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Abstract

The problem of estimating an unknown deterministic parameter vector from sign

measurements with a perturbed sensing matrix is studied in this paper. We analyze the

best achievable mean square error (MSE) performance by exploring the corresponding

Cramér-Rao Lower Bound (CRLB). To estimate the parameter, the maximum likelihood

(ML) estimator is utilized and its consistency is proved. We show that the perturbation

on the sensing matrix exacerbates the performance of ML estimator in most cases.

However, suitable perturbation may improve the performance in some special cases.

Then we reformulate the original ML estimation problem as a convex optimization

problem, which can be solved efficiently. Furthermore, theoretical analysis implies that

the perturbation-ignored estimation is a scaled version with the same direction of the

ML estimation. Finally, numerical simulations are performed to validate our theoretical

analysis.

Keywords: Maximum likelihood estimation, sign measurements, Gaussian pertur-

bation, CRLB.

1 Introduction

The linear regression problem with perturbed sensing matrix has been extensively studied

in recent years [1, 2, 3]. Mathematically, the vector y ∈ RN is observed via a corrupted

sensing matrix as

y = (H + E)Tw + n, (1)

where H ∈ Rp×N is a deterministic known sensing matrix, and E is a random matrix each

of whose elements is i.i.d., eij ∼ N (0, σ2e), i = 1, · · · , p, j = 1, · · · , N . The additive noise

vector n is independent of E and satisfies n ∼ N (0, σ2nI), where σ2e is viewed as the strength

of perturbation. To estimate the unknown parameter vector w ∈ Rp, the perturbation E is
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treated as a nuisance parameter and the maximum likelihood (ML) method is used. Several

numerical methods have been proposed including minimax search, maximin search, and the

classical expectation-maximization (EM) algorithm [3].

It is natural to further study the parameter estimation problem with perturbed sensing

matrix by the sign measurements

y = sign
(

(H + E)T w + n
)
, (2)

where y denotes a binary measurement vector and sign(·) is a vector each of whose entries

is equal to the sign of the corresponding element (we assume that the sign of a real number

is 1 or −1, when the number is positive or nonpositive, respectively).

1.1 Problem Background

Most available works focus on the simplified case of (2) in which the perturbation does not

exist, i.e., E = 0 [4, 5]. In this setting, the model is reduced to

y = sign
(
HTw + n

)
. (3)

Model (3) is closely related to the binary regression model in statistics, where only binary

outcomes are obtained to estimate the factors that affect the results. When the noise is

Gaussian distributed, the binary regression model is also called a probit model [6], which

can be described as

y = sign
(
HTw̃ + ñ

)
, (4)

where ñ is a normalized Gaussian vector satisfying ñ ∼ N (0, I), and w̃ = w/σn is what

we wish to estimate. Once the estimation of w̃ is acquired, the distribution of the sign

measurement sign(hTw̃ + ñ) can be predicted for a new h ∈ Rp.
Another application related to model (3) is to estimate some physical quantities (pres-

sure, temperature, mean-location, and etc.) based on binary quantized measurements in

wireless sensor network. The mathematical model of most related works in this scenario

is a special case of (3) in which the parameter to be estimated is a scalar. In this appli-

cation, there are a large number of spatially distributed nodes. Each node is available to

a subset of observations and has to transmit the information to the fusion center. Due to

the limited bandwidth, the node may quantize the measurements coarsely. It is known that

the minimum variance of the estimator based on binary measurements is only π/2 times

of the clairvoyant estimator [7, 8], which motivates researchers to achieve this excellent

performance by proposing carefully designed strategies. In [9, 10], distributed estimation

algorithms are proposed to reduce the transmission requirements by exploiting spatial cor-

relation. Furthermore, a universal decentralized estimation scheme is proposed to cope with

the unknown noise distribution case [11, 12, 13]. While all above works focus on the estima-

tion of the scalar case, [14] analyzes the performance of the ML estimator for multivariate

parameters with dithered quantization.
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1.2 Main Contribution

This paper focuses on the ML estimation of the vector parameter from sign measurements

with sensing matrix perturbation. The main contribution of this work is two-fold. On

the one hand, the Cramér-Rao Lower Bound (CRLB) on the mean square error (MSE) is

theoretically derived to analyze the performance of unbiased estimators. The ML estimator

is proved to be consistent, then its performance is studied using the CRLB. It is shown that

the perturbation on the sensing matrix worsens the performance in most cases. However,

suitable perturbation may improve the estimation accuracy in some special cases. On the

other hand, the ML estimation problem is reformulated as a convex optimization problem,

implying that if the global optimal point exists, there are numerical algorithms guaranteed

to converge to it. We analyze the probability that the optimal point of the ML estimator

exists. It is shown that moderate perturbation may be beneficial by providing randomness

for the measurements. Moreover, the mismodeling effects is studied in the case that the

perturbation is ignored. We show that the estimator ignoring the perturbation can provide

a scaled estimation with the same direction with that of the ML estimator. It implies

that we can also obtain the correct direction estimation when the perturbation information

is unknown. Finally, we compare the MSE performance of the ML estimator against the

CRLB by simulation.

1.3 Related Work

For model (3), there has been a lot of works focusing on the estimation of a scalar parameter

[8, 10, 14]. In [8], the case in which the sensing matrix is H = [1, · · · , 1] is studied. The

parameter w are supposed to lie in the range (−∆,∆). Thus the worst-case CRLB is

optimized with respect to the variance of the additive noise. It is also shown that the

performance of the estimation can be improved by a periodic waveform or feedback signal

prior to quantization. Recently, an additive outlier o is introduced in (3) to model the

errors [16] by

y = sign
(
HTw + n + o

)
.

The sparsity of the outliers is controlled. Desirable tradeoff between model fit and com-

plexity is attained by a new classification-based approach. In [17, 18], both the outliers

and the unknown parameters are sparse. The ML method for the probit model is proposed

to estimate the model parameters. Suppose that the numbers of nonzero entries of o and

w are less than or equal to ko and kw, respectively. By defining the concatenated matrix

Q , [HT, IN×N ], a sufficient condition for the identifiability of w and o can be described

by

Spark(Q) > 2(ko + kw),
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where Spark(Q) denotes the minimum number of the dependent columns in Q. The ML

estimation of the vector [wT,oT]T is equivalent to the following optimization problem

minimize
w,o

−

(
N∑
i=1

logΦ

(
yi

hT
i w + oi
σn

))
subject to ‖w‖0 ≤ kw, ‖o‖0 ≤ ko,

where Φ(u) = 1√
2π

∫ u
−∞ e−

x2

2 dx is the cumulative distribution function of the standard

Gaussian distribution. In [18], it is shows that the outliers and the unknown parameters can

be jointly estimated by using the convex l1-norm to replace with the cardinality constraint.

Though some methodologies utilized in above papers are adopted in this work, the model

they studied is different from (2).

For the probit model (4), the standard ML procedure is often used to estimate the

unknown parameter vector. The ML estimation is equivalent to the following optimization

problem

minimize
w̃

−
N∑
i=1

logΦ
(
yih

T
i w̃
)
.

