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Abstract—We study joint source-channel coding (JSCC) of and a wide range of problems has been formulated. Existing
compressed sensing (CS) measurements using vector quaetiz work on this topic is mainly divided into three categories.

(VQ). We develop a framework for realizing optimum JSCC
schemes that enable encoding and transmitting CS measuremts
of a sparse source over discrete memoryless channels, anccdding
the sparse source signal. For this purpose, the optimal degi of
encoder-decoder pair of a VQ is considered, where the optintigy
is addressed by minimizing end-to-end mean square error (MB).
We derive a theoretical lower-bound on the MSE performanceand
propose a practical encoder-decoder design through an itative
algorithm. The resulting coding scheme is referred to as chanel-
optimized VQ for CS, coined COVQ-CS. In order to address
the encoding complexity issue of the COVQ-CS, we propose to
use a structured quantizer, namely low complexity multi-sage
VQ (MSVQ). We derive new encoding and decoding conditions
for the MSVQ, and then propose a practical encoder-decoder
design algorithm referred to as channel-optimized MSVQ forCS,
coined COMSVQ-CS. Through simulation studies, we compare
the proposed schemes vis-a-vis relevant quantizers.

Index Terms—\ector quantization, multi-stage vector quanti-
zation, joint source-channel coding, noisy channel, comgssed
sensing, sparsity, mean square error.

I. INTRODUCTION

Compressed sensing (CS) [2] considers retrievingigh-
dimensionalsparse vectorX from relatively lower number
of measurements. In many practical applications, the ciaite
measurements at a CS sensor node need tenbededusing
finite bits andtransmittedover noisy communicatiorchannels

1)

2)

3)

To do so, efficient design of source and channel codes should
be considered for reliable transmission of the CS measure-
ments over noisy channels. The optimum performance theo-

retically attainable in a point-to-point memoryless chelntan

be achieved using separate design of source and channgal, code

but this performance requires infinite source and chanrd co

The first category considers optimum quantizer design
for quantization of CS measurements, where a CS recon-
struction algorithm is held fixed at the decoder. Examples
include [3] and [[4], where CS reconstruction algorithms
are LASSO and message passing, respectively. Based on
analysis-by-synthesis principle, we have recently devel-
oped a quantizer design method [d [5], where any CS
reconstruction algorithm can be used.

The second category considers the design gbad CS
reconstruction algorithm, where the quantizer is held fixed
CS reconstruction from noisy measurements — where the
noise properties follow the effect of quantization — fafis i
the category. Examples arel [6]=[15]. To elaborate, let us
consider[[9] where CS measurements are uniformly quan-
tized and a convex optimization-based CS reconstruction
algorithm, called basis pursuit dequantizing (BPDQ), is
developed to suit the effect of uniform quantization. Fur-
ther, the design of CS reconstruction algorithms and their
performance bounds for reconstructing a sparse source
from 1-bit quantized measurements have been investigated
in [12]-{15].

Another line of previous work focuses on trade-offs be-
tween the quantization resources (e.g., quantizatior) rate
and CS resources (e.g., number of measurements or com-
plexity of CS reconstruction) [8][ [16]=[18]. For example,

in [18], a trade-off between number of measurements
and quantization rate was established by introducing the
concept of two compression regimes as quantification
of resources — quantization compression regime and CS
compression regime.

block lengths resulting in delay as well as coding compyexit We mention that all the above works are dedicated to pure
Considering finite-length sparse source and CS measurenf@irce coding through quantization of CS measurementfielo t

vector, it is theoretically guaranteed that joint sourbesmel

best of our knowledge, there is limited work on JSCC of CS

coding (JSCC) can provide better performance than a sepaf@gasurements using vector quantizer (VQ). In this regaed, w
design of source and channel codes. Therefore, to desighagl our previous effort i [1]. The current paper is build apo
practical coding method, we focus on optimal JSCC prinsipléhe work of [1], and provides a comprehensive framework for
for CS in the current workDenoting the reconstruction vectordeveloping optimum JSCC schemes to encode and transmit CS
by X at a decoder, our main objective is to develop a generfeasurements (of a sparse souXgeover discrete memoryless
framework for optimum JSCC of CS measurements using vediBannels, and to decode the sparse source so as to provide the

quantization, or in other words, optimum joint source-chah

reconstructionX. The optimality is addressed by minimizing

vector quantization for CS, such tHaf| X —X||3] is minimized. the MSE performance measul||X — X|[3].

A. Background

B. Contributions

Recently, significant research interest has been devoted t&Ve first consider the optimal design of VQ encoder-decoder
design and analysis of source coding, e.g. quantizatiorC8 pair for CS in the sense of minimizing the MSE. Here, we
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stress that we use the VQ in igenericform. This is different CS sensing vy Qe“nacr(‘)tg;r Channel Decoder
from the design methods using uniform quantizatidn [9] dmitl- : :

quantization of CS measuremenits|[12]2[15]. Our contringi X—» @ & Y e [ ron [ o —-—> X
include : :
« Establishing (necessary) optimal encoding and decoding Brenenenees :

conditions for VQ. Fig. 1. Studied system model for joint source-channel vequantization

« Providing a theoretical bound on the MSE performanceof CS measurements. The goal is to design encoder and geumtmings

. i i _ i lustrated in dashed box) with respect to minimiziffj| X — X||5] while the
gr?\llteel?agll\r/]g ZIFg)I::‘?t'[f;(;r?l VQ encoder-decoder design throug@ sensing matriX® and channelP(j|¢) are known in advanceQ.

o Addressing the encoding complexity issue of VQ using
a structured quantizer, namely low complexity multistage AN o _
VQ (MSVQ), where we derive new encoder-decoder cofaatrix ® € R*** (M < N) resulting in an under-determined
ditions for sub-optimal design of the MSVQ. set of linear measurements (possibly) perturbed by noise

Our practical encoder-decoder designs consider Channel- Y =X + W, (1)
Optimized VQ for CS, coined COVQ-CS, and Channel-
Optimized MSVQ for CS, coined COMSVQ-CS. To demonwhereY € R* andW € R* denote the measurement and the
strate the strength of the proposed designs, we compare tHifitive measurement noise vectors, respectively. Wenessu
with relevant quantizer design methods through differéme s thatX is aK-sparse vector, i.e., it has at mdst{(K” < M) non-
ulation studies. Particularly, we show that in noisy channgero coefficients, where the location and magnitude of thre no
scenarios, the proposed COVQ-CS and COMSVQ-CS scherd850 components are drawn from known distributions. We also
provide better and more robust (against channel noisepperfaSsume that the sparsity levélis known in advance. Werefme
mances compared to existing quantizers for CS followed By support set of the sparse vecr= [X;,..., Xy] as
separate channel coding. ={n: X, #0} c{1,..., N}with |S| = [X[lo < K. Next,
we define the mutual coherence notion which characterizes th
merit of a sensing matri®. The mutual coherence is defined

C. Outline as [19]

The rest of the paper is organized as follows. In Sediibn I, T ®|
we introduce some preliminaries of CS. The optimal design pEmax —4—2_ 1<4j<N, (2)
and performance analysis of a joint source-channel VQ for i#i ([ ®ill2] @52

CS are presented in Sectignllll. In Section] IV, we proposghere®; denotes the!” column of®. The mutual coherence

a practical VQ encoder-decoder design algorithm. Furtimer, ) < ;, < 1 formalizes the dependence between the columns of
Section[Y, we deal with complexity issue by proposing thé, and can be calculated in polynomial-time complexity.
design of computationally- and memory-efficient MSVQ for |n order to reconstruct an unknown sparse source from a
CS. The performance comparison of the proposed quantzatighisy under-sampled measurement vector, several recenstr
schemes with other relevant methods are made in Selction ¥dn methods have been developed based on convex optimiza-

and conclusions are drawn in SectlonlVIl. tion methods, iterative greedy search algorithms and Bayes
estimation approaches. In this paper, through the design an
D. Notations analysis procedures, we adopt the Bayesian framework [20]-

Notations: Random variables (RV’s) will be denoted by[m] for reconstructing a sparse source from noisy and guzat

upper-case letters while their realizations (instants) Wwe measurements. . . .

denoted by the respective lower-case letters. Random rgecto In the subsequeqt S(_ect|ons, we de_scrlbe our proposed design

of dimensionn will be represented by boldface characters. V\)@ethOdS for quantization by ob_servmg the CS measurement

will denote a sequence of RV'S,, ..., Jx by J{v. further, vector, and then develop theoretical results.

