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Abstract—A scattering transform defines a locally translation
invariant representation which is stable to time-warping defor-
mations. It extends MFCC representations by computing modu-
lation spectrum coefficients of multiple orders, through cascades
of wavelet convolutions and modulus operators. Second-order
scattering coefficients characterize transient phenomena such as
attacks and amplitude modulation. A frequency transposition
invariant representation is obtained by applying a scattering
transform along log-frequency. State-the-of-art classification re-
sults are obtained for musical genre and phone classification on
GTZAN and TIMIT databases, respectively.

Index Terms—Audio classification, deep neural networks,
MFCC, modulation spectrum, wavelets.

I. INTRODUCTION

A major difficulty of audio representations for classification
is the multiplicity of information at different time scales: pitch
and timbre at the scale of milliseconds, the rhythm of speech
and music at the scale of seconds, and the music progression
over minutes and hours. Mel-frequency cepstral coefficients
(MFCCs) are efficient local descriptors at time scales up to
25 ms. Capturing larger structures up to 500 ms is however
necessary in most applications. This paper studies the con-
struction of stable, invariant signal representations over such
larger time scales. We concentrate on audio applications, but
introduce a generic scattering representation for classification,
which applies to many signal modalities beyond audio [1].

Spectrograms compute locally time-shift invariant descrip-
tors over durations limited by a window. However, Section
II shows that high-frequency spectrogram coefficients are not
stable to variability due to time-warping deformations, which
occur in most signals, particularly in audio. Stability means
that small signal deformations produce small modifications of
the representation, measured with a Euclidean norm. This is
particularly important for classification. Mel-frequency spec-
trograms are obtained by averaging spectrogram values over
mel-frequency bands. It improves stability to time warping,
but it also removes information. Over time intervals larger
than 25 ms, the information loss becomes too important,
which is why mel-frequency spectrograms and MFCCs, are
limited to such short time intervals. Modulation spectrum
decompositions [2]–[10] characterize the temporal evolution
of mel-frequency spectrograms over larger time scales, with
autocorrelation or Fourier coefficients. However, this modu-
lation spectrum also suffers from instability to time-warping
deformation, which impedes classification performance.

Section III shows that the information lost by mel-frequency
spectrograms can be recovered with multiple layers of wavelet
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coefficients. In addition to being locally invariant to time-
shifts, this representation is also stable to time-warping defor-
mation. Known as a scattering transform [11], it is computed
through a cascade of wavelet transforms and modulus non-
linearities. The computational structure is similar to a convolu-
tional deep neural network [12]–[19], but involves no learning.
It outputs time-averaged coefficients, providing informative
signal invariants over potentially large time scales.

A scattering transform has striking similarities with physio-
logical models of the cochlea and of the auditory pathway
[20], [21], also used for audio processing [22]. Its energy
conservation and other mathematical properties are reviewed
in Section IV. An approximate inverse scattering transform is
introduced in Section V, with numerical examples. Section VI
relates the amplitude of scattering coefficients to audio signal
properties. These coefficients provide accurate measurements
of frequency intervals between harmonics and also character-
ize the amplitude modulation of voiced and unvoiced sounds.
The logarithm of scattering coefficients linearly separates
audio components related to pitch, formant and timbre.

Frequency transpositions form another important source of
audio variability, which should be kept or removed depending
upon the classification task. For example, speaker-independent
phone classification requires some frequency transposition in-
variance, while frequency localization is necessary for speaker
identification. Section VII shows that cascading a scattering
transform along log-frequency yields a transposition invariant
representation which is stable to frequency deformation.

Scattering representations have proved useful for image
classification [23], [24], where spatial translation invariance
is crucial. In audio, the analogous time-shift invariance is also
important, but scattering transforms are computed with very
different wavelets. They have a better frequency resolution,
which is adapted to audio frequency structures. Section VIII
explains how to adapt and optimize the frequency invariance
for each signal class at the supervised learning stage. A time
and frequency scattering representation is used for musical
genre classification over the GTZAN database, and for phone
segment classification over the TIMIT corpus. State-of-the-
art results are obtained with a Gaussian kernel SVM applied
to scattering feature vectors. All figures and results are re-
producible using a MATLAB software package, available at
http://www.di.ens.fr/data/scattering/.

II. MEL-FREQUENCY SPECTRUM

Section II-A shows that high-frequency spectrogram co-
efficients are not stable to time-warping deformation. The
mel-frequency spectrogram stabilizes these coefficients by
averaging them along frequency, but loses information. To
analyze this information loss, Section II-B relates the mel-
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Fig. 1. (a) Spectrogram log |x̂(t, ω)| for a harmonic signal x(t) (centered in t0) followed by log |x̂τ (t, ω)| for xτ (t) = x((1 − ε)t) (centered in t1),
as a function of t and ω. The right graph plots log |x̂(t0, ω)| (blue) and log |x̂τ (t1, ω)| (red) as a function of ω. Their partials do not overlap at high
frequencies. (b) Mel-frequency spectrogram logMx(t, ω) followed by logMxτ (t, ω). The right graph plots logMx(t0, ω) (blue) and logMxτ (t1, ω)
(red) as a function of ω. With a mel-scale frequency averaging, the partials of x and xτ overlap at all frequencies.

frequency spectrogram to the amplitude output of a filter bank
which computes a wavelet transform.

A. Fourier Invariance and Deformation Instability

Let x̂(ω) =
∫
x(u)e−iωudu be the Fourier transform of x.

If xc(t) = x(t − c) then x̂c(ω) = e−icω x̂(ω). The Fourier
transform modulus is thus invariant to translation:

|x̂c(ω)| = |x̂(ω)| . (1)

A spectrogram localizes this translation invariance with a
window φ of duration T such that

∫
φ(u)du = 1. It is defined

by

|x̂(t, ω)| =
∣∣∣∣∫ x(u)φ(u− t) e−iωu du

∣∣∣∣ . (2)

If |c| � T then one can verify that |x̂c(t, ω)| ≈ |x̂(t, ω)|.
However, invariance to time-shifts is often not enough.

Suppose that x is not just translated but time-warped to give
xτ (t) = x(t − τ(t)) with |τ ′(t)| < 1. A representation Φ(x)
is said to be stable to deformation if its Euclidean norm
‖Φ(x)−Φ(xτ )‖ is small when the deformation is small. The
deformation size is measured by supt |τ ′(t)|. If it vanishes
then it is a “pure” translation without deformation. Stability is
formally defined as a Lipschitz continuity condition relatively
to this metric. It means that there exists C > 0 such that for
x(t) and all τ with supt |τ ′(t)| < 1

‖Φ(x)− Φ(xτ )‖ ≤ C sup
t
|τ ′(t)| ‖x‖ . (3)

The constant C is a measure of stability.
This Lipschitz continuity property implies that time-warping

deformations are locally linearized by Φ(x). Indeed, Lipschitz
continuous operators are almost everywhere differentiable. It
results that Φ(x) − Φ(xτ ) can be approximated by a linear
operator if supt |τ ′(t)| is small. A family of small deforma-
tions thus generate a linear space. In the transformed space,
an invariant to these deformations can then be computed with
a linear projector on the orthogonal complement to this linear
space. In Section VIII we use linear discriminant classifiers to
become selectively invariant to small time-warping deforma-
tions.

A Fourier modulus representation Φ(x) = |x̂| is not stable
to deformation because high frequencies are severely distorted
by small deformations. For example, let us consider a small
dilation τ(t) = εt with 0 < ε � 1. Since τ ′(t) = ε, the
Lipschitz continuity condition (3) becomes

‖|x̂| − |x̂τ |‖ ≤ C ε ‖x‖ . (4)

The Fourier transform of xτ (t) = x((1 − ε)t) is x̂τ (ω) =
(1 − ε)−1 x̂((1 − ε)−1ω). This dilation shifts a frequency
component at ω0 by ε|ω0|. For a harmonic signal x(t) =
g(t)

∑
n an cos(nξt), the Fourier transform is a sum of partials

x̂(ω) =
∑
n

an
2

(
ĝ(ω − nξ) + ĝ(ω + nξ)

)
. (5)

After time-warping, each partial ĝ(ω±nξ) is translated by εnξ,
as shown in the spectrogram of Figure 1(a). Even though ε is
small, at high frequencies nεξ becomes larger than the band-
width of ĝ. Consequently, the harmonics ĝ(ω(1− ε)−1 − nξ)
of x̂τ do not overlap with the harmonics ĝ(ω − nξ) of
x̂. The Euclidean distance of |x̂| and |x̂τ | thus does not
decrease proportionally to ε if the harmonic amplitudes an
are sufficiently large at high frequencies. This proves that
the deformation stability condition (4) is not satisfied for any
C > 0.

The autocorrelation Rx(u) =
∫
x(t)x?(t − u) dt is also a

translation invariant representation which has the same defor-
mation instability as the Fourier transform modulus. Indeed,
R̂x(ω) = |x̂(ω)|2 so ‖Rx−Rxτ‖ = (2π)−1‖|x̂|2 − |x̂τ |2‖.

B. Mel-frequency Deformation Stability and Filter Banks

A mel-frequency spectrogram averages the spectrogram en-
ergy with mel-scale filters ψ̂λ, where λ is the center frequency
of each ψ̂λ(ω):

Mx(t, λ) =
1

2π

∫
|x̂(t, ω)|2 |ψ̂λ(ω)|2dω . (6)

The band-pass filters ψ̂λ have a constant-Q frequency band-
width at high frequencies. Their frequency support is centered
at λ with a bandwidth of the order of λ/Q. At lower fre-
quencies, instead of being constant-Q, the bandwidth of ψ̂λ
remains equal to 2π/T .