This problem is convex and is first solved in [15]. Model (4) with uncertainty in the sensing

matrix has been studied in a number of literature. There are two approaches to describe the

uncertainty of the sensing matrix [19]. The first approach is the standard errors in variables

(EIV) model, where H is modeled as a deterministic unknown sensing matrix, and G is a

noisy observation on H which can be described by G = H + E. Given the observations G

and y, both w̃ and H are estimated by solving

minimize
w̃,H

− l(y,G; w̃,H), (5)

where l(y,G; w̃,H) is the log-likelihood function of y and G parameterized by w̃ and H.

Equation (5) is equivalent to

minimize
H,w̃

(
−

N∑
i=1

logΦ
(
yih

T
i w̃
)

+
‖H−G‖2F

2σ2e

)
. (6)

The number of variables increases by a factor of p(1 + 1/N) with respect to the number of

measurements N . In [19], it is shown that the ML estimator is in general not consistent,

implying that the ML estimator will not converge to the true parameter in probability when

the number of measurements tends to infinity. The second approach to describe the uncer-

tainty is to model the sensing matrix as a random matrix. The statistical characterization

of the sensing matrix is known, thus the nuisance parameter can be eliminated and the

estimation of w̃ is available. The above works focused on the regression analysis and some

basic assumptions are different from this work.
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Notation

For any scalar x ∈ R, bxc (dxe) denotes the nearest integer less than or equal to (greater

than or equal to) x. For an unknown estimated parameter vector w (scalar parameter w),

w0 (w0) denotes its true value. For a random vector y, Ey[·] denotes the expectation taken

with respect to y. For w = [w1, · · · , wn]T and a continuous and differentiable function

f : Rn → R, ∇wf and ∇2
wf denotes its gradient and Hessian. For a vector function

g : S → Rr defined on a set S in Rs, ∂g(θ)/∂θ denotes its Jacobian matrix [∂gi(θ)/∂θj ]r×s.

For any appropriate matrix A, aij denotes its (i,j)th element, ai denotes its ith column,

‖A‖F denotes its Frobenius norm, tr(A) denotes its trace, A � 0 (A � 0) means that A is

positive semidefinite (positive definite), and A � B means that A−B � 0. diag(λ1, · · · , λp)
is a p × p diagonal matrix with the ith diagonal elements λi. Other notations will be

introduced when needed.

The rest of this paper is organized as follows. In Section II, the ML estimator is utilized

and its consistency is proved. In Section III, the theoretical CRLB is derived, and the

theoretical performance limits is analyzed. In Section IV, we reformulate the original ML

estimation problem as a convex optimization problem. In Section V, we discuss the proba-

bility that the likelihood function is unimodal, and provide some insights on the similarity

and the difference between the ML estimator and the perturbation-ignored estimator. In

Section VI, the numerical results are presented. Finally we conclude the paper in Section

VII.

2 Maximum Likelihood Estimator

The model (2) can be written in a more canonical form

y = sign
(
HTw + z

)
, (7)

where z = ETw + n is regarded as the sum of a multiplicative noise and an additive noise

[20]. The variance of the equivalent noise z depends on the parameter vector w, which makes

the problem more complex than the perturbation free setting. Because eij is i.i.d. Gaussian

random variable, ETw is an N dimensional Gaussian distributed random vector. It follows

by straightforward calculation that E[ETw] = 0, and Cov[ETw] = σ2e‖w‖22I. Thus the

variance of the multiplicative noise is σ2e‖w‖22. Then, from the mutual independence of

ETw and n, one has z ∼ N (0, σ2zI), where

σ2z = ‖w‖22σ2e + σ2n. (8)

Now we calculate the likelihood function Pr(y; w). Let H = [h1,h2, · · · ,hN ], I+ and

I− denote the set of indices {i|yi = 1} and {i|yi = −1}, respectively. By partitioning the
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observations into I+ and I−, the likelihood function Pr(y; w) is calculated to be

Pr(y; w) =
∏
i∈I+

Pr(hT
i w + zi > 0)

∏
i∈I−

Pr(hT
i w + zi ≤ 0)

=
∏
i∈I+

Φ

(
hT
i w

σz

) ∏
i∈I−

Φ

(
−hT

i w

σz

)

=

N∏
i=1

Φ

(
yi

hT
i w

σz

)
.

The corresponding log-likelihood function l(y; w) is given by

l(y; w) =

N∑
i=1

logΦ

(
yi

hT
i w

σz

)
. (9)

Therefore, the ML estimation of the vector w is equivalent to minimizing the negative

log-likelihood function (9). Substituting (8) in (9), one has

minimize
w∈Rp

−
N∑
i=1

logΦ

(
yi

hT
i w√

‖w‖22σ2e + σ2n

)
. (10)

Now we briefly discuss the statistical identifiability of the model (2). The model is

statistically identifiable if the underlying parameter can be estimated accurately by an

infinite number of measurements. Mathematically, this means that if w1 is not equal to w2,

the corresponding measurements y1 and y2 must follow different probability distributions.

A necessary and sufficient condition to guarantee the identifiability of model (2) is that H

should be of full row rank, which is the same with the linear regression model (1).

We will close this section by studying the consistency of the ML estimator on

yi = sign
(
hT
i w + zi

)
, i = 1, 2, · · · , N, (11)

where hi are generated from any underlying continuous distribution and zi ∼ N (0, σ2z) is an

i.i.d. sequence. The consistency means that as the number of the measurements N tends to

infinity, the estimator converges to the true parameter value w0 in probability. Though it

has been demonstrated that the ML estimator (6) in EIV model is not consistent in general

[19], we could prove that the consistency of the ML estimator is satisfied in the model (11).

Theorem 1 Assume that w lies in the parameter space W = {w|‖w‖2 ≤ Rw}, where Rw

is a positive constant. {hi}Ni=1 are generated from an underlying continuous distribution.

The ML estimator (10) is consistent.

Proof The proof is postponed to Appendix A.

One may notice that the unknown parameter is assumed to be bounded, which is a

technical mathematical condition needed for many theoretical analysis [3]. In practice, we

can choose Rw sufficiently large, then the estimator is assumed to have no knowledge of

this constraint.
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3 Cramér-Rao Lower Bound

We now provide a lower bound on the variance of any unbiased estimator of the model

(2). It is well known that the MSE of the ML estimator asymptotically achieves the CRLB

under certain regularity conditions. Therefore, the CRLB provides a reasonable benchmark

shedding light on the performance of the ML estimator.

The Fisher information matrix (FIM) is used to find the bounds for unbiased estimators.

We can calculate the FIM as the negative expectation of the Hessian of the log-likelihood

function with respect to y,

J(w) = −Ey[∇2
wl(y; w)].

The CRLB matrix is equal to the inverse of the FIM by

CRLB(w) = (J(w))−1 ,

and the CRLB on the MSE is the trace of the CRLB matrix.

Now a closed-form expression of the CRLB on the MSE for the model (2) is provided

in the following theorem.

Theorem 2 Consider the estimation of w in the model (2) with both σ2n and σ2e known.

The FIM is J(w) = MΛMT and the MSE mse(ŵ) = E[‖ŵ−w‖22] of any unbiased estimator

ŵ satisfies

mse(ŵ) ≥ tr
((

MΛMT
)−1)

, (12)

where Λ is a positive diagonal matrix with elements

λii =
1

2πσ2z

 1

Φ
(
hT
i w
σz

) +
1

Φ
(
−hT

i w
σz

)
e
−(hT

i w)
2

σ2z , (13)

and

M =

(
I− σ2e

σ2z
wwT

)
H. (14)

Proof The proof is postponed to Appendix B.

