = ap,
ho+hidi+...+h X = a,

(35)
ho+hidar—1+...+he)l | = an_1.

This system can be written as

1 AO e Aé‘ h,o (7))
1 )\1 e )\% hl (65}

. . .= . . (36)
1 Ay A ] b -1

The system matrix in (36) is a full-rank M x (L 4+ 1) Van-
dermonde matrix [34], [35]. Hence, the system has infinitely
many exact solutions if M < L and one unique exact solution
it M =L+1.

When M > L + 1, the system is overdetermined and does
not have an exact solution. This is a frequent case in practice,
since the number of coefficients in the graph filter may be
restricted by computational efficiency or numerical stability
requirements. In this case, we can find an approximate solution,
for example, in the least-squares sense.

As an example of filter construction, consider a network of
150 weather stations that measure daily temperature near major
cities across the United States [38]. We represent these stations
with a directed 6-nearest neighbor graph, in which every sensor
corresponds to a vertex and is connected to six closest sensors
by directed edges. The edge weight between connected vertices
v, and v, is

2

nm

n,m — e 7
\/Zke./\/n e D e, €

where d,, ., denotes the geodesical distance between the nth
and mth sensors. A daily snapshot of all 150 measurements
forms a signal indexed by this graph, such as the example
signal shown in Fig. ]

Fig. ] shows the frequency responses of the low- and high-
pass filters for this graph that have degree L. = 10. These
filters are least-squares approximations of the ideal low- and
high-pass filters (34). The frequency response in (33)) for the
low-pass filter is «,, = 1 for frequencies lower than A, and
0 otherwise; and vice versa for the high-pass filter. By design,
the constructed filters satisfy the relation [39]

e d

A

; (37)

h(A) = Iy —g(A). (38)

If we require that h(A) and g(A) do not have the same number
of coefficients or if we use an approximation metric other than
least squares, the constructed polynomials will not satisfy (38).
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Fig. 4.  Temperature measured by 150 weather stations across the United
States on February 1, 2003
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Fig. 5. Frequency responses of low-pass and high-pass filters for the sensor
graph in Fig. ] The length of the filters is restricted to 10 coefficients.

VI. APPLICATIONS

In this section, we apply the theory discussed in this paper
to graphs and datasets that arise in different contexts. We
demonstrate how the DSPg framework extends standard signal
processing techniques of band-pass filtering and signal regular-
ization to solve interesting problems in sensor networking and
data classification.

A. Malfunction Detection in Sensor Networks

Today, sensors are ubiquitous. They are usually cheap to
manufacture and deploy, so networks of sensors are used to
measure and monitor a wide range of physical quantities from
structural integrity of buildings to air pollution. However, the
sheer quantity of sensors and the area of their deployment may
make it challenging to check that every sensor is operating
correctly. As an alternative, it is desirable to detect a malfunc-
tioning sensor solely from the data it generates. We illustrate
here how the DSPg framework can be used to devise a simple
solution to this problem.

Many physical quantities represent graph signals with small
variation with respect to the graph of sensors. As an illustration,
consider the temperature across the United States measured
by 150 weather stations located near major cities [38]. An
example temperature measurement is shown in Fig. [} and
the construction of the corresponding weather station graph
is discussed in Section [V-B] The graph Fourier transform of
this temperature snapshot is shown in Fig. [f] with frequencies

100

Low frequencies High frequencies

Fig. 6. The frequency content of the graph signal in Fig. @ Frequencies are
ordered from the lowest to highest.
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Fig. 7. A subgraph of the sensor graph in Fig. E| showing the (a) true and
(b) corrupted measurement by the sensor located in Colorado Springs, CO.

ordered from lowest to highest. Most of the signal’s energy is
concentrated in the low frequencies that have small variation.
This suggests that the signal varies slowly across the graph, i.e.,
that cities located close to each other have similar temperatures.

A sensor malfunction may cause an unusual difference
between its measurements and the measurements of nearby
stations. Fig. [/| shows an example of an (artificially) corrupted
measurement, where the station located near Colorado Springs,
CO, reports a temperature that contains an error of 20 degrees
(temperature at each sensor is color-coded using the same color
scheme as in Fig. [). The true measurement in Fig. is
very similar to measurements at neighboring cities, while the
corrupted measurement in Fig. [7(b)| differs significantly from
its neighbors.

Such difference in temperature at closely located cities
results in the increased presence of higher frequencies in the
corrupted signal. By high-pass filtering the signal and then
thresholding the filtered output, we can detect this anomaly.

