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Abstract

In the area of sparse recovery, numerous researches hint that non-convex penalties

might induce better sparsity than convex ones, but up until now those correspond-

ing non-convex algorithms lack convergence guarantees from the initial solution to the

global optimum. This paper aims to provide performance guarantees of a non-convex

approach for sparse recovery. Specifically, the concept of weak convexity is incorporated

into a class of sparsity-inducing penalties to characterize the non-convexity. Borrowing

the idea of the projected subgradient method, an algorithm is proposed to solve the non-

convex optimization problem. In addition, a uniform approximate projection is adopted

in the projection step to make this algorithm computationally tractable for large scale

problems. The convergence analysis is provided in the noisy scenario. It is shown that if

the non-convexity of the penalty is below a threshold (which is in inverse proportion to

the distance between the initial solution and the sparse signal), the recovered solution

has recovery error linear in both the step size and the noise term. Numerical simula-

tions are implemented to test the performance of the proposed approach and verify the

theoretical analysis.

Keywords: Sparse recovery, sparseness measure, weak convexity, non-convex

optimization, projected generalized gradient method, approximate projection, con-

vergence analysis.

1 Introduction

Since the introduction of compressive sensing (CS) [1–3], sparse recovery has received much

attention and becomes a very hot topic these years [4–8]. Sparse recovery aims to solve the
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following underdetermined linear system

y = Ax, (1)

where y ∈ RM denotes the measurement vector, A ∈ RM×N is a sensing matrix with more

columns than rows, i.e., M < N , and x = (xi) ∈ RN is the sparse or compressible signal to

be recovered.

Many algorithms have been proposed to solve the problem (1). If x is sparse, one typical

method is to consider the following `0-minimization problem

argmin
x
‖x‖0 subject to y = Ax, (2)

where the `0 “norm” ‖x‖0 = #{i : xi 6= 0} counts the nonzero elements of x. However, it is

not practical to adopt this method since it is usually solved by combinatorial search, which

is NP-hard. An alternate method [9] is to replace the `0 “norm” with the `1 norm, i.e.,

argmin
x
‖x‖1 subject to y = Ax. (3)

The convex `1-minimization problem (3) is also known as basis pursuit (BP). It is certified

that under some certain conditions [10], the optimal solution of `1-minimization is identical

to that of `0-minimization. This conclusion greatly reduces the computational complexity,

since `1-minimization can be reformulated as a linear program (LP), and be solved by

numerous efficient algorithms [11].

Another family of sparse recovery algorithms is put forward based on non-convex opti-

mization

argmin
x

J(x) subject to y = Ax, (4)

where J(·) is a sparsity-inducing penalty. The optimization problem (4) is also termed as

J-minimization [12]. These algorithms include focal underdetermined system solver (FO-

CUSS) [13], iteratively reweighted least squares (IRLS) [14], reweighted `1-minimization

[15], smoothed `0 (SL0) [16], difference of convex (DC) algorithm [17], improved smoothed

`0 (ISL0) [18], and zero-point attracting projection (ZAP) [19]. It is theoretically proved

[20–23] and experimentally verified [13–19, 21–23] that for some certain non-convex penal-

ties, J-minimization tends to derive the sparse solution under weaker conditions than `1-

minimization. However, the inherent deficiency of multiple local minima in non-convex

optimization limits its practical usage, where improper initial criteria might cause the so-

lution trapped into the wrong ones.

The convergence performance of some non-convex sparse recovery algorithms has been

studied in literatures. For example, in [24], a local convergence result of IRLS [14] for

`p-minimization with p ∈ (0, 1) is established where the convergence is guaranteed in a

sufficiently small neighborhood of the sparse signal. Whether or not this neighborhood

contains the initial solution is not discussed. In [25], the majorize-minimize (MM) subspace
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algorithm is proposed to solve the `2 − `0 regularized problem and its convergence per-

formance is also provided. Under some certain conditions, it is shown that the generated

sequence will converge to a critical point, which is not, however, proved to be the global

optimum. In [26], the convergence performance of SL0 [16] is given. This is done due to the

“local convexity” of the penalties, and SL0 needs to solve a sequence of optimization prob-

lems rather than a single J-minimization problem to guarantee convergence to the sparse

signal.

This paper aims to provide theoretical convergence guarantees of a non-convex approach

for sparse recovery from the initial solution to the global optimum. The question, which

naturally appears and mainly motivates this paper, is raised as follows.

Does there exist a computationally tractable algorithm that guarantees to find

the sparse solution to J-minimization? If yes, in what circumstances does this

statement hold?

In this paper, exploiting the concept of weak convexity [27] to characterize the non-convexity

of the penalties, the mentioned question is replied as follows.

A computationally tractable non-convex approach is proposed with guarantees

that it converges to the sparse solution provided that the non-convexity of the

penalty is below a threshold.

This paper is organized as follows. Section 2 introduces the preliminaries of this paper,

including the projected subgradient method, the concepts of sparseness measure and weak

convexity, and some related state of the art researches. In Section 3, the main contributions

of this paper, including the non-convex approach for sparse recovery and its performance

guarantees, are demonstrated. The theoretical analysis and some further discussions are

provided in Section 4. Numerical simulations are implemented in Section 5 to verify the

theoretical results. All of the proofs are included in Section 6, and this paper is concluded

in Section 7.

2 Preliminary

For constrained convex optimization problem, the projected subgradient method [28] is an

algorithm which is very simple to implement and easy to analyze. Specifically, consider the

convex optimization

argmin
x

f(x) subject to x ∈ C, (5)

where f : RN → R is convex (and possibly nondifferentiable) and C ⊂ RN is a convex set.

Denote PC(·) as the Euclidean projection on C. The projected subgradient method is given

by

x(n+ 1) = PC (x(n)− κ(n)g(n)) , (6)
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where κ(n) and g(n) are the nth step size and any subgradient of f(·) at x(n), respectively.

Theoretical analysis [29, 30] reveals that this method converges to the optimum for some

certain types of step size rules, e.g. the step size sequence which is square summable but

not summable.

Several notable differences between the projected subgradient method and the ordinary

projected gradient method [31] should be pointed out. First, the projected subgradient

method applies directly to nondifferentiable convex functions while the latter doesn’t. Sec-

ond, the function value of the solution sequence can increase in the projected subgradient

method. Therefore, the key quantity is the Euclidean distance to the optimum instead of

the function value. In addition, the projected subgradient method adopts step size sequence

fixed in advance rather than an exact or approximate line search as in the projected gradient

method.

For non-convex J-minimization problem (4), the projected subgradient method is no

longer applicable. The following two subsections introduce the concepts of sparseness mea-

sure and weak convexity, by which the projected subgradient method can be generalized to

be applicable to J-minimization.

2.1 Sparseness Measure

First, a class of sparsity-inducing penalties is introduced. The penalty J(x) in (4) is defined

as

J(x) =

N∑
i=1

F (xi), (7)

where F (·) belongs to a class of sparseness measures [20] satisfying the following Definition 1.

Definition 1 The sparseness measure F : R→ R satisfies

1. F (0) = 0, F (·) is even and not identically zero;

2. F (·) is non-decreasing on [0,+∞);

3. The function t 7→ F (t)/t is non-increasing on (0,+∞).

As has been revealed in [20], the null space property with its constant [32] is closely

related to whether J-minimization is able to find the sparse signal. Define xS as the vector

generated by setting the entries of x indexed by Sc = {1, 2, . . . , N} \ S to zeros.