For simplicity, let J denote the FIM instead of J(w) in the following text. Two extreme

cases will be discussed. The first case corresponds to the setting of perturbation free. Then

M = H and σ2z = σ2n. The FIM is degenerated to J = HΛHT, which is consistent with

[18]. The second case corresponds to the setting of additive noise free. Hence M is rank

deficient and J is singular, implying that there exists no finite variance unbiased estimator

[22]. We can also see it in the reduced model

y = sign
(

(H + E)Tw
)
. (15)
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For an estimator ŵ, its scaled version kŵ satisfies (15) for all k > 0. This result demon-

strates that the magnitude information of w is lost from sign measurements. Therefore, the

additive noise n is necessary for the estimation in that it provides a dynamic bias for the

sign function [21]. We always assume that σ2n is nonzero.

We will then discuss how the multiplicative noise and the additive noise affect the

CRLB on the MSE. The sign measurement can be viewed as a nonlinear system, thus its

performance can be enhanced by the presence of optimized random noise [25, 26, 27]. In

the model (2), there may exist optimal variances of multiplicative noise and additive noise

that minimize the CRLB on the MSE. Viewing σ2n and σ2e as variables, we will discuss three

cases in the following subsections, corresponding to the situations in which the variance of

the equivalent noise σ2z , of the multiplicative noise σ2e‖w‖22, or of the additive noise σ2n is

fixed, respectively.

3.1 The Case of Equivalent Noise Fixed

Suppose that we have two models. One is model (2), the corresponding estimator and the

FIM are denoted as ŵ(y,H, σ2e , σ
2
n) and J, respectively. The other is model (3). We use

ŵ(y,H, 0, σ2z) to denote the estimator with the FIM J̃ in this situation. One may define

γ = σ2e‖w‖22/σ2n to denote the ratio of the variance of the multiplicative noise to that of the

additive noise. Let λ̃i denote the ith largest eigenvalue of the FIM J̃, then the following

result is obtained.

Proposition 1 The multiplicative noise exacerbates the performance of estimation when

the variance of equivalent noise is fixed. In the MSE sense, we have the following inequality

γ2 + 2γ

λ̃1
≤ tr(J−1)− tr(J̃−1) ≤ γ2 + 2γ

λ̃p
. (16)

Proof The proof is postponed to Appendix C.

Proposition 1 demonstrates that the minimum MSE is achieved at σ2e = 0 when σ2z is

fixed. It is also shown that when the variance of the multiplicative noise is much smaller

than that of the additive noise, the lower and the upper bounds of tr(J−1) − tr(J̃−1) are

proportional to γ. Whereas when the variance of the multiplicative noise is larger than that

of the additive noise, the two bounds are proportional to γ2. Therefore, the performance of

the estimator deteriorates dramatically with the increase of the multiplicative noise when

the variance of equivalent noise is fixed.

If back to the unquantized problem y = (H + E)Tw + n, one will draw a contrary con-

clusion. We define two unquantized problems which are the same with the above situation.

Using the same notation and assuming the variance of the equivalent noise is equal, the

result is contrary to (16). According to (12) of [28], one has

tr(J̃−1) ≥ tr(J−1).
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This result demonstrates that when the measurement is unquantized and the variance of the

equivalent noise is fixed, noise coupled the parameter information can help us to estimate

the parameter.

3.2 The Case of Multiplicative Noise Fixed

Now we discuss the case in which the variance of the multiplicative noise is fixed. Because

w is deterministic, σ2e can be viewed as a variable instead of ‖w‖22σ2e . We consider two

extreme cases. One is that σ2n is zero. In this case, we have known that the corresponding

FIM is singular, thus there does not exist a finite unbiased estimator for w. In the other

case, when σ2n tends to infinity, according to (13), one has

lim
σ2
n→∞

λii = lim
σ2
n→∞

2

πσ2z
e
−(hT

i w)
2

σ2z = 0,

which implies that the CRLB on the MSE tends to infinity as σ2n gradually increases. Except

for these two cases, the CRLB on the MSE is finite. These results show that the additive

noise has two opposing effects. On the one hand, it provides variant thresholds for the sign

measurement, which is beneficial to the estimation. On the other hand, the additive noise

increases the variance of the estimation [30]. Therefore, there may exist an optimal variance

of the additive noise which balances these opposing effects and minimizes the CRLB. The

above analysis will be substantiated by an example later.

3.3 The Case of Additive Noise Fixed

When σ2e is zero, the CRLB on the MSE is finite. Whereas when σ2e tends to infinity,

according to (13), one has

lim
σ2
e→∞

λii = lim
σ2
e→∞

2

πσ2z
e
−(hT

i w)
2

σ2z = 0.

Thus the FIM tends to singular and the CRLB on the MSE tends to infinity. Intuitively,

one may expect that the optimal variance of the multiplicative noise is zero. However, we

will show that this is indeed not always true. There may exist an optimal nonzero variance

of the multiplicative noise, as we will show in the following example.

3.4 An Example

An example is now illustrated to verify our analysis on all cases. Consider a scalar parameter

estimation problem and the mean of the sensing matrix is H = [1, 1, · · · , 1]. According to

(12), the CRLB is

CRLB(w) =
2πσ2z
N

(
1 +

σ2ew
2

σ2n

)2

Φ

(
− w
σz

)
Φ

(
w

σz

)
e
w2

σ2z . (17)

9



We wish to minimize the CRLB (17) in three cases, respectively. It is obvious that the

minimum CRLB is attained at σ2e = 0 when σ2z is fixed. When either σ2n or σ2e is fixed, it

is difficult to exactly analyze (17). Fortunately, by using the Chernoff bound for the CDF

[29]

Φ

(
− w
σz

)
Φ

(
w

σz

)
≤ 1

4
e
− w2

2σ2z , (18)

one can find an upper bound for CRLB(w) by substituting (18) in (17)

CRLB(w) ≤ πσ2z
2N

(
1 +

σ2ew
2

σ2n

)2

e
w2

2σ2z . (19)

In fact, the Chernoff bound is a very tight approximation for finding the optimal value of σ2n
or σ2e , which will be shown later. By substituting (8) in (19) and dropping out the constant

coefficient items, we define the natural logarithm of the right hand side of (19) as

f(σ2n, σ
2
e) , 3 log(σ2n + σ2ew

2) +
w2

2(σ2n + σ2ew
2)
− 2 log σ2n. (20)

When σ2e is fixed, we minimize (20) with respect to σ2n. The optimal variance of the additive

noise is approximated by

optσ
2
n ≈ appσ

2
n =

w2

2

(√
9σ4e + σ2e +

1

4
+

1

2
+ σ2e

)
. (21)

This means that there exists an optimal additive noise that matches the multiplicative noise

and the unknown parameter. Whereas when the variance of the additive noise σ2n is fixed,

the optimal optσ
2
e is

optσ
2
e ≈ appσ

2
e =

1
6 −

σ2
n
w2 , if σ2

n
w2 ≤ 1

6 ;

0, otherwise.
(22)

It seems unreasonable that the multiplicative noise may improve the performance of the

estimation. By carefully studying the condition of (22), one can find that the variance of

the additive noise σ2n should be very small compared to w2. In this setting, the randomness

introduced by the additive noise is so weak that suitable perturbation may improve the

MSE performance. However, to estimate the parameter accurately, a very large number of

measurements is needed to ensure enough the fluctuation of the measurements. Thus the

ML estimator achieves the CRLB only when the number of measurements is very large.

