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Abstract—This work presents the VLSI hardware imple-
mentation of a novel Belief Propagation (BP) algorithm intro-
duced in [1] and named as Analog Digital Belief Propagation
(ADBP). The ADBP algorithm works on factor graphs over
linear models and uses messages in the form of Gaussian
like probability distributions by tracking their parameters. In
particular, ADBP can deal with system variables that are dis-
crete and/or wrapped. A variant of ADBP can then be applied
for the iterative decoding of a particular class of non binary
codes and yields decoders with complexity independent of
alphabet size M, thus allowing to construct efficient decoders
for digital transmission systems with unbounded spectral
efficiency. In this work, we propose some simplifications to
the updating rules for ADBP algorithm that are suitable for
hardware implementation. In addition, we analyze the effect
of finite precision on the decoding performance of the algo-
rithm. A careful selection of quantization scheme for input,
output and intermediate variables allows us to construct a
complete ADBP decoding architecture that performs close to
the double precision implementation and shows a promising
complexity for large values of M. Finally, synthesis results
of the main processing elements of ADBP are reported for
45 nm standard cell ASIC technology.

Index Terms—Belief propagation, APP estimation, iterative
decoding, non binary LDPC, Analog Digital Belief Propaga-
tion,VLSI decoder, decoder architecture.

I. Introduction and motivation.

Since their rediscovery by MacKay, LDPC codes have
been extensively adopted in both next-generation wired
and wireless standards due to their near-Shannon limit
performance. Moreover, LDPC codes over non binary
alphabets of size M can show better performance over
their binary counterparts with proper encoding design
and code length [2]. However, the significant improve-
ment comes along with the penalty of high decoding
complexity. The locally optimal, yet the most complex,
iterative decoding algorithm of non binary LDPC codes
is the belief propagation (BP) algorithm. Since the size
of messages varies with the size of the alphabet M, a
straightforward implementation of BP results in memory
and complexity requirements of the order of O(M) and
O(M2) respectively. In order to reduce the complexity
of non binary decoding, several suboptimal decoding
schemes have been proposed in recent years.

The first straightforward simplification is obtained at
check nodes by replacing the discrete convolution of
messages, with complexity O(M2), with the product of
the message Fourier transforms. The use of FFT brings

down the complexity to O(M log M). In [3], the authors
introduce a log-domain version of this approach that has
advantages in terms of numerical stability.

Some further simplifications have been proposed in
[4] with the Extended Min Sum (EMS) algorithm, where
message vectors are reduced in size by keeping only
those elements in the alphabet with higher reliability.
In [5] the same authors propose a hardware implemen-
tation of the EMS decoding algorithm for non-binary
LDPC codes.

In [6] the Min-Max algorithm is introduced with a re-
duced complexity implementation called selective imple-
mentation, which can reduce by a factor 4 the operations
required at the check nodes; however, complexity is still
in the order of O(M2).

Several studies on VLSI implementation of non bi-
nary decoders based on the previous algorithms have
been presented in literature [7]–[13]. The results of such
studies confirm that all non binary decoders require
complexity growing with the size of the alphabet M.

The ADBP proposed in [1] represents a breakthrough
in the reduction of the complexity and memory require-
ments with respect to previous proposed algorithms, as
for ADBP both complexity and memory requirements
are independent of the size M of the alphabet. The main
simplification of ADBP is due to the fact that messages
are not stored as vector of size M containing the likeli-
hood of the discrete variables (or equivalently their log-
likelihood ratios-LLR) but rather as the two moments,
or related quantities, of some suitable predefined class
of Gaussian-like distributions. ADBP can be casted into
the general class of expectation-propagation algorithms
described by Minka [14]. The main contribution in [1] is
the definition of a suitable class of distributions for the
messages and the derivation of the updating equations
for the message parameters at the sum and repetition
operations of the graph.

It should be noticed that ADBP cannot be applied to
all types of linear codes over GF(M) as multiplication
by field elements different from ±1 is not allowed in the
graph. This ensemble of codes has been analyzed in [15]
and [16], where it is shown that it is capacity achieving as
its distance spectrum approaches that of random codes
as the underlying graph connectivity grows.

The exact ADBP updating equations however are not
suitable for a straightforward implementation due to the
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presence of complex non linear operations. Some simpli-
fications to the updating equations have been presented
in [17]. In this paper we tackle the problem of VLSI
implementation of ADBP with a systematic approach.
In section II we start by reporting the exact updating
equations of ADBP and consider its special application
to the decoding of non binary codes. In section III we
introduce some simplifications to the updating equations
and evaluate their impact on the performance of the
decoder. In section IV we present the results of the fixed
point implementation of ADBP obtained by optimizing
the bit width of input, output and intermediate quanti-
ties of the decoder processing elements. In section V we
report the architecture of the designed core processors
and the synthesis results for M = 10 up to M = 64. The
provided results confirm that implementation of ADBP
is feasible with small complexity and more importantly
that complexity is independent of M.

II. The ADBP algorithm.

ADBP is a particular version of the BP algorithm that
allows to perform in a very efficient way the BP for
linear systems where variables can be either discrete or
wrapped or both.

From the complexity point of view ADBP is equivalent
to Gaussian BP over linear system as described in [18].