JN =iV implies thatJ; = ji,...,Jy = jn. Matrices will be

denoted by capital Greek letters, except that the squargitge I1I. JOINT SOURCE-CHANNEL VQ FORCS

matrix of dimensiom is denoted byl,,. The matrix operators In this section, we first introduce a general joint source-

determinant, trace, transpose and the maximum eigenvafii@nnel VQ system model for CS measurements in Sec-

of a matrix are denoted by det, Tr(-), ()7, and A\yax(-), tion [zA] We derive necessary conditions for optimality o

respectively. Further, cardinality of a set is showr| thyWe will ~encoder-decoder pair in SectionIll-B. Thereafter, we stigate

useE[-] to denote the expectation operator. Thenorm (p > 0) the effects of optimal conditions in Sectibn 1l-C, and peed

of a vectorz will be denoted byl|z|, = (30, |z.|P)'/7. to analysis of performance in SectibnTll-D.

Also, ||z]|o representdy-norm which is the number of non-

zero coefficients ire. A. General System Description and Performance Criterion

Consider the general system model, shown in Fiddre 1,

Il. PRELIMINARIES OF CS for transmitting CS measurements and reconstructing asspar

In CS, a random sparse vector (where most coefficients a@urce. Let the total bit budget allocated for encoding (gaa-
likely zero) X ¢ RY is linearly measured by a known sensingion) be fixed atR bits per dimension of the source vector. Given



the noisy measurement vecft, a VQ encoder is defined by awe show how the encoding indéx Z (or equivalently encoder
mappingE : RM — 7, whereZ is a finite index set defined region R;) can be chosen to minimize the MSE for a given
asZ 2 {0,1,...,2% — 1} with |Z| £ % = 2F. Denoting codebookC = {c;}7;'. Then, in Sectiof II-BR, we derive
the quantized index byl, the encoder works according toan expression for the optimal decoder codebGofor given
Y <€ R, = =i, where the set§R;}-; are encoder regions encoder regiongR,; },".
and U?:ol R; = RM such that whenY € R; the encoder 1) Optimal Encoder:First, let us introduce theninimum
outputs the indeXE(Y) =i € Z. Note that given an index, mean-square erro(MMSE) estimator of the source given the
the setR; is not necessarily a connected set (due to non-line@lpserved measurements (1) which is (seé [26, Chapter 11])
CS reconstruction) in the sp:_;tcﬂéM. Also, R; might be an X(y) 2 E[X|Y = y] € RV. (5)
empty set (due to channel noise, see é.d. [25]). "o
Next, we consider a memoryless channel consisting of dis-NOW: assume that the decoder codebdbk- {(fi}_jzo IS
crete input and output alphabets which is referred to agetisc Known and fixed. We focus on how the encoding indekould
memoryless channel (DMC). In our problem setup, the DMEe chosen to minimize the MSE given the observed noisy CS
accepts the encoded indéxand outputs a noisy symbglez, measurement vector. We rewrite the MSE as
The channel is defined by a random mapping characterized by2 E[|X — X||2] = E[|X — ¢, ||3]

transition probabilities (a) , ) )
e 9 [ S PI=iY =y}E [[X—cs B =y, I=i] f(y)dy
P(]h) = Pr(J = .7|I = 2)7 i,jeL, ©)) Yiez
which indicates the probability that indexis received given & Z/ {E [IX = cs[3Y =y, T =] }f(y)dy
that the input index to the channel wasWe assume that the iez JYER: ’ ’
transmitted index and the received index share the same (6)

index setZ, and the channel transition probabilitidd (3) arehere (a) follows from marginalization of the MSE over
known in advance. We denote the capacity of a given chanél and I. Further, f(y) is the M-fold probability density
by C bits/channel use. Given the received indexa decoder function (pdf) of the measurement vector. Algo) follows by
is characterized by a mappirg: Z — C where(C is a finite interchanging the integral and the summation and the faatt th
discretecodebookset containing all reproductiocodevectors Pr{/ = i[Y =y} = 1, Vy € R;, and otherwise the probability
{c; € RN}, The decoder’s functionality is described by as zero. Now, sincef(y) is always non-negative, the MSE-
look-up table;J =j = X = c; such that when the receivedMinimizing points inR™ that shall be assigned to the encoder
index from the channel ig, the decoder outpuB(j)=c; €C. regionR; are those that minimize the term within the braces in

Next, we state how we quantify the performance of Figdrethe last expression dfl(6). Then, the MSE-minimizing enngdi
and our design goal. It is important to design an encoddpdex, denoted by* € 7, is given by
decoder pair in order to minimize a distortion measure whiclt = arg minE [||X — c,[j3]Y =y, =i
reflects the requirements of the receiving-end user. Thezef et
we quantify the source reconstruction distortion of oudsd @ arg min {E[||c,[3|Y =y, I=i]—-2E[X"c,|Y =y, [=i]}
system by the end-to-end MSE defined as » et
= arg min {E[c, |37 = i - 2E[X"[Y = y]E[e, |I =1},

7

where the expectation is taken with respect to the distobst \here () follows from the fact thatX is indepen((je)nt
on the sparse sourck (which, itself, depends on the distri-of 7 conditioned onY: hence, E (IX3 Y=y, =] =

bution of non-zero coefficients iX as well as their random | [|X[3[Y =y] which is pulled out of the optimization(h)
placements (sparsity pattern)), the noweand the randomnessfo|iows from the fact that, is independent o, conditioned
in the channel. We mention that the end-to-end MSE dependsgi7, and from the Markov chaiX — Y — I — c;. Next,
CS reconstruction errqrquantization erroras well aschannel note that introducing channel transition probabilitieg;|i) in

noise While the CS sensing matri# is given, our concern is [3) and the MMSE estimatak(y) in (), the last equality in
to design an encoder-decoder pair robust against all these t (7) can be expressed as

kinds of error.

D 2 E[|X - X|3], )

R—1 R-1

i* = arg min P(ili) |le;||? — 2%(y) " P(jli)c;
B. Optimality Conditions for VQ Encoder and Decoder giGI jz:(:) Gl les Iz ¥) Z Ule;

Jj=

We consider an optimization technique for the system illus- (8)
trated in Figurd]l in order to determine encoder and decodeguivalently, the optimized encoding regions are obtaibgd
mappingsE and D, respectively, in the presence of channel Ro1
noise. More precisely, the aim of the VQ designis to find ~ R* ={y e RM . Z [P(j]i) — P(jli")] lleslls <

o MSE-minimizing encoder region&%i}figl and j=0

o MSE-minimizing decoder codeboak= {c; ?‘;01. R_1
We note that the optimal joint design of encoder and decoder 2§(y)T [P(j)i) — P(j|i")] cjri #4' € T

cannot be implemented since the resulting optimization is
analytically intractable. To address this issue, in SedlibBI] 9)

<.
I
o



2) Optimal Decoder: Applying the MSE criterion, it is Remark 1. Following (I2), let us denote byD., £ IE[HX—
straightforward to show that the codevectors which minediz X (Y)||2] the CS reconstruction distortion, and by, =
in (@) for a fixed encoder are obtained by letting represent E[||X(Y) — X||2] the quantized transmission distortion. Then,
the MMSE estimator of the vectaX based on the receivedthe decompositior{I2) indicates that the end-to-end source
index 5 from the channel, that is distortion D, without loss of optimality, is equivalent 16 =
¢ =E[X|J=j], jeT. 10y Dest Do
Now, using the Bayes’ rule, the expression fof can be
rewritten as

Interestingly, it can be also seen frofi}(12) that, does
not depend on quantization and channel aspects. Hencedto fin
optimal encoding indexes (given fixed codevectors) andhugdti

E[X]J = j] codevectors (given fixed encoding regions) with respechéo t

_ Z PG|EX|] = 4,1 =] end-to-end distortioD, it suffices to find them with respect to
’ minimizing D,. It can be proved that the necessary conditions

@ Z P(jli)P j E[X|Y =y]f(y|i)dy (11) for _optimality (with respect td?q) of the epcher-dgcoder pair
= derived for the system of Figurg 2 coincide with the ones
2 P(j| ) (2) developed for the system of Figulé 1, i.¢] (8) ahd (11). The

(b) ) 22 Pl) fR dy proof of this claim is as follows. Similar to the steps taken i

a > Pjli) fR» ' @), the D,—minimizing encoding index* € Z is given by

where(a) follows from margmahzatlon oveX and the Markov ;* — = arg mlnE [||X( ) — CJH§|Y =y, I= Z}
chainX — Y — I. Moreover,f(y|¢) is the conditional pdf of

Y given thatY € R;. Also, (b) follows by using [(5) and by ~ = arg min {Ellles 3|1 = i]—2%(y) "Elcs |1 =i},
the fact thatf(y|i) = 0, Vy ¢ R;.