When the variance of additive noise σ2n is comparable with the energy of parameter w, the

randomness introduced by the additive noise suffices and optσ
2
e is zero.

Notice that the above analysis is established for a given w. Although the parameter w

is unknown in practice, the theoretical analysis is still useful in three aspects. First, it gives

us an insight into the relationship between the additive noise and the perturbation. Second,
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the theoretical MSE performance limits for unbiased estimators is provided by choosing the

optimal optσ
2
n or optσ

2
e . Third, one may extend the above ideas to the case of unknown

parameter w. In this case, one may optimize the Bayesian CRLB [31] or the worst CRLB

[8] instead if some prior information is known.

4 ML Estimation via Convex Optimization

At first sight, one wish the ML estimation problem (10) could be solved by steepest descent

or Newton’s method. However, problem (10) is non-convex. Hence the gradient and Hessian

based numerical algorithms may not be guaranteed to converge to the optimal point. More-

over, direct solution can not provide us more insight into the problem itself. Fortunately,

(10) can be reformulated as a convex optimization problem. By introducing a new variable

v =
w√

‖w‖22σ2e + σ2n
, (23)

we transform the original optimization problem (10) to another one with respect to v.

According to (23), one has

‖v‖2 <
1

σe
. (24)

As long as v satisfies the inequality (24), the relationship between w and v is a one to

one mapping. Consequently, the original problem (10) can be conquered by first solving an

equivalent convex optimization problem,

minimize
v

−
N∑
i=1

logΦ(yih
T
i v) (25a)

subject to ‖v‖22 <
1

σ2e
, (25b)

and then finding the optimal point by

w =
σn√

1− σ2e‖v‖22
v. (26)

Proposition 2 The optimization problem (10) is equivalent to problem (25).

Proof The proof is direct and is not included.

The constraint set (25b) is an open ball. Thus if the optimal point of the problem (25)

exists, it must be an interior point of the constraint set. For the uniqueness of the optimal

point of the objective function (25a), we have the following result.

Proposition 3 The objective function of problem (25) is strictly convex, thus the optimal

point of problem (25) is unique if it exists.

11



Proof The proof is postponed to Appendix D.

Based on Proposition 2 and Proposition 3, the following proposition provides a necessary

and sufficient condition of the existence of the optimal point of the original ML estimation

problem (10).

Proposition 4 The optimal point of problem (10) exists if and only if the optimal point

v∗u of the unconstrained convex optimization problem

minimize
v∈Rp

−
N∑
i=1

logΦ(yih
T
i v) (27)

satisfies the constraint (25b).

Proof According to Proposition 2, the optimal point of the original ML estimation problem

(10) exists if and only if problem (25) has an optimal point. Considering that the objective

function of (25) is strictly convex and the constraint (25b) is an open ball, the existence of

optimal point of (25) is equivalent to that v∗u satisfies the constraint (25b). Then the result

is established.

Therefore, we can solve at first the unconstrained optimization problem (27). Then

we check whether v∗u satisfies the constraint (25b) to determine whether the original ML

estimation problem (10) has an optimal point.

It is shown that (10) does not have an optimal point in some cases, in which we say that

there “exists” an optimal point with infinite norm. In order to provide an finite estimation,

we adopt a norm limit operation. We will project the optimal point (the infinite case

included) onto a set W = {w|‖w‖2 ≤ Rw}, if its norm is larger than a threshold Rw, where

Rw is much larger than the norm of true parameter w0. Because W is a closed ball, it

can be proved that the projection of w onto W is equivalent to the projection of v onto

V = {v|‖v‖2 ≤ Rw/
√
R2
wσ

2
e + σ2n}.

In practice, we first get v∗p = ΠV(v∗u), where ΠV represents the projection onto the

parameter set V. According to (26), we then obtain the corresponding w∗p which satisfies

w∗p ∈ W and is regarded as the ML estimator

ŵML =
σn√

1− σ2e‖v∗p‖22
v∗p. (28)

We will show that the norm limit operation is almost unnecessary, when the number of

measurements N is large enough. As shown in Theorem 1, the ML estimator is consistent.

This means that the optimal point of (10) converges to w0 in probability. Thus the optimal

point of (25) also converges to v0 in probability, where v0 is determined by (23) using w0.

Because w0 ∈ W, we can see that v0 ∈ V. As a consequence, in the situation of large

measurement set, the optimal point v∗u of (27) satisfies v∗u ∈ V with high probability.

12



5 Further Discussion

5.1 Probability Analysis

We will analyze the probability that the optimal point of the ML estimation problem exists,

in which situation the likelihood function is unimodal.

The previous section has shown that the optimal point v∗u of (27) may violate the

constraint (25b). Since v∗u is a random vector, we may define the probability

PV = Pr

[
‖v∗u‖2 <

1

σe

]
, (29)

which is the probability that the original log-likelihood function (9) is unimodal. This prob-

ability is meaningful in that it sheds light upon the perturbation in a different perspective.

On the one hand, the perturbation provides randomness for the sign function. The ran-

domness may make the likelihood function unimodal. On the other hand, PV may decrease

as the strength of perturbation becomes larger through (29). Notice that this probability

can be written explicitly as PV(H,w0, σ
2
e , σ

2
n, N), where w0 denotes the true value of w.

Computing the above probability seems to be hard. However, there may exist an analytic

solution in a special case.

Proposition 5 Suppose that the true parameter w0 is a scalar, and the mean of the sensing

matrix is H = [1, 1, · · · , 1]. By defining k− =
⌊
NΦ

(
− 1
σe

)⌋
+ 1 and k+ =

⌈
NΦ

(
1
σe

)⌉
− 1,

PV is obtained by

PV =

k+∑
k=k−

(
N

k

)[
Φ

(
w0

σz

)]k [
1− Φ

(
w0

σz

)]N−k
. (30)

Proof The proof is postponed to Appendix E.

It is difficult to analyze PV by (30). When the number of measurements N is large,

however, we may compute PV with the normal approximation [34]

PV ≈ Φ(η+)− Φ(η−),

where

η± =
k± −NΦ

(
w0
σz

)
√
NΦ

(
w
σz

)
Φ
(
− w
σz

) ≈ Φ
(
± 1
σe

)
− Φ

(
w0
σz

)
√

Φ
(
w0
σz

)
Φ
(
−w0
σz

)√N.
Now we give some results using the normal approximation. Note that the conclusion

only applies to the case of large enough measurements. The normal approximation indicates

that PV is an increasing function of N and lim
N→∞

PV = 1. In fact, PV is not a monotone

increasing function of N , but the overall trend of PV is increasing in N . When σz and N

13



are fixed, the higher value of σe, the smaller value of PV . This means that for a larger σe,

more observations is needed to make sure that PV achieves a given probability.

In view of the limited number of observations, PV is always less than 1. Therefore,

for any fixed N , the probability that the estimated parameter lies in the boundary of the

parameter set W = {w|‖w‖2 ≤ Rw} is nonzero. Since Rw is larger than the norm of w0,

the estimator has significant bias in the case that ‖ŵML‖2 = Rw.

5.2 Effects of Mismodeling on the ML Estimation

In this subsection, we study the effects on estimation due to the ignorance of perturbation.

Then we analyze the performance of both estimators.