Let us define the class of gaussian messages as

G ,
{
G(µ,K, x) ∝ e−

K
2 |x−µ|

2
,K ∈ R+, µ ∈ R

}
where µ and K denote respectively the mean and concen-
tration of a Gaussian message. With continuous variables
and messages belonging to G, the following simple
updating rules for linear real systems can be derived
corresponding to the sum, repetition and axis scaling
operations.

Sum→ G1 ∗ G2 = G(µ1 + µ2, (K−1
1 + K−1

2 )−1) ∈ G (1)

Repetition → G1 · G2 = G
(
µ1K1 + µ2K2

K1 + K2
,K1 + K2

)
∈ G (2)

Scaling→ αG = G(αµ,K/α2) ∈ G. (3)

In [18], it is shown that several powerful estimation
techniques can be derived as particular instances of this
algorithm.

ADBP introduced in [1] adds the possibility of wrap-
ping and/or discretizing the random variables involved
in the system. Wrapping of variables induces a wrapping
of the corresponding messages and requires to use the
class of wrapped gaussian messages:

W ,W[G] =
{
W[G(µ,K, x)],K ∈ R+, µ ∈ [0,M[

}
;

where M is the wrapping period and following wrap-
ping operator is introduced

W[L(x)] ,
∑

i

L(x − iM) = sM(x) ∗ L(x), (4)

In (4), the symbol ∗ indicates the convolution operation
and s∆(x) ,

∑
i δ(x − i∆) is the train of pulses. The dis-

cretization of system variables on the other side, induces
a sampling of their corresponding messages, leading to
the introduction of the class of sampled gaussian mes-
sages : S , S[G] where we have defined the sampling
operator

S[L(x)] , sM(x) · L(x),

Notice that Fourier transforms of sampled gaussian
messages are wrapped gaussian messages with imagi-
nary mean.

When the wrapping period M is a multiple of the
sampling interval, wrapping and sampling operators
commute (S[W[L]] = W[S[L]]), so that it is possible to
introduce the class of Digital messages or D-Messages,
which consists of messages that are both wrapped and
sampled:

D ,W[S[G]] = S[W[G]].

Examples of linear systems that use discrete and
wrapped variables i.e. integers in the range [0,M − 1]
are linear non-binary encoders, whose non binary code-
words c satisfy

Hc = 0

where the mod M sum is assumed in the equation and
the coefficients of the parity check matrix H are bounded
to be in the set {1, 0,−1}.

ADBP using D-Message can then be applied for the
iterative decoding of members of this code ensemble,
yielding decoders with complexity independent from the
cardinality of the alphabet M.

In [1] it is shown that, in contrast to what happens
for gaussian messages (equations (1-3)), wrapped mes-
sages are not closed under multiplication and sampled
gaussian messages are not closed under convolution. As
a consequence D-messages are not closed w.r.t repetition
and sum operations.

In particular, while the updating equation (2) is reli-
able also for wrapped messages for large concentration
of the messages, it fails to provide accurate results
when the concentration is small. This is due to the non
negligible effect of the aliasing on the replicas introduced
by wrapping. For the same reason, equation (1) fails to
provide accurate results for sampled gaussian messages
with high concentration.

However, accurate approximations of the output mes-
sages belonging to the same class of the inputs can
be found in both cases. This is obtained by exploiting
the correspondence between members of the class of
wrapped gaussian messages of period M with those of
the class of Von Mises or Tychonov messages with the
same period:

V ,
{
V(µ,Kv, x) ∝ eKv cos(A(x−µ)),Kv ∈ R

+, µ ∈ [0,M[
}
,
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Figure 1: Block diagram of high spectral efficiency trans-
mission system employing ADBP

Where A , 2π
M . The mapping between the two distribu-

tions preserves the mean and transforms the concentra-
tion according to

Kw ⇔ A2 f (Kv) (5)

f (Kv) ,

(
2 log

(
I0 (Kv)
I1 (Kv)

))−1

(6)

Where In(x) denotes the modified Bessel functions of
order n.

In summary, by skipping the details (mentioned in
[1]), in the repetition operation, the output distribution
W[G1] · W[G2] can be approximated for low message
concentrations as

Kvi , f−1

(
Kw,i

A2

)
i = 1, 2

Kw,3 = A2 f
(√

K2
v,1 + K2

v,2 + 2Kv,1Kv,2 cos(A(µ1 − µ2))
)

µ3 =
1
A

arctan
(

Kv,1 sin(Aµ1) + Kv,2 sin(Aµ2)
Kv,1 cos(Aµ1) + Kv,2 cos(Aµ2)

)
(7)

Similarly, a good approximation of the message S[G1]∗
S[G2] for the sum operation, which is valid for large
message concentrations can be obtained by exploiting
the same correspondence, but in the transform domain,
yielding:

Kvi , f−1

(
1

Ks,i

)
, µ = (li + αi), γi = αi.Kvi, i = 1, 2

Ks,3 = 1/ f
(√

K2
v,1 + K2

v,2 + 2Kv,1Kv,2 cosh(γ1 − γ2)
)

2γ3 = log
(

Kv,1eγ1 + Kv,2eγ2

Kv,1e−γ1 + Kv,2e−γ2

)
, l3 = l1 + l2 (8)

where the real quantity µ is expressed by separating its
integer (l) and fractional part (α) ∈ [−0.5, 0.5]. The ADBP
algorithm which uses exactly the updating rules (7)-(8)
is named as exact-ADBP algorithm and denoted in the
following with the acronym eADBP.