The mel-frequency averaging removes deformation instabil-
ity created by large displacements of high frequencies under
dilations. If xτ (t) = x((1 − ε)t) then we saw that each
frequency component at ω0 is moved by ε|ω0|, which may be
large if |ω0| is large. However, the mel-scale filter ψ̂λ(ω) cov-
ering the frequency ω0 has a frequency bandwidth of the order
of λ/Q ∼ |ω0|/Q. As a result, the relative error after averaging
by |ψ̂|2 is of the order of εQ. This is illustrated by Figure
1(b) on a harmonic signal x. After mel-frequency averaging,
the frequency partials of x and xτ overlap at all frequencies.
One can verify that ‖Mx(t, λ)−Mτx(t, λ)‖ ≤ C ε‖x‖, where
C is proportional to Q, and does not depend upon ε and x.
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Fig. 2. (a): Scalogram log |x ? ψλ(t)|2 for a musical signal, as a function
of t and λ. (b): Averaged scalogram log |x ? ψλ|2 ? φ2(t) with a lowpass
filter φ of duration T = 190 ms.

Unlike the spectrogram (2), the mel-frequency spectrogram (6)
satisfies the Lipschitz deformation stability condition (3).

Mel-scale averaging provides time-warping stability but
loses information. We show that this frequency averaging is
equivalent to a time averaging of a filter bank output, which
will provide a strategy to recover the lost information. Since
x̂(t, ω) in (2) is the Fourier transform of xt(u) = x(u)φ(u−t),
applying Plancherel’s formula gives

Mx(t, λ) =
1

2π

∫
|x̂t(ω)|2 |ψ̂λ(ω)|2 dω (7)

=

∫
|xt ? ψλ(v)|2 dv (8)

=

∫ ∣∣∣∣∫ x(u)φ(u− t)ψλ(v − u)du

∣∣∣∣2 dv (9)

If λ � Q/T then φ(t) is approximately constant on the
support of ψλ(t), so φ(u− t)ψλ(v−u) ≈ φ(v− t)ψλ(v−u),
and hence

Mx(t, λ) ≈
∫ ∣∣∣∣∫ x(u)ψλ(v − u)du

∣∣∣∣2 |φ(v − t)|2dv (10)

= |x ? ψλ|2 ? |φ|2(t) . (11)

The frequency averaging of the spectrogram is thus nearly
equal to the time averaging of |x ? ψλ|2. In this formulation,
the window φ acts as a lowpass filter, ensuring that the
representation is locally invariant to time-shifts smaller than
T . Section III-A studies the properties of the constant-Q filter
bank {ψλ}λ, which defines an analytic wavelet transform.

Figures 2(a) and 2(b) display |x ?ψλ|2 and |x ?ψλ|2 ? |φ|2,
respectively, for a musical recording. The window duration is
T = 190 ms. This time averaging removes fine-scale informa-
tion such as vibratos and attacks. To reduce information loss,
a mel-frequency spectrogram is often computed over small
time windows of about 25 ms. As a result, it does not capture
large-scale structures, which limits classification performance.

To increase T without losing too much information, it is
necessary to capture the amplitude modulations of |x?ψλ(t)| at
scales smaller than T , which are important in audio perception.
The spectrum of these modulation envelopes can be computed
from the spectrogram [2]–[5] of |x?ψλ|, or represented with a
short-time autocorrelation [6], [7]. However, these modulation
spectra are unstable to time-warping deformations. Indeed, a
time-warping of x induces a time-warping of |x ? ψλ|, and

Section II-A showed that spectrograms and autocorrelations
have deformation instabilities. Constant-Q averaged modula-
tion spectra [9], [10] stabilize spectrogram representations with
another averaging along modulation frequencies. According to
(11), this can also be computed with a second constant-Q filter
bank. The scattering transform follows this latter approach.

III. WAVELET SCATTERING TRANSFORM

A scattering transform recovers the information lost by a
mel-frequency averaging with a cascade of wavelet decom-
positions and modulus operators [11]. It is locally translation
invariant and stable to time-warping deformation. Important
properties of constant-Q filter banks are first reviewed in the
framework of a wavelet transform, and the scattering transform
is introduced in Section III-B.

A. Analytic Wavelet Transform and Modulus

Constant-Q filter banks compute a wavelet transform. We
review the properties of complex analytic wavelet transforms
and their modulus, which are used to calculate mel-frequency
spectral coefficients.

A wavelet ψ(t) is a band-pass filter with ψ̂(0) = 0. We
consider complex wavelets with quadrature phase such that
ψ̂(ω) ≈ 0 for ω < 0. For any λ > 0, a dilated wavelet of
center frequency λ is written

ψλ(t) = λψ(λ t) and hence ψ̂λ(ω) = ψ̂
(ω
λ

)
. (12)

The center frequency of ψ̂ is normalized to 1. In the follow-
ing, we denote by Q the number of wavelets per octave, which
means that λ = 2k/Q for k ∈ Z. The bandwidth of ψ̂ is of the
order of Q−1, to cover the whole frequency axis with these
band-pass wavelet filters. The support of ψ̂λ(ω) is centered
in λ with a frequency bandwidth λ/Q whereas the energy of
ψλ(t) is concentrated around 0 in an interval of size 2πQ/λ.
To guarantee that this interval is smaller than T , we define ψλ
with (12) only for λ ≥ 2πQ/T . For λ < 2πQ/T , the lower-
frequency interval [0, 2πQ/T ] is covered with about Q − 1
equally-spaced filters ψ̂λ with constant frequency bandwidth
2π/T . For simplicity, these lower-frequency filters are still
called wavelets. We denote by Λ the grid of all wavelet center
frequencies λ.

The wavelet transform of x computes a convolution of x
with a low-pass filter φ of frequency bandwidth 2π/T , and
convolutions with all higher-frequency wavelets ψλ for λ ∈ Λ:

Wx =
(
x ? φ(t) , x ? ψλ(t)

)
t∈R,λ∈Λ

. (13)

This time index t is not critically sampled as in wavelet bases
so this representation is highly redundant. The wavelet ψ and
the low-pass filter φ are designed to build filters which cover
the whole frequency axis, which means that

A(ω) = |φ̂(ω)|2 +
1

2

∑
λ∈Λ

(
|ψ̂λ(ω)|2 + |ψ̂λ(−ω)|2

)
(14)

satisfies, for all ω ∈ R:

1− α ≤ A(ω) ≤ 1 with α < 1 . (15)
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This condition implies that the wavelet transform W is a
stable and invertible operator. Multiplying (15) by |x̂(ω)|2 and
applying the Plancherel formula [25] gives

(1− α)‖x‖2 ≤ ‖Wx‖2 ≤ ‖x‖2 , (16)

where ‖x‖2 =
∫
|x(t)|2dt and where the squared norm of Wx

sums all squared coefficients:

‖Wx‖2 =

∫
|x ? φ(t)|2 dt+

∑
λ∈Λ

∫
|x ? ψλ(t)|2 dt .

The upper bound (16) means that W is a contractive operator
and the lower bound implies that it has a stable inverse. One
can also verify that the pseudo-inverse of W recovers x with
the following formula

x(t) = (x ? φ) ? φ(t) +
∑
λ∈Λ

Real
(

(x ? ψλ) ? ψλ(t)
)
, (17)

with reconstruction filters defined by

φ̂(ω) =
φ̂∗(ω)

A(ω)
and ψ̂λ(ω) =

ψ̂∗λ(ω)

A(ω)
, (18)

where z∗ is the complex conjugate of z ∈ C. If α = 0 in (15)
then W is said to be a tight frame operator, in which case
φ(t) = φ(−t) and ψλ(t) = ψ∗λ(−t).

One may define an analytic wavelet with an octave res-
olution Q as ψ(t) = eit θ(t) and hence ψ̂(ω) = θ̂(ω − 1)
where θ̂ is the transfer function of a low-pass filter whose
bandwidth is of the order of Q−1. If θ̂(−1) 6= 0 then we
define ψ̂(ω) = θ̂(ω− 1)− θ̂(ω)θ̂(−1)/θ̂(0), which guarantees
that ψ̂(0) = 0. If θ is a Gaussian then ψ is called a Morlet
wavelet, which is almost analytic because |ψ̂(ω)| is small but
not strictly zero for ω < 0. Figure 3 shows Morlet wavelets ψ̂λ
with Q = 8. In this case φ is also chosen to be a Gaussian. For
Q = 1, tight frame wavelet transforms can also be obtained
by choosing ψ to be the analytic part of a real wavelet which
generates an orthogonal wavelet basis, such as a cubic spline
wavelet [11]. Unless indicated otherwise, wavelets used in this
paper are Morlet wavelets.

Following (11), mel-frequency spectrograms can be approx-
imated using a non-linear wavelet modulus operator which
removes the complex phase of all wavelet coefficients:

|W |x =
(
x ? φ(t) , |x ? ψλ(t)|

)
t∈R,λ∈Λ

. (19)

Taking the modulus of analytic wavelet coefficient can be
interpreted as a sub-band Hilbert envelope demodulation.
Demodulation is used to separate carriers and modulation
envelopes. When a carrier or pitch frequency can be detected,
then a linear coherent demodulation is efficiently implemented
by multiplying the analytic signal with the conjugate of the
detected carrier [26]–[28]. However, many signals such as un-
voiced speech are not modulated by isolated carrier frequency,
in which case coherent demodulation is not well defined. Non-
linear Hilbert envelope demodulations apply to any band-pass
analytic signals, but if a carrier is present then the Hilbert
envelope depends both on the carrier and on the amplitude
modulation. Section VI-C explains how to isolate amplitude

ω

Fig. 3. Morlet wavelets ψ̂λ(ω) with Q = 8 wavelets per octave, for different
λ. The low-frequency filter φ̂(ω) (in red) is a Gaussian.

modulation coefficients from Hilbert envelope measurements,
whether a carrier is present or not.

