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Dynamic Resource Allocation for
Multiple-Antenna Wireless Power Transfer

Gang Yang, Chin Keong Ho, and Yong Liang Guan

Abstract—We consider a point-to-point multiple-input-
single-output (MISO) system where a receiver harvests energy
from a wireless power transmitter to power itself for various
applications. To achieve high-efficiency wireless power trans-
fer, the transmitter performs energy beamforming by using
an instantaneous channel state information (CSI). The CSI
is estimated at the receiver by training via a preamble, and
fed back to the transmitter. The channel estimate is more
accurate if a longer preamble is used, but less time will be
left for wireless power transfer. In this paper, we address
the key challenge of balancing the time resource used for
channel estimation and wireless power transfer to maximize
the harvested energy, and also investigate the allocation of
energy resource used for wireless power transfer. First, we
consider the general scenario where the preamble length is
allowed to vary dynamically depending on channel conditions.
Taking into account the effect of imperfect CSI, the optimal
preamble length is obtained online by solving a dynamic
programming (DP) problem. The DP problem is proved to
reduce to an optimal stopping problem. The optimal policy
is then shown to depend only on the channel estimate power
(i.e., the squared l2-norm of the channel estimate). Next,
we consider the scenario in which the preamble length is
fixed by an offline optimization. Furthermore, we derive
the optimal power allocation schemes for both dynamic-
length-preamble and fixed-length-preamble scenarios. For the
former scenario, the power is allocated according to both
the optimal preamble length and the channel estimate power,
while for the latter scenario, the power is allocated according
to only the channel estimate power. The analysis results
are validated by numerical simulations. Our results show
that with optimal power allocation, the energy harvested
by using the optimized fixed-length preamble is close to
that harvested by using a dynamic-length preamble, hence
allowing a low-complexity yet close-to-optimal wireless power
transfer system to be implemented in practice.

Index Terms—Wireless power transfer, energy beamform-
ing, resource allocation, dynamic channel estimation, dynamic
programming, power allocation

I. INTRODUCTION

Recently, wireless power transfer (WPT) is gaining more
and more attention from both academia and industry.
Although the traditional near-field inductive coupling WPT
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and resonant coupling WPT have high efficiency, they can
only transfer power over a short distance [1]. Further-
more, these WPT methods may have limited support for
power multicast or mobility of the power receiver, hence
restricting their application potential. In comparison, far-
field WPT via radiated electromagnetic (EM) waves can
transfer power to multiple static or moving receivers over
a longer distance (typically several to tens of metres),
and thus enables various engineering applications [2].
In particular, the far-field WPT is promising to address
energy and lifetime bottlenecks for power-limited devices
in wireless networks [3]–[5]. For example, in an energy
harvesting sensor network, sensors can harvest energy from
the ambient or dedicated EM waves to power themselves
for data transmission by various schemes, such as wireless
compressive sensing proposed in [6].

Since EM waves decay quickly over distance, they
have to be concentrated into a narrow beam via multiple
antennas to achieve efficient power transfer. This is referred
to as energy beamforming [7], which was first considered
for simultaneous wireless information and power transfer
(SWIPT) in multiuser downlink in [7]. Assuming perfect
channel state information (CSI) at the transmitter, [8] in-
vestigated the joint optimization of transmit power control,
information and power transfer scheduling; [9] studied
resource allocation algorithms for SWIPT in broadband
wireless systems.

With the assumption of perfect CSI, the uplink wireless
information transfer (WIT) powered by downlink WPT
was considered in [10], [11]. A harvest-then-transmit pro-
tocol was proposed in [10], where all users first harvest the
wireless energy in the downlink and then send independent
information in the uplink by time-division-multiple-access
(TDMA). The sum throughput was maximized by jointly
optimizing the time allocation for the downlink WPT and
uplink WIT. [11] proposed a wireless-powered communi-
cation network with a full-duplex access point (AP) and
multiple users. The AP implements full-duplex operation
through two antennas: one for broadcasting wireless energy
to users in the downlink and one for simultaneously
receiving uplink information from users via TDMA. Under
an energy causality constraint, the authors investigated the
problems of maximizing the sum throughput and minimiz-
ing the total time required for each user sending given
amount of data back to the AP.
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The knowledge of CSI is an essential prerequisite for
both energy beamforming and information decoding. For
instance, [8] showed that the rate-energy tradeoff in SWIPT
systems degrades as the CSI accuracy decreases. Typically,
the receiver needs to perform channel estimation and feed
back CSI to the transmitter before power transfer. In
practice, perfect CSI at the transmitter is not available due
to various factors such as time-varying channel, inaccurate
channel estimation, quantization error and feedback error.
When the channel uncertainty is considered as determin-
istic and norm bounded, robust beamforming design was
studied in [12] for a multiple-input-single-output (MISO)
system with SWIPT, in [13] for a two-way relay system
with SWIPT, and in [14] for secure communication in a
multiuser SWIPT system. In [12], the harvested energy
was maximized for the worst-channel realization, while
guaranteeing that the information rate is above a threshold
for all possible channel realizations. However, the actual
worst case may occur with a very low probability. Hence,
this worst-case approach may be overly conservative and
therefore, leads to unnecessary performance degradation.
When the CSI errors are instead considered as Gaussian
random variables, the energy beamforming was studied
in [15] for a SWIPT multicast system, and in [16] for
a single-user MISO system. [15] proposed a stochastic
beamforming scheme to achieve more balanced outage-
constrained achievable rates among multiple information
receivers. [16] derived the optimal time duration which
maximizes an upper-bound rate of uplink WIT powered
by downlink WPT. Recently, the energy beamforming with
one-bit feedback was also studied in [17] for multiuser
multiple-input-multiple-output (MIMO) WPT systems. It
proposed a channel learning approach, which requires each
user to send back one bit to the transmitter to indicate the
change of the harvested energy between the present and
previous feedback intervals.

Energy beamforming based on more accurate CSI con-
tributes to higher efficiency of power transfer. The receiver,
however incurs significant time (overhead) to obtain the
accurate CSI. Longer time duration for channel estimation
leads to more accurate CSI available at the transmitter,
but also shortens the WPT duration, which may lead to
less harvested energy. To maximize the harvested energy,
there is thus a design freedom, namely the time spent for
estimating the channel. Moreover, to improve the overall
system energy efficiency, the amount of energy used for
WPT should be optimized, for example, less energy is used
for severely-fading channels. Nevertheless, to the best of
our knowledge, there does not exist any work that takes
into account the preamble overhead and energy allocation
for WPT via energy beamforming.

We consider a frame-based MISO system in which the
transmitter performs energy beamforming using imperfect
CSI fed back from the receiver. The frame is divided into

four phases as shown in Fig. 1: the channel estimation
(CE) phase, the feedback phase, the wireless power transfer
(WPT) phase, as well as the general energy utilization (EU)
phase. In this paper, we focus on efficient wireless power
transfer; and the particular use of the harvested energy,
such as for uplink WIT or sensing [10], [16], [18] is not
considered in this work. The feedback is assumed to be
error-free and take negligible time, and is thus ignored in
the analysis. The time duration for the EU phase is fixed.
Unlike previous work on robust beamforming in [12]–[14],
we maximize the harvested energy by balancing the time
durations between the CE phase and the WPT phase, as
well as allocating transmit power for the WPT phase.

To maximize the harvested energy, we consider two
scenarios, where we employ dynamic-length preamble or
fixed-length preamble. Given a channel estimate, we first
derive the optimal energy beamformer, which applies to
both scenarios. Then, we adjust the time duration for
the CE phase. For the first scenario, the preamble length
is allowed to vary dynamically depending on channel
conditions. The optimal online preamble length is obtained
by solving a dynamic programming (DP) problem. The
DP problem is proved to reduce to an optimal stopping
problem. The optimal policy is then shown to depend only
on the channel estimate power. That is, if the channel
estimate power is less than a time-dependent threshold, the
receiver continues to perform CE, otherwise the receiver
stops CE and requests wireless power. For the second
scenario in which the preamble length is fixed for all
frames, we optimize the preamble length offline. Moreover,
we adjust the power allocated for WPT in each frame,
for both scenarios. For the scenario of dynamic-length
preamble, the power for WPT is allocated according to
both the optimal preamble length and the channel estimate
power; while for the scenario of fixed-length preamble,
the power for WPT is allocated according to only the
channel estimate power. Numerical results are finally given
to validate our analysis.