Definition 2 Define null space constant γ(J,A,K) as the smallest quantity such that

J(zS) ≤ γ(J,A,K)J(zSc) (8)

holds for any set S ⊂ {1, 2, . . . , N} with #S ≤ K and for any vector z ∈ N (A), where

N (A) denotes the null space of A.
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Based on Definition 1 and Definition 2, the following proposition is derived in [20].

Proposition 1 (Theorem 2, 3, and 5 from [20]). For penalty J(·) formed by F (·) satisfying

Definition 1, the following statements hold:

1. If γ(J,A,K) < 1, then for any x satisfying ‖x‖0 ≤ K and y = Ax, x is the unique

solution to (4);

2. If γ(J,A,K) > 1, then there exist vectors x and x′ such that ‖x‖0 ≤ K, Ax = Ax′

and J(x′) < J(x);

3. γ(`0,A,K) ≤ γ(J,A,K) ≤ γ(`1,A,K).

Proposition 1.1)-2) reveals that the null space constant is a tight quantity for the tuple

(J,A,K) to indicate the performance of J-minimization. Here the tightness is in the sense

that γ(J,A,K) < 1 implies all K-sparse signals are the unique solutions to J-minimization,

while not all K-sparse signals satisfy this if γ(J,A,K) > 1. Proposition 1.3) indicates that

for the tuple (A,K), if all K-sparse signals are the unique solutions to `1-minimization,

i.e. γ(`1,A,K) < 1, this also applies to J-minimization. Therefore, in the worst case sense

which takes over all K-sparse signals, the performance of J-minimization is at least as good

as that of `1-minimization.

2.2 Weak Convexity

The concept of weak convexity was proposed decades ago [33]. A real valued function F (·)
defined on a convex subset S ⊆ R is ρ-convex if there exists some real number ρ which is

the largest quantity such that the inequality

F (λt1+(1−λ)t2)≤λF (t1)+(1−λ)F (t2)−ρλ(1−λ)(t1−t2)2

holds for any t1, t2 ∈ S and for any λ ∈ [0, 1]. ρ > 0, ρ = 0 and ρ < 0 correspond to strong

convexity, convexity and weak convexity, respectively. The following proposition reveals

that F (·) can be decomposed into the sum of a convex function and a square.

Proposition 2 (Proposition 4.3 from [27]). Function F : S → R is ρ-convex if and only

if there exists a convex function H : S → R such that F (t) = H(t) + ρt2 for all t ∈ S.

According to Proposition 2, weakly convex functions are also known as semi-convex

functions [34]. For any t ∈ intS which denotes the interior of S, define the directional

derivative of a ρ-convex function F (·) as

DF (t; ν) = lim
θ→0+

F (t+ θν)− F (t)

θ
, (9)

then the generalized gradient set [35] is defined as

∂F (t) = {f(t) : νf(t) ≤ DF (t; ν), ∀ν ∈ R}. (10)
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If F (·) is convex, ∂F (·) is commonly known as the subgradient set. The following propo-

sition demonstrates an important property of ρ-convex functions which will be used in the

theoretical analysis.

Proposition 3 (Proposition 4.8 from [27]). Let F (·) be ρ-convex on S, then for any t1 ∈
intS, t2 ∈ S, and for any f(t1) ∈ ∂F (t1),

F (t2) ≥ F (t1) + f(t1)(t2 − t1) + ρ(t2 − t1)2. (11)

2.3 Related Work

Before formally introducing the main results of our paper, some related state-of-the-art

researches are introduced. Being aware of them might be of benefit in realizing the contri-

butions of our paper.

Some recent theoretical progress has been made based on the projected subgradient

method. In [36], the inexact projections are adopted, but these projections require ap-

proaching the exact one in the course of the algorithm. Another approximate subgradient

projection method is introduced in [37]. Rather than approximate projection, it consid-

ers approximate subgradient. The ZAP algorithm [19] is essentially a special case of the

non-convex approach introduced in our paper. The literature [38] attempts to provide the

convergence analysis of ZAP, yet the analysis is only for `1-ZAP which uses the convex `1

norm as the sparsity-inducing penalty. Despite this fact, it already contains some important

ideas which are helpful in the theoretical analysis of our paper.

Since the introduction of the concept of weak convexity [33], a branch of researches

has been focused on the duality and optimality conditions for weakly convex minimization

problems [39–41]. These researches can be regarded as the extensions of those in convex

optimization. They mainly consider the condition under which a point is the global min-

imizer of a weakly convex problem, which differs from the goal of our paper: providing

convergence guarantees of an algorithm. In the area of sparse recovery, little attention has

previously been paid to the concept of weak convexity. Our paper can be regarded as a

pioneer work to introduce the concept of weak convexity to the field of compressive sensing

and sparse recovery, and we believe that there is still much room for further research.

To verify the theoretical analysis in our paper, numerical simulations are implemented

in the setting of random Gaussian sensing matrices. We have noticed that there is previous

research characterizing the precise behavior of general penalization terms with Gaussian

sensing matrices. One may read [42] for further reference.

3 Main Contribution

The main contributions of this paper are threefold. First, by combining the concept of

sparseness measure with weak convexity, most commonly used sparsity-inducing penalties
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Table 1: Weakly Convex Sparseness Measures with Parameter ρ

(Requirements: 0 ≤ p < 1 and σ > 0)

No. F (t) ρ

1. |t| 0

2. |t|
(|t|+σ)1−p (p− 1)σp−2

3. 1− e−σ|t| −σ2/2

4. ln(1 + σ|t|) −σ2/2

5. atan(σ|t|) −3
√

3σ2/16

6. (2σ|t| − σ2t2)X|t|≤ 1
σ

+ X|t|> 1
σ

−σ2

are characterized and some new results on the performance evaluation of J-minimization

are derived. Second, a non-convex algorithm based on projected subgradient method is

proposed to solve J-minimization with performance guarantees. Last but not the least, a

uniform approximate projection is adopted in the proposed algorithm to save computational

resources, and its performance guarantees as well as computational complexity analysis are

provided. These contributions are demonstrated in the following subsections respectively.

3.1 Performance Evaluation of J-minimization in the Noiseless Scenario

Our work adopts weakly convex sparseness measure to constitute the sparsity-inducing

penalty J(·) in (4). The definition of weakly convex sparseness measure is proposed as

follows.

Definition 3 The weakly convex sparseness measure F : R→ R satisfies

1. F (0) = 0, F (·) is even and not identically zero;

2. F (·) is non-decreasing on [0,+∞);

3. The function t 7→ F (t)/t is non-increasing on (0,+∞);

4. F (·) is a weakly convex function on [0,+∞).

Definition 3 is essentially a combination of the concepts of sparseness measure and

weak convexity. Most commonly used non-convex penalties are formed by weakly convex

sparseness measures. For instance, those penalties in [15, 19, 22, 43] are listed in TABLE 1
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Figure 1: The weakly convex sparseness measures listed in TABLE 1 are plotted. The

parameter p is set to 0.5. The parameter σ is set respectively so that they all contain the

point (0.9, 0.9).

and plotted in Fig. 1, where XP denotes the indicator function

XP =

{
1 P is true;

0 P is false.

It needs to be emphasized that the widely used `p “norm” (0 ≤ p < 1) in the literatures of

sparse recovery [21,22] does not belong to the class of sparsity-inducing penalties considered

in this paper. This is due to the fact that the function

Lp(t) = |t|p, p ∈ [0, 1) (12)

goes against Definition 3.4), i.e., the requirement of weak convexity. However, approxima-

tions to (12) are usually introduced to avoid infinite derivative around zero point and to

improve the robustness. For example, in [22], the function (12) is approximated by

F (t) =
|t|

(|t|+ σ)1−p
, p ∈ [0, 1), σ > 0.