Although a wavelet modulus operator removes the complex
phase, it does not lose information because the temporal
variation of the multiscale envelopes is kept. A signal cannot
be reconstructed from the modulus of its Fourier transform,
but it can be recovered from the modulus of its wavelet
transform. Since the time variable t is not subsampled, a
wavelet transform has more coefficients than the original
signal. These coefficients are highly redundant when filters
have a significant frequency overlap. For particular families
of analytic wavelets, one can prove that |W | is an invertible
operator with a continuous inverse [29]. This is further studied
in Section V.

The operator |W | is contractive. Indeed, the wavelet trans-
form W is contractive and the complex modulus is contractive
in the sense that ||a| − |b|| ≤ |a− b| for any (a, b) ∈ C2 so

‖ |W |x− |W |x′‖2 ≤ ‖Wx−Wx′‖2 ≤ ‖x− x′‖2 .

If W is a tight frame operator then ‖ |W |x‖ = ‖Wx‖ = ‖x‖
so |W | preserves the signal norm.

B. Deep Scattering Network

We showed in (11) that mel-frequency spectral coefficients
Mx(t, λ) are approximately equal to averaged squared wavelet
coefficients |x ? ψλ|2 ? |φ|2(t). Large wavelet coefficients
are considerably amplified by the square operator. To avoid
amplifying outliers, we remove the square and calculate
|x ?ψλ| ? φ(t) instead. High frequencies removed by the low-
pass filter φ are recovered by a new set of wavelet modulus
coefficients. Cascading this procedure defines a scattering
transform.

A locally translation invariant descriptors of x is obtained
with a time-average S0x(t) = x ? φ(t), which removes all
high frequencies. These high-frequencies are recovered by a
wavelet modulus transform

|W1|x =
(
x ? φ(t) , |x ? ψλ1

(t)|
)
t∈R,λ1∈Λ1

.

It is computed with wavelets ψλ1 having an octave frequency
resolution Q1. For audio signals we set Q1 = 8, which
defines wavelets having the same frequency resolution as mel-
frequency filters. Audio signals have little energy at low fre-
quencies so S0x(t) ≈ 0. Approximate mel-frequency spectral
coefficients are obtained by averaging the wavelet modulus
coefficients with φ:

S1x(t, λ1) = |x ? ψλ1
| ? φ(t) . (20)

These are called first-order scattering coefficients. They are
computed with a second wavelet modulus transform |W2|
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applied to each |x?ψλ1
|, which also provides complementary

high-frequency wavelet coefficients:

|W2| |x ? ψλ1 | =
(
|x ? ψλ1 | ? φ , ||x ? ψλ1 | ? ψλ2 |

)
λ2∈Λ2

.

The wavelets ψλ2
have an octave resolution Q2 which may be

different from Q1. It is chosen to get a sparse representation
which means concentrating the signal information over as
few wavelet coefficients as possible. These coefficients are
averaged by the lowpass filter φ of size T , which ensures local
invariance to time-shifts, as with the first-order coefficients. It
defines second-order scattering coefficients:

S2x(t, λ1, λ2) = ||x ? ψλ1 | ? ψλ2 | ? φ(t) .

These averages are computed by applying a third wavelet
modulus transform |W3| to each ||x?ψλ1

| ?ψλ2
|. It computes

their wavelet modulus coefficients through convolutions with
a new set of wavelets ψλ3 having an octave resolution Q3.
Iterating this process defines scattering coefficients at any
order m.

For any m ≥ 1, iterated wavelet modulus convolutions are
written:

Umx(t, λ1, ..., λm) = | ||x ? ψλ1
| ? ...| ? ψλm

(t)| , (21)

where mth-order wavelets ψλm
have an octave resolution Qm,

and satisfy the stability condition (15). Averaging Umx with
φ gives scattering coefficients of order m:

Smx(t, λ1, ..., λm) = | ||x ? ψλ1 | ? ...| ? ψλm | ? φ(t)

= Umx(., λ1, ..., λm) ? φ(t) .

Applying |Wm+1| on Umx computes both Smx and Um+1x:

|Wm+1|Umx = (Smx , Um+1x) . (22)

A scattering decomposition of maximal order l is thus defined
by initializing U0x = x, and recursively computing (22) for
0 ≤ m ≤ l. This scattering transform is illustrated in Figure 4.
The final scattering vector aggregates all scattering coefficients
for 0 ≤ m ≤ l:

Sx = (Smx)0≤m≤l. (23)

The scattering cascade of convolutions and non-linearities
can also be interpreted as a convolutional network [12],
where Umx is the set of coefficients of the mth internal
network layer. These networks have been shown to be highly
effective for audio classification [13]–[19]. However, unlike
standard convolutional networks, each such layer has an output
Smx = Umx ? φ, not just the last layer. In addition, all
filters are predefined wavelets and are not learned from training
data. A scattering transform, like MFCCs, provide a low-level
invariant representation of the signal, without learning. It relies
on prior information concerning the type of invariants that
need to be computed, in this case relatively to time-shifts
and time-warping deformations, or in Section VII relatively
to frequency transpositions. When no such information is
available, or if the sources of variability are much more
complex, then it is necessary to learn them from examples,
which is a task well suited for deep neural networks. In that
sense both approaches are complementary.

The wavelet octave resolutions are optimized at each layer
m to produce sparse wavelet coefficients at the next layer.
This better preserves the signal information as explained in
Section V. Sparsity seems also to play an important role
for classification [30], [31]. For audio signals x, choosing
Q1 = 8 wavelets per octave has been shown to provide sparse
representations of a mix of speech, music and environmental
signals [32]. It nearly corresponds to a mel-scale frequency
subdivision.

At the second order, choosing Q2 = 1 defines wavelets with
more narrow time support, which are better adapted to char-
acterize transients and attacks. Section VI shows that musical
signals including modulation structures such as tremolo may
however require wavelets having better frequency resolution,
and hence Q2 > 1. At higher orders m ≥ 3 we always set
Qm = 1, but we shall see that these coefficients can often be
neglected.

The scattering cascade has similarities with several neu-
rophysiological models of auditory processing, which incor-
porate cascades of constant-Q filter banks followed by non-
linearities [20], [21]. The first filter bank with Q1 = 8
models the cochlear filtering, whereas the second filter bank
corresponds to later processing in the models with filters that
have Q2 = 1 [20], [21].

IV. SCATTERING PROPERTIES

We briefly review important properties of scattering trans-
forms, including stability to time-warping deformation, energy
conservation, and describe a fast computational algorithm.

A. Time-Warping Stability

Stability to time-warping allows one to use linear operators
for calculating invariant descriptors to small time-warping
deformations. The Fourier transform is unstable to deformation
because dilating a sinusoidal wave yields a new sinusoidal
wave of different frequency which is orthogonal to the origi-
nal one. Section II explains that mel-frequency spectrograms
become stable to time-warping deformation with a frequency
averaging. One can prove that a scattering representation
Φ(x) = Sx satisfies the Lipschitz continuity condition (3)
because wavelets are stable to time-warping [11]. Let us write
ψλ,τ (t) = ψλ(t−τ(t)). One can verify that there exists C > 0
such that ‖ψλ−ψλ,τ‖ ≤ C‖ψλ‖ supt |τ ′(t)|, for all λ and all
τ(t). This property is at the core of the scattering stability to
time-warping deformations.

The squared Euclidean norm of a scattering vector Sx is
the sum of its coefficients squared at all orders:

‖Sx‖2 =

l∑
m=0

‖Smx‖2

=

l∑
m=0

∑
λ1,...,λm

∫
|Smx(t, λ1, . . . , λm)|2 dt .

We consider deformations xτ (t) = x(t−τ(t)) with |τ ′(t)| < 1
and supt |τ(t)| � T , which means that the maximum dis-
placement is small relatively to the support of φ. One can
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xS0x = x ? φ

|x ? ψλ1
|

Sx(t, λ1) = |x ? ψλ1 | ? φ

||x ? ψλ1
| ? ψλ2

|

Sx(t, λ1, λ2) = ||x ? ψλ1
| ? ψλ2

| ? φ

|||x ? ψλ1 | ? ψλ2 | ? ψλ3 |

Fig. 4. A scattering transform iterates on wavelet modulus operators |Wm| to compute cascades of m wavelet convolutions and moduli stored in Umx, and
to output averaged scattering coefficients Smx.

prove that there exists a constant C such that for all x and
any such τ [11]:

‖Sxτ − Sx‖ ≤ C sup
t
|τ ′(t)| ‖x‖ , (24)

up to second-order terms. As explained for mel-spectral de-
compositions, the constant C is inversely proportional to the
octave bandwidth of wavelet filters. Over multiple scattering
layers, we get C = C0(maxmQm). For Morlet wavelets,
numerical experiments on many examples give C0 ≈ 2.