The paper is organized as follows. In Section II, we
describe the system model, and give the problem for-
mulations. We study the optimal energy beamformer in
Section III. In Section IV, we allow the preamble length
to vary with frames, and use dynamic programming to
find the optimal preamble length. In Section V, we fix
the preamble length for all frames, and derive the optimal
preamble length offline. Section VI derives the optimal
power allocation schemes. Section VII gives the numerical
results. Section VIII concludes this paper.

II. SYSTEM MODEL

We consider a frame-based wireless power transfer sys-
tem, consisting of a wireless power (WP) transmitter with
m antennas, a single-antenna receiver that is also known
as a WP receiver, a downlink channel for wireless power
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transfer from the WP transmitter to the WP receiver, as
well as a feedback channel to send CSI (and data) from
the WP receiver to the WP transmitter. Hence, the WP
transmitter and WP receiver also serve as the informa-
tion receiver and information transmitter, respectively. We
assume that the WPT system operates with a frequency-
division-duplexing protocol.

As in Fig. 1, each frame consists of four phases. To focus
on efficient WPT, the time duration for the fourth EU phase
is fixed and not considered in this paper. We assume the
time duration for the CE, feedback and WPT phases in one
frame is fixed as T symbol periods, which is normalized
to be one second for convenience. In the first CE phase,
the WP transmitter sends preambles, and the WP receiver
performs channel estimation in an interval of τ symbol
periods. In the second phase, the WP receiver feeds the
CSI back to the WP transmitter within ε symbol periods.
In the third WPT phase, the WP transmitter delivers power
via beamforming. The WP receiver harvests energy from
the radio-frequency (RF) signals.

Channel Estimation

Frame 1 Frame 2 FrameM

Feedback Wireless Power Transfer Energy Utilization

. . .

T t e- -et

T

Fig. 1: Frame Structure

We assume there is a lossless link for CSI feedback1. For
simplicity, we assume the feedback time ε = 0. The down-
link MISO channel h is assumed to undergo quasi-static
flat Rayleigh fading in each frame, i.e., h ∼ CN (0m,R),
where 0m is the all-zero column vector, and R , E

(
hhH

)
denotes the channel covariance matrix. We assume that R
is a full-rank matrix and has equal diagonal elements. The
channel is referred as uncorrelated if R = ξIm, where
ξ ∈ (0, 1] is the path loss, and Im is the identity matrix.
The channel may vary independently from frame to frame.

A. Wireless Energy Beamforming

We assume the time duration for CE and WPT can be
divided into N time slots, each of which consists of m
successive symbol periods2, i.e., T = mN . The preambles
that consist of k = τ

m time slots are used to obtain the
channel estimate, denoted as ĥk. In this paper, both k and
τ are discrete variables, while m is a constant integer. In

1In practice, the cyclic-redundancy-check scheme with retransmission
can be used to ensure an error-free feedback.

2For simplicity, we assume the number of successive symbol periods
is m, although it is not necessary in practice.

the WPT phase, the received baseband signal in the n-th
symbol period is written as

yn = x̃Hn h + zn, (1)

where x̃n is the m × 1 transmitted signal vector, and
zn ∼ CN (0, σ2

z) is the additive white Gaussian noise. For
convenience of analysis, σ2

z is assumed to be the noise
power normalized to the variance ξ of channel coefficients.
The channel coefficients are accordingly considered to
have unit variance in the following analysis. Given channel
estimate ĥk, we denote the m× 1 beamforming vector as
w(ĥk). Then, we have x̃n = w(ĥk)sn, where sn is a
scalar that depends on the allowable transmit power. The
subscript n is ignored in the sequel.

Due to the law of energy conservation with efficiency
ρ, the harvested RF-band energy3 in one baseband symbol
period, denoted by E0, at the WP receiver is assumed to be
proportional to that of the received baseband signal, i.e.,

E0 = ρEh,x̃

[∣∣x̃Hh
∣∣2] = ρEh,ĥk

[∣∣∣wH(ĥk)h
∣∣∣2] . (2)

We assumed in (2) that the energy due to the ambient noise
cannot be harvested. For convenience, we also assume ρ =
1 in this paper.

B. Problem Formulation

The WP receiver aims to harvest energy as much as
possible in the WPT phase. Intuitively, longer preambles
can increase the accuracy of channel estimation, and thus
increase the efficiency of power transfer, but at the cost
of reduced time left for the WPT phase. We also note
that the power of the received signal depends on the
fading condition in one frame. Hence, to maximize the
harvested energy, we first consider two scenarios with
constant preamble power, where we optimize the preamble
length dynamically for each frame or optimize a fixed
preamble length offline. Then we optimize the transmit
power for WPT in each frame, via the power allocation.

1) WPT with dynamic-length preamble: We consider
the scenario where the preamble length is allowed to vary
dynamically, i.e., the receiver can decide to perform CE or
request WP at any time slot based on its current channel
estimate. We denote the beginning of the (k + 1)-th time
slot as time instant k, where k = 0, 1, · · · , N − 1. At
time instant k = 0, the receiver decides to perform CE
or request WP in the first slot. If it decides to request
WP at k = 0, the transmitter performs WPT in the
first slot without beamforming. Otherwise, the transmitter
sends preambles in the first slot, and the receiver obtains
the channel estimate ĥ1 at the end of the first slot. For

3Note that (2) is the harvested energy for the scenario in which the
path loss is normalized to one and the time duration of T symbol periods
is normalized to be one second.
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the subsequent time instant k, if the receiver decides
to request WP, it feeds back the channel estimate ĥk
to the transmitter. Then the transmitter performs WPT
using optimal beamformer w?(ĥk) in the next slot. If the
receiver decides to continue CE at instant k, the transmitter
sends preambles in the (k + 1)-th time slot. The optimal
beamformer w?(ĥk) will be found in Section III.

In Section IV, we first formulate a dynamic program-
ming (DP) problem to maximize the harvested energy
assuming that constant transmit power is used for WPT.
We define therein the control space C, decision variable uk
and the system state xk. We define a policy as a sequence
of functions µk(xk) which maps each system state into a
decision at time instant k = 0, 1, · · · , N−1. The set of all
possible policies is denoted as Π . Let gk(xk, uk) be the
energy harvested in slot k with state xk and decision uk.
To maximize the expected harvested energy in all slots, we
thus have the following optimization problem

(P1) max
π∈Π

E

[
N−1∑
k=0

gk(xk, uk)

]
. (3)

The expectation is performed over all random variables,
specifically the channel h and the channel estimates {ĥk}
which become available only after the decision of CE or
WP is made. The optimal policy π? for (P1) is obtained
in Section IV-C.

In particular, we assume an explicit feedback protocol in
which the receiver feeds back the decision on whether to
continue sending preambles or to stop sending preambles.
Although the explicit feedback protocol is difficult to
implement in practice, it allows us to investigate the best
possible performance under a general setting. We shall
see later in Section IV that it is in fact optimal to feed
back once to stop preamble transmission, resulting into an
efficient implicit feedback protocol, see Remark 1.

Then, we derive the optimal power allocation in Sec-
tion VI-A1, which allocates transmit power for WPT
according to both optimal preamble length adapted by
using the optimal policy π?, and the channel estimate
power.

2) WPT with fixed-length preamble: To reduce imple-
mentation complexity, we consider the scenario in which
the preamble length is fixed as k time slots in all frames,
but can be optimized offline. Then, the WPT phase in each
frame consists of (T − τ) symbol periods, where τ = km.