This approximation satisfies Definition 3, and its parameter ρ is shown in TABLE 1. It

hints that the requirement of weak convexity is reasonable and is an implicit assumption

when robust algorithms or theoretical analysis is taken into consideration, which indicates

the necessity of the introduction of weak convexity in this paper.

When the concept of sparseness measure meets weak convexity, some good properties

show up.

Lemma 1 The weakly convex sparseness measure F (·) satisfies the following properties:

1. F (·) is continuous and there exists α > 0 such that F (t) ≤ α|t| holds for all t ∈ R;

2. For any constant β > 0, F (βt) is also a weakly convex sparseness measure, and its

corresponding parameters are ρβ = β2ρ and αβ = βα.
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Figure 2: The No. 6 weakly convex sparseness measure in TABLE 1 is plotted with different

non-convexity. The parameter α is set to 2.

Proof The proof is postponed to Section 6.1.

Besides ρ, the parameter α also plays an important role in characterizing the non-

convexity of sparsity-inducing penalty J(·). Recalling J-minimization (4), its performance

remains the same for any positive scaled version of the penalty J(·). Since the parameters

of βF (t) are ρβ = βρ and αβ = βα for β > 0, we let −ρ/α characterize the non-convexity,

where −ρ divided by α is to remove the scaling effect on the penalty. The No. 6 weakly

convex sparseness measure in TABLE 1 is plotted in Fig. 2 with the same α = 2 but different

non-convexity. As can be seen, non-convexity can be regarded as a measure of how quickly

the generalized gradient of F (·) decreases. Lemma 1.2) implies that the non-convexity of

J(βx) is

−ρβ
αβ

= β
−ρ
α

(13)

for β > 0. This reveals that by choosing an appropriate β, we can always generate a

sparsity-inducing penalty with any desired non-convexity.

The following theorem evaluates the performance of J-minimization for tuple (J,A,x)

under certain circumstances.

Theorem 1 Assume the tuple (A,K) satisfies γ(`0,A,K) < 1 and the vector x∗ satisfies

‖x∗‖0 ≤ K. For any penalty J(·) formed by F (·) satisfying Definition 3 and that F (·) is

bounded, the global optimum x̂β of the problem

argmin
x

J(βx) subject to Ax = Ax∗ (14)

satisfies

lim
β→+∞

‖x̂β − x∗‖2 = 0.
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Proof The proof is postponed to Section 6.2.

Since the non-convexity of J(βx) is (13), Theorem 1 reveals that for a fixed sparse

signal x∗, the performance of J-minimization is close to that of `0-minimization when the

corresponding weakly convex sparseness measure is bounded and its non-convexity is large

enough. One may notice that the condition in Theorem 1 is γ(`0,A,K) < 1 rather than

γ(J,A,K) < 1 or γ(`1,A,K) < 1. As a matter of fact, γ(`0,A,K) < 1 is equivalent

to the requirement of M ≥ 2K + 1 and that any 2K column vectors of A are linearly

independent, which is a much weaker condition than γ(`1,A,K) < 1. Therefore, for some

K-sparse signals, they cannot be recovered by `1-minimization, but can be recovered by

J-minimization as shown in Theorem 1.

Recalling that the null space constant is a tight quantity for tuple (J,A,K), a result on

the performance of J-minimization is further derived from another perspective of view.

Theorem 2 For any penalty J(·) formed by weakly convex sparseness measure F (·) satis-

fying Definition 3, the null space constant satisfies

γ(J,A,K) = γ(`1,A,K). (15)

Proof The proof is postponed to Section 6.3.

According to Theorem 2, for any tuple (A,K) and penalty J(·) formed by weakly

convex sparseness measure, the performance of J-minimization is the same as that of `1-

minimization in the worst case sense. It needs to be noted that, although the performance

comparison between J-minimization and `1-minimization for any tuple (A,x) is still unclear

in our work, some important related works have also run into the same situation. In [21,23],

it is shown that for tuple (A,K), the condition under which `p-minimization (0 < p < 1) is

guaranteed to find all K-sparse signals is weaker than that of `1-minimization, and this is

also the worst case analysis. We do believe that the performance comparison between the

non-convex optimization and `1-minimization for tuple (A,x) is worthy of further study,

as it is the key point to all the literatures introducing non-convex techniques to sparse

recovery [13–19]. So far, we speculate that

For tuple (A,x∗), as β increases from zero to positive infinity, the performance of

(14) would gradually improve from `1-minimization to some optimization prob-

lems with better performance, say `0-minimization.

We leave this as a possible future work and it is readdressed in the conclusion of this paper.

3.2 Projected Generalized Gradient Method in the Noisy Scenario

Borrowing the idea of projected subgradient method, we propose a non-convex algorithm

to solve the J-minimization problem. Mathematically, initialized as the pseudo-inverse

10



Table 2: The Procedure of the PGG Method

Input: A, y, step size κ, stopping criterion;

Output: x(n).

Initialization: Calculate A†, x(0) = A†y, n = 0;

Repeat:

Generalized gradient step:

Update iterative solution by (16);

Projection step:

Update iterative solution by (17);

Iteration number increases by one:

n = n+ 1;

Until: Stopping criterion satisfied;

solution x(0) = A†y where A† = AT(AAT)−1 denotes the pseudo-inverse matrix of A, the

iterative solution x(n) obeys

x̃(n+ 1) = x(n)− κ∇J(x(n)), (16)

x(n+ 1) = x̃(n+ 1) + A†(y −Ax̃(n+ 1)), (17)

where κ > 0 denotes the step size and ∇J(x) is a column vector whose ith element is

f(xi) ∈ ∂F (xi) which denotes the generalized gradient set of F (·) at xi. Since the general-

ized gradient is adopted to update the iterative solutions, this method is termed projected

generalized gradient (PGG) method in this paper. The procedure of PGG is described in

TABLE 2. The algorithm stops when the iteration number exceeds a certain bound.

In the remaining content of this subsection, we consider the performance of PGG in the

noisy scenario y = Ax∗ + e where x∗ is the K-sparse signal to be recovered and e is the

additive noise to the measurement vector. Define σmin(A) as the smallest nonzero singular

value of A. The following theorem reveals the performance of PGG in the noisy scenario.

Theorem 3 (Performance of PGG). For any tuple (J,A,K) with J(·) formed by weakly

convex sparseness measure F (·) and γ(J,A,K) < 1, and for any positive constant M0, if

the non-convexity of J(·) satisfies

−ρ
α
≤ 1

M0

1− γ(J,A,K)

5 + 3γ(J,A,K)
, (18)

11



the recovered solution x̂ by PGG satisfies

‖x̂− x∗‖2 ≤
4α2N

C1
κ+ 8C2‖e‖2 (19)

provided that ‖x∗‖0 ≤ K and ‖x(0)− x∗‖2 ≤M0, where

C1 =
F (M0)

M0

1− γ(J,A,K)

1 + γ(J,A,K)
, (20)

C2 =
α
√
N + C1

C1σmin(A)
. (21)

Proof Theorem 3 can be directly derived from Lemma 5 and Lemma 6 in Section 4.