B. Contraction and Energy Conservation

We show that a scattering transform is contractive and can
preserve energy. We denote ‖Ax‖2 the squared Euclidean
norm of a vector of coefficients Ax, such as Wmx, Smx, Umx
or Sx. Since Sx is computed by cascading wavelet modulus
operators |Wm|, which are all contractive, it results that S is
also contractive:

‖Sx− Sx′‖ ≤ ‖x− x′‖ . (25)

A scattering transform is therefore stable to additive noise.
If each wavelet transform is a tight frame, that is α = 0

in (15), each |Wm| preserves the signal norm. Applying this
property to |Wm+1|Umx = (Smx , Um+1x) yields

‖Umx‖2 = ‖Smx‖2 + ‖Um+1x‖2 . (26)

Summing these equations 0 ≤ m ≤ l proves that

‖x‖2 = ‖Sx‖2 + ‖Ul+1x‖2 . (27)

Under appropriate assumptions on the mother wavelet ψ, one
can prove that ‖Ul+1x‖ goes to zero as l increases, which
implies that ‖Sx‖ = ‖x‖ for l =∞ [11]. This property comes
from the fact that the modulus of analytic wavelet coefficients
computes a smooth envelope, and hence pushes energy towards
lower frequencies. By iterating on wavelet modulus operators,
the scattering transform progressively propagates all the en-
ergy of Umx towards lower frequencies, which is captured by
the low-pass filter of scattering coefficients Smx = Umx ? φ.

One can verify numerically that ‖Ul+1x‖ converges to zero
exponentially when l goes to infinity and hence that ‖Sx‖

T m = 0 m = 1 m = 2 m = 3
23 ms 0.0% 94.5% 4.8% 0.2%
93 ms 0.0% 68.0% 29.0% 1.9%
370 ms 0.0% 34.9% 53.3% 11.6%
1.5 s 0.0% 27.7% 56.1% 24.7%

TABLE I
AVERAGED VALUES ‖Smx‖2/‖x‖2 COMPUTED FOR SIGNALS x IN THE

TIMIT SPEECH DATASET [33], AS A FUNCTION OF ORDER m AND
AVERAGING SCALE T . FOR m = 1, Smx IS CALCULATED BY MORLET

WAVELETS WITH Q1 = 8, AND FOR m = 2, 3 BY CUBIC SPLINE WAVELETS
WITH Q2 = Q3 = 1.

converges exponentially to ‖x‖. Table I gives the fraction
of energy ‖Smx‖2/‖x‖2 absorbed by each scattering order.
Since audio signals have little energy at low frequencies,
S0x is very small and most of the energy is absorbed by
S1x for T = 23 ms. This explains why mel-frequency
spectrograms are typically sufficient at these small time scales.
However, as T increases, a progressively larger proportion
of energy is absorbed by higher-order scattering coefficients.
For T = 1.5 s, about 56% of the signal energy is captured
in S2x. Section VI shows that at this time scale, important
amplitude modulation information is carried by these second-
order coefficients. For T = 1.5 s, S3x carries 25% of the signal
energy. It increases as T increases, but for audio classification
applications studied in this paper, T remains below 1.5 s, so
these third-order coefficients are less important than first- and
second-order coefficients. We therefore concentrate on second-
order scattering representations:

Sx =
(
S0x(t) , S1x(t, λ1) , S2x(t, λ1, λ2)

)
t,λ1,λ2

. (28)

C. Fast Scattering Computation

Subsampling scattering vectors provide a reduced repre-
sentation, which leads to a faster implementation. Since the
averaging window φ has a duration of the order of T , we
compute scattering vectors with half-overlapping windows at
t = kT/2 with k ∈ Z.
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We suppose that x(t) has N samples over each frame of
duration T , and is thus sampled at a rate N/T . For each
time frame t = kT/2, the number of first-order wavelets
ψλ1

is about Q1 log2N so there are about Q1 log2N first-
order coefficients S1x(t, λ1). We now show that the number of
non-negligible second-order coefficients S2x(t, λ1, λ2) which
needs to be computed is about Q1Q2(log2N)2/2.

The wavelet transform envelope |x ? ψλ1
(t)| is a demodu-

lated signal having approximately the same frequency band-
width as ψ̂λ1 . Its Fourier transform is mostly supported in
the interval [−λ1Q

−1
1 , λ1Q

−1
1 ] for λ1 ≥ 2πQ1/T , and in

[−2πT−1, 2πT−1] for λ1 ≤ 2πQ1/T . If the support of ψ̂λ2

centered at λ2 does not intersect the frequency support of
|x ? ψλ1

|, then
||x ? ψλ1

| ? ψλ2
| ≈ 0 .

One can verify that non-negligible second-order coefficients
satisfy

λ2 ≤ max(λ1Q
−1
1 , 2πT−1) . (29)

For a fixed t, a direct calculation then shows that there are
of the order of Q1Q2(log2N)2/2 second-order scattering
coefficients. Similar reasoning extends this result to show that
there are about Q1 . . . Qm(log2N)m/m! non-negligible mth-
order scattering coefficients.

To compute S1x and S2x we first calculate U1x and U2x
and average them with φ. Over a time frame of duration T ,
to reduce computations while avoiding aliasing, |x?ψλ1(t)| is
subsampled at a rate which is twice its bandwidth. The family
of filters {ψ̂λ1

}λ1∈Λ1
covers the whole frequency domain and

Λ1 is chosen so that filter supports barely overlap. Over a time
frame where x has N samples, with the above subsampling
we compute approximately 2N first-order wavelet coefficients
{|x?ψλ1(t)|}t,λ1∈Λ1 . Similarly, ||x?ψλ1 |?ψλ2(t)| is subsam-
pled in time at a rate twice its bandwidth. Over the same time
frame, the total number of second-order wavelet coefficients
for all t, λ1 and λ2 stays below 2N . With a fast Fourier trans-
form (FFT), these first- and second-order wavelet modulus
coefficients are computed using O(N logN) operations. The
resulting scattering coefficients S1x(t, λ1) and S2x(t, λ1, λ2)
are also calculated with O(N logN) operations, with FFT
convolutions with φ.

V. INVERSE SCATTERING

To better understand the information carried by scattering
coefficients, this section studies a numerical inversion of
the transform. Since a scattering transform is computed by
cascading wavelet modulus operators |Wm|, the inversion
approximately inverts each |Wm| for m < l. At the maximum
depth m = l, the algorithm begins with a deconvolution,
estimating Ulx(t) at all t on the sampling grid of x(t), from
Slx(kT/2) = Ulx ? φ(kT/2).

Because of the subsampling, one cannot compute Ulx from
Slx exactly. This deconvolution is thus the main source of
error. To take advantage of the fact that Ulx ≥ 0, the de-
convolution is computed with the Richardson-Lucy algorithm
[34], which preserves positivity if φ ≥ 0. We initialize y0(t)
by interpolating Slx(kT/2) linearly on the sampling grid of x,

which introduces error because of aliasing. The Richardson-
Lucy deconvolution iteratively computes

yn+1(t) = yn(t) ·
[(

y0

yn ? φ

)
? φ̃(t)

]
, (30)

with φ̃(t) = φ(−t). Since it converges to the pseudo-inverse
of the convolution operator applied to y0, it blows up when n
increases because of the deconvolution instability. Deconvolu-
tion algorithms thus stop the iterations after a fixed number of
iterations, which is set to 30 in this application. The result is
then our estimate of Ulx.

Once an estimation of Ulx is calculated by deconvolution,
we compute an estimate x̃ of x by inverting each |Wm| for
l ≥ m > 0. The wavelet transform of a signal x of size
N is a vector Wx = (x ? φ, x ? ψλ)λ∈Λ of about QN log2N
coefficients, where Q is the number of wavelets ψλ per octave.
These coefficients live in a subspace V of dimension N . To
recover Wx from |W |x = (x?φ, |x?ψλ|)λ∈Λ, we search for a
vector in V whose modulus values are specified by |W |x. This
a non-convex optimization problem. Recent convex relaxation
approaches [35], [36] are able to compute exact solutions, but
they require too much computation and memory for audio
applications. Since the main source of errors is introduced
at the deconvolution stage, one can use an approximate but
fast inversion algorithm. The inversion of |W | is typically
more stable when |W |x is sparse because there is no phase to
recover if |x ? ψλ| = 0. This motivates using wavelets ψλm

which provide sparse representations at each order m.
Griffin & Lim [37] showed that alternating projections

recovers good quality audio signals from spectrogram values,
but with large mean-square errors because the algorithm is
trapped in local minima. The same algorithm inverts |W | by
alternating projections on the wavelet transform space V and
on the modulus constraints. An estimation x̃ of x is calculated
from |W |x, by initializing x̃0 to be a Gaussian white noise. For
any n ≥ 0, x̃n+1 is computed from x̃n by first adjusting the
modulus of its wavelet coefficients, with a non-linear projector

zλ(t) = |x ? ψλ(t)| x̃n ? ψλ(t)

|x̃n ? ψλ(t)|
. (31)

Applying the wavelet transform pseudo-inverse (17) yields

x̃n+1 = x ? φ ? φ(t) +
∑
λ∈Λ

Real
(
zλ ? ψλ(t)

)
. (32)

The dual filters are defined in (18). One can verify that Wx̃n+1

is the orthogonal projection of {x?φ, zλ}λ∈Λ in V. Numerical
experiments are performed with n = 30 iterations, and we set
x̃ = x̃n.