R— R—1
The optimal conditions in[{8) an 1) can be used in ~ -
pum [18) and{L1) can = arg min S PGl ey = 2% 3 PUlie,
an alternate-iterateprocedure to design a practical encoder- = —
decoder pair for vector quantization of CS measurements. Th a -
resulting algorithm will be presented later in Section IV. Further, theD,—minimizing decoder? is obtained by

- - . » ¢; = E[X*(Y)|J = j]
C. Insights Through Analyzing the Optimal Conditions @
Here, we provide insights into the necessary optimal condi- / X[J =7,Y =ylp(ylj)dy
tions [8) and[(T0). Note that the encoding conditioh (8) iepl — E[X|J = j
that the sparse source is first MMSE-wise reconstructed from ’
CS measurements at the encoder, and then quantized towhere(a) follows from the Markov propertyN((Y) Y — J.

appropriate index. Hence, it suggests that the system shoMgw, we provide the following remark.
in Figure[1 may be translated to the equivalent system shown

in Figure2. Remark 2. The general system of Figuré 1 and Figlile 2 are
equivalent considering end-to-end MSE criterion, fixedssen
CS sensing vy | CSdecoder%ﬁ’g('feerr """ T (% ueir;tézee;r matrix and channel transition probabilities.
< > Y[R X = Ll rom 1Y P Before proceeding to the analysis of the MSE using the
— D77 wwse) [ 177 P _'_> x developed equivalence property, we provide a compardtiaky's

between our proposed design scheme with related methods
in the literature which follow the building block structure
Fig. 2. Equivalent block diagram of a system with CS recamsion R shown in Figurd 3. Under this system model, for a fixed CS
(MMSE reconstruction) at the encoder side. Necessary aptionditions for . " " "
encoder-decoder pair of this system are equivalent to tldsene original reconstruction algorithm (or, a fixed quantizer encodereder
system model shown in FiguEé 1. pair), a quantizer encoder-decoder pair (or, CS recortgiruc
algorithm) is designed in order to satisfy a certain perfamoe
criterion, e.g. minimizing end-to-end distortion, quaation
distortion or¢;—norm of reconstruction vector. Some examples
of system models following Figuifd 3 includel [3]J [5]) [OL. AL
D =E[|X - fi(Y) 4 }NC(Y) — )A(Hg] (12) (assuming a noiseless channel) and the conventioaatest-
= 9 <~ S neighbor codingof CS measurements. In general, accordin

= E[IIX - X(Y)ll2] + E[IX(Y) - X]3], to t%is system ?nodel, quantizer decodlbrou?puts the vector ’
where the second equality can be proved by showing that tiiec R after receiving channel output. Finally, a given CS
estimation error of the sourcX — X(Y) and the quantized reconstruction decodd® : R — RY takesY and makes an
transmission erroK (Y) — X are uncorrelated. This holds fromestimate of the sparse source.
the definition of X(Y) and the long Markov propertX — Following Figure[2 (as the equivalent system model of Fig-
Y - I - J — X due to the assumption of deterministiaure[d), we note that it is structurally different from the teys
mappingsE and D and memoryless channel. model of Figure[B in the location of the CS reconstruction,

Let us first denote the MMSE estimator as the RVY) £
E[X]|Y], then we rewrite the end-to-end distortidh as



..................................................................

; H ti ti H . . . .
CSsensing v | Grwade  Chamnel  Wesader CSdecoder  Where the constant, is the same dimensionality-dependent
fy U v % i _ constant in[(IB).
X —p @ : E —{Pwu)l—s| D |—{ R [F>X .
W " : The lower-bound(14) (also known as adaptive bound’in [16],

in the noiseless channel case) can be proved assurahg th
the support set oKX € R" is a priori known. Therefore, one
Fig. 3. Block diagram of a system with CS reconstruction atdacoder side. can transmit the known support set uslng (N) bits. and the
The aim is to design encoder—decoder mappings or CS decifidstrgted in . ffici ithin th 2 \K b ! .
dashed box) with respect to optimizing a performance @oitewhile the CS Gaussian ]goe .|C|ent5 wit m.t € support set can _e.quajlwse
sensing matrix® and channelP(v|u) are known in advance. R —log, (K) bits. Under noiseless channel conditidn € 1),

the right hand side in(14) is shown to achieve the distortion

rate function of aK-sparse source vector with Gaussian non-

either at the transmitter side or at the receiver side. In g8 Ccoefficients and a support set uniformly drawn frof)
former system, an encoder reconstructs the source from B@ssibilities [27]. Then, the separate source-channeingod

measurements, whereas the latter system puts all CS redfgorem [28, Chapter 7] can be applied to find the optimum
struction complexity at the decoder. performance theoretically attainable (OPTA) by introdhggi

channel capacity’.

D. Analysis of MSE Remark 4. The lower-bound ir{I4) shows that the end-to-end

In this section, we provide an analysis into the impact of C4SE can at most decay exponentially (in quantization raje
reconstruction distortion, quantization error and chameése With exponent-S= dB/bit. Since the sparsity ratiq: < 1, the

on the end-to-end MSE by deriving a lower-bound. decaying exponent can be far steeper thafz dB/bit for a
N ) ) ) Gaussian non-sparse source vector of dimengian
Proposition 1. Consider the linear CS mod§I)) with an exact

K-sparse sourc& € RY under the following assumptions: ~ The following toy example offers some insights into the
i. The magnitude ok non-zero coefficients iX are drawn tightness of the lower-bounf{14).

) aCCOfding to the i.i.d. standard Gaussian dlStrlbUtlon Examp|e 1. Using a Simp|e examp|e' we show how t|ght the
i. The K elements of the support set are uniformly draWR)wer-bound(ﬂZ) is with respect to our proposed design. In

from all (}) possibilities. Figure[d, we compare simulation results with the lower-bdun
iii. The measurement noise is drawn & ~ N(0,031x)  in some region wher&(Y) — X[ Following this best-case

uncorrelated with the measurements, whefg# 0. scenario, we generatg x 10° realizations ofX € R? with
Further, assume a sensing matri& with mutual coherence sparsity level K = 1, where the non-zero coefficient is a

p. Let the total quantization rate bé bits/vector, and the standard Gaussian RV, and its location is drawn uniformly
channel be characterized by capaciybits/channel use, then at random over{1,2}. Then, we use the necessary optimal
the end-to-end MSE of the system of Figure 1 asymptoticatlynditions(8) and (I0) iteratively (as will be shown later in
(in quantization rate and dimension) is lower-bounded as  Algorithm[1). Considering a binary symmetric channel (BSC)
with bit cross-over probability and capacityC' bits/channel use
(13) (see(29)), we plot MSE,D = E[|| X —X||3] versus quantization
’ rate R for ¢ = 0 (noiseless channel) and = 0.02 (noisy
- o2 o (K (K\\% (K+2 hannel) in Figuré#. It can be observed thakat 0, the bound
where ¢, = T+o2 +H(K+1)p’ and02_2(§F(§))K (KI?Q) ’ ¢ ; _— ;
. . w . (dashed line) is tight. As would be expected, degrading icblan
in which I'(-) denotes the Gamma function. condition toe = 0.02 reduces the performance. At= 0.02,
Proof: The proof can be found in the Appendix. B the gap between the simulation result (solid line markeddy °
and its corresponding lower-bound (dotted line) increadéste
that in the noisy channel case, the lower-bound is based upon
e asymptotic assumption of infinite source and channet cod
gths (used in the OPTA). Therefore, the lower-bound ts no
tight at e = 0.02 for low dimensions.

_20<R710i(2 (K)>
D> Keci + c1e02

YR

Remark 3. Each component of the lower-bou@3) is intu-
itive. The first term is the contribution of the CS reconsdiiarc
distortion, and the second term reflects the distortion due
the vector quantized transmission. When the CS measurem
are noisy, it can be verified that & increases, the end-to-end
MSE attains an error floor. This result can be also inferrehfir
(12). as quantization rate increase®),, decays (asymptotically) IV. PRACTICAL QUANTIZER DESIGN
exponentially, howeverD., is constant irrespective of rate.