In Section V, we first maximize the harvested energy
assuming that constant transmit power is used for WPT,
by optimizing both the preamble length k and the beam-
forming vector w(ĥk). Specifically, we have the following
optimization problem

(P2) max
{w(ĥk),∀ĥk},

0≤k≤N−1

(T − km)Eh,ĥk

[∣∣∣wH(ĥk)h
∣∣∣2] (4a)

s. t.
∥∥∥w(ĥk)

∥∥∥ = 1, (4b)

where ‖ · ‖ is the l2-norm. We will find the optimal
solution w? (as a function of ĥk) and k? in Section III,
and Section V, respectively. Then, we derive the optimal
power allocation scheme in Section VI-B, which allocates
transmit power for WPT according to only the channel
estimate power.

III. OPTIMAL ENERGY BEAMFORMING

In this section, we obtain the optimal beamforming
vector w?(ĥ), which shall be used to find the solutions to
problem (P1), (P2) in Section IV, Section V, respectively.

A. Partial or Full Feedback

In practice, it is difficult for the transmitter to obtain full
CSI due to the limited feedback capacity. This motivates us
to investigate the impact of different amount of feedback
on energy beamforming and thus the harvested energy. We
let the receiver selectively feed back only q (1 ≤ q ≤ m)
largest channel coefficients to the transmitter, so as to
reduce the feedback amount. If q = m, it reduces to the
conventional full CSI feedback. Let ĥir denote the channel
coefficient with the r-th largest channel gain. The receiver

quantizes the vector ĥq ,
[
ĥi1 , ĥi2 , · · · , ĥiq

]T
and the

corresponding index set I ⊆ {1, 2, · · · , q} to denote the
selected antennas, and feeds back the coded digital bits to
the transmitter. An additional log

(
Cmq
)

bits are required
for the feedback of the index set I. The parameter q
is defined as a metric, namely the feedback dimension,
to quantify the cost/amount of feedback. The transmitter
uses only q antennas with index in I to perform energy
beamforming.

B. Optimal Energy Beamforming

The energy beamforming is performed by using imper-
fect CSI at the transmitter. We first obtain the distribution
of the channel h conditioned on a general unbiased channel
estimate ĥ. We consider the q-dimensional feedback of
CSI. Define the estimation error eq , ĥq − hq . Let
Rq , E

(
ĥqĥ

H
q

)
and Re,q , E

(
eqe

H
q

)
be the q-

dimensional counterparts of channel covariance matrix R
and the error covariance matrix Re, respectively. From
equation (16) in [19], we have the following lemma.

Lemma 1. Let ĥq = hq + eq . Assume hq ∼ CN (0q,Rq),
the error vector eq ∼ CN (0q,Re,q), and hq and eq
are jointly Gaussian distributed. Given ĥq , the vector hq
follows a complex Gaussian distribution, i.e.,

hq

∣∣∣ĥq ∼ CN (mhq|ĥq ,Σhq|ĥq
)

(5)
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where mhq|ĥq =
(
Re,qR

−1
q + Iq

)−1
ĥq , and Σhq|ĥq =(

R−1
q + R−1

e,q

)−1
.

From Lemma 1, the conditional correlation matrix is

Rhq|ĥq = Σhq|ĥq + mhq|ĥq mH
hq|ĥq . (6)

Denote the singular value decomposition (SVD) of Rhq|ĥq
by Rhq|ĥq = UqΓqU

H
q , where Uq = [u1,q u2,q · · · uq,q],

Γq = diag{γ1 γ2 · · · γq}, and γ1 ≥ γ2 ≥ · · · ≥ γq . We
further have Lemma 2.
Lemma 2. Assume hq ∼ CN (0q,Rq), eq ∼
CN (0q,Re,q), and hq and eq are jointly Gaussian. Given
ĥq , the optimal beamforming vector that maximizes the
normalized harvested energy, is given by

w?
q

(
ĥq

)
= u1,q. (7)

Proof: The harvested energy in one symbol period
in (2) can be rewritten as

E0 = Eĥq

[
Ehq|ĥq

[
wH
q

(
ĥq

)
hqh

H
q wq

(
ĥq

)]]
(a)
= Eĥq

[
wH
q

(
ĥq

)
Rhq|ĥqwq

(
ĥq

)]
, (8)

where (a) is from the fact that conditioned on the channel
estimate ĥq , the beamformer w = w(ĥq) is fixed and
treated as a constant. Clearly, the E0 is maximized when
the beamformer is the largest eigenmode of Rhq|ĥq .

Using the optimal beamformer in (7), the normalized
harvested energy E0 is the mean of the largest eigenvalue
γ1 of the matrix Rhq|ĥq in (6). The total harvested energy
in all remaining slots is thus given by

E = (T − τ) Eĥq

[
γ1

(
Rhq|ĥq

)]
. (9)

We have assumed the channel estimate is unbiased,
which can be obtained by the widely-used least-square (L-
S) channel estimator [20]4. We keep the transmit power for
preambles a constant, which implies the effective receive
signal-to-noise ratio (SNR) for CE is only proportional to
the preamble length τ that is to be optimized. We next
derive the optimal beamformer.

C. Optimal Beamformer for LS Channel Estimation

We first describe the optimal design of preambles.
We set the length of preambles as τ = km, where
k = 0, · · · , N − 1. When the total power for sending
preambles is fixed as k, it is shown in [22] that the LS
estimation performance can be optimized by using the
preamble matrix as

X = [X1 X2 . . . Xk]T , (10)

4It turns out that the optimal beamformer in Lemma 2 also applies to
other channel estimators such as an linear minimum mean-square-error
estimator (LMMSE, see Section III-D in [21])

where Xi = 1√
m

Im, for i = 1, 2, · · · , k. From [20], we
obtain the LS estimate as follows

ĥ = X−1y = h +

√
m

k

k∑
i=1

zi, (11)

where the length-m noise vector zi ∼ CN (0m, σ
2
zIm).

Clearly, the estimation error e is distributed as
CN

(
0m, σ

2
eIm

)
, where σ2

e =
σ2
z

β and β = k
m = τ

m2 .
1) Correlated channel: From Lemma 1, we state

that given ĥq , the channel vector hq is distributed as

CN
((
σ2
eR
−1
q + Iq

)−1
ĥq,
(
R−1
q + 1

σ2
e
Iq

)−1
)

. The con-

ditional correlation matrix Rhq|ĥq yields

Rhq|ĥq =

(
R−1
q +

1

σ2
e

Iq

)−1

+(
σ2
eR
−1
q +Iq

)−1
ĥqĥ

H
q

(
σ2
eR
−1
q +Iq

)−1
. (12)

From (7), the optimal beamforming vector is the largest
eigenmode of Rhq|ĥq in (12).

2) Uncorrelated channel: From Lemma 1, given ĥq , the
channel is distributed as hq ∼ CN

(
ĥq

1+σ2
e
,

σ2
e

1+σ2
e
Iq

)
. The

conditional correlation matrix is thus rewritten as

Rhq|ĥq =
σ2
e

1 + σ2
e

Iq +
ĥqĥ

H
q

(1 + σ2
e)

2 . (13)

Note that Rhq|ĥq is the sum of a scaled identity matrix
and a rank-one matrix. The eigenvectors can be constructed
as follows: take the normalized ĥq as the right eigenvector
corresponding to the maximal eigenvalue, and construct
other mutually orthogonal eigenvectors by Gram-Schmidt
algorithm. From Lemma 2, the optimal beamformer is

w?
q

(
ĥq

)
=

ĥq

‖ĥq‖
. (14)

Associated to the optimal beamformer in (14), the largest
eigenvalue of the matrix Rhq|ĥq is

γ1

(
Rhq|ĥq

)
=

σ2
e

1 + σ2
e

+
‖ĥq‖2

(1 + σ2
e)

2 . (15)

It is noted that the largest eigenvalue in (15) gives the
expected harvested energy in one symbol period with the
channel estimate ĥq .

IV. WPT WITH DYNAMIC-LENGTH PREAMBLE

In this section, we consider the scenario where the
preamble length is allowed to vary dynamically depending
on the current channel estimate. To maximize the expected
harvested energy, we first formulate a dynamic program-
ming (DP) problem [23], which will be shown to reduce
to an optimal stopping problem, and thus can be simplified
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considerably. Using the optimal DP policy, we shall derive
the optimal power allocation scheme in Section VI-A.