When l = 1, an approximation x̃ of x is computed from
from (S0x, S1x) by first estimating U1x from S1x = U1x ? φ
with the Richardson-Lucy deconvolution algorithm. We then
compute x̃ from S0x and this estimation of U1x by approx-
imately inverting |W1| with the Griffin & Lim algorithm.
When T is above 100 ms, the deconvolution loses too much
information, and audio reconstructions obtained from first-
order coefficients are crude. Figure 5(a) shows the scalograms
log |x ? ψλ1

(t)| of a speech and a music signal, and the
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t t t

log λ1 log λ1 log λ1

t t t

log λ1 log λ1 log λ1

(a) (b) (c)

Fig. 5. (a): Scalogram log |x?ψλ1
(t)| for recordings of speech (top) and a

cello (bottom). (b,c): Scalograms log |x̃ ? ψλ1
(t)| of reconstructions x̃ from

first-order scattering coefficients (l = 1) in (b), and from first- and second-
order coefficients (l = 2) in (c). Scattering coefficients were computed with
T = 190 ms for the speech signal and T = 370 ms for the cello signal.

scalograms log |x̃ ? ψλ1
(t)| of their approximations x̃ from

first-order scattering coefficients.
When l = 2, the approximation x̃ is calculated from

(S0x, S1x, S2x) by applying the deconvolution algorithm to
S2x = U2x ? φ to estimate U2x, and then by successively
inverting |W2| and |W1| with the Griffin & Lim algorithm.
Figure 5(c) shows log |x̃ ? ψλ1

(t)| for the same speech and
music signals. Amplitude modulations, vibratos and attacks are
restored with greater precision by incorporating second-order
coefficients, yielding much better audio quality compared
to first-order reconstructions. However, even with l = 2,
reconstructions become crude for T ≥ 500 ms. Indeed, the
number of second-order scattering coefficients Q1Q2 log2

2N/2
is too small relatively to the number N audio samples in
each audio frame, and they do not capture enough infor-
mation. Examples of audio reconstructions are available at
http://www.di.ens.fr/data/scattering/audio/.

VI. NORMALIZED SCATTERING SPECTRUM

To reduce redundancy and increase invariance, Section VI-A
normalizes scattering coefficients. Section VI-B shows that
normalized second-order coefficients provide high-resolution
spectral information through interferences. Section VI-C also
proves that they characterize amplitude modulations of audio
signals.

A. Normalized Scattering Transform
Scattering coefficients are renormalized to increase their

invariance. It also decorrelates these coefficients at different
orders. First-order scattering coefficients are renormalized so
that they become insensitive to multiplicative constants:

S̃1x(t, λ1) =
S1x(t, λ1)

|x| ? φ(t) + ε
. (33)

The constant ε is a silence detection threshold so that S̃1x = 0
if x = 0, which may be set to 0.

The lowpass filter φ(t) can be wider than the one used
in the scattering transform. Specifically, if we want to retain
local amplitude information of S1x below a certain scale, we
can normalize by the average of |x| over this scale, creating
invariance only to amplitude changes over larger intervals.

At any order m ≥ 2, scattering coefficients are renormalized
by coefficients of the previous order:

S̃mx(t, λ1, ..., λm−1, λm) =
Smx(t, λ1, ..., λm−1, λm)

Sm−1x(t, λ1, ..., λm−1) + ε
.

A normalized scattering representation is defined by S̃x =
(S̃mx)1≤m≤l. We shall mostly limit ourselves to l = 2.

For m = 2,

S̃2x(t, λ1, λ2) =
S2x(t, λ1, λ2)

S1x(t, λ1) + ε
. (34)

Let us show that these coefficients are nearly invariant to a
filtering by h(t) if ĥ(ω) is approximately constant on the
support of ψ̂λ1

. This condition is satisfied if

λ1

Q1
�
(∫
|t| |h(t)| dt

)−1

. (35)

It implies that h?ψλ1(t) ≈ ĥ(λ1)ψλ1(t), and hence |(x ?h) ?
ψλ1(t)| ≈ |ĥ(λ1)| |x ? ψλ1(t)|. It results that

S1(x ? h)(t, λ1) ≈ |ĥ(λ1)|S1x(t, λ1). (36)

Similarly, S2(x?h)(t, λ1, λ2) ≈ |ĥ(λ1)|S2x(t, λ1, λ2), so after
normalization

S̃2(x ? h)(t, λ1, λ2) ≈ S̃2x(t, λ1, λ2) . (37)

Normalized second-order coefficients are thus invariant to
filtering by h(t). One can verify that this remains valid at
any order m ≥ 2.

B. Frequency Interval Measurement from Interference

A wavelet transform has a worse frequency resolution than
a windowed Fourier transform at high frequencies. However,
we show that frequency intervals between harmonics are
accurately measured by second-order scattering coefficients.

Suppose x has two frequency components in the support of
ψ̂λ1

. We then have

x ? ψλ1
(t) = α1 e

iξ1t + α2 e
iξ2t,

whose modulus squared equals

|x ? ψλ1
(t)|2 = |α1|2 + |α2|2 + 2|α1α2| cos(ξ1 − ξ2)t.

We approximate |x ? ψλ1
(t)| with a first-order expansion of

the square root, which yields

|x?ψλ1
(t)| ≈

√
|α1|2 + |α2|2+

|α1α2|√
|α1|2 + |α2|2

cos(ξ1−ξ2)t.

If φ has a support of size T � |ξ1− ξ2|−1, then S1x(t, λ1) ≈√
|α1|2 + |α2|2, so S̃2x(t, λ1, λ2) = S2x(t,λ1,λ2)

S1x(t,λ1)+ε satisfies

S̃2x(t, λ1, λ2) ≈ |ψ̂λ2
(ξ2 − ξ1)| |α1 α2|

|α1|2 + |α2|2
. (38)

http://www.di.ens.fr/data/scattering/audio/
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These normalized second-order coefficients are thus non-
negligible when λ2 is of the order of the frequency interval
|ξ2 − ξ1|. This shows that although the first wavelet ψ̂λ1 does
not have enough resolution to discriminate the frequencies
ξ1 and ξ2, second-order coefficients detect their presence and
accurately measure the interval |ξ2 − ξ1|. As in audio percep-
tion, scattering coefficients can accurately measure frequency
intervals but not frequency location. The normalized second-
order scattering coefficients (38) are large only if α1 and α2

have the same order of magnitude. This also conforms to
auditory perception where a frequency interval is perceived
only when the two frequency components have a comparable
amplitude.

If x ? ψλ1(t) =
∑
n αn e

iξnt has more frequency compo-
nents, we verify similarly that S̃2x(t, λ1, λ2) is non-negligible
when λ2 is of the order of |ξn − ξn′ | for some n 6= n′. These
coefficients can thus measure multiple frequency intervals
within the frequency band covered by ψ̂λ1 . If the frequency
resolution of ψ̂λ2 is not sufficient to discriminate between two
frequency intervals |ξ1 − ξ2| and |ξ3 − ξ4|, these intervals
will interfere and create high amplitude third-order scatter-
ing coefficients. A similar calculation shows that third-order
scattering coefficients S̃3x(t, λ1, λ2, λ3) detect the presence
of two such intervals within the support of ψ̂λ2

when λ3 is
close to ||ξ1 − ξ2| − |ξ3 − ξ4||. They thus measure “intervals
of intervals.”

Figure 6(a) shows the scalogram log |x ? ψλ1
| of a signal

x containing a chord with two notes, whose fundamental
frequencies are ξ1 = 600 Hz and ξ2 = 675 Hz, followed
by an arpeggio of the same two notes. First-order coefficients
log S̃1x(t, λ1) in Figure 6(b) are very similar for the chord
and the arpeggio because the time averaging loses time local-
ization. However they are easily differentiated in Figure 6(c),
which displays log S̃2x(t, λ1, λ2) for λ1 ≈ ξ1 = 600 Hz, as a
function of λ2. The chord creates large amplitude coefficients
for λ2 = |ξ2− ξ1| = 75 Hz, which disappear for the arpeggio
because these two frequencies are not present simultaneously.
Second-order coefficients have also a large amplitude at low
frequencies λ2. These arise from variation of the note en-
velopes in the chord and in the arpeggio, as explained in the
next section.

C. Amplitude Modulation Spectrum

Audio signals are usually modulated in amplitude by an
envelope, whose variations may correspond to an attack or a
tremolo. For voiced and unvoiced sounds, we show that am-
plitude modulations are characterized by normalized second-
order scattering coefficients.

Let x(t) be a sound resulting from an excitation e(t) filtered
by a resonance cavity of impulse response h(t), which is
modulated in amplitude by a(t) ≥ 0 to give

x(t) = a(t) (e ? h)(t) . (39)

We shall start by taking e to be a pulse train of pitch ξ
given by

e(t) =
2π

ξ

∑
n

δ

(
t− 2nπ

ξ

)
=
∑
k

eikξt , (40)

t

t

t

log λ2

log λ1

log λ1

(c)

(b)

(a)

-ξ1

-|ξ2 − ξ1|

Fig. 6. (a): Scalogram log |x ? ψλ1
(t)| for a signal with two notes, of

fundamental frequencies ξ1 = 600 Hz and ξ2 = 675 Hz, first played
as a chord and then as an arpeggio. (b): First-order normalized scattering
coefficients log S̃1x(t, λ1) for T = 512 ms. (c): Second-order normalized
scattering coefficients log S̃2(t, ξ1, λ2) with λ1 = ξ1 as a function of t and
λ2. The chord interferences produce large coefficients for λ2 = |ξ2 − ξ1|.

representing a voiced sound. The impulse response h(t) is typ-
ically very short compared to the minimum variation interval
(supt |a′(t)|)−1 of the modulation term and is smaller than
2π/ξ.