III. Simplifications of the updating equations.
Although ADBP algorithm introduces the fundamen-

tal complexity breakthrough of making the iterative
decoding of non binary codes independent from the
alphabet size M, equations (7) and (8) for updating the
D-message parameters are still too complex for a hard-
ware implementation. In this section we introduce some
simplifications of the ADBP updating equations for the

(µ,K)

5000
2000
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nodes

Π
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5000 Π

Figure 2: Tanner graph of LDPC code adopted in pro-
posed ADBP algorithm

specific purpose of using it for decoding of non binary
codes in a digital transmission system.

The considered full transmission system for high spec-
tral efficiencies, shown in Fig.1, consists of an mod-M
LDPC encoder, an M-PAM modulator, a wrapped AWGN
channel and the ADBP decoder.

The encoder is a regular LDPC encoder with K = 3000
input M-ary symbols, and N = 5000 output symbols. The
constant variable degree is dv = 2 and the check node
degree is dc = 5.

The M-ary output symbols c of the encoder are trans-
mitted using a M-PAM constellation, with a natural
order mapping x = c − (M − 1)/2. The outputs of
the wrapped gaussian channel are obtained wrapping
the output of a regular AWGN channel in the interval
[−M/2,M/2]. Wrapping reduces the channel capacity
but at the same time make it input symmetric, so that
transmission of the all zero sequence can be assumed
with the employed linear encoder1.

Furthermore, the likelihoods at the output of the
wrapped gaussian channel with M-PAM inputs take
naturally the form of digital messages with parameters

µ = y + (M − 1)/2 mod M

K =
1
σ2 =

Es

N0

12
M2 − 1

,

so that it can be easily interfaced with ADBP.
The ADBP decoder takes as input messages the pairs

(µ,K) and performs 10 iterations using the flooding
schedule. The tanner graph of the code is reported in
Fig.2.

A. Simplifications of the repetition update equations

As pointed out in the Fig. 2, at repetition nodes one
of the involved messages is always the channel message.
The standard deviation of this message, related to Es/N0

1The use of ADBP in conjunction with the regular AWGN channel, as
well as with other types of modulation set requires some modifications
of the computation of the input messages parameters. Since in this
paper we focus primarily in the implementation issues, we decide to
use the wrapped AWGN to simplify the analysis. Notice that the loss of
the capacity induced by wrapping becomes negligible for large value
of Es/N0.
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over the channel, is typically much smaller than the
wrapping period M. In this case the exact expression of
ADBP (7) can be replaced by the simpler expression (2)
that neglects the aliasing effect of replicas of the wrapped
gaussian. Notice however that for the proper compu-
tation of the output mean in (2) one should consider,
among all possible replicas associated to the wrapped
gaussian distribution, those that have closest µi modM.
As a consequence the following approximation can be
used to obtain the mean of W[G1] ·W[G2].

µ3 ≈
µ̄1Kw,1 + µ̄2Kw,2

Kw,1 + Kw,2
mod M (9)

Where µ1 = (µ1 + k1M) and µ2 = (µ2 + k2M) , and the
integers k1and k2 should be chosen so as to minimize
|µ1 − µ2|.

Eq. (9) requires 2 multiplications, one sum and one di-
vision. In order to simplify it, we first derive the indexes
associated to the maximum and minimum values of the
concentrations.

L , arg max
i

(Kw,i), l , arg min
i

(Kw,i)

we then write (9) as

µ3 = µL + A(µl − µL)M/2
−M/2 mod M (10)

where
A ,

Kw,l

Kw,1 + Kw,2
,

and the notation (µl − µL)M/2
−M/2 means that the difference

µl−µL should be taken mod M in the range [−M/2,M/2].
Expression (10) only requires two sums and the mul-

tiplication by the number A, which is always bounded
in [0, 1].

B. Simplifications of sum update equations
In sum update the use of the correct expression (8)

instead of (1) is required as the concentration of mes-
sages actually increases during iterations. In this case
the simplification of (8) is obtained by considering the
following approximation for the function f (x)

f (x) ≈ −(2 log(x/2))−1

which is valid for x < 1.
Using this approximation we can write the concentra-

tion of the characteristic functions as

Kv,i = 2 exp
(
−Ks,i/2

)
and approximate the output message concentration as
follows:

Ks,3 = −2 log
(1

2

√
K2

v,1 + K2
v,2 + 2Kv,1Kv,2 cosh(γ1 − γ2)

)
= − log

(1
4

[
K2

v,1 + K2
v,2 + 2Kv,1Kv,2 cosh(γ1 − γ2)

])
= − log

(
e−Ks,1 + e−Ks,2 + 2e−

Ks,1+Ks,2
2 cosh(γ1 − γ2)

)
= min∗

(
Ks,1,Ks,2,

Ks,1 + Ks,2

2
− |γ1 − γ2|

∗

)
(11)

where we introduced the familiar operator max∗(a, b) =
log(ea +eb) = max(a, b)+ log(1+e−|a−b|) and the derived op-
erators min∗(a, b) = −max∗(−a,−b) and |x|∗ = max∗(x,−x).