Hence, ask _>~O§’ the value that the MSE converges to Fecoder design algorithm, referred to as channel-optinZ@

Des = E[[IX — Xf3]. for CS (COVQ-CS) using the necessary optimal conditihs (8)
It should be noted when CS measurements are noiselessl [I1). Then, we provide a practical comparison between

(02 = 0), the lower-bound[{A3) becomes trivial. In this case&ur proposed algorithm and a conventional quantizer design

a simple asymptotic lower-bound for the system of Figure a@Jgorithm. We finalize this section by analyzing encoding an

under the assumptions of Propositldn 1, can be obtained asdecoding computational complexity.

In this section, we first develop a practical VQ encoder-

R—1lo
c %) (14) 1This scenario can be realized in an event whefe = 0 and number of

L (
D > cy2 , measurements is such that the CS reconstruction is perfect.



Fig. 4. Comparison of the lower-bound [0J14) and simulatiesults for sim-

the splitting procedure of the so-called LBG design algo-
ol ‘ ‘ | rithm. Then, the final optimized codevectors are chosen
for initialization of Algorithm[1 in the noisy channel case.
\\e\ Furthermore, convergence in step (7) may be checked by
sy 4 tracking the MSE, and terminate the iterations when the
’ relative improvement is small enough. By construction and
1 ignoring issues such as numerical precision, the iterative
design in Algorithni ]l always converges to a local optimum
since when the criteria in steps (5) and (6) of the algorithm
are invoked, the performance can only leave unchanged or
improved, given the updated indexes and codevectors. This
is a common rationale behind the proof of convergence for
such iterative algorithms (see e.§.[31, Lemma 11.3.1]).
However, nothing can be generally guaranteed about the
global optimality of this algorithm.

30}

—©— Simulation (¢ = 0.02)
“““ Lower-bound (eq. 14, ¢ = 0.02)
-35r- —#— Simulation (e = 0)

- = = Lower-bound (eq. 14, € = 0)

—40 I I
5

Quantization rate (R bits per dimension)

Algorithm 1 COVQ-CS: Practical training algorithm

1: input: measurement vectory, channel probabilities:
P(jli), bit budget:R bits/vector.

. _ 2 . H ~ .
ulation of a 1-sparse sour@ < R in a region where the locally reconstructed 2: compute: x(y) in (B)

sourceX can be perfectly recovered from noiseless measurements.

3 initialize: C = {c;}).,', whereR = 2%

4: repeat
5:  Fix the codevectors, then update the encoding indexes
A. Training Algorithm for Practical Design using [3).

The results presented in SectionIIlIB1 and SedfionT-BA c
be utilized to formulate aiterate-alternatetraining algorithm
for the problem of interest. Similar to thgeneralized Lloyd

algorithm for noisy channel$ [29], we propose a VQ training

Fix the encoding indexes, then update the codevectors

using [11).

7: until convergence
8 output: {R;}1", € ={c;} 0

method for the design problem in this paper which is summa-

rized in Algorithm[1. The following remarks can be considkre

for implementing AlgorithniIL:
'mp ing Algorithnil B. Practical Comparison

o In step (1), besides the channel transition probabilities

P(j]i), we assume that the statistics of the sparse sourc ere, we offer further insights into quantization aspects
vector are given for training through the design of conventionakarest-neighbor coding

In general, it is not easy to derive closed-form solutions f§NNC) @s a representative of Figulé 3, and the design of

the optimal decoding conditiofi{lL1), for example, due tgroposed COVQ-CS method as a representative of Figure 2.
difficulties in calculating the integrals even if the ptffy) The NNC for CS is often considered as a benchmark for

is known. In practice, we calculate the codeveetp(; performance evalgatlons. .

7) in (@0) using the Monte-Carlo method. To implement The nea_rest—ne|ghbor_ cc_)dlng (NNC) for C_:S_ measurements
this computationally-efficient procedure, we first generafS @ccomplished by designing a channel-optimized VQ for the
a set of finitetraining vectorsX, and then sample-averagdnPut vectory aming to rrln|m|zf4the]uantlzat|o_n distortion
over those vectors that have led to the index ;. €., ]E[HY_YM'_ wh_ereY €R 1S Fhe quant|ze_r decher
To address the issue of encountering empty regions, we JptPUt as shown in FiguiglBConsidering the notations given

each iteration of the algorithm, pick the codevector whod8" the Figurd B, the design procedure of the quantizer ezrcod

index has been sent the most number of times, denoted®}f! the quantizer decoder is as follows: f]ar gguar?tlzamxbe r
@ Then, a codevector associated with the index thgkb'tS/VeCtor' a fixed codebodk={g, € R™ },~;, with =
has not been sent is calculated &> + 5C;_nax’ where , and channel ;cransmon probabilit® (v|u), the optimized
§ > 0 is sufficiently small. Using this technique (which is€ncoding regiork;, becomes

also known as splitting method in the initialization phase R—1
of the LBG algorithm[[30]), we efficiently re-include those R = {y eRM " [P(v]u) — P(ofu))] |8l <
encoding indexes that have never been selected due to the v=0

limited number of generated samples. This will lead to a
design that efficiently uses all degrees of freedom.

The performance of the COVQ-CS is sensitive to initial-
izations in order for the algorithm to converge to a smaller
value of the distortionD. Therefore, in step (3), when the 156 ¢ g [129] for more details regarding the design of ceoptimized
channel is noiseless, the codevectors are initializedgusiviQ in a non-CS system model.

R—1
2y Y [P(v|u) — P(o|e)) g, u # ' € U} :
o (15)
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(c) Encoding regions using the NNC-OS]15)&? (d) Reconstructed Codevectors designed by NNC-CS
in R3

Fig. 5. The qualitative behavior comparison of quantizérestces: COVQ-CS and NNC-CS designed for a BSC with 0.02.

whereld £ {0,...,2% — 1} is the encoding index set. Now, foran iterative algorithm is used by alternating between eriegd
the given region[(T5) and channel transition probabiftyj|i), regions(I5) and codevectorflB). Finally, a CS reconstruction

the quantization MSE-minimizing codevectors satisfy algorithmR : R™ — RY (here, we choose the same MMSE
. estimator used at the encoder of COVQ-CS) takes the NNC-CS
g, =E[Y[V =v], wvel (16) codevectors and produces an estimate of the sparse source. |
In order to design an encode-decoder pair using the NNC, %?égglnNaCS CS and COVQ-CS schemes, the sensing niitisx

iterative algorithm can be used to alternate betwéeh (18) a
(I8). Finally, a CS reconstruction algorithR produces the P 0.9924 0.8961 0.7201
reconstruction vectoX from the quantizer decoder outpht. ~\ 0.1230 0.4439 0.6939

We refer to this design method as NNC-CS. In Figure [B, we qualitatively illustrate encoding regions

Example 2. In this example, we illustrate how the COVQand codevectors using the two designs. Figure]5(a) shows the
CS and NNC-CS design methods are different in shapisgmples of CS measurements classified by encoding regions of
encoding regions (given that CS measurements are observ€@VQ-CS inR?, i.e., (8), and Figure[5(H) shows the samples
and positioning codevectors (given that channel outpueindof X classified by the index of encoding regions (in the same
observed). For illustration purpose, we choose the inpatrsp color) together with the codevectors of COVQ-CSRif i.e.,
vector dimension, measurement vector dimension and $yJars{|cJ _, in (@2). Figure[5(c) illustrates the encodlng regions of
level asN = 3, M = 2 and K = 1, respectively. The NNC CS, i.e.(I8), together with codevectorfz,}*_, shown
location of non-zero coefficient is drawn uniformly at rando by black circles, and Figur¢ 5(d) shows the samples of the
from {1,..., N}, and its value is a standard Gaussian R\sparse source along with the codevectors of NNC-CS mapped to
For implementing the COVQ-CS via Algoritith 1, the MMSEhe 3-dimensional space using the CS reconstruction alyor;
estimatorx(y) (used in(@)) is calculated via the closed-formi.e.,R({g,}2_,). From the samples in the measurement space,
solution given in[[22, eq. (27)]. We generaté? realizations we observe that the entries of the CS measurements are highly
for X (and subsequentlY’), where measurement noise vectocorrelated, in this particular example, due to a large mutca-

is drawn fromAN (0,02 1,,) with o2 = 0.04. Then, we fix the herence of the sensing matrix & 0.9533). Hence, as shown in
quantization rate at? = 2 bits/vector and assume a BSC withFigure[5(C), the codevectors designed by the NNC-CS (aJmost
cross-over probability = 0.02. For implementing the NNC-CS, lie on a single line. Although, in this case, the location ofle-
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vectors are optimized to minimize the quantization digtart
E[|Y — Y]|3], it is critical when the codevectors are mapped
back to the source domain. From Figyre §(d), it is observed h
that the reconstructed codevectoR({g,},_,), are not only
situated (approximately) on one axis but also far (in Euedid
distance) to their corresponding source samples (showarimes
color) resulting in a high end-to-end distortion. Furthdr, for .
example, the codevectey is received agg, due to channel v
noise, it produces a large end-to-end distortion. Usingeoth
experiments, in the case of noiseless channel, we obsdreed t
same trend in the location of reconstructed codevectorsus Fig. 6. JSCC system model for CS measurements using MSVQ.
NNC-CS) on the source domain which also produces large MSE

in terms of the average distance between source samples and

their corresponding reconstructed codevectors. Whils igthe  for full-search minimization ig N +1)2%. It also follows that

case in NNC-CS, it can be seen from FiglQire pb(a) that thge decoder required2% floats to storec; in (@0).