According to Theorem 3, under some certain conditions, if the non-convexity of the

penalty is below a threshold (which is in inverse proportion to the distance between the

initial solution and the sparse signal), the recovered solution of PGG will get into the (O(κ)+

O(‖e‖2))-neighborhood of x∗. By choosing sufficiently small step size κ, the influence of

the O(κ) term can be omitted, and the PGG method returns a stably recovered solution. If

ρ = 0, J(·) is just a scaled version of the `1 norm, and the condition (18) always holds for all

M0 > 0. Therefore, no constraint needs to be imposed on the distance between the initial

solution and the sparse signal. This is consistent in the fact that `1-minimization is convex

and the initial solution can be arbitrary. In addition, larger non-convexity of the penalty

induces smaller M0, i.e., stronger constraint on the distance between the initial solution

and the sparse signal, which is also an intuitive result.

3.3 Extension and Discussion

The initialization and the projection step of the PGG method involves the pseudo-inverse

matrix A†, whose exact calculation may be computationally intractable or even impossible

because of its large scale in practical applications. To reduce the computational burden, a

uniform approximate pseudo-inverse matrix of A is adopted. This method is termed ap-

proximate PGG (APGG) method. According to Appendix A which introduces approximate

calculation of the pseudo-inverse matrix, we use ATB to denote the approximation of A†.

To characterize the approximate precision of the pseudo-inverse matrix, define

‖I−AATB‖2 ≤ ζ

where ‖ · ‖2 denotes the spectral norm of the matrix, and we assume ζ < 1 throughout this

paper. Similar to Theorem 3, the following theorem shows the performance of APGG in

the noisy scenario.

Theorem 4 (Performance of APGG). For any tuple (J,A,K) with J(·) formed by weakly

convex sparseness measure F (·) and γ(J,A,K) < 1, and for any positive constant M0, if

12



the non-convexity of J(·) satisfies (18) and the approximate pseudo-inverse matrix ATB

satisfies ζ < 1, the recovered solution x̂ by APGG satisfies

‖x̂− x∗‖2 ≤ 2C3κ+ 2C4‖e‖2 (22)

provided that ‖x∗‖0 ≤ K and ‖x(0)− x∗‖2 ≤M0, where

C3 = max

{
2C2C5,

2dα2N

C1
+ C6

}
, (23)

C4 = max {2C2, C7} , (24)

C5 = 2
ζα
√
N‖A‖2

1− ζ
, (25)

C6 =
2‖B‖2C5

C1

(
2(1 + ζ)α

√
N‖A‖2 + (3 + ζ)C5

)
, (26)

C7 =
4‖B‖2
C1

(
α
√
N‖A‖2 + C5

)
, (27)

d = ‖I−ATBA‖22, and C1 and C2 are respectively specified as (20) and (21).

Proof Theorem 4 can be directly derived from Lemma 8 and Lemma 6 in Section 4.

Similar to Theorem 3, Theorem 4 also reveals that under some certain conditions, if the

non-convexity of the penalty is below a threshold, the recovered solution of APGG will get

into the (O(κ) +O(‖e‖2))-neighborhood of x∗. This result is interesting since the influence

of the approximate projection is only reflected on the coefficients instead of an additional

error term. In the noiseless scenario with sufficiently small step size κ, the sparse signal x∗

can be recovered with any given precision, even when a uniform approximate projection is

adopted in this method.

By far, only the case of strictly sparse signal is analyzed and discussed. For compressible

signal x∗, assume ‖x∗ − x∗T ‖2 ≤ τ . It is easily calculated that

y = Ax∗ + e = Ax∗T + (e + A(x∗ − x∗T ))

and

‖e + A(x∗ − x∗T )‖2 ≤ ‖e‖2 + ‖A‖2τ.

According to Theorem 4, the recovered solution x̂ of APGG will get into the (2C3κ +

2C4(‖e‖2 + ‖A‖2τ))-neighborhood of x∗T . Since x∗T lies in the τ -neighborhood of x∗, the

distance between x̂ and x∗ will be no more than

2C3κ+ 2C4‖e‖2 + (2C4‖A‖2 + 1)τ.

This reflects the performance degradation due to the noise and non-sparsity of the original

signal.

To end up this section, we talk about the computational complexity of the APGG

method. The following Theorem 5 reveals how many iterations are needed for APGG to

derive the solution with desired accuracy.
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Theorem 5 For any tuple (J,A,K) with J(·) formed by weakly convex sparseness measure

F (·) and γ(J,A,K) < 1, positive constant M0, vector x∗ with ‖x∗‖0 ≤ K, and ATB as

an approximate pseudo-inverse matrix with ζ < 1, if the initial solution of APGG satisfies

‖x(0)− x∗‖2 ≤M0 and the non-convexity of J(·) satisfies (18), then in at most

4C3M0

dα2Nκ

iterations, the recovered solution by APGG satisfies (22), where C3 and C4 are respectively

specified as (23) and (24) and d = ‖I−ATBA‖22.

Proof The proof is postponed to Section 6.11.

For calculating the approximate pseudo-inverse matrix of A, the computational com-

plexity of the method introduced in Appendix A would be O(MN) (if the initialization

is adopted) or O(M2N) (if the method iterates for at least once). According to (23), it

can be derived that C3 is O(N), therefore Theorem 5 reveals that the number of iterations

needed is O(κ−1). As for each iteration of APGG, the computational complexity is O(MN).

Overall, the computational complexity of APGG is at most O(M2N) +O(MNκ−1).

4 Theoretical Analysis

This section mainly aims to establish theoretical supports for the results in Section 3.

To begin with, some additional properties of weakly convex sparseness measure F (·) are

revealed in the following lemma. Let ∂F (0) = {0}.

Lemma 2 The weakly convex sparseness measure F (·) satisfies the following properties:

1. For all t1, t2 ∈ R, F (t1 + t2) ≤ F (t1) + F (t2);

2. For all t ∈ (0,+∞) and f(t) ∈ ∂F (t), f(t) ≥ 0;

3. For all t ∈ R and f(t) ∈ ∂F (t), |f(t)| ≤ α;

4. For all t1, t2 ∈ R and f(t1) ∈ ∂F (t1), it holds that

(t1 − t2)f(t1) ≥ F (t1)− F (t2) + ρ(t1 − t2)2; (28)

5. For all t ∈ R, F (t)− α|t| − ρt2 ≥ 0.

Proof The proof is postponed to Section 6.4.

Based on the definitions of weakly convex sparseness measure and null space constant

with their properties, a lemma is established for preparation as follows.

14



Lemma 3 For any tuple (J,A,K) with J(·) formed by weakly convex sparseness measure

F (·) and γ(J,A,K) < 1, and for any positive constant M0, the inequality

J(x)− J(x∗) ≥ C1 (‖x− x∗‖2 − C2‖A(x− x∗)‖2) (29)

holds for all vectors x∗ and x satisfying ‖x∗‖0 ≤ K and ‖x− x∗‖2 ≤M0, where C1 and C2

are respectively specified as (20) and (21).

Proof The proof is postponed to Section 6.5.

The following corollary can be immediately derived from Lemma 3.