Similarly we can derive the following expression for
the output mean (3rd equation in (8))

2γ3 = log
(

Kv,1eγ1 + Kv,2eγ2

Kv,1e−γ1 + Kv,2e−γ2

)
= max∗

(
−

Ks,1

2
+ γ1,−

Ks,2

2
+ γ2

)
−max∗

(
−

Ks,1

2
− γ1,−

Ks,2

2
− γ2

)
(12)

A further simplification to the min∗ that neglects the
correction term log(1 + e−|a−b|) and obtains the true min is
considered. The ADBP algorithm that uses the updating
rules of (10), (11) and (12) with true min approximation
is named as the simplified-ADBP and denoted by the
acronym sADBP.

IV. Fixed PointModel

The fixed point (FP) model of proposed algorithm is
implemented in C language. All variables in the decod-
ing algorithm are represented in 2′s compliment notation
as [I,F] with I bits for integer part (which includes the
sign bit unless stated otherwise) and F bits for fractional
part. The performance of the decoder is expressed as
symbol error rate (SER) as a function of signal to noise
ratio (Es/No).

At first, the approximations used in Eq.(10)-(12) are
validated by simulating in double precision (DP), both
eADBP and sADBP algorithms. Fig. 3.a shows the results
obtained from this step for M = 10, 16, 32 and 64. For all
the four cases of M reported in the figure, the simulation
results show that the sADBP algorithm performs close
to the eADBP algorithm and therefore, can be safely
investigated for FP implementation.

The initial step of FP implementation of sADBP de-
coder is the determination of appropriate number of I
and F bits for input quantities (i.e. µ and K ). This acts
as a starting point to implement the internal datapath
of decoder keeping in view the performance and com-
plexity constraints. To achieve this, we analyze the DP
performance offered by the $sADBP$ algorithm when
quantized inputs are applied. This analysis is carried out
in two steps.

Quantization of µ only: In this step, only the µ is
quantized as [I,F] and applied to the input of sum and
repetition functional units whereas, the K and internal
data path is in DP. As discussed in section II, the µ of D-
messages with wrapping period M is a real number that
lies in the range [0,M[. Therefore, the 2′s complement
representation of integer part of µ requires

⌈
log2 M

⌉
bits

for the magnitude and 1 bit for the sign. Since the input
µ is always positive, most significant sign bit is always
’0’ and neglected. Whereas, the number of fractional bits
of µ is a design parameter that could be changed to
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quantizations on the DP implementation of sADBP algorithm.
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Figure 4: Complete FP simulation results for sADPB.

trade off performance with hardware complexity. The
simulation results of this step are plotted in Fig. 3.b,

which shows the sADBP performance with quantized
µ with fixed (

⌈
log2 M

⌉
) integer and variable (2 to 5)

fractional bits. For the three cases of M shown in Fig.
3.b, the simulation results demonstrate that at least 4
fractional bits are required for µ in order to obtain
performance within 0.3 dB to the DP implementation.

Quantization of µ and K: In this step, both inputs i.e.
µ and K are quantized as [I,F] and applied to functional
units. µ is quantized as obtained from the above step
whereas, for K we simulate various combinations of
integer and fractional bits. The simulation results of
this step are shown in Fig. 3.c. Since the magnitude
of K increases with Es/No, the schemes with large I
and F ≥ 3 are required to achieve low SER at high
Es/No. For example, K[5, 3] shows superior results for
both M = 10 and 32 while K[4, 3] also shows comparable
results with fewer number of bits. From the simulation
results, we conceived that considerable improvement in
SER performance could be achieved at high Es/No by
first scaling down the magnitude of K before applying
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to the input of functional units. Whereas, the updated
K at the output of the units is scaled up by the same
factor. This scaling helps to represent a large value of K
with lower number of integer bits and avoids overflow
during intermediate calculations thus achieving better
numerical stability. In addition, it is also conceived that
scaling factor of 16 when used with [4, 3] quantization
scheme provides a good performance-complexity trade
off. The results of this step are shown in Fig. 3.d for
M = 10 and 32 which shows significant improvement
in SER performance of sADBP algorithm achieved with
the help of K scaling. It may be noted that the same
[4, 3] quantization for K and scaling factor of 16 is also
applicable for M = 16 and 64.

In the next step, the internal datapath of decoder is
optimized for FP implementation using the quantized
inputs (µ and K). The signals involved at each interme-
diate step of computation are optimized by simulating
various combinations of integer and fractional bits. Fig-
ure 4 shows the complete FP simulation results of the
proposed decoder. The curves in the figure show that
for each case of M, the FP implementation of sADBP
performs very close to the DP implementations of sADBP
and eADBP algorithm. The hardware architecture and
datapath complexity details specific to the FP simulation
curves of Fig. 4 are discussed in the next section.

V. Hardware architecture and Synthesis Results.
The ADBP decoding architecture is similar to standard

non binary (NB) LDPC decoders. As discussed in Sec. III
and shown in Fig. 2, the Tanner graph for ADBP consists
of two kinds of computation nodes i.e. sum nodes and
repetition nodes that operate on dc and dv messages
respectively. The decoding process involves a flooding
schedule in which a single decoding iteration consists of
two steps: a) Horizontal scan: in which all sum nodes
update their output messages and b) Vertical scan: in
which all repetition nodes update their output messages.
As discussed before, a single message in ADBP decoding
is a vector containing two values i.e. µ and K of the
corresponding message class.

In this section, we will first discuss the digital archi-
tecture for binary (i.e. two input) sum and repetition
nodes and then we will propose a generalized processing
element (PE) that implements the extension of these
operations over dv(dc) messages.