We consider ψλ1
whose time support is short relatively to

(supt |a′(t)|)−1 and to the averaging interval T , and whose
frequency bandwidth is smaller than the pitch ξ and to the
minimum variation interval of ĥ. These conditions are satisfied
if (∫

|t| |h(t)| dt
)−1

� λ1

Q1
� sup

t
|a′(t)| , (41)

After normalization S̃1x(t, λ1) = S1x(t,λ1)
|x|?φ(t)+ε , Appendix A

shows that

S̃1x(t, λ1) ≈ |ψ̂λ1
(kξ)| |ĥ(λ1)|

‖h‖1
(42)

where ‖h‖1(t) =
∫
|h(t)|dt and k is an integer such that |kξ−

λ1| < ξ/2. First-order coefficients are thus proportional to the
spectral envelope |ĥ(λ1)| if λ1 ≈ kξ is close to a harmonic
frequency.

Similarly, for S̃2x(t, λ1, λ2) = S2x(t,λ1,λ2)
S1x(t,λ1)+ε , Appendix A

shows that

S̃2x(t, λ1, λ2) ≈ |a ? ψλ2 | ? φ(t)

a ? φ(t)
. (43)

Second-order coefficients thus do not depend upon h and
ξ but only on the amplitude modulation a(t) provided that
S1x(t, λ1) is non-negligible.

Figure 7(a) displays log |x?ψλ1
(t)| for a signal having three

voiced and three unvoiced sounds. The first three are produced
by a pulse train excitation e(t) with a pitch of ξ = 600 Hz.
Figure 7(b) shows that log S̃1x(t, λ1) has a harmonic structure,
with an amplitude depending on log |ĥ(λ1)|. The averaging
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t

t

log λ2

log λ1

log λ1

(c)

(b)

(a)

-4ξ

-η

Fig. 7. (a): Scalogram log |x?ψλ1
(t)| for a signal with three voiced sounds

of same pitch ξ = 600 Hz and same h(t) but different amplitude modulations
a(t): first a smooth attack, then a sharp attack, then a tremolo of frequency η.
It is followed by three unvoiced sounds created with the same h(t) and same
amplitude modulations a(t) as the first three voiced sounds. (b): First-order
scattering log S̃1x(t, λ1) with T = 128 ms. (c): Second-order scattering
log S̃2x(t, λ1, λ2) displayed for λ1 = 4ξ, as a function of t and λ2.

by φ and the normalization remove the effect of the different
modulation amplitudes a(t) of these three voiced sounds.

Figure 7(c) displays log S̃2(t, λ1, λ2) for the fourth partial
λ1 = 4ξ, as a function of λ2. The modulation envelope a(t)
of the first sound has a smooth attack and thus produces
large coefficients only at low frequencies λ2. The envelope
a(t) of the second sound has a much sharper attack and thus
produces large amplitude coefficients for higher frequencies
λ2. The third sound is modulated by a tremolo, which is a
periodic oscillation a(t) = 1 + ε cos (ηt). According to (43),
this tremolo creates large amplitude coefficients when λ2 = η,
as shown in Figure 7(c).

Unvoiced sounds are modeled by excitations e(t) which
are realizations of Gaussian white noise. The modulation
amplitude is typically non-sparse, which means the square of
the average of a(t) on intervals of size T is of the order of
the average of a2(t). Appendix A shows that

S̃1x(t, λ1) ≈ π‖ψ‖
23/2

λ1
1/2 |ĥ(λ1)|

‖h‖
. (44)

Similarly to (42), S̃1x(t, λ1) is proportional to |ĥ(λ1)| but
does not have a harmonic structure. This is shown in Figure
7(b) by the last three unvoiced sounds. The fourth, fifth, and
sixth sounds have the same filter h(t) and envelope a(t) as
the first, second, and third sounds, respectively, but with a
Gaussian white noise excitation e(t).

Similarly to (43), Appendix A also shows that

S̃2x(t, λ1, λ2) =
|a ? ψλ2

| ? φ(t)

a ? φ(t)
+ ε̃(t)

where ε̃(t) is small relatively to the first amplitude modulation
term if (4/π− 1)1/2(λ2Q1)1/2(λ1Q2)−1/2 is small relatively
to this modulation term. For voiced and unvoiced sounds,
S̃2x(t, λ1, λ2) mainly depends upon the amplitude modulation

a(t). This is illustrated by Figure 7(c), which shows that the
fourth, fifth, and sixth sounds have second-order coefficients
similar to those of the first, second, and third sounds, re-
spectively. The stochastic error term ε̃ produced by unvoiced
sounds appears as random low-amplitude fluctuations in Figure
7(c).

VII. FREQUENCY TRANSPOSITION INVARIANCE

Audio signals within the same class may be transposed
in frequency. Frequency transposition occurs when a single
word is pronounced by different speakers. It is a complex
phenomenon which affects the pitch and the spectral envelope.
The envelope is translated on a logarithmic frequency scale but
also deformed. We thus need a representation which is invari-
ant to frequency translation on a logarithmic scale, and which
also is stable to frequency deformations. After reviewing the
mel-frequency cepstral coefficient (MFCC) approach through
the discrete cosine transform (DCT), this section defines such
a representation with a scattering transform computed along
log-frequency.

MFCCs are computed from the log-mel-frequency spec-
trogram logMx(t, λ) by calculating a DCT along the mel-
frequency index γ for a fixed t [38]. This γ is linear in λ
for low frequencies, but is proportional to log2 λ for higher
frequencies. For simplicity, we write γ = log2 λ and λ = 2γ ,
although this should be modified at low frequencies.

The frequency index of the DCT is called the “quefrency”
parameter. In MFCCs, high-quefrency coefficients are often set
to zero, which is equivalent to averaging logMx(t, 2γ) along
γ and provides some frequency transposition invariance. The
more high-quefrency coefficients are set to zero, the bigger
the averaging and hence the more transposition invariance
obtained, but at the expense of losing potentially important
information.

The loss of information due to averaging along γ can be
recovered by computing wavelet coefficients along γ. We
thus replace the DCT by a scattering transform along γ. A
frequency scattering transform is calculated by iteratively ap-
plying wavelet transforms and modulus operators. An analytic
wavelet transform of a log-frequency dependent signal z(γ)
is defined as in (13), but with convolutions along the log-
frequency variable γ instead of time:

W frz =
(
z ? φfr(γ) , z ? ψq(γ)

)
γ,q

. (45)

Each wavelet ψq is a band-pass filter whose Fourier transform
ψ̂q is centered at “quefrency” q and φfr is an averaging filter.
These wavelets satisfy the condition (15), so W fr is contractive
and invertible.

Although the scattering transform along γ can be com-
puted at any order, we restrict ourself to zero and first-order
scattering coefficients, because it seems to be sufficient for
classification. A first-order scattering transform of z(γ) is
calculated from

U frz =
(
z(γ) , |z ? ψq1(γ)|

)
, (46)

by averaging these coefficients along γ with φfr:

Sfrz =
(
z ? φfr(γ) , |z ? ψq1 | ? φfr(γ)

)
. (47)
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These coefficients are locally invariant to log-frequency shifts,
over a domain proportional to the support of the averaging
filter φfr. This frequency scattering is formally identical to
a time scattering transform. It has the same properties if we
replace the time t by the log-frequency variable γ. Numerical
experiments are implemented using Morlet wavelets ψq1 with
Q1 = 1.

Similarly to MFCCs, we apply a logarithm to normal-
ized scattering coefficients so that multiplicative components
become additive and can be separated by linear operators.
This was shown to improve classification performance. The
logarithm of a second-order normalized time scattering, at a
frequency λ1 = 2γ and a time t is

log S̃x(t, γ) =

(
log S̃1x(t, 2γ)

log S̃2x(t, 2γ , λ2)

)
λ2

(48)

This is a vector of signals z(γ), where z depends on t and λ2.
Let us transform each z(γ) by the frequency scattering opera-
tors U fr or Sfr, defined in (46) and (47). Let U fr log S̃x(t, γ)
and Sfr log S̃x(t, γ) stand for the concatenation of these trans-
formed signals for all t and λ2. The representation Sfr log S̃x
is calculated by cascading a scattering in time and a scattering
in log-frequency. It is thus locally translation invariant in
time and in log-frequency, and stable to time and frequency
deformations. The interval of time-shift invariance is defined
by the size of the time averaging window φ, whereas its
frequency-transposition invariance depends upon the width of
the log-frequency averaging window φfr.

Frequency transposition invariance is useful for certain
tasks, such as speaker-independent speech recognition or
transposition-independent melody recognition, but it removes
information important to other tasks, such as speaker identi-
fication. The frequency transposition invariance, implemented
by the frequency averaging filter φfr, should thus be adapted
to the classification task. Next section explains that this can
be done by replacing Sfr log S̃x(t, γ) by U fr log S̃x(t, γ) and
optimizing the linear averaging at the supervised classification
stage.

VIII. CLASSIFICATION

This section compares the classification performance of
support vector machine classifiers applied to scattering repre-
sentations with standard low-level features such as ∆-MFCCs
or more sophisticated state-of-the-art representations. Section
VIII-A explains how to automatically adapt invariance param-
eters, while Sections VIII-B and VIII-C present results for
musical genre classification and phone classification, respec-
tively.

A. Adapting Frequency Transposition Invariance

The amount of frequency-transposition invariance depends
on the classification problem, and may vary for each signal
class. This adaptation is implemented by a supervised classi-
fier, applied to the time and frequency scattering transform.