We assume uncorrelated flat Rayleigh fading channels
that are static in each frame but vary independently among
frames. The extension of the model to more general case
of Markovian channels is more tedious but conceptually
straightforward, see e.g. [24]. Let ĥk denote the channel
estimate available at time instant k (i.e., the beginning
of the (k + 1)-th time slot). Assuming no priori channel
knowledge is available, we initialize the channel estimate
as the mean of h, i.e., ĥ0 = 0. We assume that the receiver
adopts an LS channel estimator and performs full (i.e., m-
dimensional) feedback5. The optimal beamformer in (14)
for q = m is thus used in this section. We employ the
preamble matrix in (10). For k = 0, 1, · · · , N − 2, it is
useful to rewrite the LS channel estimate in (11) as the
following recursive equation

ĥk+1 =
k

k + 1
ĥk +

h

k + 1
+

√
mzk+1

k + 1
. (16)

A. Statistical Properties of Channel Estimates

Before formulating the problem and obtaining the so-
lutions, we first obtain some useful statistical properties.
Lemma 3 quantifies the statistical relationship of two
adjacent channel estimates, while Lemma 4 shows that the
most recent channel estimate provides sufficient statistics
for estimating the channel.

Lemma 3. Given ĥk, the next channel estimate ĥk+1 is
distributed as CN (ūk, σ̄

2
kIm), where

ūk =
k(k + 1 +mσ2

z)

(k + 1)(k +mσ2
z)

ĥk, σ̄2
k =

mσ2
z(k + 1 +mσ2

z)

(k + 1)2(k +mσ2
z)
.

Proof: Let σ2
k = m

k σ
2
z . From Lemma 1 for q = m, we

have that h
∣∣∣ĥk ∼ CN ( 1

1+σ2
k
ĥk,

σ2
k

1+σ2
k
Im

)
. From (16) and

the independence between ĥk and the noise vector zk+1,
we obtain the result after algebraic manipulations.

We take the channel estimate power as a random variable
Vk, i.e., Vk , ‖ĥk‖2. From Lemma 3, conditioned on Vk =
vk, the random variable 2

σ̄2
k
Vk+1 follows the noncentral

Chi-Square distribution with the degree 2m of freedom
and the noncentrality parameter

θk =
2k2(k + 1 +mσ2

z)vk
mσ2

z(k +mσ2
z)

.

Moreover, the conditional probability density function

5With full feedback, the amount of feedback is still acceptable. This is
because in the optimal DP scheme, the receiver needs to feed back only
once in each frame, which will be shown in Theorem 1.

(pdf) of Vk+1 is thus given by [25]

f(vk+1|vk) =
1

σ̄2
k

exp

(
−vk+1

σ̄2
k

− θk
2

)
·(

2vk+1

θkσ̄2
k

)m−1
2

Im−1

(
2θkvk+1

σ̄2
k

)
, (17)

where Im−1(·) is the (m− 1)-th order modified Bessel
function of the first kind. The conditional mean is

EVk+1|Vk=vk [Vk+1] = σ̄2
k

(
m+

θk
2

)
. (18)

Lemma 4. Given a sequence of LS channel estimates
ĥ1, ĥ2, · · · , ĥk, the distribution of channel vector h con-
ditioned on all channel estimates is simplified as

f
(
h
∣∣∣ĥ1, ĥ2, · · · , ĥk

)
= f

(
h
∣∣∣ĥk ) , (19)

which is the Gaussian distribution
CN

(
1

1+σ2
k
ĥk,

σ2
k

1+σ2
k
Im

)
, where σ2

k = m
k σ

2
z .

Proof: See proof in Appendix A.
Lemma 4 suggests that the accuracy of channel estima-

tion can not be increased by using all available channel
estimates, compared to using only the most recent chan-
nel estimate. This observation will be used to show the
structure of the optimal DP policy (see Theorem 1, later).

B. Problem Formlation

We formulate the optimization problem to maximize
the total expected harvested energy, assuming that the
transmitter uses constant transmit power for WPT. We first
make the necessary definitions.

1) Decision (or Control) Variable: We denote the de-
cision variable as uk ∈ C. The decision space C consists
of only two elements s and c, that corresponds to stopping
CE (i.e., requesting WP) or continuing CE, respectively.
We initialize u−1 = c.

2) System State: We define the system state xk as
consisting of (i) δk which denotes the number of slots used
so far for CE, and (ii) the most recently available channel
estimate. Given uk and current state xk, the next state is

xk+1 =

{
{δk + 1, ĥk+1}, if uk = c

xk, if uk = s.
(20)

The initial state is x0 = {δ0, ĥ0} with δ0 = 0, ĥ0 = ∅. We
denote the space of all possible state as S. From Lemma 4,
this system state is sufficient to obtain the statistics of h
even if all priori channel estimates were made available.

3) Policy: Define a policy π as a sequence of functions

π = {µk(xk), ∀xk ∈ S, k = 0, 1, · · · , N − 1},

where µk : S → C is a function that maps the state xk
into the decision variable in the next time slot, i.e., uk =
µk(xk). We denote the set of all possible policies as Π .
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4) Reward: Given state xk and decision uk = µk(xk),
we denote gk(xk, uk) as the reward, given by the expected
harvested energy in slot k. If uk = s, we have from (15)
with σ2

e = m
δ σ

2
z that

gk(xk, uk) = m

 mσ2
z

δ +mσ2
z

+
δ2
∥∥∥ĥk∥∥∥2

(δ +mσ2
z)2

 , (21)

and if uk = c, then gk(xk, uk) = 0.
5) Dynamic Program and Optimal Policy: To maximize

the total harvested energy, we thus have the optimization
problem (P1) given in (3). The optimal policy π? is given
by the functions {µk(·)}, i.e., the decision uk given state
xk, that satisfy the Bellman’s equation [23]:

JN−1(xN−1)= max
uN−1

gN−1(xN−1, uN−1),

Jk(xk)=max
uk

gk(xk, uk)+Eĥk+1|ĥk [Jk+1(xk+1)] , (22)

for k = N −2, · · · , 0. Here, Jk(xk) is known as the value
function which represents the harvested energy for the last
(N − k) time slots, conditioned on the current system
state xk. Typically, the solution is obtained by backward
recursion, by first solving for µN−1(·) for slot N−1, then
for µN−2(·), · · · , µ0(·). The maximum expected harvested
energy with policy π? is given by J1(x1).

C. Optimal Policy

Theorem 1 states that the Bellman’s equation (22) can
be reduced to an optimal stopping problem, for which a
decision is changed at most from c to s once and fixed
henceforth.

Theorem 1. Any decision sequence of the optimal policy
π? has the structure

(u∗0, u
∗
1, · · · , u∗N−1) = ( c, c, · · · , c︸ ︷︷ ︸

k=0,1,···,k∗−1

, s, s, · · · , s︸ ︷︷ ︸
k=k∗,··· ,N−1

), (23)

where 0 ≤ k∗ ≤ N−1. That is, the optimal policy initially
performs only CE for the first k∗ slots, then performs only
WPT for the remaining slots.

Proof: See proof in Appendix B.

Remark 1 (Optimality of an implicit feedback protocol).
Theorem 1 implies that the WP receiver only needs to
feed back once, after it decides to request WP. Hence, an
implicit feedback protocol in which the WP receiver feeds
back only to stop preamble transmissions, is sufficient and
can be used in practical implementation6. If there is no
feedback received, the WP transmitter will assume that

6The WP transmitter will send slightly more preambles, due to the
feedback delay induced by the channel and processing at the receiver
and transmitter. However, the resulting performance degradation is small
if the delay is small, compared to the frame length.

the decision at the WP receiver is to continue CE, and
thus send preambles continuously.

Theorem 1 allows us to simplify the DP problem and
obtain a solution that can be implemented with low com-
plexity. Before we obtain the structure of the optimal
policy in Theorem 2, we first state the expected harvested
energy under different scenarios. Henceforth, we assume
the optimal policy is employed.