Assume that the true data generating model is (2), and the corresponding ML estimation

is w∗t . If the perturbation is ignored, we obtain the corresponding ML estimation as w∗w
using model (3). w∗w is denoted as the perturbation-ignored estimator. Assume that w∗t ∈
W. The relationship between w∗t and w∗w is given in the following proposition.

Proposition 6 The direction of w∗w is the same with w∗t , with magnitude scaled. w∗w and

w∗t satisfy the following relationship,

w∗w =
w∗t√

1 + σ2
e
σ2
n
‖w∗t ‖22

. (31)

Proof Substituting σ2e = 0 in (26), one has

w∗w = σnv
∗
u. (32)

Considering the existence of the perturbation, one has

v∗u =
w∗t√

‖w∗t ‖22σ2e + σ2n
. (33)

Using (32) and (33) to eliminate v∗u, the equation (31) is established.

In some applications such as binary regression problems, the direction of the parameter

w is much more important than the magnitude of w. In this situation, even though we

do not know the strength of perturbation, we can still estimate the direction of w by

perturbation-ignored estimator using model (3). Similar result in binary regression problem

is obtained in [23], which focuses on model (4) with sensing matrix perturbation and is

consistent with Proposition 5.

According to the analysis above, if the information of the perturbation E and additive

noise n is both unknown, and the measurements are generated by model (2), we can still

use model (4) to estimate the direction of the parameter w.

Now we discuss the performance of both estimators. Both the parameters w0 and σ2n
are supposed to be fixed. We show that each estimator has its own advantages and disad-

vantages, and the performance of the estimator depends on the strength of perturbation σ2e
and the number of measurements N .

14



When the number of measurements N tends to infinity, w∗t converges to w0 in proba-

bility. According to (31), the estimator ignored perturbation is inconsistent. For the vector

parameter estimation problem, the square error between w∗w and w∗t is

‖w∗w −w∗t ‖22 = ‖w∗t ‖22

(
1−

(
σ2e
σ2n
‖w∗t ‖22 + 1

)− 1
2

)2

.

According to the continuous mapping theorem [24], the squared error converges to

‖w∗w −w∗t ‖22
p→ ‖w0‖22

(
1−

(
σ2e
σ2n
‖w0‖22 + 1

)− 1
2

)2

. (34)

If σ2e � σ2n/‖w0‖22, the squared error is approximately
σ4e
4σ4n
‖w0‖62, and the relative error is

σ2e
2σ2n
‖w0‖22.
We have discussed the probability that the ML estimator w∗t is finite. When the number

of measurements is not large enough, the ML estimator w∗t has a much larger probability

of being infinite than w∗w. Meanwhile, even if the ML estimator w∗t is finite, the norm of

w∗t may be much larger than that of w0. In this situation, w∗t may have a larger MSE than

w∗w despite the bias of w∗w.

To sum up, the direction of perturbation-ignored estimator is the same with that of ML

estimator. If the perturbation and additive noise is both unknown, we can still estimate the

direction of the unknown parameter vector. Although the perturbation-ignored estimator is

inconsistent and biased, it works better in the MSE sense when the number of measurements

is not large.

6 Numerical Simulations

In this section, several numerical simulations are performed to verify the theoretical results

presented in previous sections. In these simulations, when the unknown parameter w is a

scalar, the mean sensing matrix is chosen as H = [1, 1, · · · , 1]. Whereas when the unknown

parameter w is a vector, the mean sensing matrix H is drawn with each entry hij ∼ N (0, 1).

All the MSEs of the ML estimator are averaged over 2000 Monte Carlo (MC) trials unless

stated otherwise. We assume that Rw = 4‖w0‖2. The binary measurements are generated

by model (2).

6.1 Validation of the Performance Limits

The first simulation is to validate the correctness of Proposition 1. The data is generated

as follows. We set p = 4, N = 300, σ2z = 4‖w0‖22, and generate the true parameter w0 ∈ Rp

from N (0, I). The results are plotted in Fig. 1 with γ varying from 10−2 to 102. It can be
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Figure 1: Validation of Proposition 1 with a log-log plot. All the three curves are approxi-

mately piecewise.

seen that the bounds are proportional to γ when γ is small, while they are proportional to

γ2 when γ is large.

The second simulation is to validate the existence of the optimal variance of additive

noise when σ2e is fixed. The parameters are selected as σ2e = 0.3 and w0 = 1. It can be seen

that the Chernoff bound is a very accurate approximation of the CRLB. Meanwhile, it is

also demonstrated that (21) is a good approximation of the optimal variance of the additive

noise.

In the third simulation, the existence of the optimal strength of perturbation is validated

when σ2n is fixed. We set σ2n = 0.1 and w0 = 1. In this case, σ2n/w
2
0 ≤ 1/6 and the optimal

strength of perturbation exists. Although the Chernoff bound is not very tight when σ2e is

near 0, it still reflects the trend of the CRLB well.

6.2 Simulations of Probability Results

The first simulation is to substantiate Proposition 2. The parameters are selected as:

σ2n = 1, σ2e = 0.5, w0 = 1 and N = 40. Two typical realizations about the negative log-

likelihood function in (10) versus w are plotted in Fig. 4. It can be seen that the negative

log-likelihood function (10) is nonconvex. It is also shown that the original problem (10)

has an optimal point if v∗u satisfies the constraint (25b). Whereas when v∗u violates the

constraint (25b), the optimal point of problem (10) does not exist.

The next two simulations focus on the probability that the log-likelihood function is

unimodal. The probability PV is computed by (30) and two cases are considered. For the

first case, we assume that σ2n = 0.3 and w0 = 1. Note that the variance of the additive noise

is small compared with w0. From Fig. 5, we see that PV is not monotonically increasing
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Figure 2: The optimal variance of the additive noise when σ2e is fixed as 0.3. Note that

the red dashed line indicates the CRLB, while the blue solid line indicates the Chernoff

bound. The red point denotes the optimal value optσ
2
n = 0.88, and the blue point denotes

the approximated value appσ
2
n = 0.98.
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Figure 3: The optimal strength of the perturbation when σ2n is fixed as 0.1. The red

dashed line indicates the CRLB, while the blue solid line indicates the Chernoff bound.

The red point denotes the optimal value optσ
2
e = 0.0475, and the blue point denotes the

approximated value appσ
2
e = 0.0667.

with N . This is mainly because of the floor and ceil operations. Nevertheless, the overall

trend is increasing with N . Meanwhile, for a fixed N , it is shown that PV increases with

σ2e when σ2e is small. When the strength of perturbation is large, PV decreases with it.
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indicates that v∗u does not violate the constraint (25b), while the red solid line indicates

that v∗u violates the constraint (25b). The black vertical solid line denotes the true value

w0 = 1, and the blue point denotes the estimated value ŵML = 0.89, corresponding to the

optimal point of the blue dashed line.

Therefore, suitable perturbation can improve the probability PV when N is not too large.

For the second case, we set σ2z = 2 and w0 = 1. In Fig. 6, it can be seen that the larger the

strength of perturbation, the smaller the probability PV is. This result is consistent with

our analysis by the normal approximation.
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Figure 5: The probability PV versus the number of observations N when σ2n is fixed as 0.3.
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Figure 6: The probability PV versus the number of observations N when σ2z is fixed as 2.