encoding regions using COVQ-CS may not form convex setgjsing high-dimensional VQ and CS, the implementation of
(for example, region 3) unlike the ones using the NNC-CS Tighe quantizer encoder and decoder may not be feasible, both
is due to the fact that the region fixed by the r@ may not from computational complexity and from memory complexity
be a convex set iy due to non-linearity inx(y). As a result, yjewpoints. The complexity can be reduced by exploiting-sub
the COVQ-CS uses the measurement space more efficientlmjﬂmm approaches (with respect {d (4)) such as multiestag
order to reduce end-to-end distortiof[|X — X|[3]. It can vQ (MSVQ) which splits a single VQ into multiple VQ's at

be observed from Figure 5(b) that the COVQ-CS codevectgfigerent stages. In the next section, we focus on the design
are located on different coordinates in the 3-dimensionakse  jSCC strategies for CS measurements using MSVQ.

space to minimize the end-to-end source distortion. Intamidi
the codevectors are located such that the COVQ-CS design V. JOINT SOURCE-CHANNEL MSVQ FORCS
becomes more robust against channel noise which produce
smaller end-to-end distortion unlike the NNC-CS design. I:‘Png complexity effectively has led to development of musitige
example, as shown in Figufe 5|b), if the codeveoteris 0 (MSVQ)

chosen as, at decoder due to channel noise, it provides muc% '

less end-to-end distortion than that of the NNC-CS. Nurakric
performance comparison between these two schemes will'%e

made later in Section V1B through different simulationdétis. In this section, we give an account for the basic assumptions
and models made about the investigated system depicted in

Figure [6. We illustrate anL-stage VQ, whereL > 1 is
C. Complexity of COVQ-CS the maximum number of stages. Our MSVQ system model

. . . . _basically follows that of[[32]. More specifically, we consid
We analyze the encoding computational complexity (ti et (1 < | < I) stage with allocated®, bits/vector,

usage) as well as encoder-decoder memory complexity (sp(\a}vcneereZlL:1 R = R, andR is the total available quantization

usage) for the COVQ-CS. For encoding cqmputa}tlonal COMte. Indeed,R; adjusts a trade-off between complexity and
plexity, we calculate the number of operations (in terms g

FLORY) required for transmitting an encoded index over th erformance of MSVQ. A quantizer encoder, a.lt stageecepts
" : the measurement vectdf and the encoded index from the
channel based ot](8). In addition, for memory complexity, Wﬁ _ 1)th stage as inputs, then maps them into an integer
calculate the memory (in terms of figatrequired for storing index i1 ¢ Igé {0 P 21;” 1 witﬁ 7] 2 W = of 9
vector parameters at encoder and decoder. ! b L . t= =t = "
The encoding complexity for computing the argumentih ( here}‘\?re, thel'"—stage encoder is described by a mapping
. . . : RM™ x Z;_1 — 7, such that
requires one FLOP for calculating the subtraction as well as - ! _
2N —1 FLOP’s (N multiplications andN — 1 additions) for E (Y, [1-1) =0, if(YeR},
calculating the inner product in the second term. Thus, dked t
complexity for the full-search minimization at encodegis 2%
FLOP’s. Note that we do not consider the complexity of C
reconstruction algorithm since its calculation is reqdifer all
relevant quantizers for CS. Next, considering the argumentIO = 9. ) _ ) _
(@), the encoder needs one float to store the first constant ter The encoded index; is t.ransmltt_e.d over a DMC (indepen-
in @), i.e., c,||2, and alsoN floats to store the second termdent of other channels) with transition probabilities
in (@), i.e., the codevectar;. Thus, the total encoding memory PGili) = Pr(J; = 5| = ), 1,51 € Ty, (18)
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Sraking advantage of VQ properties by addressing its encod-

System Description and Performance Criterion

L1 =11-1), (17)

whereR?1 £ R; N...NR, is called thel*"—stage encoding
ggion. The regiorR;! might be a connected set or union of
some connected sets k", We also make the assumption that

1Each addition, multiplication and comparison is represeiity one floating whereJ; denotes the channel OUtpu,t at_ tiie stage. .
point operation (FLOP). Next, a decodeD; accepts the noisy index, and provides

2Float is considered as a single precision point unit. an estimation of the quantization error according to anlalks



codebook set. Formally, thié"—stage decoder is defined by avhere (a) follows from marginalization ofD; over Y and I,
mappingD; : Z; — C; whereC; denotes a codebook set consistand the fact that F{i{l1 = ill|Y =y} =1, Vy € lel and
of reproduction codevectors, i.€, = {c;, € RN}% !, thus otherwise the probability is zero.
) ) ) Thus, Viy,...,i—1, the optimized index, denoted bif,
D) = ejis it S =51, g € T (19) is attained by [[23), wherda) follows from the Markov
We denote the output of thé" stage decoder by(l =y, chanX — (‘?Ii o= L (vf € {1,...,1}), hence,
and the final reconstructed vector By= "1, X;. E[[X|3[Y =y, Ty =1}] = E[|X|3]Y=y] which is pulled
We are interested in designing the quantizers in the syst@t Of the optimization. Also(b) follows from the Markov
of Figure[® using thend-to-end MSEriterion defined in[{g). chain(Y, 1) = I ey, VEe(l,... 1}, ,
Nevertheless, it is not easy to find optimal encoders (by dixin Introducing transition probab|I|t|eﬂ]].8) and the MMSEiest

the decoders) and decoders (by fixing encoders) for all tREtor [3), the last equality i {23) is expressed as

stages jointly with respect to minimizingl(4). Thereforee w Ry —1 Ry -1
N L % . L. 2 ~ T S
define a new performance criterion as i =arg min E P(jilir) [lej, |5 —2x(y) E P(jilir)cy,
i 1
J1=0 71=0
LE[X =D X3, 1=1,.... L. (20) S T

+2 Z Z Z (jilin) P Jt|it)CjTlet

Using the performance criterioP; in (20), we assume that Hi=0 t=1 j:=0

thel'" stage only observes the previoils- 1) stages. Applying (24)
D;, we derive necessary encoding and decoding policies fdemark 5. Comparing the optimized encoding index for MSVQ
optimality (with respect to[{20)) at stage(l1 < I < L). for CS in(24), with that of the VQ for CS i), it can be
Then, encoder-decoder pairs at the next stagesegeentially seen that the third term i@24) is due to imposing multi-stage
designed one after another. Using the sequential optiiizatstructure on the original VQ. A$ = 1, this term vanishes and
at stagel, we assume that the subsequent codevectors #re resulting expression coincides wii).
pop_ulated with zero. This_assumption means that the seiqhe_nt 2) Optimal Decoder: In order to derive codevectors
deS|g_n is sub-optimal with .respect thl (4), and th.e.resulnri%ﬁ}g?l 01’ we fix encoding region$7€§ll} and all prior code-
conditions would lead to ne|ther.globa! nor local minimum o ook sets. Therefore, applying, in 20), it is straightforward
the end-to-end MSE. However, it provides better performean how that the optimal—stage codevectors, denoted by
compared to the schemes which only consider quantizati Dy 0% —
1 _1 , are obtained as
distortion at each stage separately.
-1