Given state xk, if the receiver decides to request WP,
i.e., uk = s, then the expected harvested energy in the
remaining slots is obtained from (9) and (15) as

Ẽ
(
ĥk, k

)
= m(N − k)Eh|ĥ

[
wH
k,opthhHwk,opt

]
= Ak

(
Bk + Ck

∥∥∥ĥk∥∥∥2
)
, (24)

where Ak = m(N − k), Bk =
mσ2

z

k+mσ2
z

, and Ck =
k2

(k+mσ2
z)2 . If the decision is instead uk = c, then the

expected harvested energy in the last (N − k) time slots,
under all possible decisions made for subsequent slots, is

J̄k+1 (xk) = Eĥk+1|ĥk [Jk+1 (xk+1)] . (25)

For the special case in which the receiver decides to
continue CE (uk = c) at time instant k and stop CE
(uk+1 = s) at time instant k+1, then from the conditional
mean in (18), the expected harvested energy conditioned
on ĥk is obtained after some algebraic manipulation as

Ē
(
ĥk+1, k+1

)
= Eĥk+1|ĥk

[
Ẽ
(
ĥk+1, k+1

)]
(26)

= Dk+1

k2(k+1+mσ2
z)
∥∥∥ĥk∥∥∥2

+Fk+1

Gk+1
,

where Dk+1 = m(N−k−1), Fk+1 = mσ2
z(k+mσ2

z)(k+
mσ2

z+m), and Gk+1 = (k+1+mσ2
z)(k +mσ2

z)2.
Now, we state the optimal policy in Theorem 2.

Theorem 2. The optimal policy to Problem (P1) depends
only on the channel estimate power, i.e.,

uk =

 c, if
∥∥∥ĥk∥∥∥2

∈ Dc,k

s, if
∥∥∥ĥk∥∥∥2

∈ Ds,k

(27)

where the sets (intervals)

Dc,k =
[
[0, λk,1) ∪ [λk,2, λk,3) ∪ · · · ∪ [λk,Mk−1, λk,Mk

)
]
,

Ds,k =
[
[λk,1, λk,2) ∪ [λk,3, λk,4) ∪ · · · ∪ [λk,Mk

,+∞)
]
,

and λk,1 ≤ · · · ≤ λk,Mk
are the solutions to Ẽ(ĥk, k) =

J̄k+1(xk+1) with respect to the variable ‖ĥk‖2.

Proof: From Theorem 1, to obtain the optimal policy
for the original DP problem, if uk−1 = s, then uk = s; if
uk−1 = c, it suffices to compare if uk = s or c results in a
larger output of the value function. Hence, from (21), the
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value function simplifies as

Jk(xk) = max
{
Ẽ
(
ĥk, k

)
, J̄k+1(xk)

}
(28)

for k = N − 2, N − 1, · · · , 0, in a backward manner.
Specifically, assuming uk−1 = c, if Ẽ(ĥk, k) > J̄k+1(xk),
then the receiver requests WP with uk = s, otherwise the
receiver continues CE with uk = c. Hence, to obtain the
optimal decision, we have to solve the equation

Ẽ
(
ĥk, k

)
= J̄k+1(xk), (29)

to compare the two terms in (28). From (24), the first
term Ẽ(ĥk, k) is a monotonically increasing linear function
of only the channel estimate power ‖ĥk‖2. Moreover, the
second term J̄k+1(xk), given in (25), is also a function of
only ‖ĥk‖2. This claim is checked by induction based on
backward recursion as follows. At time instant k = N−2,
we have J̄N−1(xN−2) = Ē(ĥN−1, N − 1). From (26),
the term J̄N−1(xN−2) is a linear function of ‖ĥN−2‖2.
It follows from (28) that JN−2(xN−2) is a piecewise
linear function of ‖ĥN−2‖2. From (25) and the conditional
distribution in Lemma 3, we thus obtain that J̄N−2(xN−3)
is a function of ‖ĥN−3‖2. By mathematical induction with
decreasing slot index, we have that J̄k+1(xk) is a function
of ‖ĥk‖2.

Hence, the decision policy depends only on ‖ĥk‖2.
Denote the solution(s) to (29) with respect to ‖ĥk‖2 by
λk,1, λk,2, · · · , λk,Mk

, assuming λk,1 ≤ · · · ≤ λk,Mk
. The

desired result is obtained.
In general, the state value is of (m + 1)-dimension,

and the complexity of obtaining the optimal policy and
implementing it can be very high. Moreover, the memory
required to store the policy too large. From Theorem 2,
however, the optimal policy can be implemented for each
slot by only comparing the channel estimate power to a
scalar value, thus saving complexity in computation and
storage of policy. The thresholds can be pre-computed and
stored in a lookup table. During online implementation,
the receiver refers to the table to make the decision.

D. Optimal Thresholds

In this section, we derive the optimal thresholds {λk,j}
in Theorem 2 in a backward manner, by solving equa-
tion (29) for k = N−1, N−2, · · · , 0, assuming uk−1 = c.
At time instant N − 1, we have Ẽ(ĥN−1, N − 1) >
0, ∀ ĥN−1 ∈ Cm. Thus, it is optimal to set λN−1 = 0.
This is because it is always optimal for the receiver to stop
CE at time instant N − 1, since ‖ĥN−1‖2 > 0 holds with
probability one for fading channels.

For k = N−2, we have J̄N−1(xN−2) = Ē(ĥN−1, N−
1). The equation (29) for k = N − 2 thus reduces to
Ẽ(ĥN−2, N−2) = Ē(ĥN−1, N−1). Observe that both the
left-hand side (LHS) and right-hand side (RHS) are both

monotonically increasing linear functions of ‖ĥN−2‖2.
Hence, the decision policy at this time instant depends on a
single threshold. If DN−1(N − 2)2 6= AN−2GN−1CN−2,
the threshold is

λN−2 =

[
AN−2BN−2GN−1 −DN−1FN−1

DN−1(N − 2)2 −AN−2GN−1CN−2

]+

, (30)

where the notation [x]+ = max{0, x}; and λN−2 = 0, oth-
erwise. For the subsequent slots k = N − 3, N − 4, · · · , 0,
we can obtain the thresholds by a numerical search as
follows. By substituting (28) into (25), we note that the
RHS of (29) is expressed in a recursive form

J̄k+1(xk) =

Eĥk+1|ĥk
[
max

{
Ẽ
(̂
hk+1, k+1

)
, J̄k+2(xk+1)

}]
. (31)

Hence, it is difficult to obtain a closed-form solution
of the threshold ‖ĥk‖2 that solves (29). Thus, we let
the quantity ‖ĥk‖2 take discrete values in the set Q ,
{∆, 2∆, · · · , M∆}, and search for the closest values(s)
in the set Q that solves (29).

In general, there may be multiple solutions to (29),
denoted as λk,j , j = 1, · · · ,Mk, since the LHS Ẽ(ĥk, k)

is a monotonically increasing linear function of ‖ĥk‖2,
and the RHS is a function of ‖ĥk‖2, which may not be
a monotonic function. To get more insights, we give a
numerical example on the thresholds.

Example 1. Let N = 42,m = 3 and the noise power
σ2
z = −63 dBm, see the detailed parameter setting in

Section VII. The thresholds are numerically computed and
shown in Fig. 2. We numerically find that the threshold
at each time index k is always unique, which can further
simplify the decision process in practice. It is observed
that the threshold monotonically decreases as the time
index k increases. This observation is consistent with the
intuition that if a channel estimate is good enough to be
acceptable at time k for WP to be performed, it should also
be acceptable at time (k+1) when there will be one more
slot available for the channel estimate to be improved.