6.3 Performance of ML Estimator

In this subsection, several MC simulations are performed to evaluate the MSE performance

of the ML estimator against the CRLB. The MATLAB fminunc function is used to solve the

problem [33]. We assume that w0 = [0.7, 0.5,−0.6]T in the first and the third simulations.

In the first simulation, we compare the MSE performance of the ML estimator with

the CRLB with fixed σ2z or σ2n. The results are plotted in Fig. 7. It is shown that the

performance worsens with the increase of the proportion of the multiplicative noise when

σ2z is fixed. When σ2n is fixed, it is demonstrated that the perturbation exacerbates the

performance of estimation. The reason is that the norm of w0 is comparable with σn in

this case, and the optimal optσ
2
e is zero. Note that the MSE of the ML estimator is much

larger than the corresponding CRLB when N is small. This is mainly because the norm of

the ML estimator has a substantial probability of being Rw.

The second simulation assumes that σ2e = 0.3 and w0 = 1, and the MSEs are averaged

over 5000 MC trials. The results are plotted in Fig. 8. The optimal variance of the additive

noise is 0.88, thus its CRLB is smaller than the σ2n = 2 case. Meanwhile, the ML estimator

approaches faster to the CRLB in the σ2n = 2 case. As the number of measurements

increases, the ML estimator also attains the CRLB in the σ2n = 0.88 case.

Finally, the ML estimator is compared with other estimation methods. The parameters

are set as follows: σ2n = 1, σ2e = 0.4. Three estimators are considered, including the ML

estimator (28), the perturbation-ignored estimator (32) and a perturbation-known estimator

corresponding to a completely known sensing matrix. All the MSEs are then compared with

the CRLB (12). The results are plotted in Fig. 9. It is obvious that the perturbation-known

case performs better than the CRLB in which the perturbation is assumed unknown. When

the number of measurements N is smaller than 300, the perturbation-ignored estimator

works better than the ML estimator. The reason is that the norm of the ML estimator has
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Figure 7: The MSE of the ML estimator and the CRLB for different number of observations.

Note that the blue and the red lines correspond to the case that the variance of equivalent

noise σ2z is fixed. While the blue and the black lines correspond to the case that the variance

of additive noise σ2n is fixed.
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Figure 8: The MSE of the ML estimator and the CRLB for different number of observations

when σ2e is fixed as 0.3.

a much larger probability of being the norm threshold Rw than that of the perturbation-

ignored estimator when the number of measurements is not large enough. While the effect

of the bias of the perturbation-ignored estimator becomes apparent when the number of

measurements increases. Thus the MSE of the perturbation-ignored estimator decreases

slowly as N increases. In fact, the MSE converges to 0.031 according to (34). The MSE of

the ML estimator decreases as expected, and asymptotically achieves the CRLB.
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Figure 9: MSE comparison in estimating the vector parameter by three estimators.

7 Conclusion

In this paper, we have studied the problem of estimating a deterministic parameter vector

from sign measurements with a perturbed sensing matrix. Firstly, the ML estimator was

utilized to estimate the unknown parameter and it was proved to be consistent. The CRLB

was derived to analyze the performance of the estimator. It was demonstrated that with the

variance of the equivalent noise fixed, the perturbation exacerbates the performance of the

estimation. Meanwhile, under certain relationship between the variance of additive noise

and the strength of the perturbation, the CRLB on the MSE will achieve its minimum. This

result demonstrates that in the MSE sense, suitable perturbation may be beneficial in some

special cases. Secondly, it was shown that the original ML estimation problem could be

transformed to a convex optimization problem, which can be efficiently solved. Theoretical

analysis implied that suitable perturbation may be beneficial to improve the probability

that the optimal point of the ML estimator exists. Furthermore, under a perturbed sensing

matrix, the perturbation-ignored estimator is a scaled version with the same direction of the

ML estimator. It was also shown that the perturbation-ignored estimator works well when

the number of measurements is not large enough and the perturbation is small. However,

the perturbation-ignored estimator is biased and its MSE converges to a constant as the

number of measurements increases. In contrast, the ML estimator is unbiased and achieves

the CRLB in the asymptotic sense.
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A Proof of Theorem 1

Proof We first define the normalized log-likelihood function as

lN (w) ,
1

N
l(y; w) =

1

N

N∑
i=1

logΦ

(
yi

hT
i w

σz

)
. (35)

As N tends to infinity, the weak law of large numbers implies that

lim
N→∞

lN (w)
p→ l0(w) , Ey,h

[
log Φ

(
y
hTw

σz

)]
, (36)

where the expectation is taken with respect to y and h, and the notation
p→ denotes conver-

gence in probability. Since model (2) is identifiable, l0(w) has a unique maximum attained

at w0 by the information inequality [35]. In order to claim that ŵML converges to w0 in

probability as N →∞, one needs to ensure that the limiting and maximization operations

in (10) and (36) can be interchanged. Sufficient conditions for the maximum of the limit to

be the limit of the maximum are that the parameter space is compact and the normalized

log-likelihood function lN (w) converges uniformly to l0(w) in probability [6]. It is obvious

that the parameter space W is bounded and closed. To prove the uniform convergence

in probability, note that lN (w) is continuous, thus it suffices to show that there exists a

function U(y,H) such that

|lN (w)| ≤ U(y,H), ∀ w ∈ W. (37)

To find such a function U(y,H), we may use the mean value expansion of q(w) =

log Φ

(
yi

hT
i w
σz

)
around the origin w = 0. Notice that the derivative of log Φ(x) is

k(x) ,
∂ log Φ(x)

∂x
=

1

Φ(x)

∂Φ(x)

∂x
,

which is convex and positive. When x → ∞, k(x) tends to zero, on the other hand, k(x)

tends to −x as x → −∞. As a consequence, there exists a suitable constant C > 0 such

that

k(x) ≤ C(1 + |x|).

By the mean value theorem, the following result is obtained,∣∣∣∣log Φ

(
yi

hT
i w

σz

)∣∣∣∣ =
∣∣log Φ(0) +∇q(w′)Tw

∣∣
≤ |log Φ(0)|+

∥∥∇q(w′)∥∥
2
‖w‖2 , (38)
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where w′ is some point lying in the parameter space W. The norm of the gradient ∇q(w′)
can be upper bounded by

∥∥∇q (w′)∥∥
2

=

∥∥∥∥ yiσ̃z k
(
yi

hT
i w′

σ̃z

)(
hi −

σ2e
σ̃2z

(
hT
i w′

)
w′
)∥∥∥∥

2

≤ 1

σn
k

(
yi

hT
i w′

σ̃z

)∥∥∥∥hi − σ2e
σ̃2z

(
hT
i w′

)
w′
∥∥∥∥
2

≤ C

σn

(
1 +

∣∣∣∣hT
i w′

σ̃z

∣∣∣∣) ∥∥∥∥hi − σ2e
σ̃2z

(
hT
i w′

)
w′
∥∥∥∥
2

≤ C

σn

(
1 +

Rw
σn
‖hi‖2

)∥∥∥∥hi − σ2e
σ̃2z

(
hT
i w′

)
w′
∥∥∥∥
2

, (39)

where ∥∥∥∥hi − σ2e
σ̃2z

(
hT
i w′

)
w′
∥∥∥∥
2

≤
(
‖hi‖2 +

σ2e
σ2n
Rw ‖hi‖2

∥∥w′∥∥
2

)
≤
(

1 +
σ2e
σ2n
R2
w

)
‖hi‖2 . (40)

The above inequalities follow from ‖w‖2 ≤ Rw, ‖w′‖2 ≤ Rw, and σ̃2z = ‖w′‖22σ2e + σ2n ≥ σ2n.