B. Optimality Conditions for MSVQ Encoder and Decoder —EX ZCJ'M =il ged (29)

In this section, we develop encoding and decoding prinsiplSimilar to the steps taken ib_{lL1), the codevectbrs (25) @n b
for the I*" (1 < | < L) stage of the MSVQ system shownparameterized in terms of encoding regions, channel tiansi
Figure[®. Following the arguments of Sectibn Tll-B, we firsprobabilities and MMSE estimation. Here, for the sake of
assume that decoder codevectées, };‘;‘01 and all encoding analysis, we only provide closed-form codebook expression
regions/codevectors at previods— 1 stages are fixed andfor L = 2 which are given by

known, then we find necessary optimal encoding regions with S, P(iulia) [ )dy
respect to minimizingD; in (20) in Section[V-Bll. Second, c = “ Riy ,
we fix the encoding reglonst”} and then denve necessary 22, Pllin) fRil

optimal codevectors in SectnﬂBZ Finally, in Sectioi88; . e N

we combine these necessary optimal conditions to develop _ 2 i P(h'm)fnﬁ (X(y) 2, P(ﬁ'll)ch) 1(y)dy

a practical MSVQ design algorithm referred to as channel+? Dirin P(j2|z'2)fRi2 f(y)dy '

optimized MSVQ for CS (COMSVQ-CS).
1) Optimal Encoder:In order to derive encoding reg|onsF'na”y’ we note that whed. =1, the condition[(25) simplifies

i R -1 nto (11).
zgepriv:,(\;i;Ixs'::lgecs()dlg\r/ses:tloerﬁ}ls}defmjnd all the codevectors! 3) Training Algorithm: Similar to Algorithm[1, we can de-

velop a practical method for training channel-optimized\K(5
for CS, coined COMSVQ-CS, summarized in Algoritih 2.
Di(y,it) £ E[|X — ZXtH Y =y, T} =i{], 1<I<L.  Similar remarks, as stated for Algorithfh 1, can be also con-
t=1 21) sidered for implementing Algorithni]2 with the difference
that convergence in step (8) may be checked by tracking the
distortion D;, and terminate the iterations when the relative
improvement is small enough. Furthermore, in order to dateu

Now, D; in (20) can be rewritten as

2 E[IX - Z cr,ll3] the codevectoe;, (j; € Z;) in (25), we use Monte-Carlo method
(22) by first generating a set of finiteaining vectorsX with known
@ Z - Di(y.i)) f(y)dy, pdf, and then calculating the vect®r— >"'_! c;,. Finally, we

i IR average over those vectors that have resulted the iddexj;.



if = arg minD;(y, i)
€Ly

10

= arg min {E[IXIZY =y, I} =] +E[[lcs,+...+cy |3 Y=y, I =i}] —2E [X " (cj,+...+¢,)|[ Y=y, I =i}]}
2 L

(a) . . .
= arg min {Ellles, +...+c|3Y =y, I} =i] = 2E[X " (cj, +...+¢cy)[Y =y, I} =i']}
K2 1

-1
®)

t=1

= arg min {En% 3|5 =i + 2 Elej, I = i]Elcs, |l = if] — 2E[X " |Y = y]E[c,, |1 = il]}
2 1

(23)

Algorithm 2 COMSVQ-CS: Practical training algorithm for the
I*h stage { <1 < L) of MSVQ

1: input: measurement vectory,

P(j;|i;) from (@8), bit budgetR,
: compute: X(y) in (B)
initialize: € = {c;,}75,! with 9% = 27t
repeat

Vig, ..

channel probabilities:

. ,’L'lfl, Vle, ey le71

o9k wDd

ing indexes (regions) for thE" stage using[{24).

7. Fix the encoding indexes (regions) of all prior stages,

then update the codevectors for e stage using[(25).
8: until convergence ‘
9: output: C; = {c;, }7;" and {R}}

C. Complexity of COMSVQ-CS

In order to calculate the MSVQ encoder complexity, we

calculate the number of operations at the encoder based on

(24). Here, the computational complexity of CS reconstomct

algorithm is not considered. We consider the argument df (24

which requires two FLOP’s for the subtraction and additamg
also2N — 1 FLOP’s for computing the second inner product
term. Note that the first constant term and the third innedpcb

term can be computed offline, and they are not counted in our
complexity analysis. Thus, in total, the COMSVQ-CS encoder

requires2N+1) Zle 2% operations, wher&; (I = 1,...,L)
is the quantization rate available a4 stage andL is total
number of stages such thit , k; = R.

It can be also shown that at stagethe encoder requires
one float to store the first term il (24), i.d¢;,||3, NV floats
to store the second term if_{(24), i.e;,, and alsol — 1
floats for storing the third term if_(24). Therefore, consiidg

L stages, the total encoding memory of the COMSVQ-CS

is ZfZI(N + 1)2F. Now, we consider the decoder memory
complexity. Each decoder at stageequires N2 floats to
store the codevectar;, considering the fact that the memory

for storing the codebooks of previous stages has been glread

calculated. Hence, the decoder storage memoty J5- | 2%
floats.

By splitting the original VQ into stages, the computational
complexity as well as memory complexity can be consideral
reduced. Therefore, a practical, however sub-optimal,lemp

Fix the codebooks of all prior stages, then update encod-*

VI. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of the proposed
designs COVQ-CS (Algorithma]1) and COMSVQ-CS (Algo-
rithm[2). Through simulations, we compare their perforngsnc
with the lower-bounds developed in Section TlI-D along with
existing quantizers used for CS. We consider three quastize
following the system model of Figuid 3. They are as follows.

Nearest-Neighbor Coding for CS (NNC-@SThe NNC-

CS design method has been discussed in Seffion] IV-B.
Note that this scheme has the same complexity order as
that of the COVQ-CS.

Multi-Stage Nearest-Neighbor Coding for CS (MSNNC-
CS) Using multi-stage structure for NNC-CS leads to the
design of MSNNC-CS. The quantizer encoding-decoding
conditions using this design are givenlin][32] for a non-CS
system model. The encoding complexity order of MSNNC-
CS is the same as that of the COMSVQ-CS.

« Basis Pursuit DeQuantizing (BPDQJ9]: Using this

method, the encoder uniformly scalar-quantizes CS mea-
surements, and the BPDQ algorithid [9] reconstructs the

sparse source (from the quantized measurements) by solv-
ing the following convex optimization problem

x* =arg min |[x[ s.t. |y — ®x[, <v, (26)

xeRN
wherey is the quantized vectop, > 2 and~ > 0 is chosen
to satisfy some fidelity constraint, e.g., quantizatioroerr
power. Note that the encoder computational complexity
is of order O(27/M). In the design of uniform scalar
quantizer for the BPDQ scheme, the choice of lower- and
upper-boundaries for quantization is important, leadmg t
different saturation errors [33]. In order to choose the
end-points for uniform quantization of CS measurements,
we generate random samples of CS measurement vectors
according to the distribution of the sparse source, sensing
matrix, and the measurements noise. Then, the upper quan-
tization boundary is selected as the maximum value among
the amplitudes of the generated sample entries of the
measurement vector. The lower quantization boundary is
also selected as the opposite value of the upper-boundary.
Using such simple approach, we mainly reduce the effect
of the saturation error.

bbﬁe following scheme follows the system model of Figlure 2.

mentation of COVQ-CS is feasible at h'gh quantization ra-telHere, with abuse of notation we use the tenearest-neighbor codinin

and dimension.

the presence of channel noise insteadvefghted nearest-neighbor coding



o Support Set Coding (SSQh the SSC method, the recon- 6)
structed support set 6f(y) is transmitted usindog, ()

bits, and then thek largest coefficients (in magnitude) 7)
within the reconstructed support set are scalar-quant@zed
their nearest neighbor codepoints usifig- log, (&) bits.
Here, we use codepoints optimized for a standard Gaussian
RV using the LBG algorithm[[30]. Notice that when
the non-zero coefficients of the sparse source vector are
drawn according to an i.i.d. standard Gaussian distributio
(which is the case in our simulations), the optimized
LBG-based codepoints minimize the distortion per non-
zero component of the sparse source. It is straightforward
that the encoding complexity of the SSC is of order
O(2(B-1022 ())/K) - or equivalently O(27/K) at high
guantization rate

A. Experimental Setup

We quantify the performance using normalized MSE (NMSE)

defined as

E[TX]) @7

In principle, the numerator of NMSE i (R7) is computed by

sample averaging over generated realizationX oking Monte-

Carlo simulations, and the denominator can be calculated ex

actly under the assumptions of our simulation setup.
In addition, in order to measure the level of under-samplin
we define the measurement rétec o < 1 asa 2 M/N.