V. WPT WITH FIXED-LENGTH PREAMBLE

In this section, we consider the scenario wherein the
preamble length is fixed in all frames. We first derive
the optimal preamble length. This corresponds to the case
of offline adaptation, in contrast to online adaptation in
Section IV where the preamble length is varied over
frames. Based on the optimized fixed-length preamble,
we shall derive the optimal power allocation scheme in
Section VI-B. We assume uncorrelated channel. We aslo
assume that the receiver adopts an LS channel estimator
and performs q-dimensional feedback. See analogous re-
sults for correlated channel, and for an LMMSE estimator
in [21].
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Fig. 2: Threshold over slot index k.

Using the optimal beamformer in (14), from (9)
and (15), the total harvested energy is rewritten as

E = (T−τ)

(
σ2
e

1 + σ2
e

+
1

(1 + σ2
e)2

Eĥq

[∥∥∥ĥq∥∥∥2
])
. (32)

Before giving the result, we define a quantity that
depends on only the number m of transmit antennas and
the feedback dimension q as

Gm,q ,
q∑
r=1

2m!

(r − 1)!
·

m−r+1∑
s=1

s(−1)s+1

(m−r+1−s)!s!(s+r−1)2
. (33)

It can be shown that Gm,q increases as either m or q
increases. In the case of full feedback, i.e., the receiver
feeds back ĥ to the transmitter, we have Gm,m = 2m. In
independent Rayleigh-fading MISO channels, by using the
optimal beamformer in (14) at the transmitter, we have the
following theorem.

Theorem 3. Let T,m, σ2
z and Gm,q be defined as before.

When the channel is estimated by an LS estimator, the
optimal length of preambles for channel estimation is
unique and is given by

τ? =

 0, if σ2
z >

T (Gm,q−2)
2m2

arg max
τ∈{bτ1c,dτ1e}

E (τ) , otherwise

(34)
where the notations b·c and d·e are the floor operation and
the ceiling operation, respectively, the quantity

τ1 = −m2σ2
z +m

√
σ2
z(m2σ2

z + T )(Gm,q − 2)

Gm,q

and the function

E (τ) = (T − τ)
Gm,qτ + 2m2σ2

z

2 (τ +m2σ2
z)

, (35)

Moreover, the corresponding maximal harvested energy
Emax = E (τ?).

Proof: See proof in Appendix C.

Remark 2 (Effect of feedback dimension q). Theorem 3
implies that larger feedback dimension q leads to more
harvested energy, which is as expected. This is because
given m, the constant Gm,q increases as q increases, which
can be easily shown. Moreover, we observe that the optimal
preamble length τ? also increases as q increases. That
is, longer training time is required to obtain accurate q-
dimensional CSI and thus high-efficiency WPT, when more
feedback is allowed.

Remark 3 (Effect of channel variation on the harvested
energy). So far, we assume the channel is constant in one
frame. In practice, however, the channel may change, due
to the feedback delay induced by the channel, and process-
ing at the receiver and transmitter. Here, we investigate the
effect of channel variation on the harvested energy.

For simplicity, we adopt m-dimensional feedback and
an LS estimator. Let h1 ∼ CN (0m, Im) and h2 ∼
CN (0m, Im) be the channel in the CE phase and the
WPT phase, respectively. We assume that the temporal-
ly correlated channels follow a first-order Gauss-Markov
distribution according to

h2 =
√
αh1 + (1−

√
α)n, (36)

where the constant α ∈ [0, 1] is a temporal correlation
coefficient, and n ∼ CN (0m, Im) is an innovation process.
Then, we have the following lemma.

Lemma 5. Assuming the Gauss-Markov channel-varying
model in (36), the optimal beamformer is w?(ĥ1) = ĥ1

‖ĥ1‖
.

The harvested energy in the WPT phase is given by

E(τ) = (T − τ)

[
mα(τ +mσ2

z)

τ +m2σ2
z

+ (1−
√
α)2

]
. (37)

Proof: Recall that ĥ1 = h1 + e. From (36), we have

h2 =
√
αĥ1 −

√
αe + (1−

√
α)n. (38)

We take the sum of the second and third term in (38)
as noise. Following similar steps in Section III-B and the
proof for Theorem 3, we obtain Lemma 5.

Specially, when the channels are constant in one frame,
i.e., α = 1, the harvested energy reduces to the result
in (35) for Gm,m = 2m. Moreover, we can obtain the
optimal training length τ? for time-varying channels, by
using the same proof scheme as Theorem 3.
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VI. OPTIMAL POWER ALLOCATION

Based on the derived optimal preamble length, in this
section, we derive the optimal power allocation schemes
for the scenario of dynamic-length preamble and fixed-
length preamble, respectively.

A. Dynamic-Length-Preamble Based Power Allocation

By using dynamic-length preamble, the preamble length
is typically shorter if the channel condition in one frame is
good, and longer if the channel condition is bad. Intuitively,
we can maximize the harvested energy by adjusting the
transmit power for WPT, according to different channel
conditions. In this section, we derive the optimal power
allocation scheme, assuming the use of the optimal policy
π? for adapting the preamble length, although our subse-
quent results does not depend on the actual policy π used.

As in Section IV-A, we take the channel estimate power
in time slot k as a random variable denoted by Vk, i.e.,
Vk = ‖ĥk‖2 ∈ R+. Under policy π?, the preamble length,
denoted by κ time slots for convenience, is also random.
When the receiver stops the channel estimation procedure
at the end of the κ-th slot, we denote the corresponding
channel estimate power by Ṽκ, i.e., Ṽκ = ‖ĥκ‖2 ∈ Ds,κ.

First, we derive the joint pdf of κ and Ṽκ, denoted
by f(ṽκ, κ|π?), upon using the optimal policy π?. For
convenience, we omit the notation π? in the sequel. We
denote the joint pdf of V1, V2, · · · , Vκ−1, Ṽκ and κ by
f(v1, v2, · · · , vκ−1, ṽκ, κ). The joint pdf f(ṽκ, κ) is given
by the following recursive relation

f(ṽ1, 1)=
ṽm−1

1

2Γ(m)(1 +mσ2
z)m−1

exp

(
−ṽ1

1 +mσ2
z

)
, (39)

f(ṽκ, κ)=

∫
v1∈Dc,1

· · ·
∫
vκ−1∈Dc,κ−1

f(v1, · · · , vκ−1,

ṽκ, κ)dv1 · · · dvκ−1, for ṽκ ∈ Ds,κ

(a)
=

∫
v1∈Dc,1

f(v1)

[∫
v2∈Dc,2

f(v2|v1)

(
· · ·
∫
vκ−1∈Dc,κ−1

f(vκ|vκ−1)f(vκ−1|vκ−2)dvκ1
· · ·
)
dv2

]
dv1, (40)

for κ = 2, · · · , N − 1, where Γ(·) is the Gamma function.
Here, f(v1) is the same as (39) with the argument replaced
by v1 ∈ R+, and f(vi+1|vi) is in (17), and (a) is from
Lemma 4 and the fact ṽκ = vκ, for vκ ∈ Ds,κ.

1) Optimal Length-and-Channel-Power Aware Power
Allocation: In this section, we consider the scenario in
which the power is allocated according to both the optimal
preamble length κ and the channel estimate power ṽκ. We
refer to this scheme as length-and-channel-power aware
power allocation (LCPA). With unit transmit power, the

harvested energy is from (24)

Ẽ (ṽκ, κ) = m(N−κ)

(
mσ2

z

κ+mσ2
z

+
κ2ṽκ

(κ+mσ2
z)2

)
. (41)

We use p(ṽκ, κ) to denote the transmit power for WPT
in the frame with optimal preamble length κ and channel
estimate power ṽκ ∈ Ds,κ. We assume that p(ṽκ, κ)
can be dynamically allocated, subject to the per-frame
transmission power constraint P1 and the average trans-
mission power constraint P2 over frames. To maximize
the total expected harvested energy, we have the following
optimization problem

(P3) max
{p(ṽκ,κ)}

Eṽκ,κ
[
Ẽ (ṽκ, κ) p(ṽκ, κ)

]
(42a)

s. t. Eṽκ,κ
[
m(N − κ)p(ṽκ, κ)

]
≤ P2, (42b)

0 ≤ p(ṽκ, κ) ≤ P1, (42c)

for ṽκ ∈ Ds,κ, κ = 0, · · · , N −1. In (42b), the transmit
power is utilized for WPT only in the last (N − κ) slots.