Corollary 1 For any tuple (J,A,K) with J(·) formed by weakly convex sparseness measure

F (·) and γ(J,A,K) < 1, and for any positive constant M0, the inequality

J(x)− J(x∗) ≥ C1

2
‖x− x∗‖2 (30)

holds for all vectors x∗ and x satisfying ‖x∗‖0 ≤ K, ‖x− x∗‖2 ≤ M0, and ‖x− x∗‖2 ≥
2C2‖A(x− x∗)‖2, where C1 and C2 are specified as (20) and (21), respectively.

The inequality (30) is somewhat similar to the concept of Lipschitz continuity, but with

the difference that the inequality sign is reversed. According to (30), if the gap between

J(x) and J(x∗) is small, x would not be far away from the sparse vector x∗. The following

Lemma 4 demonstrates the main result on the local minima of J-minimization.

Lemma 4 For any tuple (J,A,K) with J(·) formed by weakly convex sparseness measure

F (·) and γ(J,A,K) < 1, and for any positive constant M0, the inequality

(x− x∗)T∇J(x) > 0 (31)

holds for all vectors x∗ and x satisfying ‖x∗‖0 ≤ K,

‖x− x∗‖2 ≤ min

{
M0,

C1

−4ρ

}
, (32)

and ‖x− x∗‖2 ≥ 2C2‖A(x− x∗)‖2, where C1 and C2 are specified as (20) and (21), respec-

tively.

Proof The proof is postponed to Section 6.6.

Lemma 4 demonstrates the distribution of the local minima of J-minimization. As is

revealed, for any local minimum x in the area of (32), it also satisfies

‖x− x∗‖2 ≤ 2C2‖A(x− x∗)‖2.

Therefore, Lemma 4 implies that there is no local minimum in the corresponding annulus.

Intuitively, recalling that A(x(n) − x∗) = e for the PGG method, if the initial solution

satisfies (32), the recovered solution is stable against the noise. The following Lemma 5

demonstrates the detailed convergence property of the PGG method in one iteration. For

simplicity, let x and x+ represent x(n) and x(n+ 1), respectively.

15



Lemma 5 For any tuple (J,A,K) with J(·) formed by weakly convex sparseness measure

F (·) and γ(J,A,K) < 1, positive constant M0, and vector x∗ with ‖x∗‖0 ≤ K, if the

previous iterative solution x of the PGG method satisfies (32) and

‖x− x∗‖2 ≥
2µα2N

C1
κ+ 4C2‖e‖2, (33)

where µ > 1 and C1 and C2 are respectively specified as (20) and (21), the next iterative

solution x+ satisfies

‖x+ − x∗‖22 ≤ ‖x− x∗‖22 − (µ− 1)α2Nκ2. (34)

Proof The proof is postponed to Section 6.7.

According to Lemma 5, if the iterative solution x(n) lies within a neighborhood of the

sparse signal x∗ as (32), as long as the distance between x(n) and x∗ is larger than a quantity

linear in both the step size κ and the noise term ‖e‖2, the next iterative solution x(n+1) will

definitely get closer to x∗, and the distance reduction is at least (µ−1)α2Nκ2. Therefore, in

finite iterations, the iterative solution x(n) will get into the (O(κ)+O(‖e‖2))-neighborhood

of x∗.

To ensure that the PGG method converges, we require the sufficient condition (32)

satisfied for the initial solution. We can simply choose parameters such that

M0 = ‖x(0)− x∗‖2 ≤
C1

−4ρ
. (35)

The following lemma reveals that penalties with small non-convexity will result in (35).

Lemma 6 For any tuple (J,A,K) with J(·) formed by weakly convex sparseness measure

F (·) and γ(J,A,K) < 1, and for any positive constant M0, the constraint (35) holds if the

non-convexity of J(·) satisfies (18).

Proof The proof is postponed to Section 6.8.

Next we consider the performance of the APGG method. Since ATB is adopted as the

approximation of A†, the iterative solution of APGG no longer satisfies Ax(n) = y. The

following lemma gives the bound of ‖A(x(n)− x∗)‖2.

Lemma 7 The iterative solution x(n) of the APGG method satisfies

‖A(x(n)− x∗)‖2 ≤ ‖y‖2ζn+1 +
1

2
C5κ+ ‖e‖2, (36)

where C5 is specified as (25).

Proof The proof is postponed to Section 6.9.
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According to Lemma 7, if the accurate pseudo-inverse matrix is applied, i.e., ζ = 0,

the result is consistent in the scenario with accurate projection. For any fixed approximate

precision ζ ∈ (0, 1), as n approaches infinity and the step size κ is sufficiently small, the

result reveals that the performance degradation caused by the approximate projection can

be omitted. For the convenience of theoretical analysis, define a constant Nκ such that for

all n ≥ Nκ,

‖A(x(n)− x∗)‖2 ≤ C5κ+ ‖e‖2.

Since Lemma 3, Corollary 1, Lemma 4, and Lemma 6 are independent of specific al-

gorithms, they still hold for the APGG method. The following lemma demonstrates the

convergence property of APGG in one iteration, which is a counterpart of Lemma 5.

Lemma 8 For any tuple (J,A,K) with J(·) formed by weakly convex sparseness measure

F (·) and γ(J,A,K) < 1, positive constant M0, vector x∗ with ‖x∗‖0 ≤ K, and ATB as

an approximate pseudo-inverse matrix with ζ < 1, if the previous iterative solution x of the

APGG method satisfies (32) and

‖x− x∗‖2 ≥ µC3κ+ C4‖e‖2, (37)

where µ > 1 and C3 and C4 are respectively specified as (23) and (24), the next iterative

solution x+ satisfies

‖x+ − x∗‖22 ≤ ‖x− x∗‖22 − (µ− 1)dα2Nκ2, (38)

where d = ‖I−ATBA‖22.

Proof The proof is postponed to Section 6.10.

5 Numerical Simulation

In this section, several simulations are implemented to test the recovery performance of

the (A)PGG method, and to verify the theoretical analysis. The sensing matrix A is of

size M = 200 and N = 1000, whose entries are independently and identically distributed

Gaussian with zero mean and variance 1/M . The locations of the nonzero entries of the

sparse signal x∗ are randomly chosen among all possible choices, and these nonzero entries

satisfy Gaussian distribution or symmetric Bernoulli distribution with zero mean. The

sparse signal is finally normalized to have unit `2 norm. In all simulations, the approximate

A† is calculated using the method introduced in Appendix A.

The first experiment tests the recovery performance of the PGG method in the noiseless

scenario with different sparsity-inducing penalties and different choices of non-convexity.

The penalties are formed by sparseness measures in TABLE 1. The parameter p = 0.5 and

σ is set to have desired non-convexity. The No. 1 corresponds to the `1 penalty, which is
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Figure 3: The figure shows the recovery performance of the PGG method with different

sparsity-inducing penalties and different choices of non-convexity when the nonzero entries

of the sparse signal satisfy Gaussian distribution. The corresponding sparseness measures

are from TABLE 1. The problem dimensions are M = 200 and N = 1000, and Kmax is the

largest integer which guarantees 100% successful recovery.

tested in the same parameter settings as a benchmark. The penalties are scaled so that

the parameter α = 1. For each penalty with some certain non-convexity, the sparsity

level K varies from 1 to 100 with increment of one. The step size κ is set to 1 × 10−5.

If the recovery SNR (RSNR) is higher than 40dB, this recovery is regarded as a success.