Binary Repetition Node
The repetition node implements the function

W[G1].W[G2] using simplified version (10). This
equation is implemented as shown by the steps in
Algorithm 1.

Fig. 5.A shows the datapath architecture of binary
repetition node functional unit (RN-FU). CMP1-CMP3
are binary comparators, A1-A4 are 2’s complement bi-
nary adders, M1-M2 are binary multipliers and Mux1-
4 are the 2 input multiplexers. The figure also shows

Algorithm 1 Repetition Node Update for sADBP Algo-
rithm

1: Inputs: Kw,i, µi = (li + αi), i = 1, 2
2: Outputs: Kw,3, µ3

3: Scaling: Kx,i =
Kw,i

16 , i = 1, 2
4: Kw,3-Computation:
5: Kx3 = Kx1 + Kx2, Kw,3 = Kx3 × 16
6: µ3-Computation:
7: if (Kx1 > Kx2) then
8: µt1 = µ2 − µ1, Kt = Kx2, µt2 = µ1
9: else

10: µt1 = µ1 − µ2, Kt = Kx1, µt2 = µ2
11: end if
12: if (µt1 > M

2 ) then
13: µt3 = µt1 −M, µt4 = µt3
14: else if (µt1 < −M

2 ) then
15: µt3 = µt1 + M, µt4 = µt3
16: else
17: µt4 = µt1
18: end if
19: v3 =

1
Kx3

, a1 = Kt × v3

20: a2 = a1 × µt4
21: µ3 = µt2 + a2

the input, output and intermediate variables of Listing
1. µi and Kxi, i = 1, 2 are the input mean and scaled
concentrations respectively. In FP implementation, the
wrapped message concentration Kw,i at the input of the
node is represented in [I,F] form as [8, 0] which is scaled
down by 16 by simply moving the decimal point to left
by 4 places i.e. Kxi = [4, 4]. Reverse is true for scaling up
by 16 at the output of the node. In order to decrease
the hardware complexity and propagation delay, we
adopted division via multiplication by reciprocal technique
where the quantity v3 = 1

Kx3
is implemented using a look

up table (LUT). The repetition node is implemented as
a fully pipelined structure with pipelining depth L = 3
(shown in dotted lines in Fig.5.A).

Binary Sum Node
The binary sum node implements the function S[G1] ∗

S[G2] using (11) and (12) and the main computational
steps are shown in Algorithm 2.

The hardware architecture reported in Fig.5.b consists
of binary comparators Cmp1-Cmp5 that compute the
true min of two inputs, 2’s complement adders A1-A16,

multipliers M1-M3 and a LUT to implement v3 =
1

Kx2
.

The sum node is also a fully pipelined structure with
L = 3 pipeline stages.

It may be noted that although the generalized architec-
ture for both sum and repetition node remains the same
for all values of M, the complexity as well as decoding
performance is dependent upon the [I,F] representation
of all variables. For the FP simulation results shown in
Fig. 4, the binary sum and repetition nodes datapath



7

sel1

LIFO 2 

X1

clk

L2

X3

L
IF

O
 1

 clk

L1

0

sel 3Input[Kx,µ]

1

(B)

(A) (C)

X2

X4

+

M/2

-M/2

M

x

x

+

0

1

1

0

MUX1

MUX2

MUX3

MUX4

A1

A2

A3

+/-

M1

M2

A4

CMP1

CMP2

CMP3

µt1

Kx3

v3

Kt

a1

Kx1

µ1

Kx3

µ3

LUT

µ2

Kx2

µt2

µt4

a2
-

µt3

a

b
a>b?

a

b
a<b?

a

b
a<b?

FU-1

FU-2

sel2

sel 4

FU-3

0

1

1

1

0

0

Output

[Kx,µ]

min

Kx1

µ1

Kx2

µ2

Kx3

+
-

+

-

A1

A2
A4

A3

A5

A6

A13

A16

M1

M2

M3

Cmp1

Cmp2

LUT

l3 

y1 

y3 

mask

mask

0.5

0.5

 1

l1

!1
!3

1/2

 2

l2

!2

max

max

max

min

M

µ3

1/2

A7

A8

A9

A10

A14

A11

A12

A15

1/2

1/2

1/2

X1

X2

X3

X4

 12

 21

 s

y2 

Kx3

v3
!3

l3 

µ3t

Cmp3

Cmp4

X6

X5

0

1

Cmp5

0

1

1

0

Figure 5: ADBP Hardware Architecture (A) Binary Repetition Node (B) Binary Sum Node (C) Forward Back
Processing Element with serial read/write.