Figure 8 illustrates the computation of a time and frequency
scattering representation. The normalized scattering transform

S̃ U frx log SVM

Fig. 8. A time and frequency scattering representation is computed by
applying a normalized temporal scattering S̃ on the input signal x(t), a
logarithm, and a scattering along log-frequency without averaging.

S̃x of an input signal x is computed along time, over half-
overlapping windows of size T . The log-scattering vector for
each time window is transformed along frequencies by the
wavelet modulus operator U fr, as explained in Section VII.
Since we do not know in advance how much transposition
invariance is needed for a particular classification task, the final
frequency averaging is adaptively computed by the supervised
classifier, which takes as input the vector of coefficients
{U fr log S̃x(t, γ)}γ , for each time frame indexed by t.

The supervised classification is implemented by a support
vector machine (SVM). A binary SVM classifies a feature
vector by calculating its position relative to a hyperplane,
which is optimized to maximize class separation given a set
of training samples. It thus computes the sign of an optimized
linear combination of the feature vector coefficients. With a
Gaussian kernel of variance σ2, the SVM computes different
hyperplanes in different balls of radius σ in the feature space.
The coefficients of the linear combination thus vary smoothly
with the feature vector values. Applied to {U fr log S̃x(t, γ)}γ ,
the SVM optimizes the linear combination of coefficients
along γ, and can thus adjust the amount of linear averaging
to create frequency-transposition invariant descriptors which
maximize class separation. A multi-class SVM is computed
from binary classifiers using a one-versus-one approach. All
numerical experiments use the LIBSVM library [39].

The wavelet octave resolution Q1 can also be adjusted at
the supervised classification stage, by computing the time
scattering for several values of Q1 and concatenating all
coefficients in a single feature vector. A filter bank with
Q1 = 8 has enough frequency resolution to separate harmonic
structures, whereas wavelets with Q1 = 1 have a smaller
time support and can thus better localize transient in time.
The linear combination optimized by the SVM is a feature
selection algorithm, which can select the best coefficients to
discriminate any two classes. In the experiments described
below, adding more values of Q1 between 1 and 8 provides
marginal improvements.

B. Musical Genre Classification

Scattering feature vectors are first applied to musical genre
classification problem on the GTZAN dataset [40]. The dataset
consists of 1000 thirty-second clips, divided into 10 genres of
100 clips each. Given a clip, the goal is to find its genre.

Preliminary experiments have demonstrated the efficiency
of the scattering transform for music classification [41] and
for environmental sounds [42]. These results are improved by
letting the supervised classifier adjust the transform parameters
to the signal classes. A set of feature vectors is computed over
half-overlapping frames of duration T . Each frame of a clip
is classified separately by a Gaussian kernel SVM, and the
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Representations GTZAN TIMIT
∆-MFCC (T = 23 ms) 20.2 ± 5.4 18.5
∆-MFCC (T = 740 ms) 18.0 ± 4.2 60.5
State of the art (excluding scattering) 9.4 ± 3.1 [8] 16.7 [43]

T = 740 ms T = 32 ms
Time Scat., l = 1 19.1 ± 4.5 19.0
Time Scat., l = 2 10.7 ± 3.1 17.3
Time Scat., l = 3 10.6 ± 2.5 18.1
Time & Freq. Scat., l = 2 9.3 ± 2.4 16.6
Adapt Q1, Time & Freq. Scat., l = 2 8.6 ± 2.2 15.9

TABLE II
ERROR RATES (IN PERCENT) FOR MUSICAL GENRE CLASSIFICATION ON

GTZAN AND FOR PHONE CLASSIFICATION ON THE TIMIT DATABASE FOR
DIFFERENT FEATURES. TIME SCATTERING TRANSFORMS ARE COMPUTED

WITH T = 740 ms FOR GTZAN AND WITH T = 32 ms FOR TIMIT.

clip is assigned to the class which is most often selected by
its frames. To reduce the SVM training time, feature vectors
were only computed every 370 ms for the training set. The
SVM slack parameter and the Gaussian kernel variance are
determined through cross-validation on the training data. Table
II summarizes results with one run of ten-fold cross-validation.
It gives the average error and its standard deviation.

Scattering classification results are first compared with
results obtained with MFCC feature vectors. A ∆-MFCC
vector represents an audio frame of duration T at time t by
three MFCC vectors centered at t − T/2, t and t + T/2.
When computed for T = 23 ms, the ∆-MFCC error is
20.2%, which is reduced to 18.0% by increasing T to 740 ms.
Further increasing T does not reduce the error. State-of-
the-art algorithms provide refined feature vectors to improve
classification. Combining MFCCs with stabilized modulation
spectra and performing linear discriminant analysis, [8] obtains
an error of 9.4%, the best non-scattering result so far. A deep
belief network trained on spectrograms [18], achieves 15.7%
error with an SVM classifier. A sparse representation on a
constant-Q transform [30], gives 16.6% error with an SVM.

Table II gives classification errors for different scattering
feature vectors. For l = 1, they are composed of first-
order time scattering coefficients computed with Q1 = 8 and
T = 740 ms. These vectors are similar to MFCCs as shown
by (11). As a result, the classification error of 19.1% is close
to that of MFCCs for the same T . For l = 2, we add second-
order coefficients computed with Q2 = 2. It reduces the error
to 10.7%. This 40% error reduction shows the importance of
second-order coefficients for relatively large T . Third-order
coefficients are also computed with Q3 = 1. For l = 3,
including these coefficients reduces the error marginally to
10.6%, at a significant computational and memory cost. We
therefore restrict ourselves to l = 2.

Musical genre recognition is a task which is partly invariant
to frequency transposition. Incorporating a scattering along the
log-frequency variable, for frequency transposition invariance,
reduces the error by about 15%. These errors are obtained with
a first-order scattering along log-frequency. Adding second-
order coefficients only improves results marginally.

Providing adaptivity for the wavelet octave bandwidth Q1

by computing scattering coefficients for both Q1 = 1 and
Q1 = 8 further reduces the error by almost 10%. Indeed, music

signals include both sharp transients and narrow-bandwidth
frequency components. We thus have an error rate of 8.6%,
which compares favorably to the non-scattering state-of-the-art
of 9.4% error [8].

Replacing the SVM with more sophisticated classifiers can
improve results. A sparse representation classifier applied to
second-order time scattering coefficients reduces the error rate
from 10.7% to 8.8%, as shown in [44]. Let us mention that
the GTZAN database suffers from some significant statistical
issues [45], which probably does not make it appropriate to
evaluate further algorithmic refinements.

C. Phone Segment Classification

The same scattering representation is tested for phone
segment classification with the TIMIT corpus [33]. The dataset
contains 6300 phrases, each annotated with the identities,
locations, and durations of its constituent phones. This task is
simpler than continuous speech recognition, but provides an
evaluation of scattering feature vectors for representing phone
segments. Given the location and duration of a phone segment,
the goal is to determine its class according to the standard
protocol [46], [47]. The 61 phone classes (excluding the glottal
stop /q/) are collapsed into 48 classes, which are used to train
and test models. To calculate the error rate, these classes are
then mapped into 39 clusters. Training is achieved on the
full 3696-phrase training set, excluding “SA” sentences. The
Gaussian kernel SVM parameters are optimized by validation
on the standard 400-phrase development set [48]. The error is
then calculated on the core 192-phrase test set.

An audio segment of length 192 ms centered on a phone
can be represented as an array of MFCC feature vectors with
half-overlapping time windows of duration T . This array, with
the logarithm of the phone duration added, is fed to the SVM.
In many cases, hidden Markov models or fixed time dilations
are applied to match different MFCC sequences, to account
for the time-warping of the phone segment [46], [47]. Table II
shows that T = 23 ms yields a 18.5% error which is much less
than the 60.5% error for T = 740 ms. Indeed, many phones
have a short duration with highly transient structures and are
not well-represented by wide time windows.

A lower error of 17.1% is obtained by replacing the
SVM with a sparse representation classifier on MFCC-like
spectral features [49]. Combining MFCCs of different window
sizes and using a committee-based hierarchical discriminative
classifier, [43] achieves an error of 16.7%, the best so far.
Finally, convolutional deep-belief networks cascades convo-
lutions, similarly to scattering, on a spectrogram using filters
learned from the training data. These, combined with MFCCs,
yield an error of 19.7% [13].

Rows 4 through 6 of Table II gives the classification results
obtained by replacing MFCC vectors with a time scattering
transform computed using first-order wavelets with Q1 = 8.
In order to retain local amplitude structure while creating
invariance to loudness changes, first-order coefficients are
renormalized in (33) using |x| averaged over a window the
size of the whole phone segment. Second- and third-order
scattering coefficients are calculated with Q2 = Q3 = 1. The
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best results are obtained with T = 32 ms. For l = 1, we only
keep first-order scattering coefficients and get a 19.0% error,
similar to that of MFCCs. The error is reduced by about 10%
with l = 2, a smaller improvement than for GTZAN because
scattering invariants are computed on smaller time interval
T = 32 ms as opposed to 740 ms for music. Second-order
coefficients carry less energy when T is smaller, as shown in
Table I. For the same reason, third-order coefficients provide
even less information compared to the GTZAN case, and do
not improve results.

Note that no explicit time warping is needed in this model.
Thanks to the scattering deformation stability, supervised
linear classifiers can indeed compute time-warping invariants
which remain sufficiently informative.