The simulation is repeated 100 times to calculate the successful recovery probability versus

sparsity K. Then the crucial sparsity Kmax, which is the largest integer which guarantees

100% successful recovery, is recorded. The results when the nonzero entries of the sparse

signal satisfy Gaussian distribution and Bernoulli distribution are presented in Fig. 3 and

Fig. 4, respectively. As can be seen from the results, as the non-convexity of the sparsity-

inducing penalty increases, the performance of PGG improves at first, and degenerates

when the non-convexity continues to grow. When the non-convexity approaches zero, the

performances of these penalties are close to that of the `1 penalty. The results support the

speculation in the end of Section 3.1 that as the non-convexity increases, the performance

of J-minimization improves, and verify Theorem 3 that the non-convexity should be smaller

than a threshold to guarantee the convergence of PGG.

In the second experiment, the recovery performance of (A)PGG is compared in the noise-

less scenario with some typical sparse recovery algorithms, including orthogonal matching

pursuit (OMP) [44], the solution to `1-minimization [45], reweighted `1 minimization [15],
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Figure 4: The figure shows the recovery performance of the PGG method with different

sparsity-inducing penalties and different choices of non-convexity when the nonzero entries

of the sparse signal satisfy Bernoulli distribution. The corresponding sparseness measures

are from TABLE 1. The problem dimensions are M = 200 and N = 1000, and Kmax is the

largest integer which guarantees 100% successful recovery.

ISL0 [18], and IRLS [14]. In the simulation K varies from 20 to 100. The (A)PGG method

adopts the No. 6 sparseness measure in TABLE 1 with non-convexity as 100.75, and the

penalty is scaled so that α = 1. The step size is set to 1 × 10−5. The iteration number

for calculating inexact pseudo-inverse matrices is 0 and the average approximate precision

ζ = 0.91. The simulation is repeated 500 times to calculate the successful recovery prob-

ability versus sparsity K. The simulation results when the nonzero entries of the sparse

signal satisfy Gaussian distribution and Bernoulli distribution are demonstrated in Fig. 5

and Fig. 6, respectively. As can be seen, for both distributions, IRLS, PGG, and APGG

guarantee successful recovery for larger sparsity K than the other references. It also reveals

that in the noiseless scenario with sufficiently small step size, the approximate projection

has little influence on the recovery performance of APGG.

In the last experiment, the recovery precisions of the (A)PGG method are simulated

under different settings of step size and measurement noise. In the simulation, the nonzero

entries of the sparse signal satisfy Gaussian distribution and the sparsity level K = 30. The

same sparseness measure as that in the previous experiment is adopted, and the iteration

number for calculating approximate A† is 4 such that ζ = 0.22. The simulation is repeated

500 times to calculate the 95% confidence interval of RSNR and the average RSNR (which

is defined as the mean relative root squared error in dB), and the results are shown in
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Figure 5: The figure compares the successful recovery probability of different algorithms

versus sparsity K with M = 200 and N = 1000 when the nonzero entries of the sparse signal

satisfy Gaussian distribution. The approximate precision of approximate A† is ζ = 0.91.

Fig. 7. As can be seen, there is almost no difference between the performance of PGG and

that of APGG. In the noisy scenario, the RSNR is dependent on both the step size and

the measurement SNR (MSNR). For fixed MSNR, as the step size decreases, the RSNR

improves at first, and remains the same when the step size is sufficiently small. Larger

MSNR results in larger RSNR limit. In the noiseless scenario, the RSNR improves as the

step size decreases, and it can be arbitrarily large by adopting sufficiently small step size.

These results are accordant with Theorem 3 and Theorem 4, which implies that the recovery

error is linear in both the step size and the noise term.

6 Proof

6.1 Proof of Lemma 1

Proof 1) The continuity of F (·) can be easily checked by Proposition 2 and the continuity

of convex functions. As for the inequality, we only need to consider the case of t > 0. Since

F (t)/t is non-increasing on (0,+∞) and

lim
t→0+

F (t)

t
= lim

t→0+

(
H(t)

t
+ ρt

)
= lim

t→0+

H(t)−H(0)

t− 0
, α

is a finite quantity, it holds that for all t > 0, F (t)/t ≤ α.

2) It is easy to check that F (βt) satisfies Definition 3.1)-3). Since F (βt) = H(βt)+β2ρt2

and H(βt) is convex, F (βt) satisfies Definition 3.4) with parameter ρβ = β2ρ. In addition,
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Figure 6: The figure compares the successful recovery probability of different algorithms

versus sparsity K with M = 200 and N = 1000 when the nonzero entries of the sparse signal

satisfy Bernoulli distribution. The approximate precision of approximate A† is ζ = 0.91.

since F (βt)/t = H(βt)/t + β2ρt, the same argument as the proof of Lemma 1.1) implies

that αβ = βα.

6.2 Proof of Theorem 1

Proof According to the definition of null space constant, γ(`0,A,K) < 1 implies that

for any nonzero vector z ∈ N (A), z has at least (2K + 1) nonzero entries, and any 2K

column vectors of A are linearly independent. Since F (·) is non-decreasing and bounded

on [0,+∞), without loss of generality, we assume limt→+∞ F (t) = C > 0.

For any ε > 0, define

δ =
ε√

N(D‖A‖2 + 1)
> 0

where D−1 is the smallest singular value of all 2K column submatrices of A (D−1 is nonzero

since any 2K column vectors of A are linearly independent). Since F (·) is non-decreasing

on [0,+∞), these exists β0 > 0 such that for all β > β0 and for all t > δ, F (βt) > K
K+1C.

First we prove that for all β > β0, x̂β has at most K entries with absolute value no less

than δ. This is due to the fact that (define Iβ as the set of index i satisfying |x̂βi | ≥ δ)

KC ≥ J(βx∗) ≥ J(βx̂β) ≥
∑
i∈Iβ

F (βx̂βi ) >
K

K + 1
C ·#Iβ

which implies #Iβ ≤ K. Together with K-sparse signal x∗, at most 2K entries of x̂β − x∗

are with absolute value no less than δ.
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Figure 7: The figure demonstrates the recovery precisions of the (A)PGG method with their

95% confidence intervals under different step sizes and MSNRs with M = 200, N = 1000,

and K = 30 when the nonzero entries of the sparse signal satisfy Gaussian distribution.

The approximate precision of approximate A† is ζ = 0.22.

Now we prove that for all β > β0, ‖x̂β − x∗‖2 ≤ ε. Define zβ = x̂β − x∗ and Iβ as the

set of index i satisfying |zβi | ≥ δ, then as has been proved, #Iβ ≤ 2K. On the one hand,

‖zβ
(Iβ)c
‖2 ≤

√
Nδ.

On the other hand, since Azβ = 0,

‖zβ
Iβ
‖2 ≤ D‖Azβ

Iβ
‖2 = D‖Azβ

(Iβ)c
‖2 ≤ D‖A‖2

√
Nδ.

Therefore,

‖zβ‖2 ≤ ‖zβIβ‖2 + ‖zβ
(Iβ)c
‖2 ≤ (D‖A‖2 + 1)

√
Nδ = ε

To sum up, we have proved that for any ε > 0, there exists β0 > 0 such that for all

β > β0, ‖x̂β − x∗‖2 ≤ ε. This directly leads to Theorem 1.