Algorithm 2 Sum Node Update for sADBP Algorithm

1: Inputs: Ks,i, µi = (li + αi), i = 1, 2
2: Outputs: Ks,3, µ3

3: Scaling: Kxi =
Ks,i

16 , i = 1, 2
4: Ks,3-Computation:
5: for i = 1 to 2 do
6: li = bµi + 0.5c, αi = µi − li, γi = αi × Kxi
7: end for
8: γ12 = γ1 − γ2, γ21 = γ2 − γ1
9: γs = max(γ12, γ21)

10: y1 =
Kx1

2
+

Kx2

2
11: y3 = min(Kx1,Kx2)
12: y2 = y1 − γs
13: Kx3 = min(y3, y2), Ks,3 = 16 × Kx3
14: µ3-Computation:

15: x1 = γ1 +
Kx1

2
, x2 = γ2 +

Kx2

2
16: x3 = γ1 −

Kx1

2
, x4 = γ2 −

Kx2

2
17: x5 = max(x3, x4) , x6 = min(x1, x2)

18: γ3 = 1
2 {x5 − x6}, v3 =

1
Kx3

19: α3 = v3 × γ3, l3 = l1 + l2
20: µ3t = l3 + α3
21: µ3 = (µ3t + M) mod M

detail is given in Tab. I.a and I.b. The left most column of
both tables shows all computation steps involved in the
updates of Algorithm 1 and 2 whereas, the next columns
show for M = 10 to 64, the quantization detail [I,F]
of operands as well as of the result of each step. The
quantities µi,Kw,i,Ks,i,Kxi, li : i = 1, 2, 3 are always positive
therefore, MSB of their magnitude part is always ′0′ and
hence excluded from [I,F] representation. For all other
quantities the [I,F] includes the sign bit. In some cases
where the operands have unequal number of I and F bits;
arithmatic shift left(right) operation is performed on one
or both of them in order to allign their decimal points.
In addition, the tables also show the hardware modules
(of Fig. 5.A and 5.B) involved in each step along with
their complexity in terms of bitwidth.

The details of Tab. I.a and I.b reveal that moving
from M = 10 to 64 requires a 1 bit increase in the
bitwidth of those hardware modules which involve µi
in computation. This results in a slight but affordable
increase in overall complexity of sum and repetition
functional nodes.

Processing Element

The sum and repetition functions discussed above are
associative i.e. for three inputs I1, I2, I3

�(I1, I2, I3) = �(�(I1, I2), I3)
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Operation / Quantization Details [I,F] Hardware Bitwidth
Signals M=64 M=16 M=10,16 Modules M=64 M=32 M=10,16

Op.1 Op.2 Result Op.1 Op.2 Result Op.1 Op.2 Result
µ1, µ2 [6.4] [5.4] [4.4]

Ks,1,Ks,2,Ks,3 [8,0] [8,0] [8,0]
Kx1,Kx2 [4,3] [4,3] [4,3]

li = int(µi + 0.5),i = 1, 2 [6,4] [6,4] [7,0] [5,4] [5,4] [6,0] [4,4] [4,4] [5,0] A1,A2 10 9 8
αi = µi − li, i = 1, 2 [6,4] [7,0] [1,4] [5,4] [6,0] [1,4] [4,4] [5,0] [1,4] A3,A4 10 9 8
γi = αi × Kxi,i = 1, 2 [1,4] [4,3] [2,7] [1,4] [4,3] [2,7] [1,4] [4,3] [2,5] M1,M2 7 7 7
γ12 = γ1 − γ2 [2,7] [2,7] [3,6] [2,7] [2,7] [3,6] [2,5] [2,5] [3,5] A7 9 9 7
γ21 = γ2 − γ1 [2,7] [2,7] [3,6] [2,7] [2,7] [3,6] [2,5] [2,5] [3,5] A8 9 9 7

γs = max(γ12, γ21) [3,6] [3,6] [3,6] [3,6] [3,6] [3,6] [3,5] [3,5] [3,5] Cmp2 9 9 8
Kxi

2
, i = 1, 2 [4,3] [4,3] [4,3] [4,3] [4,3] [4,3]

y1 =
Kx1

2
+

Kx2

2
[4,3] [4,3] [4,3] [4,3] [4,3] [4,3] [4,3] [4,3] [4,3] A5 7 7 7

y3 = min(Kx1,Kx2) [4,3] [4,3] [4,3] [4,3] [4,3] [4,3] [4,3] [4,3] [4,3] Cmp1 7 7 7
y2 = y1 − γs [4,3] [3,6] [4,3] [4,3] [3,6] [4,3] [3,5] [3,5] [4,3] A14 9 9 8

Kx3 = min(y1, y2) [4,3] [4,3] [4,3] [4,3] [4,3] [4,3] [4,3] [4,3] [4,3] Cmp5 7 7 7

xi = γi +
Kxi

2
, i = 1, 2 [2,7] [4,3] [5,3] [2,7] [4,3] [5,3] [2,5] [4,3] [4,3] A9,A12 7 7 7

x3 = γ1 −
Kx1

2
[2,7] [4,3] [5,3] [2,7] [4,3] [5,3] [2,5] [4,3] [4,3] A10 7 7 7

x4 = γ2 −
Kx2

2
[2,7] [4,3] [5,3] [2,7] [4,3] [5,3] [2,7] [4,3] [4,3] A11 7 7 7

x5 = max(x3, x4) [5,3] [5,3] [5,3] [5,3] [5,3] [5,3] [4,3] [4,3] [4,3] Cmp4 8 8 7
x6 = min(x1, x2) [5,3] [5,3] [5,3] [5,3] [5,3] [5,3] [4,3] [4,3] [4,3] Cmp3 8 8 7

γ3 =
(x5 − x6)