For l = 2, cascading a log-frequency transposition invari-
ance computed with a first-order frequency scattering trans-
form of Section VII reduces the error by about 5%. Computing
a second-order frequency scattering transform only marginally
improves results. Allowing to adapt the wavelet frequency
resolution by computing scattering coefficients with Q1 = 1
and Q1 = 8 also reduces the error by about 5%

Again, these results are for the problem of phone classifica-
tion, where boundaries are given. Future work will concentrate
on the task of phone recognition, where such information
is absent. Since this task is more complex, performance is
generally obtained worse, with the state-of-the-art achieved
with a 17.7% error rate [16].

IX. CONCLUSION

The success of MFCCs for audio classification can partially
be explained by their stability to time-warping deformation.
Scattering representations extend MFCCs by recovering lost
high frequencies through successive wavelet convolutions.
Over windows of T ≈ 200 ms, signals recovered from
first- and second-order scattering coefficients have a good
audio quality. Normalized scattering coefficients characterizes
amplitude modulations, and are stable to time-warping defor-
mations. A frequency transposition invariant representation is
obtained by cascading a second scattering transform along
frequencies. Time and frequency scattering feature vectors
yield state-of-the-art classification results with a Gaussian
kernel SVM, for musical genre classification on GTZAN, and
phone segment classification on TIMIT.

APPENDIX

Following (41), a(t) is nearly constant over the time support
of ψλ1

and ĥ(ω) is nearly constant over the frequency support
of ψ̂λ1

. It results that

|x ? ψλ1(t)| ≈ |ĥ(λ1)| |e ? ψλ1(t)| a(t) . (49)

Let e(t) be a harmonic excitation. Since we supposed
that λ1/Q1 ≤ ξ, ψ̂λ1 covers at most one harmonic whose
frequency kξ is close to λ1. It then results from (49) that

|x ? ψλ1(t)| ≈ |ĥ(λ1)| |ψ̂λ1(kξ)| a(t) . (50)

Computing S1x(t, λ1) = |x ? ψλ1 | ? φ(t) gives

S1x(t, λ1) ≈ |ĥ(λ1)| |ψ̂λ1
(kξ)| a ? φ(t) . (51)

Let us compute

|x| ? φ(t) =

∫
|e ? h(u)|a(u)φ(t− u)du

=
2π

ξ

∫ +∞∑
n=−∞

|h(u+ 2nπ/ξ)|a(u)φ(t− u)du

=
2π

ξ

∞∑
k=−∞

∫ 2π/ξ

0

+∞∑
n=−∞

|h(u+ 2nπ/ξ)|

a(u+ 2kπ/ξ)φ(t− u− 2kπ/ξ) du.

Since a(t) and φ(t) are approximately constant over intervals
of size 2π/ξ, and the support of h is smaller than 2π/ξ, one
can verify that

|x| ? φ(t) ≈ ‖h‖1 a ? φ(t) .

This approximation together with (51) verifies (42).
It also results from (50) that

S2x(t, λ1, λ2) ≈ |ĥ(λ1)| |ψ̂λ1(kξ)| |a ? ψλ2 | ? φ(t) ,

which, combined with (51), yields (43).
Let us now consider a Gaussian white noise excitation e(t).

We saw in (49) that

|x ? ψλ1(t)| ≈ |ĥ(λ1)| |e ? ψλ1(t)| a(t) . (52)

Let us decompose

|e ? ψλ1(t)| = E(|e ? ψλ1 |) + ε(t) , (53)

where ε(t) is a zero-mean stationary process. If e(t) is a
normalized Gaussian white noise then e?ψλ1

(t) is a Gaussian
random variable of variance ‖ψλ1

‖2. It results that |e?ψλ1
(t)|

and ε(t) have a Rayleigh distribution, and since ψ is a complex
wavelet with quadrature phase, one can verify that

E(|e ? ψλ1
|)2 =

π

4
E(|e ? ψλ1

|2) =
π

4
‖ψλ1

‖2 .

Inserting (53) and this equation in (52) shows that

|x?ψλ1
(t)| ≈ |ĥ(λ1)|

(
π1/22−1‖ψλ1

‖a(t)+a(t) ε(t)
)
. (54)

When averaging with φ, we get

S1x(t, λ1) ≈ |ĥ(λ1)|
(
π1/22−1‖ψλ1

‖a ? φ(t) + (a ε) ? φ(t)
)
.

(55)
Suppose that a(t) is not sparse, in the sense that

|a|2 ? φ(t)

|a ? φ|2(t)
∼ 1 . (56)

It means that ratios between local L2 and L1 norms of a is of
the order of 1. We are going to show that if T−1 � λ1Q

−1
1

then
E(|(a ε) ? φ(t)|2)

‖ψλ1‖2 |a ? φ(t)|2
� 1 (57)

which implies

S1x(t, λ1) ≈ π1/2

2
‖ψ‖λ1

1/2 |ĥ(λ1)| a ? φ(t) . (58)

We give the main arguments to compute the order of magni-
tudes of the stochastic terms, but it is not a rigorous proof.
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For a detailed argument, see [50]. Computations rely on the
following lemma.

Lemma 1. Let z(t) be a zero-mean stationary process of
power spectrum R̂z(ω). For any deterministic functions a(t)
and h(t)

E(|(za) ? h(t)|2) ≤ sup
ω
R̂z(ω) |a|2 ? |h|2(t) . (59)

Proof: Let Rz(τ) = E(z(t) z(t+ τ)),

E(|(za)?h(t)|2) =

∫∫
Rz(v−u) a(u)h(t−u) a(v)∗ h(t−v)∗ dudv

and hence

E(|(za) ? h(t)|2) = 〈Rzyt, yt〉 with yt(u) = a(u)h(t− u).

Since Rz is the kernel of a positive symmetric operator whose
spectrum is bounded by supω R̂z(ω) it results that

E(|(za)?h(t)|2) ≤ sup
ω
R̂z(ω) ‖yt‖2 = sup

ω
R̂z(ω) |a|2?|h|2(t) .

Because e(t) is a normalized white noise, with a Gaussian
chaos expansion, one can verify [50] that supω R̂ε(ω) ≤ C(1−
π/4), where C = ‖ψ‖21 ≈ 1. Applying Lemma 1 to z = ε and
h = φ gives

E(|(ε a) ? φ(t)|2) ≤ (1− π/4) |a|2 ? |φ|2(t) .

Since φ has a duration T , it can be written as φ(t) =
T−1φ0(T−1t) for some φ0 of duration 1. As a result, if (56)
holds then

|a|2 ? |φ|2(t)

|a ? φ(t)|2
∼ 1

T
(60)

The frequency support of ψλ1 is proportional to λ1Q
−1
1 , so we

have ‖ψλ1‖2 ∼ λ1Q
−1
1 . Together with (60), if T−1 � λ1Q

−1
1

it proves (57) which yields (58).
We approximate |x| ? φ(t) similarly. First, we write

|e ? h(t)| = E|e ? h|+ ε′(t), (61)

where ε′(t) is a zero-mean stationary process. Since e ? h(t)
is normally distributed in R, |e ? h|(t) has χ1 distribution and

E(|e ? h|)2 =
2

π
E(|e ? h|2) =

2

π
‖h‖2, (62)

which then gives

|x| ? φ(t) =

√
2

π
‖h‖a ? φ(t) + (aε′) ? φ(t). (63)

One can show that supωR̂ε′(ω) ≤ (1 − 2/π)‖h‖21 [50], so
applying Lemma 1 gives

E
(
|(aε′) ? φ(t)|2

)
≤ (1− 2/π)‖h‖21|a|2 ? |φ|2(t). (64)

Now (60) implies that

E
(
|(aε′) ? φ(t)|2

)
‖h‖2|a ? φ(t)|2

� 1 (65)

since a is non-sparse and because h has a support much
smaller than T so ‖h‖21/‖h‖2 � T . Consequently,

|x| ? φ(t) ≈
√

2

π
‖h‖a ? φ(t), (66)

which, together with (58) gives (44).
Let us now compute S2x(t, λ1, λ2) = ||x?ψλ1

|?ψλ2
|?φ(t).

If T−1 � λ1Q
−1
1 then (58) together with (54) shows that

S2x(t, λ1, λ2)

S1x(t, λ1)
≈ |a ? ψλ2

| ? φ(t)

a ? φ(t)
+ ε̃(t) , (67)

where
0 ≤ ε̃(t) ≤ 2|(aε) ? ψλ2

| ? φ(t)

π1/2‖ψλ1‖ a ? φ(t)
. (68)

Observe that

E(|(aε) ? ψλ2
| ? φ(t)) ≤ E(|(aε) ? ψλ2

|2)1/2 ? φ(t).

Lemma 1 applied to z = ε and h = ψλ2
gives the following

upper bound:

E(|(aε) ? ψλ2(t)|2) ≤ C(1− π/4) |a|2 ? |ψλ2 |2(t) . (69)

One can write |ψλ2
(t)| = λ2Q

−1
2 θ(λ2Q

−1
2 t) where θ(t)

satisfies
∫
θ(t) dt ∼ 1. Similarly to (60), if (56) holds over

time intervals of size Q2/λ2, then

|a|2 ? |ψλ2 |2(t)

|a ? |ψλ2
||2

∼ λ2

Q2
. (70)

Since ‖ψλ1
‖2 ∼ λ1Q

−1
1 and |ψλ2

| ? φ(t) ∼ φ(t) when
Q2/λ2 ≤ T , it results from (68,69,70) that 0 ≤ E(ε̃(t)) ≤
C (4/π − 1)1/2(λ2Q1)1/2(λ1Q2)−1/2 with C ∼ 1.
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