6.3 Proof of Theorem 2

Proof Define a class of penalties Jβ(x) = J(βx) for β > 0. We first prove that for all

β > 0, γ(J,A,K) = γ(Jβ,A,K). This can be easily proved from the definition of the null

space constant and the fact that for all β > 0, βz ∈ N (A) is equivalent to z ∈ N (A).

22



Now we prove γ(J,A,K) = γ(`1,A,K). If not, according to Proposition 1.3), there

exists δ > 0 such that for all β > 0,

γ(Jβ,A,K) ≤ γ(`1,A,K)− 3δ. (39)

According to the definition of the null space constant, there exist z ∈ N (A) and set S with

#S ≤ K such that

‖zS‖1/‖zSc‖1 ≥ γ(`1,A,K)− δ. (40)

In addition, since for fixed z and S,

lim
β→0+

J(βzS)/J(βzSc) = ‖zS‖1/‖zSc‖1,

there exists β0 > 0 such that for all 0 < β ≤ β0,

J(βzS)/J(βzSc) ≥ ‖zS‖1/‖zSc‖1 − δ. (41)

Combining (40) with (41), it can be derived that

J(βzS)/J(βzSc) ≥ γ(`1,A,K)− 2δ (42)

holds for all 0 < β ≤ β0, which contradicts (39).

6.4 Proof of Lemma 2

Proof 1) Consider the non-trivial scenario where t1 and t2 are both nonzero. Since F (t)/t

is non-increasing on (0,+∞), it is easily checked that

F (t1) = F (|t1|) ≥ (|t1|F (|t1|+ |t2|)) /(|t1|+ |t2|);

F (t2) = F (|t2|) ≥ (|t2|F (|t1|+ |t2|)) /(|t1|+ |t2|).

Summing these two inequalities, together with the non-decreasing property of F (·) on

[0,+∞), it holds that

F (t1) + F (t2) ≥ F (|t1|+ |t2|) ≥ F (|t1 + t2|) = F (t1 + t2).

2) Since F (·) is non-decreasing on [0,+∞), the directional derivative

DF (t,−1) = lim
θ→0+

(F (t− θ)− F (t))/θ ≤ 0

holds for all t > 0. Therefore, the definition of the generalized gradient set (10) implies that

for all f(t) ∈ ∂F (t), f(t) ≥ 0.

3) It is easy to check that F (·) is also weakly convex on (−∞, 0] with parameter ρ and

that for all t ∈ R, ∂F (−t) = −∂F (t). Therefore we only need to consider the case of t > 0.
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Due to the non-increasing property of F (t)/t, it can be verified that (F (t+ θ)− F (t))/θ ≤
F (t)/t holds for all θ > 0. Therefore the definition of the generalized gradient implies

0 ≤ f(t) ≤ lim
θ→0+

(F (t+ θ)− F (t))/θ ≤ F (t)/t ≤ α.

4) First, if (t1, t2) satisfies the inequality (28), it is easy to check that (−t1,−t2) also

satisfies it, therefore we only need to consider the scenario that t1 ≥ 0.

If t1 = 0, the result is obvious since ρ ≤ 0. If t1 > 0 and t2 ≥ 0, according to

Proposition 3 and the fact that F (·) is weakly convex with parameter ρ on [0,+∞), the

inequality (28) is still obvious. If t1 > 0 and t2 < 0, then −t2 > 0. Since f(t1) ≥ 0, it can

be derived that

(t1 − t2)f(t1) ≥ F (t1)− F (−t2) + ρ(t1 + t2)
2

≥ F (t1)− F (t2) + ρ(t1 − t2)2.

To sum up, the inequality (28) is proved.

5) Assume F (t) = H(t) + ρt2 and decompose H(·) by H(t) = α|t|+G(t). Since H(·) is

convex, according to the definition of α, G(t) ≥ 0.

6.5 Proof of Lemma 3

Proof Define u = x − x∗ and decompose u by u = z + z⊥, where z ∈ N (A) and z⊥ ∈
N (A)⊥, which denotes the orthogonal complement of N (A). Therefore Az⊥ = Au. Since

σmin(A) is the smallest nonzero singular value of A,

‖z⊥‖2 ≤ ‖Au‖2/σmin(A). (43)

Supposing that x∗ is supported on T and according to Lemma 2.1), it can be derived that

J(x)− J(x∗) = J(x∗ + uT )− J(x∗) + J(uT c)

≥ J(uT c)− J(uT ). (44)

By the decomposition of u, it can be further derived from Lemma 2.1) that

J(x)− J(x∗) ≥ J(zT c)− J(zT )− J(z⊥). (45)

On the one hand, according to the definition of null space constant,

J(zT c)− J(zT ) ≥ 1− γ(J,A,K)

1 + γ(J,A,K)
J(z). (46)

On the other hand, according to Lemma 1.1) and (43),

J(z⊥) ≤ α‖z⊥‖1 ≤ α
√
N‖Au‖2/σmin(A). (47)
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Since for 1 ≤ i ≤ N , |zi| ≤ ‖z‖2 ≤ ‖u‖2 ≤M0, it can be calculated that

J(z) ≥ F (M0)‖z‖1/M0 ≥ F (M0)‖z‖2/M0, (48)

where the first inequality is due to Definition 3.3). Therefore (45), (46), (47), and (48)

imply

J(x)− J(x∗) ≥ C1‖z‖2 − α
√
N‖Au‖2/σmin(A). (49)

Since ‖u‖2 ≤ ‖z‖2 + ‖z⊥‖2, according to (43), (29) can be directly derived.

6.6 Proof of Lemma 4

Proof According to Lemma 2.4), it can be derived that

(x− x∗)T∇J(x) ≥ J(x)− J(x∗) + ρ‖x− x∗‖22. (50)

Since ‖x− x∗‖2 ≤ C1
−4ρ , Corollary 1 and (50) imply

(x− x∗)T∇J(x) ≥ C1‖x− x∗‖2/4, (51)

which completes the proof.

6.7 Proof of Lemma 5

Proof Define u = x− x∗ and u+ = x+ − x∗. According to the procedure of PGG, it can

be derived that u+ = u− κ(I−A†A)∇J(x), which further implies

‖u+‖22 =‖u‖22 + κ2‖(I−A†A)∇J(x)‖22
− 2κuT(I−A†A)∇J(x).

(52)

According to Lemma 2.3), the second item on the right side of (52) can be bounded as

‖(I−A†A)∇J(x)‖22 ≤ ‖∇J(x)‖22 ≤ α2N.

The third item on the right side of (52) can be decomposed to

uT(I−A†A)∇J(x) = uT∇J(x)− uTA†A∇J(x).

On the one hand, according to the proof of Lemma 4, (51) implies that

uT∇J(x) ≥ C1‖u‖2/4.

On the other hand,

uTA†A∇J(x) ≤ α
√
N‖Au‖2/σmin(A).

Substituting these inequalities into (52) and according to (33), the right side of (52) can be

bounded as ‖u‖22 − (µ− 1)α2Nκ2, which arrives Lemma 5.
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6.8 Proof of Lemma 6

Proof According to the definition of C1 and Lemma 2.5),

C1

−4ρ
≥ αM0 + ρM2

0

−4ρM0

1− γ(J,A,K)

1 + γ(J,A,K)
. (53)

Therefore, due to (18), the constraint (35) holds.