Experiment. We consider the problem of detecting a cor-
rupted measurement from a single temperature station. We
simulate a signal corruption by changing the measurement of
one sensor by 20 degrees; such an error is reasonably small
and is hard to detect by direct inspection of measurements of
each station separately. To detect the malfunction, we extract
the high-frequency component of the resulting graph signal
using the high-pass filter in Fig. [5] and then threshold it. If
one or more Fourier transform coefficients exceed the threshold
value, we conclude that a sensor is malfunctioning. The cut-off
threshold is selected automatically as the maximum absolute
value of graph Fourier transform coefficients of the high-pass
filtered measurements from the previous three days.

Results. We considered 365 measurements collected during
the year 2003 by all 150 stations, and conducted 150 x 365 =
54,750 tests. The resulting average detection accuracy was
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Fig. 8. The magnitudes of spectral coefficients of the original and
corrupted temperature measurements after high-pass filtering: (a) the true signal
from Fig. EI; (b)-(f) signals obtained from the true signal by corrupting the
measurement of a single station located at the indicated city.

89%, so the proposed approach, despite its relative simplicity,
correctly detected a corrupted measurement almost 9 times out
of 10.

Fig. [§] illustrates the conducted experiment. It shows fre-
quency contents of high-pass filtered signals that contain a
corrupted measurement from a sensor at five different locations.
A comparison with the high-pass component of the uncorrupted
signal in Fig. [8(a)| shows coefficients above thresholds that lead
to the detection of a corrupted signal.

B. Data Classification

Data classification is an important problem in machine
learning and data mining [40], [41]. Its objective is to classify
each element of the dataset based on specified characteristics
of the data. For example, image and video databases may be
classified based on their contents; documents are grouped with
respect to their topics; and customers may be distinguished
based on their shopping preferences. In all cases, each dataset
element is assigned a label from a pre-defined group of labels.

Large datasets often cannot be classified manually. In this
case, a common approach is to classify only a subset of
elements and then use a known structure of the dataset to
predict the labels for the remaining elements. A key assumption
in this approach is that similar elements tend to be in the same

class. In this case, the labels tend to form a signal with small
variation over the graph of similarities. Hence, information
about similarity between dataset elements provides means for
inferring unknown labels from known ones.

Consider a graph G = (V, A) with N vertices that represent
N data elements. We assume that two elements are similar to
each other if the corresponding vertices are connected; if their
connection is directed, the similarity is assumed only in the
direction of the edge. We define a signal """ on this graph
that captures known labels. For a two-class problem, this signal
is defined as

+1,
~1,

0, class is unknown.

nth element belongs to class 1,

sﬁfnown) = nth element belongs to class 2,

The predicted labels for all data elements are found as the
signal that varies the least on the graph G = (V, A). That is,
we find the predicted labels as the solution to the optimization
problem

gpredicted) _ argmin Sy (S) (39)
sERN
subject to
|Cstom _ g3 <, o

where C is a N x N diagonal matrix such that

o _[u st o,

" 0, otherwise.

The parameter € in (0] controls how well the known labels are
preserved. Alternatively, the problem (39) with condition @0)
can be formulated and solved as

gpredicted) _ argmin (82 (s) + aH C gknown) _ SH%) . (41
seRN
Here, the parameter « controls the relative importance of
conditions (39) and (@0). Once the predicted signal s(Predicted
is calculated, the unlabeled data elements are assigned to class
1 if sPrediced — 0 and another class otherwise.

In classical DSP, minimization-based approaches to signal
recovery and reconstruction are called signal regularization.
They have been used for signal denoising, deblurring and
recovery [42], [43], [44], [45]. In signal processing on graphs,
minimization problems similar to (39) and @I)) formulated
with the Laplacian quadratic form (see (51) in Appendix B)
are used for data classification [46], [47], [41], [48], charac-
terization of graph signal smoothness [18] and recovery [8].
The problems (39) and (@I)) minimize the graph shift quadratic
form (B1)) and represent an alternative approach to graph signal
regularization.

Experiments. We illustrate the application of graph signal
regularization to data classification by solving the minimization
problem (@T) for two datasets. The first dataset is a collection
of images of handwritten digits 4 and 9 [49]. Since these digits
look quite similar, their automatic recognition is a challenging
task. For each digit, we use 1000 grayscale images of size
28 x 28. The graph is constructed by viewing each image as
a point in a 28% = 784-dimensional vector space, computing
Euclidean distances between all images, and connecting each
image with six nearest neighbors by directed edges, so the



resulting graph is a directed six-nearest neighbor graph. We
consider unweighted graphsﬂ for which all non-zero edge
weights are set to 1.

The second dataset is a collection of 1224 online political
blogs [5]. The blogs can be either “conservative” or “liberal.”
The dataset is represented by a directed graph with vertices
corresponding to blogs and directed edges corresponding to
hyperlink references between blogs. For this dataset we also use
only the unweighted graph (since we cannot assign a similarity
value to a hyperlink).