Define η(ṽκ, κ) = Ẽ(ṽκ,κ)
m(N−κ) . Here, η(ṽκ, κ) is the effi-

ciency of power transfer in the frame with optimal length
κ and channel estimate power ṽκ, which will be used as a
criterion for adjusting the transmit power for WPT among
frames. The optimal solution can be obtained by a greedy
procedure as stated in Theorem 4.

Theorem 4. The optimal power allocation for Problem
(P3) is to allocate as much energy (up to P1) to the frame
with highest η(ṽκ, κ) over all ṽκ and all κ, then to the
frame with the second highest η(ṽκ, κ), and so on, until
the average energy constraint P2 is satisfied.

Proof: Define a(ṽκ, κ) = m(N − κ)f(ṽκ, κ), and
x(ṽκ, κ)=a(ṽκ, κ)p(ṽκ, κ). Problem (P3) is rewritten as

max
{x(ṽκ,κ)}

N−1∑
κ=0

[∫
ṽκ∈Ds,κ

η(ṽκ, κ)x(ṽκ, κ)dṽκ

]
(43a)

s. t.
N−1∑
κ=0

[∫
ṽκ∈Ds,κ

x(ṽκ, κ)dṽκ

]
≤ P2, (43b)

0 ≤ x(ṽκ, κ) ≤ a(ṽκ, κ)P1, (43c)

for ṽκ∈Ds,κ, κ=0, · · · , N−1.
The transformed problem is a linear programming (LP)

problem. For convenience of exposure, the channel es-
timate power ṽκ is assumed to take discrete values.
We use ds to denote the decreasing sorted vector of
vec ({η(ṽκ, κ)}), where vec(·) is the vectorization oper-
ator. Let (ṽκi , κi) be the pair of the channel estimate
power and preamble length for the i-th element in ds.
Thus, the optimal solution to the transferred LP problem
is obtained as follows: For the first consecutive (L − 1)
elements in ds, the power allocation is P1; for the L-
th element in ds, the power allocation is such that the
constraint (43b) is satisfied with equality; and for other
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remaining elements in ds, no power is allocated. Here, L
is chosen to be the maximally possible. This is because
for (ṽκ1

, κ1), the objective function is increased the most,
by setting the transmit power corresponding to (ṽκ1 , κ1)
as the maximally possible, after which the transmit power
for (ṽκ2

, κ2) is set as the maximally possible, and so on,
until the average power constraint P2 is satisfied.

Remark 4 (Complexity of power allocation scheme). Fol-
lowing the greedy procedure in Theorem 4, the allocated
power for each combination (κ, ṽκ) is pre-computed and
stored in a two-dimensional look-up table. In implemen-
tation, the WP transmitter obtains the transmit power by
referring to the lookup table. Hence, the complexity during
implementation is relatively low.

2) Optimal Length-Aware Power Allocation: To further
reduce implementation complexity, we consider a sim-
plified power allocation scheme in which the power is
allocated according to only the optimal preamble length
κ, referred as length-aware power allocation (LPA). Com-
pared to the general Problem (P3), we herein restrict
p(ṽκ, κ) = p(κ), independent of the channel estimate
power ṽκ. As in the LCPA scheme, we employ the optimal
policy π?. Then, the probability that the optimal preamble
length is κ, is given by

qκ =

∫
ṽκ∈Ds,κ

f(ṽκ, κ)dṽκ. (44)

With unit transmit power, the average harvested energy
from frames of preamble length κ is given by

Q̄harv,κ = Eṽκ
[
Ẽ(ṽκ, κ)

]
. (45)

Problem J1 is thus simplified as

(P4) max
{p(κ)}

Eκ
[
p(κ)Q̄harv,κ

]
s. t. Eκ [m(N − κ)p(κ)] ≤ P2,

0 ≤ p(κ) ≤ P1, for κ = 0, · · · , N − 1.

Let η(κ) =
Q̄harv,κ

m(N−κ) . Similar to Theorem 4, the solution to
Problem (P4) is given without proof as in Proposition 1.

Proposition 1. The optimal power allocation for Problem
(P4) is to allocate as much energy (up to P1) to the frame
with highest η(κ) over all κ, then to the frame with the
second highest η(κ), and so on, until the average energy
constraint P2 is satisfied.

B. Fixed-Length-Preamble Based Power Allocation

In the fixed-length preamble scenario considered here,
the optimal preamble length (i.e., κ = τ?

m time slots) is
obtained in Section V, and henceforth used for all frames.
Here, we consider the power allocation according to only
the channel estimate power ṽκ, referred as channel-power-
aware power allocation (CPA). For consistence, we use

the same notations as the LCPA scheme in Section VI-A1,
with the only difference here that the preamble length κ is
fixed.

Let pκ(ṽκ) denote the transmit power for WPT in the
frame with channel estimate power ṽκ. After obtaining ṽκ
via feedback, the transmitter performs WPT with transmit
power pκ(ṽκ) in the current frame. With the same power
constraint P1 and P2 as in Problem (P3), we have the
following problem formulation

(P5) max
{pκ(ṽκ)}

Eṽκ
[
Ẽκ (ṽκ, κ) pκ(ṽκ)

]
(47a)

s. t. m(N − κ)Eṽκ [pκ(ṽκ)] ≤ P2, (47b)
0 ≤ pκ(ṽκ) ≤ P1, for ṽκ ∈ R+. (47c)

We note that given κ, the harvested energy Ẽκ (ṽκ, κ)
in (41) is a monotonically increasing function of the
channel estimate power ṽκ. Similar to Theorem 4, the
solution to Problem (P5) is given below without proof.

Theorem 5. The optimal power allocation for Problem
(P5) is to allocate as much energy (up to P1) to the frame
with highest channel estimate power ṽκ over all ṽκ, then
to the frame with the second highest ṽκ, and so on, until
the average energy constraint P2 is satisfied.

VII. NUMERICAL RESULTS

In this section, we present numerical results to validate
our results. We set the number of transmit antennas m = 3.
We assume the time duration for the CE and WPT phases
in each frame is 100 µs, which consists of T = 126 symbol
periods (equivalently, N = 42 time slots). The carrier
frequency is 5 GHz, and the bandwidth is 100 KHz. We
set the power spectrum density of noise as −113 dBm/Hz,
which implies the noise power σ2

z = −63 dBm. We take
the path loss model as 10−3D−3, where the path loss
exponent is 3, and D = 2.1 m is the distance between
the WP transmitter and WP receiver. A 30dB path loss is
assumed at a reference distance of 1 m. We employ LS
channel estimation given in this paper, as well as LMMSE
channel estimation, see details in [21].

First, we simulate the harvested energy using the scheme
based on the fixed-length preamble in Section V, but
without the adaptive power allocation in Section VI-B. We
fix the transmit power as P0 = 1 Watt.

We start from an uncorrelated MISO channel. Fig. 3
plots the harvested energy for different dimension q of
CSI feedback. With perfect CSI at the transmitter, the
maximum ratio transmit (MRT) beamforming scheme har-
vests most energy, which provides an upper bound for
all schemes that use fixed-length preamble. The �-maker
curve is plotted according to (35) in Theorem 3 for
different preamble length τ . From (34) in Theorem 3, the
optimal preamble length is τ? = 14 µs, and the maximum
harvested energy is 2.8 µJ. The simulation results (∗-maker
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Fig. 3: Harvested energy in uncorrelated channel.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Length of preamble (τ ): µs

H
a
rv
es
te
d
en
er
g
y
(E

):
µ
J

 

 

MRT
LS, q=3
LMMSE, q=3
LS, q=2
LMMSE, q=2
LS, q=1
LMMSE, q=1

Fig. 4: Harvested energy in correlated channel.

curve) coincide with the analytical results. Moreover, the
harvested energy is reduced as the dimension q of CSI
feedback decreases. Also, we observe that the LS based
WPT achieves the same performance as the LMMSE-
based WPT scheme as expected, since the channel is
uncorrelated.