Our simulation setup includes the following steps:

1) For given values of sparsity levél (assumed known in
advance) and input vector si2é, choosey, and round the
number of measuremenid to its nearest integer.

2) Randomly generate a set of exacHiy-sparse vectoiX,
where the support s& with |S| = K is chosen uniformly
at random over the sdtl,2,..., N}. The non-zero coef-

ficients of X are i.i.d. and drawn from standard Gaussiaﬁw.lt

sourceN (0, 1); HenceE[| X||3] = K.

3) We let the elements of the sensing matrix fe; 9
N(0,1/M)
® is generated, it remains fixed and known globally.

4) Compute linear measuremens = ®X + W for each
sparse data vector wheW ~ N(0,021y;).

5) We Choose the total quantization ral® and assume a
BSC with bit cross-over probability < ¢ < 0.5 specified

by

11

Apply the quantization algorithms on the generated data
Y, and assess NMSE by averaging over all data.
Practical necessity:In our proposed COVQ-CS and
COMSVQ-CS design algorithms, it is required to calculate
the MMSE estimatox(y), e.g. in [8) and[{24). Imple-
menting the Bayesian MMSE estimator, or in other words,
calculating the conditional meaR[X|Y = y]|, has been
studied in [20]-[24] which can be derived approximately
or exactly under certain assumptions. Although the MMSE
estimator can be implemented for low-dimensional vectors
(as used in Examplél 2), as the dimension grows, its
complexity increases exponentially. Thus, for the sake of
complexity, we will approximatex(y) using the output

of a practically realizable CS reconstruction algorithm.
Considering the case that fa-norm minimization-based
convex reconstruction also suffers from high complexity
O(N?) for a high dimensionV, we choose the simple
orthogonal matching pursuit (OMP) greedy algorithim| [34]
as a CS reconstruction where its computational complexity
is O(K®+ K?M + KMN). We show that using the
OMP algorithm, we can obtain reasonable performance.
The OMP is used as the approximation of the MMSE
estimator (at the encoder side) for COVQ-CS, COMSVQ-
CS and SSC schemes as well as the realization of CS

, and normalize its columns to unit-norm. Once 5

reconstruction algorithm (at the decoder side) for NNC-
CS and MSNNC-CS methods.
g

B. Experimental Results

In our simulations, we generat®® realizations of the input
sparse vectoK (correspondinglyY) for the training algorithms
as well as performance assessments using Monte-Carloasimul

tions. We evaluate the performance of the competing schemes

in terms of number of CS measurement$, (total quantization

rate (R) and channel conditiofx). It should be also mentioned
the training algorithms are performed at each value-on x
Xis, i.e.,a, R ande.

In our first experiment, we assume that the measurement

noise and channel cross-over probability are negligihke, i
o =0ande = 0. 1n Figure[T, with the simulation setup
(N =12, K = 2, R = 12 bits/vector), we vary measurement
rate « = M/N, and compare the performance (NMSE) of
the quantizers along with the lower-bourld](14). We use 2-
stage VQ with equal quantization rates. For implementirgg th
BPDQ decoder, we selegt = 3 in ([28) (the choice ofp is
experimentally verified to achieve the best performanced, a

P(k|l) = efnD(1 — g)R—Hau(kD) og — R (28) 7 is

chosen according ta1[9, eq. (7)], then a standard convex

solver is used to find the optimal solution df 126). Let us

where( < e < 1/2 represents bit cross-over probability gt

investigate the behavior of the full search COVQ-CS and

(assumed known), andix(k,!) denotes the Hamming NNC-CS quantizer design schemes in Figlite 7. At a fixed
distance betweefR-bit binary codewords representing the,antization rateR, increasing the number of measurements
channel input and output indexésand /. The capacity jmproves the CS reconstruction performance, hence the end-
of BSC (in bits per channel use) with bit cross-ovef,_end MSE decreases. Since quantized transmission titistor

probability e is equivalent to

C =1+clogy(e) + (1 —€)logy(1 —¢). (29)

and

D, is fixed, NMSE would saturate ultimately. As expected, the
proposed COVQ-CS design method gives the best performance,

at high measurement rates, it approaches the loweidboun

lin the spirit of reproducible results, we provide MATLAB sl
for simulation of the AbS-based quantizers in the followinvgebsite:
www.ee.kth.seLamishi/reproducibleresearch.html.

2Wwith abuse of notation, we still use the term COVQ-CS and CORISCS
when channel is noiseless £ 0).
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Fig. 7. NMSE (in dB) as a function of measurement rate= M /N using Fig. 8. NMSE (in dB) as a function of total quantization ratin bits/vector).
different quantizer design schemes. The parameters asechasN = 12, Simulation parameters are chosenMs= 32, K = 3, M = 20 for noiseless
K = 2 andR = 12 bits/vector for a noiseless channel and clean measuremerthannel andr2, = 0.005.

(@4). This is due to the fact that, at high measurement rate . )
regime, the CS distortiorD., becomes negligible and the?: = 0.005) and noiseless channel. In Figire 8, we plot the
source vector can be precisely recovered from the measUMdSE of low-complexity quantizer designs, i.e., COMSVQ-
ments; therefore, COVQ-CS approaches the distortion r&&: MSNNC-CS, SSC and BPDQ, along with the lower-
function for the sparse source. Note that the performanire gRound [IB) by varying total quantization rafe The mutual
using the COVQ-CS design scheme is obtained at the expefgBerence: in the lower-bound[(13) is computed ty (2) (here,
of computational and memory complexity of ordér(2%). K = 0.5755). For implementing multi-stage quantizers, we
Using the sub-optimal COMSVQ-CS scheme, the complexisSume two stages with, = R,. Also, BPDQ parameters
is decreased to the ord@?(27/2) although its performance are the same as those of the previous simulation study. At
is slightly declined compared to COVQ-CS. Among multilow to moderate quantization rate regimes, the COMSVQ-
stage structured methods, the COMSVQ-CS performs betfep outperforms other techniques; for example,fat= 20
than MSNNC-CS since it takes end-to-end MSE through i@its/vector, it has almost dB performance gain over MSNNC-
design procedure. Also, it can closely follow the behavibr ¢S and SSC, and dB performance gain over BPDQ. The
the COVQ-CS at low to moderate ranges of measurement ragsformance of SSC differs much at low to high quantization
since at this regime, the performance is mostly influencetthey rates: although its performance is very poor at low to magera
CS reconstruction distortion. However, as the measurenagmt "ates, the performance reaches that of the COMSVQ-CS at high
increases, the gap between the performance of the COMSV@tes since the SSC requires high rates to perform well. Note
CS and COVQ-CS becomes larger. The gap can be mdhat. at low quantization rates, the performance of SSC @& po
smaller if we use higher quantization rates at the first stagie to the reason that its design is based on scalar quamtizat
while keeping the total quantization rate fixed, howeveis thof reconstructed source vector at the encoder. Whereas, the
imposes more encoding complexity to the system. It can ke aROMSVQ-CS and MSNNC-CS schemes provide better per-
seen that the SSC scheme performs poorer than COVQ-CS Eynance since, in their designs, reconstructed sourcéowvec
MSVQ-CS, while its encoding complexity grows at most lik®" CS measurement vector are vector-quantized. Natuthity,
O(2%/2). The behavior of the BPDQ, however, is differentperformance gain is achieved at the expense of higher emgodi
increasing number of measurements, on one hand, facilitaé®@mplexity. Note that all schemes attain a MSE floor ultityate
a more precise reconstruction. On the other hand, it reduéd# to the additive noise which is reflected from the lower-
guantization rate since each measurement entry is quenti®eund as well. In particular, at very high quantization satbe
using R/M bits. Hence, the performance curve of BpDerformance of SSC approaches to that of the COMSVQ-CS,
reaches a minimum point, and then takes an upward trend whifl finally converges to the CS reconstruction MSE, denoted
also complies with the fact of CS and quantization compeessity Des, Which is also aligned with our findings in Remdrk 3.
regimes [18]. Note that the BPDQ has the least computatioﬁ%ﬂ" calculations show that the MSE floor, i.e., the valué&gf,
complexity among the competing techniques varying from th& approximately—16.5 dB.
order of O(27/3) to O(27/12). In our final experiments, we consider the effect of channel
In our next experiment, we use larger dimension and quamsise on the performance of the proposed JSCC schemes, and
tization rate as ¥y = 32, K = 3,M = 20 (o« = 0.625), we also compare them with separate source-channel coding
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schemes. In Figurg]l 9 and Figdrel 10, we quantify the perfc
mance as a function of channel bit cross-over probabilite-
spectively, for two parameter setsV 12, K =2, M =9 (o=
0.75), R=15 bits/vector,o2 =0) and (N =32, K =3, M =20
(a=0.625), R=20 bits/vectorg?2 =0). In Figure9, we observe
that the proposed designs, i.e., COVQ-CS and COMSVQ-(
(with R; =8 and Ry =7 bits/vector) always outperform other
schemes. The curves labeled by ‘'SSC-BCH’ and ‘BPDQ-BCH