2
[5,3] [5,3] [5,3] [5,3] [5,3] [5,3] [4,3] [4,3] [4,3] A13 8 8 7

v3 =
1

Kx3
[2,4] [2,4] [2,4] [2,4] [2,4] [2,4] LUT 128x6 bit

a3 = v3 × γ3 [2,4] [5,3] [7,4] [2,4] [5,3] [7,4] [2,4] [4,3] [3,4] M3 8 8 7
l3 = l1 + l2 [7,0] [7,0] [8,0] [6,0] [6,0] [7,0] [5,0] [5,0] [6,0] A6 7 6 5
µ3t = l3 + a3 [8, 0] [1,4] [8,4] [7,0] [1,4] [7,4] [6,0] [3,4] [6,4] A15 8 7 6

µ3 = (µ3t + M) mod M [8, 4] [6,4] [6,4] [7,4] [5,4] [6,4] [4,4] [4,4] A16 8 7 6

(a) Sum Node Functional Unit

Operation / Quantization Details [I,F] Hardware Bitwidth
Signals M=64 M=32 M=10,16 Modules M=64 M=32 M=10,16

Op.1 Op.2 Result Op.1 Op.2 Result Op.1 Op.2 Result
µ1, µ2 [6.4] [5.4] [4.4]

Kw,1,Kw,2,Kw,3 [8,0] [8,0] [8,0]
Kx1,Kx2 [4,3] [4,3] [4,3]

Kx3 = Kx1 + Kx2 [4,3] [4,3] [4,3] [4,3] [4,3] [4,3] [4,3] [4,3] [4,3] A1 7 7 7
i f (Kx1 > Kx2) [4,3] [4,3] 1 [4,3] [4,3] 1 [4,3] [4,3] 1 CMP1 7 7 7
µt1 = µ2 − µ1 [6,4] [6,4] [7,3] [5,4] [5,4] [6,3] [4,4] [4,4] [5,3] A2 10 9 8

or µt1 = µ1 − µ2 MUX1 10 9 8
Kt = Kx1or Kx2 [4,3] [4,3] [4,3] [4,3] [4,3] [4,3] MUX4 7 7 7
µt2 = µ1or µ2 [6,4] [6,4] [5,4] [5,4] [4,4] [4,4] [4,4] MUX2 10 9 8

i f (µt1 >
M
2

) [7,3] [7,3] 1 [6,3] [6,3] 1 [5,3] [5,3] 1 CMP2 10 9 8

elsei f (µt1 < −
M
2

) [7,3] [7,3] 1 [6,3] [6,3] 1 [5,3] [5,3] 1 CMP3 10 9 8
µt3 = µt1 ±M [7,3] [7,3] [7,3] [6,3] [6,3] [6,3] [5,3] [5,3] [5,3] A3 10 9 8
µt4 = µt3or µt1 [7,3] [7,3] [6,3] [6,3] [5,3] [5,3] MUX3 10 9 8

v3 =
1

Kx3
[0,6] [0,6] [0,6] [0,6] [0,6] [0,6] LUT 128x6 bits

a1 = Kt × v3 [4,3] [0,6] [0,7] [4,3] [0,6] [0,7] [4,3] [0,6] [0,7] M1 7 7 7
a2 = a1 × µt4 [0,7] [5,3] [5,3] [0,7] [6,3] [4,3] [0,7] [5,3] [4,3] M2 10 9 8
µ3 = µt2 + a2 [6,4] [5,3] [6,4] [5,4] [4,3] [5,4] [4,4] [4,3] [4,4] A4 10 9 8

(b) Repetition Node Functional Unit

Table I: Sum and repetition functional nodes complexity detail specific to FP performance curves of Fig. 4
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Where � operator denotes the binary sum or repetition
function. In order to extend these functions to process
more than two input messages, the following update rule
must be satisfied

Iy,i = �n
j,i(Ix, j) (13)

Ix, j(Iy,i) denote the input(output) [µ,K] message vectors
and n denotes the node degree (dv or dc). The above
equation states that the output message corresponding
to edge i of a node (sum or repetition) is the result
of � operator over all input messages except the input
message i. The update rule of (13) is implemented in
this work by adopting a forward-backward (FB) strategy
with serial read and write. Fig.5.c. shows the gener-
alized architecture of proposed FB processing element
(PE) which consists of three functional units (FUs) that
implement the � operator and two last in first out (LIFO)
memory units which hold the intermediate results. The
functionality of PE explained here in context of CN
processing holds equally applicable for VN processing.

Thanks to the pipelined implementation of FUs, the
PE is able to process one edge of Tanner graph per clock
cycle. The number of parity check equations in pipeline
is L = 3. In the first L clock cycles PE receives the first
message of L parity equations, in the next L cycles it
receives the second message of L equations and so on.
This process continues until all dc messages of L parity
check equations have been received. At the output, the
messages are produced in reverse order i.e. starting from
message number dc of equation number L up to message
number 1 of equation number 1.

The width (i.e. number of bits per row) of LIFO1
and LIFO2 is equal to sum of total number of bits for
FP representation of µ and K , whereas the depth (i.e.
number of rows) is given as

dLi f o = (dc − 1)L (14)

Both sum and repetition PE’s have a throughput of one
edge per clock cycle. Therefore, if the clock frequency
is C, the PE’s for both sum and repetition operator
will provide the full set of updated edges E = Nη
in 2Nit(Ndv + L′ )/C seconds, where L′ is an additional
constant that takes into account the latency of the two
processors.

More generally, with P parallel processors the through-
put is given as

T = C
PRc log M

2Nit(dv + P
L′

N
)
w C

PRc log2 M
2NitdvP

(15)

Where Rc denotes the code rate and dv is the average
variable degree of LDPC code, Nit is the number of
decoding iterations.