Plugging (38), (39) and (40) into (35), it follows that

lN (w) ≤ | log Φ(0)|+ C1

N

N∑
i=1

(
1 +

Rw
σn
‖hi‖2

)
‖hi‖2, (41)

where C1 is a constant. Using U(y,H) to denote the right side of the equation (41), the

condition (37) is satisfied. Therefore, the consistency of the ML estimator is proved.

B Proof of Theorem 2

Proof We first show that the regularity condition holds for the likelihood function Pr(y; w).

The gradient of the log-likelihood function l(y; w) with respect to w is

∇wl(y; w) =
1√

2πσz

N∑
i=1

(
yi

Φ
(
yi

hT
i w
σz

)e
−(hT

i w)
2

2σ2z

(
hi −

σ2e
σ2z

(hT
i w)w

))
.

The probability distribution function for yi is

yi =

−1, with probability Φ
(
−hT

i w
σz

)
;

1, with probability Φ
(
hT
i w
σz

)
.

It follows that for all w, the regularity condition Ey [∇wl(y; w)] = 0 holds.

Fortunately, a closed-from expression for the CRLB can be obtained in the case of a

vector parameter CRLB for transformation.
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Suppose that we wish to estimate α = g(θ), where g is a r-dimensional function and θ

is a s-dimensional parameter vector. Then the CRLB of α from θ is given by [36]

Cov(α̂) � ∂g(θ)

∂θ
(J(θ))−1

∂g(θ)T

∂θ
, (42)

where J(θ) is the FIM of θ.

We may define

v =
w√

‖w‖22σ2e + σ2n
.

Then w can be uniquely determined from v by

w =
σn√

1− σ2e‖v‖22
v.

In our setting, α = w, θ = v and w = g(v). The log-likelihood function l(y; v) for v is

l(y; v) =

N∑
i=1

logΦ
(
yih

T
i v
)
.

Its gradient and Hessian are

∇vl(y; v) =
1√
2π

N∑
i=1

yi

Φ
(
yihT

i v
)e−

(hT
i v)

2

2 hi,

and

∇2
vl(y; v) =− 1√

2π

N∑
i=1

yi

Φ
(
yihT

i v
)e−

(hT
i v)

2

2 (hT
i v)hih

T
i

− 1

2π

N∑
i=1

1

Φ2
(
yihT

i v
)e−(hT

i v)
2

hih
T
i , (43)

respectively. The FIM can be computed as

J(v) = σ2zHΛHT, (44)

where Λ is defined as (13). The corresponding Jacobian matrix is

∂g(v)

∂v
= σz(I +

σ2e
σ2n

wwT). (45)

By employing the Sherman-Morrison formula [37] and (8), one has(
I− σ2e

σ2z
wwT

)−1
= I +

σ2e
σ2n

wwT. (46)

Substituting (44), (45) and (46) in (42), the CRLB is

Cov(ŵ) �
(
MΛMT

)−1
,

where M is defined as (14). The MSE is equal to the trace of the covariance matrix.

Therefore, the result (12) is established.
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C Proof of Proposition 1

Proof We first define

N = I− σ2e
σ2z

wwT.

Since J̃ and N are both positive definite matrices, they can be factored as J̃ = U∆̃UT and

N = V∆NVT, where U,V ∈ Rp×p are both orthogonal matrices, and ∆̃ = diag(λ̃1, · · · , λ̃p),
∆N = diag

(
1, · · · , 1, 1

1 + γ

)
. Note that all eigenvalues except the last one are equal to 1.

Using the equality tr(AB) = tr(BA), we obtain

tr(J̃) = tr(∆̃−1) =

p∑
i=1

1

λ̃i
.

When the variance of the equivalent noise σ2z is fixed, one has

J = NJ̃NT

= V∆NVTU∆̃UTV∆NVT.

It follows that

tr(J−1) = tr(∆−1N VTU∆̃UTV∆−1N ).

Defining Q = VTU∆̃UTV and T = ∆−1N ∆−1N , it is obvious that Q has the same eigenvalues

with ∆̃. Since both Q and T are positive definite, by using the trace inequality [38], we

have

n∑
i=1

λQ,iλT,n−i ≤ tr(QT) ≤
n∑
i=1

λQ,iλT,i.

Therefore, the desired result (16) is obtained.

D Proof of Proposition 3

Proof We use f(v) to denote the objective function of (25). According to (43), the Hessian

of f(v) is

∇2
vf(v) =

N∑
i=1

βihih
T
i ,

where

βi =
1√

2πΦ2 (yixi)
e−

1
2
x2i

(
1√
2π

e−
1
2
x2i + yixiΦ(yixi)

)
,

and xi = hT
i v. By the inequality xΦ(−x) < 1√

2π
e−

1
2
x2 ,∀ x ∈ R, one can show that βi > 0.

Thus ∇2
vf(v) � 0. The result is established.
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E Proof of Proposition 5

Proof We first solve the unconstrained optimization problem

v∗u = argmin
v∈R

−
N∑
i=1

logΦ (yiv) .

Assuming that the observation {yi}Ni=1 has k ones. Setting the derivative of the objective

function to zero and using the equality Φ(v∗u) + Φ(−v∗u) = 1, one has

v∗u = Φ−1
(
k

N

)
,

where Φ−1 denotes the inverse function of Φ. Now we calculate the probability PV as

PV = Pr

[
|v∗u| <

1

σe

]
= Pr

[
− 1

σe
< Φ−1

(
k

N

)
<

1

σe

]
= Pr

[
NΦ

(
− 1

σe

)
< k < NΦ

(
1

σe

)]
.

where the last step follows from the monotone increasing property of Φ−1. Since

yi =

−1, with probability Φ
(
−w0
σz

)
;

1, with probability Φ
(
w0
σz

)
,

the result (30) is established.

References

[1] A. Wiesel, Y. C. Eldar and A. Beck, “Maximum likelihood estimation in linear models

with a Gaussian model matrix,” IEEE Signal Processing Letters, vol. 13, no. 5, pp. 292-

295, May 2006.

[2] Y. C. Eldar, “Minimax estimation of deterministic parameters in linear models with

a random model matrix,” IEEE Transactions on Signal Processing, vol. 45, no. 2, pp.

601-612, Feb. 2006.

[3] A. Wiesel, Y. C. Eldar and A. Yeredor, “Linear regression with Gaussian model uncer-

tainty: Algorithms and bounds,” IEEE Transactions on Signal Processing, vol. 56, no.

6, pp. 2194-2205, Jun. 2008.

[4] A. DeMaris, Regression with social data: Modeling continuous and limited response

variables, John Wiley & Sons, New Jersey, 2004.

26



[5] A. Gustafsson, A. Herrmann and F. Huber, Conjoint Measurement: Methods and Ap-

plications, Springer-Verlag, Berlin, 2007.

[6] W. Newey and D. McFadden, “Chapter 35: Large sample estimation and hypothesis

testing,” in Handbook of Econometrics, vol. 4, pp. 2111-2245, Elsevier Science, North

Holland: Amsterdam, 1994.