For both datasets, we consider trade-offs between the two
parts of the objective function in (@I) ranging from 1 to 100.
In particular, for each ratio of known labels 0.5%, 1%, 2%,
3%, 5%, 7%, 10% and 15%, we run experiments for 199
different values of o € {1/100,1/99,...,1/2,1,2,...,100},
a total of 8 x 199 = 1592 experiments. In each experiment,
we calculate the average classification accuracy over 100 runs.
After completing all experiments, we select the highest average
accuracy for each ratio of known labels.

For comparison, we also consider the Laplacian quadratic
form (51)), and solve the minimization problem

S(predicted) — argmin (SéL) (S) + aH C(s(known) _ S)Hg) ,

seRN
(42)
where we vary o between 0.01 and 100 as well. Since the
Laplacian can only be used with undirected graphs, we convert
the original directed graphs for digits and blogs to undirected
graphs by making all edges undirected.

For a fair comparison with the Laplacian-based minimiza-
tion (@2), we also test our approach (@T) on the same undirected
graphs. These experiments provide an equal testing ground
for the two methods. In addition, by comparing results for
our approach on directed and undirected graphs, we determine
whether the direction of graph edges provides additional valu-
able information that can improve the classification accuracy.

Results. Average classification accuracies for image and
blog datasets are shown, respectively, in Fig.[9]and Fig. [I0} For
both datasets, the total variation minimization approach (&)
applied to directed graphs has produced highest accuracies.
This observation demonstrates that using the information about
the direction of graph edges improves the classification accu-
racy of regularization-based classification.

Furthermore, our approach (1)) significantly outperforms
the Laplacian-based approach (@2) on undirected graphs. In
particular, for small ratios of known labels, the differences in
average accuracies can exceed 10% for image recognition and
20% for blog classification.

Discussion. The following example illustrates how classi-
fication based on signal regularization works. Fig. [T1] shows
a subgraph of 40 randomly selected blogs with their mutual
hyperlinks. Fig. [TI(a)] contains true labels for these blogs
obtained from [3]], while the labels in Fig.[T1(b) are obtained by
randomly switching 7 out of 40 labels to opposite values. The

5 We have also considered weighted graphs with edge weights set to
exp(—dZ ), where dn m is the Euclidean distance between the images.
This is a common way of assigning edge weights for graphs that reflect
similarity between objects [50], [51], [16]. Results obtained for these weighted
graphs were practically indistinguishable from the results in Fig.[9]and Fig.[I0]
obtained for unweighted graphs.
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Fig. 9. Classification accuracy of images of handwritten digits O and 1
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Fig. 10. Classification accuracy of political blogs using the graph shift-based

regularization and Laplacian-based regularization on an unweighted graph of
hyperlink references.

frequency content of the true and synthetic labels as signals
on this subgraph are shown in Fig. [I2] The true labels form a
signal that has more energy concentrated in lower frequencies,
i.e., has a smaller variation than the signal formed by the
synthetic labels. This observation supports our assumption
that the solution to the regularization problem @I) should
correspond to correct label assignment.

Incidentally, this assumption also explains why the maxi-
mum classification accuracy achieved in our experiments is
96%, as seen in Fig. We expect that every blog contains
more hyperlinks to blogs of its own type than to blogs of
the opposite type. However, after inspecting the entire dataset,
we discovered that 50 blogs out of 1224, i.e., 4% of the
total dataset, do not obey this assumption. As a result, 4% of
all blogs are always misclassified, which results in maximum
achievable accuracy of 96%.

VII. CONCLUSIONS

In this paper, we introduced low-, high-, and band-pass
signals and low-, high-, and band-pass filters on graphs. These
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Fig. 11. A subgraph of 40 blogs labels: blue corresponds to “liberal” blogs
and red corresponds to “conservative” ones. Labels in (a) form a smoother
graph signal than labels in (b).
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Fig. 12. Magnitudes of the spectral coefficients for graph signals formed by
true and synthetic labels in Fig. [TT]

concepts do not have simple and intuitive interpretations for
general graphs. We defined them using the concept of fre-
quencies in digital signal processing on graphs. We proposed
a novel definition of a total variation on graphs that measures
the difference between a graph signal and its shifted version.
We then used the total variation to order graph frequencies
and to define low- and high-pass graph signals and filters. We
demonstrated how to design filters with specified frequency
response by finding least squares approximations to solutions
of systems of linear algebraic equations. We applied these
concepts and methodologies to sensor network analysis and
data classification and conducted experiments with real-world
datasets of temperature measurements collected by a sensor
network and databases of images and hyperlinked documents.
Our experimental results showed that the techniques presented
in this paper are promising in problems like detecting sensor
malfunctions, graph signal regularization, and classification of
partially labeled data.