The synthesizable IP core of the ADBP decoder is
written in VHDL and synthesis is performed on 45nm
standard cell ASIC technology using Synopsys Design
Vision tool at a target clock rate C = 300 MHz.

M n ASum ARep dLi f o
ALi f o ACN AVN T.P G.C

[µm2] [µm2] [µm2] [mm2] [mm2] Mbps CN VN

10,16

4 2340 1710 9 1600 0.0102 0.0083

18

9.6K 7.8K
5 2340 1710 12 1900 0.0108 0.0090 10.2K 8.5K
6 2340 1710 15 2200 0.0113 0.0096 10.6K 9.1K
8 2340 1710 21 2800 0.0126 0.0099 11.9K 9.3K

32

4 2530 2060 9 1700 0.0110 0.0093

22.5

10.3K 8.8K
5 2530 2060 12 2000 0.0115 0.0100 10.8K 9.4K
6 2530 2060 15 2300 0.0121 0.0107 11.4K 10.1K
8 2530 2060 21 2900 0.0134 0.0109 12.6K 10.3K

64

4 3010 2530 9 1900 0.0128 0.0114

27

12.1K 10.7K
5 3010 2530 12 2100 0.0132 0.0118 12.5K 11.1K
6 3010 2530 15 2500 0.0140 0.0126 13.2K 11.9K
8 3010 2530 21 3200 0.0154 0.0139 14.5K 13.1K

Table II: Synthesis Results of ADBP processing nodes.

Table II shows the synthesis results of the main pro-
cessing elements of ADBP algorithm for various values
of M. Following notations are adopted in table to repre-
sent the area figures.

• ASum and Arep denote respectively the area in µm2 of
a two input sum and repetition node FU.

• ALi f o denote the area in µm2 of a single LIFO for a
given node degree n.

• ACN and AVN denote respectively the area in mm2of
a single sum and repetition PE of degree n.

The table also reports the gate count (G.C) i.e. total num-
ber of 2-input Nand gates for both CN and VN PEs for
various values of M and node degrees n. The throughput
for the whole decoder is also reported in table which is
calculated using (15) for full serial architecture i.e. P = 1

with Rc =
3
5

and dv = 2.
The exact comparison in terms of performance and

hardware complexity of complete ADBP decoder with
the state of the art NB LDPC decoders is difficult due
to different design choices e.g. cardinality of Galois
fields, CMOS technology process, operating frequency,
parallelism, different block lengths, code rates and vari-
able (check) node degree distributions. However, the
complexity comparison at the PE level is possible and
presented here. One recent work in the domain of non bi-
nary LDPC decoders is [13] in which the authors propose
an M=32 decoder with Trellis based implementation of
forward backward check node. The main processing core
of [13] consists of an iterative decoder processor (IDP)
which implements the combined functionality of a single
CN with dc = 27 and VN with dv = 4. The IDP is
synthesized on 90 nm technology and has a gate count
G.C of 5 Million gates. In case of ADBP, the combined
area of sum and repetition PE’s of degrees dc = 27 and
dv = 4 respectively is 0.038 mm2 at 45nm. This area
is multiplied by 4 to obtain equivalent area at 90nm
technology. Finaly, the result is divided by the area of
a single 2-input nand gate to obtain the G.C at 90nm
which is 0.06 Million gates. This clearly demonstrates
the logic area advantage of ADBP over the exisiting NB
decoders. In addition, the non binary LDPC decoder of
[13] achieves a throughput of 234 Mbit/s with parameters
Nit,C,K and Rc equal to 5, 250MHz, 726 and 0.86 re-
spectively. For the same parameters, the proposed ADBP
decoder is able to achieve a throughput of 833Mbits/sec
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which is almost 3.5 times higher than the decoder in
[13]. However, the simple regular mod-M encoder used
in this paper actually does not provides performances
competitive with those of LDPC encoders constructed
on fields. The exceptional complexity reduction achieved
from using the ADBP however motivates for further
research effort in the design of good LDPC encoders
within the class.

The synthesis results of Tab. II clearly demonstrate that
the ADPB algorithm achieves a comparable throughput
with affordable complexity. In addition the complexity
increases very slightly moving to higher cardinalities
which shows feasibility of this algorithm for high values
of M.

VI. Conclusions.

After almost two decades of research, binary LDPC
codes have gained a wide diffusion in several fields
and excellent implementations exist for their decoding.
However, the problem of developing efficient decoders
for non binary LDPC codes is far from being solved.
In particular, the implementation complexity of non
binary LDPC decoders tends to grow rapidly with the
cardinality of the symbol alphabet, which severely limits
the achievable spectral efficiency. In the first part of
this paper, we introduce several simplifications in the
previously proposed Analog Digital Belief Propagation
algorithm. Provided simulation results show that these
approximations do not affect significantly decoding per-
formance, but enable the practical implementation of
ADBP. In the second part of the paper, the fixed point
model of ADBP is developed, showing that between
5 and 10 bits must be allocated to represent external
and internal quantities with limited or null effect on
performance. Finally, in the last part of the work, we pro-
pose and detail the implementation architecture of key
processing nodes. Synthesis results obtained for multiple
sizes of the symbol alphabet prove that: (i) the required
area to implement processing nodes is affordable, and
(ii) the complexity grows very weakly with the size of
the alphabet.
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