[7] M. Abdallah and H. Papadopoulos, “Sequential signal encoding and estimation for dis-

tributed sensor networks,” in Proceedings of International Conference on Acoustics,

Speech, and Signal Processing (ICASSP2001), vol. 4, Salt Lake City, UT, pp. 2577C2580,

May 2001.

[8] H. C. Papadopoulos, G. W. Wornell and A. V. Oppenheim, “Sequential signal encoding

from noisy measurements using quantizers with dynamic bias control,” IEEE Transac-

tions on Information Theory, vol. 47, no. 3, pp. 978-1002, Mar. 2001.

[9] A. Ribeiro and G. B. Giannakis, “Distributed estimation in Gaussian noise for

bandwidth-constrained wireless sensor networks,” in Proceedings of 38th Asilomar Con-

ference on Signals, Systems, and Computers, vol. 2, pp. 1407-1411, Nov. 2004.

[10] A. Ribeiro and G. B. Giannakis, “Bandwidth-constrained distributed estimation for

wireless sensor Networks-part I: Gaussian case,” IEEE Transactions on Signal Process-

ing, vol. 54, no. 3, pp. 1131-1143, Mar. 2006.

[11] Z. Luo, “Universal decentralized estimation in a bandwidth constrained sensor net-

work,” IEEE Transactions on Information Theory, vol. 51, no. 6, pp. 2210-2219,

June 2005.

[12] Z. Luo, “An isotropic universal decentralized estimation scheme for a bandwidth con-

strained ad hoc sensor network,” IEEE Journal on Selected Areas in Communications,

vol. 23, no. 4, pp. 735-744, Apr. 2005.

[13] Z. Luo and J. Xiao, “Decentralized estimation in an inhomogeneous sensing environ-

ment,” IEEE Transactions on Information Theory, vol. 51, no. 10, pp. 3564-3575, Oct.

2005.

[14] A. Ribeiro, and G.B. Giannakis, “Bandwidth-constrained distributed estimation for

wireless sensor networks-part II: Unknown probability density function,” IEEE Trans-

actions on Signal Processing, vol. 54, no. 7, pp. 2784-2796, July, 2006.

[15] C. I. Bliss, “The calculation of the dosage-mortality curve,” Annals of Applied Biology,

vol. 22, pp. 134-167, 1935.

[16] G. Mateos and G. B. Giannakis. “Robust conjoint analysis by controlling outlier spar-

sity,” in Proceedings of European Signal Processing Conference, Aug. 2011.

27



[17] E. Tsakonas, J. Jaldén, N. Sidiropoulos and B. Ottersten, “Connections between sparse

estimation and robust statistical learning,” in Proceedings of IEEE International Confer-

ence on Acoustics, Speech, and Signal Processing (ICASSP 2013), Vancouver, Canada,

May 2013.

[18] E. Tsakonas, J. Jaldén, N. Sidiropoulos and B. Ottersten, “Sparse conjoint analysis

through maximum likelihood estimation,” submitted to IEEE Transactions on Signal

Processing, Oct. 2012.

[19] R. J. Carroll, C. H. Spiegelman, K. K. G. Lan, K. T. Bailey and R. D. Abbott, “On

errors-in-variables for binary regression models,” Biometrika, vol. 71, pp. 19-25, 1984.

[20] R. J. Carroll, D. Ruppert, L. A. Stefanski and C. M. Crainiceanu, Measurement error

in nonlinear models: A modern perspective, CRC Press, 2010.

[21] M. A. Davenport, Y. Plan, E. Berg and M. Wootters, “1-bit matrix completion,”

arXiv:1209.3672, 2012.

[22] P. Stoica and T. L. Marzetta, “Parameter estimation problems with singular infor-

mation matrices,” IEEE Transactions on Signal Processing, vol. 49, no. 1, pp. 87-90,

Jan. 2001.

[23] D. Burr, “On Errors-in-Variables in Binary Regression-Berkson Case,” Journal of the

American Statistical Association, vol. 83, no. 403, pp. 739-743, Sep. 1988.

[24] L. Wasserman, All of nonparametric statistics, Springer, New York, pp. 4, 2006.

[25] M. DeWeese and W. Bialek, “Information flow in sensory neurons,” Nuovo Cimento

Soc. Ital. Fys., vol. 17D, no. 7-8, pp. 733-741, July-Aug. 1995.

[26] J. K. Douglass, L.Wilkens, E. Pantazelou and F. Moss, “Noise enhancement of infor-

mation transfer in crayfish mechanoreceptors by stochastic resonance,” Nature, vol. 365,

pp. 337-340, Sep. 1993.

[27] J. Levin and J. Miller, “Broadband neural encoding in the cricket sensory system

enhanced by stochastic resonance,” Nature, vol. 380, no. 6570, pp. 165-168, Mar. 1996.

[28] Y. Tang, L. Chen and Y. Gu, “On the performance bound of sparse estimation with

sensing matrix perturbation,” IEEE Transactions on Signal Processing, vol. 61, no. 17,

pp. 4372-4386, Sep. 2013.

[29] J .G. Proakis, Digital Communications, McGraw-Hill, New York, pp. 42, 2001.

[30] O. Dabeer and A. Karnik, “Signal parameter estimation using 1-bit dithered quantiza-

tion,” IEEE Transactions on Information Theory, vol. 52, no. 12, pp. 5389-5405, Dec.

2006.

28

http://arxiv.org/abs/1209.3672


[31] G. O. Balkan and S. Gezici, “CRLB based optimal noise enhanced parameter estimation

using quantized observations,” IEEE Signal Processing Letters, vol. 17, no. 5, pp. 477-

480, May 2010.

[32] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press,

2004.

[33] A. Geletu, “Solving Optimization Problems using the Matlab Optimization Tool-

box - a Tutorial,” available at http://www.tu-ilmenau.de/fileadmin/media/simulation/

Lehre/Vorlesungsskripte/Lecture materials Abebe/OptimizatioWithMatlab.pdf, Dec,

2007.

[34] A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd edition, New

York: McGraw-Hill, 1991.

[35] S. M. Kay, Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory,

Englewood Cliffs, NJ: Prentice Hall, pp. 211-212, 1993.

[36] S. M. Kay, Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory,

Englewood Cliffs, NJ: Prentice Hall, pp. 45-46, 1993.

[37] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University

Press, Baltimore, MD, 3rd edition, 1996.

[38] J. B. Lasserre, “A trace inequality for matrix product,” IEEE Transactions on Auto-

matic Control, vol. 40, no. 8, pp. 1500-1501, Aug. 1995.

29

http://www.tu-ilmenau.de/fileadmin/media/simulation/

	1 Introduction
	1.1 Problem Background
	1.2 Main Contribution
	1.3 Related Work

	2 Maximum Likelihood Estimator
	3 Cramér-Rao Lower Bound
	3.1 The Case of Equivalent Noise Fixed
	3.2 The Case of Multiplicative Noise Fixed
	3.3 The Case of Additive Noise Fixed
	3.4 An Example

	4 ML Estimation via Convex Optimization
	5 Further Discussion
	5.1 Probability Analysis
	5.2 Effects of Mismodeling on the ML Estimation

	6 Numerical Simulations
	6.1 Validation of the Performance Limits
	6.2 Simulations of Probability Results
	6.3 Performance of ML Estimator

	7 Conclusion
	A Proof of Theorem 1
	B Proof of Theorem 2
	C Proof of Proposition 1
	D Proof of Proposition 3
	E Proof of Proposition 5