APPENDIX A: JORDAN DECOMPOSITION

An arbitrary matrix A € CV*N has M < N distinct
eigenvalues \g, ..., A\ps—1. Each eigenvalue A, has D,, cor-
responding eigenvectors Vi, o, ..., Vm, D,,—1 that satisfy

(A — )\m IN)Vm,d =0.

Moreover, each eigenvector v,, 4 can generate a Jordan chain
of Ry, q > 1 generalized eigenvectors Vo, 4, 0 <1 < Ry, 4,
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where v, 4.0 = Vi g, that satisfy

(A — Am I)Vm,d,r = Vm,dr—1- (43)

All eigenvectors and corresponding generalized eigenvectors
are linearly independent.

For each eigenvector v,, 4 and its Jordan chain of size R,, 4,
we define a Jordan block matrix of dimensions R, g X Ry, q
as

TRy a(Am) = € Clm.axBm.a  (44)
1

Am

By construction, each eigenvalue )\, is associated with D,,
Jordan blocks, each of dimension R,, q X Ry, 4, where 0 <
d < Dy,. Next, for each eigenvector v, 4, we collect its Jordan
chain into a N x R, 4 matrix

Vind = [Vim.d0 Vi, Ron.a—1] - 45)

We concatenate all blocks V,, 4, 0 < d < D, and 0 < m <
M, into one block matrix

V = [V0,0 VM—I,D}\471] 9 (46)

so that the block V,, 4 is at position ZZ’:_OI Dy, + d in this
matrix. Then matrix A is written in its Jordan decomposition
form as

A=VIVH (47)

where the block-diagonal matrix

JRO,O()\O)

J= (48)

JRJ\/I—l,DM_1 (AMfl)

is called the Jordan normal form of A. The columns of V, i.e.,
all eigenvectors and generalized eigenvectors of A, are called
the Jordan basis of A.

APPENDIX B: CONNECTION WITH LAPLACIAN-BASED
VARIATION

The Laplacian matrix for an undirected graph G = (V, A)
with real, non-negative edge weights A,, ,,, is defined as

L=D-A, (49)

where D is a diagonal matrix with diagonal elements

N-1
Dn,n: § An,m-
m=0

The Laplacian matrix has real non-negative eigenvalues 0 =
Bo < B1 < By < < Bn-1 and a complete set of
corresponding orthonormal eigenvectors u,, for 0 < n < N.

Similarly to the DSPg definition of the graph Fourier trans-
form (8), the Laplacian-based Fourier transform expands a
graph signal s into the eigenbasis of L [8]. The total variation
is defined as

N—1 1/2
TVL(s) = ) ( > Apm(sn —sm)2> . (50)

n=0 \menN,



and the graph Laplacian quadratic form is
SéL)(s) =s'Ls.

In particular, the Laplacian quadratic form (50) of a Fourier
basis vector is

S1Y)

S (u,) = Ba.

It imposes the following order of the Laplacian Fourier basis
from the lowest frequency to the highest one:

(52)

(53)

For a general graph, the total variation and the graph
shift quadratic form (@I} are different from the (50) and (S1I).
However, as we demonstrate in the following theorem, the
DSPg and the Laplacian-based approach to signal processing
on graphs lead to the same graph Fourier basis, notions of low
and high frequencies, and frequency ordering on any regulaﬂ
graph.

Theorem 3: The quadratic forms (3I) and (3I) induce the
same ordering on the graph Fourier basis for regular graphs.

Proof: Consider a d-regular graph with adjacency matrix
A. Since the Laplacian matrix (@9) can be defined only for
undirected graphs with real non-negative edge weights, we
also require that A = A7 and has only real non-negative
entries. Hence, A has real eigenvalues and a complete set of or-
thonormal eigenvectors [34], and its Jordan decomposition (47)
becomes the eigendecomposition

A=VAVT,

Up, U, ..., UN-1-

where A is the diagonal matrix of eigenvalues. Since the graph
is d-regular, its Laplacian matrix (49)) satisfies

L=dI-A=V({dI-A)VT.

Hence, L and A have the same eigenvectors u,, = v, i.e., the
same graph Fourier basis. The corresponding eigenvalues are
Bm = d — A\, Since the smallest eigenvalue of L is 8y = 0,
we also obtain A\, = d.

The graph shift quadratic form (3I)) of the eigenvector v,

satisfies
1 1

_ LAY
2 d

1

= 5@ @)
_ 1 2

= o (s()"

Since 3%/(2d?) is a monotonically increasing function for
B > 0, it follows from (54) that ordering the graph Fourier
basis u,, 0 < n < N, by increasing values of the quadratic
form (BI) leads to the same order as (53). Hence, the notions
of low and high frequencies, and frequency orderings from
lowest to highest coincide on regular graphs for the DSPg and
the Laplacian-based approach. [ |

2

2

(54)

SAll vertices of a d-regular graph have the same degree d, so that
N-1 _
> om0 An,m =d.
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