BPDQ-BCH

—#— SSC-BCH
respectively, consist of twelve-dimensional 11-bit ereshdhits —&— COMSVQ-CS
using SSC and uniform quantization, followed ki (11) BCH b —k—CovQ-os

Normalized MSE (dB)
N
N

- = Lower-bound (eq. 14)

codes (this rate is experimentally tested to obtain the be
performance among BCH rate allocations.). Note that cHani i R R 7
coding rates are chosen in order to have a fair comparison 18] e
terms of same delay) among JSCC schemes (COVQ-CS e
COMSVQ-CS) and separate source-channel coding methq I
(SSC-BCH and BPDQ-BCH). We observe from Figlie 9 thi R R T Ty Ry Ty
using separate channel coding, the performance of the BPI Cross-over probability ¢

is still poor. It can be also seen that the SSC, even equippcu

with channel coding, is highly susceptible to channel nOi%r;g. 9. NMSE (in dB) as a function of channel bit cross-oveshability €.
since an error in receiving the support set may detrimgntallimulation parameters are chosens= 12, K =2, M = 9 andR = 15
degrade the performance. Therefore, the MSE increases niggvector for clean CS measurements.

rapidly as compared to COVQ-CS, COMSVQ-CS and BPDQ-
BCH. We have also tested the performance of SSC with (15,1
Hamming codes which provides almost the same performar
as that of the SSC-BCH. Using joint source-channel codes
the proposed designs enhances the performance and pro
robustness, particularly at high channel noise. For exapipl
Figure[9, the performance gain of COVQ-CS over the SSC
almost4 dB, when the channel is highly noisy=0.05). While

the COMSVQ-CS and SSC have (almost) the same encod
complexity order, the performance gain of COMSVQ-CS owv¢
SSC-BCH is more thap dB ate =0.05. It should be mentioned
that the gap between the COVQ-CS and the lower-bound is ¢
to CS reconstruction distortion (low number of measuresjen

Normalized MSE (dB)

—#— SSC (coded)

-10p o - & - MSNNC-CS

as well as finite length of source-channel codes. . TEOMBZ?]::(Q 14)
Since the SSC is quite sensitive to error in received supp 12

set, in Figurd_10, we also show the performance of SSC wh

the reconstructed support set is transmitted without lsg,the 1 N S SN SN U S S SR

non-zero coefficients are encoded usifiglj BCH codes. This O OO O O s over probaiiy %8 00904

scheme is marked by ‘SSC-coded’ in Figlrd 10, and, indee ,

is anideal coding scheme since the support set may not be , _ , »

t ited losslessly over a noisv channel. in practidee TF|g. 10. NMSE (in dB) as a function of channel bit cross-oveshability e.
ransmi y . Yy ’ p Simulation parameters are chosenMs= 32, K =3, M =20 and R = 20
proposed COMSVQ-CS design method not only outperformgs/vector for clean CS measurements.

the ideal separate source-channel coding scheme (SS@)¢ode

but also the other JSCC scheme (MSNNC-CS). It can be also

seen as channel condition degrades, the COMSVQ-CS cugygges (more than two). Another alternative is to use VQ for a

increases with the same slope as that of the lower-bound. high-dimensional source vector by segmenting the sourtze in
As a final remark, we mention that the VQ, in general, igjfferent small patches of information, and use the segetent

known to be theoretically the optimal block coding strategyatches for traininfl. This approach, for example, is used in

However, its computational and memory complexity is an@ssUyector quantization of images [31, Chapter 11] or in image
which has been addressed using multi-stage VQ in the currgighoising [35].

work. In our simulations, the implementation of COVQ-CS
and COMSVQ-CS (using two stages) might not be performed
beyondR = 12 bits/vector for a dimensiofV = 12 (or slightly
more), andR = 30 for a dimensionV = 32, respectively. If an
implementation of a VQ for CS measurements of sparse sour

W_|th clo_se to _real'“fe dimensions (egN = 256 Or eVeN 1y the context of this paper, the source can be thought of essparse
higher) is desired, one needs to consider a VQ with multiplepresentation (e.g., wavelet coefficients, etc.) of argana

VII. CONCLUSION

We have developed optimum joint source-channel vector
%gntization schemes for CS measurements. We have derived
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necessary conditions for optimality of VQ encoder-decoderNext, we develop a lower-bound on the quantized transmis-
pair with respect to end-to-end MSE. One interesting ression distortionE[||X|s — X|s]||3]. It should be noted that the
of the optimal conditions is that the CS reconstruction sthouelements of}~(|5 within the known support set, denoted by
be performed MMSE-wise at the encoder side rather than tRg; € RX, are Gaussian with the covariance matrix (deé [26,
decoder side. We have also provided a theoretical lowentbouTheorem 10.3])
on the MSE performance based on the fact that the end-to- .
end MSE can be decomposed into CS reconstruction MSE and cov[Xs] = (IK + iﬁ%%) . (32)
quantized transmission MSE without loss of optimality. rdgi a

the resulting optimal conditions, we have proposed a prakti |y order to find the minimum distortion, or distortion-rate
encoder-decoder design through an iterative algorith@rred ¢, ction. caused by quantization of a sparse sodfqg a
to as COVQ-CS. Moreover, the encoding complexity of VQ Wasagral approach is to let the quantizer encoder first entuale
addressed using the MSVQ where we have approximated Higynort set elements usirigg, (%) bits (since the elements
necessary optimal conditions by applying a multi-stagecsire ot s are drawn uniformly) which can be received without
which has led to the design of COMSVQ-CS. Numerical resulfsss at the decoder, and then encode the correlated Gaussian
show promising performanc_e Qf the proposed designs W\‘}Qctorxs using R — log, (%) bits. It is shown in[[27] that the
respect to relevant methods in literature. distortion rate function of thisplitting approactcoincides with
the distortion-rate function for a sparse source (with Geums
APPENDIX non-zero coefficients and uniformly distributed sparseytern)

. . . . . N
Note that the end-to-end MSE[| X — X 2], of the system of asymptotically (in quantization rat& with R > log, (i)).

Figureld is always larger than the MSE of a system with a prio-lr-lhen’ it follows that

known (oracle) support s& under the same assumptions. Let 720(12—1032 (K)> N
the RV's X|s, X|s, X|s € RY, respectively, denote the SOUrceR[||X|s — §(|S||g] > 2 ® det(cov[fig]) "
vector, the MMSE estimation of the source given measuresnent (33)

. . . 2 K
gntflr';]he f;nal recorrllstructlon vector given the known suppetrt Svherec — 2 (%F (%)) 2 (%) * The right-hand side if(33)
- [nherefore, we have is indeed the distortion-rate function of the correlatedi&san

E[|X — X|3] > E[|IX|s — X|s]3] sourcgg(g [EB] incurred by tral;]smisslion overt_the tIﬁMCE\r/iv]it?28
B e w2 capacityC' (see, e.g. source-channel separation theo :
= B[l X|s = Xlsll2] + E[[X]s X|3”2]’(30) Chapter 7]). Further, we have

w

where, the equality if(30) follows from the same reasoning a SO 1
that of [I2f3 Let us first develop a lower-bound d&{||X|s — det(cov[Xg]) = T
X|s||3]. Defining ®s € RM*X as a sub-matrix ofe formed iy (1 + %)\k (<I>§<I>s))
by choosing its columns indexed by the elements ofhen for 1 (a) 1
a single realization of, we have > I O%/\max (q’gi’s) > I U%(l T K+ p)
: h (34)
) 1+ ! where in(a) we use the fact that all eigenvalues®f @ are
EflX]s = X|sll2] = Tr (IK + g‘bs ‘1)5) upper-bounded by + (K +1)u using Gershgorin disc theorem.

Combining [3#%) with [(3B),[(31) and (80) concludes the proof.

(b) K? K
S K+ LT{®[®s} =Ty I {®l®s) (1)
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