Next, we assume a correlated MISO channel, with
channel correlation matrix that has the structure: [R]i,j =
%|i−j|, 0 ≤ % < 1, where i and j are the indices of
the entries [20]. We set the correlation parameter % = 0.8.
The harvested energy is plotted in Fig. 4. We observe that
the LMMSE-based scheme transfers more energy than the
LS-based WPT in general, due to the fact that an LMMSE
estimator achieves more accurate channel estimation than
an LS estimator.

Second, as shown in Fig. 5, we compare the length-
and-channel-power aware power allocation (LCPA) scheme
in Section VI-A1, to the length-aware power alloca-
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Fig. 5: Comparison of FwoPA, LCPA, LPA and CPA.

tion scheme (LPA) in Section VI-A2, as well as the
scheme based on the optimized fixed-length preamble
with channel-power-aware power allocation (CPA) in Sec-
tion VI-B. We take the harvested energy by using the
optimized fixed-length preamble without power allocation
(FwoPA), as a benchmark. The schemes with power alloca-
tion are shown to achieve significant increase in harvested
energy, compared to the FwoPA scheme. Moreover, the C-
PA scheme and the LCPA scheme harvest almost the same
amount of energy. This is because in the CPA scheme,
the optimal preamble length is obtained after averaging all
possible channel realizations, and the dynamical nature of
the channels is fully exploited by the CPA scheme. We also
find it encouraging to observe that the energy harvested
by using the low-complexity LPA scheme is close to that
harvested by using the optimal LCPA scheme or the CPA
scheme, although the dynamical nature of the channels is
only partially exploited by the LPA scheme.

VIII. CONCLUSION

The paper studies a MISO system where the transmitter
delivers power to the receiver via energy beamforming,
and the harvested energy is used by the receiver to do
work. To maximize the harvested energy, we first derive the
optimal energy beamformer. Then, we perform dynamic
optimization for the preamble length, and also obtain
the optimal offline (fixed) preamble length to reduce the
complexity. Moreover, we derive the optimal power allo-
cation schemes for wireless power transfer with dynamic-
length preamble and fixed-length preamble, respectively.
As future extension of this paper, we have considered
the uplink data transmission powered by downlink WPT
in a multiuser massive MIMO system that consists of a
hybrid data-and-energy access point with a large number
of antennas and multiple single-antenna users [26].
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APPENDIX A
PROOF FOR LEMMA 4

Proof: For some antenna index, let h, ĥr, ĥr+1 be the
channel coefficient, and the channel estimate in time slot r
and r+1, respectively. From Bayes’ formula and Lemma 3,
it is straightforward to show that

h
∣∣∣ĥr, ĥr+1 ∼ CN

(
(r + 1)ĥr+1

r + 1 +mσ2
z

,
mσ2

z

r + 1 +mσ2
z

)
. (48)

From Lemma 1, we obtain that conditioned on ĥr+1,
the h has the same distribution as in (48). Thus, we
have f

(
h
∣∣∣ĥr, ĥr+1

)
= f

(
h
∣∣∣ĥr+1

)
. We further obtain

by mathematical induction that f (h |h1, h2, · · · , hk ) =
f (h |hk ), for k = 1, · · · , N − 1. The independence
between elements completes this proof.

APPENDIX B
PROOF FOR THEOREM 1

Proof: We first consider the Policies 1 and 2, as
follows. Policy 1 has a decision sub-sequence (c, s, c) over
slots r− 1, r, r+ 1. The corresponding states are xr,xr+1

and xr+2, where xr+1 = xr because from (20) the state
value remains the same when ur = s. Policy 2 is exactly
the same policy as Policy 1, except that given state xr in
slot r, Policy 2 performs CE followed by WP regardless
of the state in slot k + 1. Thus, the decision subsequence
becomes (c, c, s). We aim to show that Policy 2 has strictly
higher expected harvested energy than Policy 1. Both
policies are statistically equivalent in slot r+2 and onwards
because both have used the same number of slots for CE;
hence the expected harvested energy in slot r+ 2 onwards
are the same. It thus suffices to compare the expected
harvested energy of Policy 1 in slot r, denoted by Er1(xr),
and that of Policy 2 in slot r + 1, denoted by Er+1

2 (xr).
For Policy 1, from (21), the expected harvested energy is

Er1

(
ĥr

)
= m

(
mσ2

z

r +mσ2
z

+
r2
∥∥∥ĥr∥∥∥2

(r +mσ2
z)2

)
. (49)

For Policy 2, the channel estimate ĥr+1 in the next
slot k + 1 is introduced. Hence, the expectation for the
harvested energy is taken over the conditional distribution
p(h, ĥr+1|ĥr) as follows

Er+1
2 (xr)

, mEĥr+1|ĥr

[
Eh|ĥr+1,ĥr

[(
w?
r+1

)H
hhHw?

r+1

]]
(a)
= mEĥr+1|ĥr

[
Eh|ĥr+1

[(
w?
r+1

)H
hhHw?

r+1

]]
(b)
= m

 mσ2
z

r + 1 +mσ2
z

+

(r + 1)2Eĥr+1|ĥr

[∥∥∥ĥr+1

∥∥∥2
]

(r + 1 +mσ2
z)2



(c)
= m

 mσ2
z(r +m+mσ2

z)

(r +mσ2
z)(r + 1 +mσ2

z)
+

r2
∥∥∥ĥr∥∥∥2

(r+mσ2
z)2

 , (50)

where (a) comes from Lemma 4, (b) follows (15), and (c)
is from the conditional mean in (18). We conclude that
Policy 1 is strictly worse than Policy 2, since Er+1

2 (xr)−
Er1(xr) =

m2(m−1)σ2
z

(r+mσ2
z)(r+1+mσ2

z) > 0.
The same argument extends to the case in which there

are more than one slot with decision s in between the two
slots with decision c. Theorem 1 must then hold; otherwise,
there exists a decision subsequence with a structure that
was shown to be suboptimal.

APPENDIX C
PROOF OF THEOREM 3

Proof: From (9) and (15), using the optimal beam-
former in (7), the total harvested energy is

Ê(β) = (T−βm2)

(
σ2
z

β+σ2
z

+

β2
q∑
r=1

Eĥir

[∣∣∣ĥir ∣∣∣2]
(β+σ2

z)2

)
.

Denote u = 2
1+σ2

z/β

[
|ĥ1|2 . . . |ĥm|2

]T
. Elements of

u are independent Chi-Square random variables, since
ĥi’s are independent zero-mean complex Gaussian ran-
dom variables with variance (1 +

σ2
z

β ). Let uir denote
the random variable corresponding to the r-th largest
observation of the m original random variables. Denote
Cm,r = m!

(m−r+1)!(r−1)! . From order statistics, we have

E [uir ] =
2m!

(r−1)!

m−r+1∑
s=1

s(−1)s+1

(m−r+1−s)!s!(r+s−1)2
.

Denote Gm,q ,
∑q
r=1 E [uir ]. We have that gm,1 is

no less than than 2. Moreover, Gm,m = 2m, since∑m
r=1 E [uir ] is the variance of a (m degrees of freedom)

Chi-Square random variable. Then we have

Ê (β) = (T − βm2)
Gm,qβ + 2σ2

z

2 (β + σ2
z)

. (51)

Moreover, it is standard to show (51) is quasi-concave
function of β. Setting the first-order derivative of Ê (β)
to be zero, the Ê (β) is maximized at the unique positive
solution which is given as follows

β1 = −σ2
z +

√
σ2
z

m2Gm,q
(m2σ2

z + T )(Gm,q − 2) (52)

Define E(τ) , Ê′
(
τ/m2

)
. Let τ1 = m2β1.

Since the preamble length should be multiples of the
number of transmit antennas m, we obtain the optimal
preamble length as τ? = arg max

τ∈{bτ1c,dτ1e}
E (τ), if σ2

z ≤
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T (Gm,q−2)
2m2 ; and τ? = 0 otherwise. Thus, the maximum

harvested energy Emax = E (τ?).
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