6.9 Proof of Lemma 7

Proof First, we prove that

‖y −Ax(n)‖2 ≤ ‖y‖2ζn+1 + C5κ/2. (54)

For n = 0, the initialization is x(0) = ATBy, which satisfies

‖y −Ax(0)‖2 = ‖y −AATBy‖2 ≤ ‖y‖2ζ. (55)

For the (n+ 1)th iteration, the iterative solution obeys

x(n+ 1) = ATBy + (I−ATBA)(x(n)− κ∇J(x(n))), (56)

which satisfies
‖y −Ax(n+ 1)‖2

=‖(I−AATB)(y −A(x(n)− κ∇J(x(n))))‖2
≤‖y −Ax(n)‖2ζ + α

√
N‖A‖2κζ.

Together with (55), it can be derived by recursion that

‖y −Ax(n)‖2 ≤ ‖y −Ax(0)‖2ζn +
ζα
√
N‖A‖2

1− ζ
· κ

≤ ‖y‖2ζn+1 + C5κ/2, (57)

Now we turn to the proof of Lemma 7. Since y = Ax∗ + e, it can be derived that

‖A(x(n)− x∗)‖2 ≤ ‖y −Ax(n)‖2 + ‖y −Ax∗‖2
≤ ‖y‖2ζn+1 + C5κ/2 + ‖e‖2,

which completes the proof.

6.10 Proof of Lemma 8

Proof Similar to the proof of Lemma 5, define u = x− x∗ and u+ = x+ − x∗. According

to (56), it holds that u+ = u + ATB(y−Ax)−κ(I−ATBA)∇J(x), which further implies

‖u+‖22 =‖u‖22 + ‖ATB(y −Ax)‖22 + 2uTATB(y −Ax)

+ κ2‖(I−ATBA)∇J(x)‖22
− 2κuT(I−ATBA)∇J(x)

− 2κ(y −Ax)TBTA(I−ATBA)∇J(x).

(58)
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According to (57) and n ≥ Nκ, for the second item on the right side of (58),

‖ATB(y −Ax)‖22 ≤ (1 + ζ)‖B‖2C2
5κ

2.

For the third item,

uTATB(y −Ax) ≤ ‖B‖2C5κ (C5κ+ ‖e‖2) .

For the forth item,

‖(I−ATBA)∇J(x)‖22 ≤ ‖I−ATBA‖22α2N = dα2N

For the fifth item, it can be decomposed to

uT(I−ATBA)∇J(x) = uT∇J(x)− uTATBA∇J(x).

According to the proof of Lemma 4, since ‖x− x∗‖2 ≥ 2C2(C5κ+ ‖e‖2), (51) implies that

uT∇J(x) ≥ C1‖u‖2/4,

and

uTATBA∇J(x) ≤ α
√
N‖A‖2‖B‖2 (C5κ+ ‖e‖2) .

For the last item,

(y −Ax)TBTA(I−ATBA)∇J(x)

≥− α
√
N‖A‖2‖B‖2ζC5κ.

Together with the above inequalities, (58) can be simplified to

‖u+‖22 ≤‖u‖22 + dα2Nκ2

− C1

2
(‖u‖2 − C6κ− C7‖e‖2)κ,

(59)

where C6 and C7 are specified as (26) and (27), respectively. Therefore, under the assump-

tion (37), inequality (59) implies (38), which completes the proof.

6.11 Proof of Theorem 5

Proof Assume that the iterative solution of APGG satisfies

‖x− x∗‖2 ≥ 2C3κ+ 2C4‖e‖2. (60)

Since Lemma 8 holds for any µ > 1, we choose

µ(n) =
‖x− x∗‖2 − C4‖e‖2

C3κ
> 1, (61)
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and the next iterative solution satisfies

‖x+ − x∗‖22
≤‖x− x∗‖22 − (µ(n)− 1)dα2Nκ2

=‖x− x∗‖22 −
dα2Nκ

C3
(‖x− x∗‖2 − C3κ− C4‖e‖2)

≤
(
‖x− x∗‖2 −

dα2Nκ

4C3

)2

, (62)

where the last inequality can be derived from the assumption (60). Therefore,

‖x+ − x∗‖2 ≤ ‖x− x∗‖2 −
dα2Nκ

4C3
, (63)

i.e., the distance reduction is at least dα2Nκ
4C3

. Since the initial solution satisfies ‖x(0)−x∗‖2 ≤
M0, in at most

M0

dα2Nκ
4C3

=
4C3M0

dα2Nκ

iterations, the recovered solution by APGG satisfies (22).

It needs to be noted that, similar to the discussions in Section III-E of [38], µ is just

a parameter in the theoretical analysis, and the choice of µ would not influence the actual

convergence of iterations of APGG. In other words, the inequality (63) always holds as long

as the assumption (60) holds, and this fact is independent of the choice of µ.

7 Conclusion

This paper considers the convergence guarantees of a non-convex approach for sparse re-

covery. A class of weakly convex sparseness measures is adopted to constitute the sparsity-

inducing penalties. The convergence analysis of the (A)PGG method reveals that when

the non-convexity of the penalty is below a threshold (which is in inverse proportion to

the distance between the initial solution and the sparse signal), the recovery error is linear

in both the step size and the noise term. As for the APGG method, the influence of the

approximate projection is reflected in the coefficients instead of an additional error term.

Therefore, in the noiseless scenario with sufficiently small step size, APGG returns a so-

lution with any given precision. Simulation results verify the theoretical analysis in this

paper, and the recovery performance of APGG is not much influenced by the approximate

projection.

There are several future directions to be explored. The first direction is to study the per-

formance of J-minimization for tuple (A,x∗). In this paper we mainly utilize the null space

constant to characterize its performance, and it is only tight for tuple (A,K). For a fixed

sparse signal x∗, as the non-convexity −ρ/α increases, the performance of J-minimization
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should be different, as is revealed in Theorem 1 and Fig. 3-4. The second possible direc-

tion is to improve the performance of sparse recovery by solving a sequence of optimization

problems with different choices of non-convexity. The major concern would be the selection

rules of the sequence of non-convexity such that the recovered solution for the previous

non-convexity would lie in the convergence neighborhood for the next non-convexity.

A Approximate Calculation of A†

The methods of computing A† have been developed to a mature technology. They are

roughly classified into two categories: direct methods [46] and iterative methods [47]. Di-

rect methods are mainly based on matrix decompositions, such as QR decomposition [46]

and singular value decomposition [48, 49]. Iterative methods, on the other hand, derive

the pseudo-inverse matrix iteratively. To develop more accurate solutions, they cost more

computational resources. Therefore, the iterative methods are preferred if approximate

pseudo-inverse matrix can be applied to reduce the computational complexity.

A well-known iterative method introduced by Ben-Israel et al. [50] is

Y0 = ςAT,

Yk = Yk−1(2I−AYk−1)

with the parameter ς satisfying 0 < ς < 2/‖AAT‖1, where ‖ · ‖1 denotes the maximum

absolute column sum of the matrix. Simple calculation derives that

‖I−AY0‖2 = ‖I− ςAAT‖2 < 1,

‖I−AYk‖2 ≤ ‖I−AYk−1‖22 ≤ ‖I−AY0‖2
k

2 ,

which means this method is quadratic convergence.

In this paper, it is assumed that the approximate pseudo-inverse matrix is of the form

ATB, i.e., the transpose of A multiplied by a matrix B ∈ RM×M . B is considered as the

approximation of (AAT)−1. It is verified that most, if not all, iterative methods [47,50,51]

satisfy this assumption.
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