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Abstract—In light of the ever-increasing demand for new
spectral bands and the underutilization of those already allocated,
the concept of Cognitive Radio (CR) has emerged. Opportunistic
users could exploit temporarily vacant bands after detecting the
absence of activity of their owners. One of the crucial tasks
in the CR cycle is therefore spectrum sensing and detection
which has to be precise and efficient. Yet, CRs typically deal
with wideband signals whose Nyquist rates are very high. In this
paper, we propose to reconstruct the power spectrum of such
signals from sub-Nyquist samples, rather than the signal itself
as done in previous work, in order to perform detection. We
consider both sparse and non sparse signals as well as blind and
non blind detection in the sparse case. For each one of those
scenarii, we derive the minimal sampling rate allowing perfect
reconstruction of the signal’s power spectrum in a noise-free
environment and provide power spectrum recovery techniques
that achieve those rates. The analysis is performed for two
different signal models considered in the literature, which we
refer to as the analog and digital models, and shows that both
lead to similar results. Simulations demonstrate power spectrum
recovery at the minimal rate in noise-free settings and show
the impact of several parameters on the detector performance,
including signal-to-noise ratio (SNR), sensing time and sampling
rate.

I. INTRODUCTION

Spectral resources are traditionally allocated to licensed or
primary users (PUs) by governmental organizations. Today,
most of the spectrum is already owned and new users can
hardly find free frequency bands. In light of the ever-increasing
demand from new wireless communication users, this issue has
become critical over the past few years. On the other hand,
various studies [1[]-[3]] have shown that this over-crowded
spectrum is usually significantly underutilized and can be
described as the union of a small number of narrowband
transmissions spread across a wide spectrum range. This is the
motivation behind cognitive radio (CR), which would allow
secondary users to opportunistically use the licensed spectrum
when the corresponding PU is not active [4]], [5]. Even though
the concept of CR is said to have been introduced by Mitola
[4]], (6], the idea of learning machines for spectrum sensing
can be traced back to Shannon [[7].

One of the crucial tasks in the CR cycle is spectrum sensing
[8. The CR has to constantly monitor the spectrum and
detect the PU’s activity in order to select unoccupied bands,
before and throughout its transmission. At the receiver, the
CR samples the signal and performs detection to assert which
band is unoccupied and can be exploited for opportunistic
transmissions. In order to minimize the interference that could
be caused to PUs, the spectrum sensing task performed by
a CR should be reliable and fast [9]-[11]. On the other
hand, in order to increase the chance to find an unoccupied

spectral band, the CR has to sense a wide band of spectrum.
Nyquist rates of wideband signals are high and can even
exceed today’s best analog-to-digital converters (ADCs) front-
end bandwidths. Besides, such high sampling rates generate a
large number of samples to process, affecting speed and power
consumption.

To overcome the rate bottleneck, several new sampling
methods have recently been proposed [[12[]-[[14]] that reduce
the sampling rate in multiband settings below the Nyquist
rate. In [[12]]—[14]], the authors derive the minimal sampling rate
allowing for perfect signal reconstruction in noise-free settings
and provide sampling and recovery techniques. However, when
the final goal is spectrum sensing and detection, reconstructing
the original signal is unnecessary. Following the ideas in [15]-
[[18]], we propose, in this paper, to only reconstruct the signal’s
power spectrum from sub-Nyquist samples, in order to perform
signal detection.

Several papers have considered power spectrum reconstruc-
tion from sub-Nyquist samples, by treating two different signal
models. The first, and most popular so it seems, is a digital
model which is based upon a linear relation between the sub-
Nyquist and Nyquist samples obtained for a given sensing time
frame. Ariananda et al. [15], [16] have deeply investigated
this model with multicoset sampling [[13[], [19]. They consider
both time and frequency domain approaches and discuss
the reconstruction of the autocorrelation or power spectrum
respectively, from undertermined and overdermined systems.
For the first case, they expoit sparsity properties of the signal
and apply compressed sensing (CS) reconstruction techniques
but do not analyze the sampling rate. The authors rather focus
the analysis on the second case, namely the overdetermined
system, and show that it can be solved without any sparsity
assumption. They demonstrate that the so-called minimal
sparse ruler patterns [20] provide a sub-optimal solution for
sub-Nyquist sampling, when using multicoset sampling.

The second is an analog model that treats the class of
wide-sense stationary multiband signals, whose frequency
support lies within several continuous intervals (bands). Here,
a linear relation between the Fourier transform of the sub-
Nyquist samples and frequency slices of the original signal’s
spectrum is exploited. In [17], [[18]], the authors propose a
method to estimate finite resolution approximations to the true
power spectrum exploiting multicoset sampling. That is, they
estimate the average power within subbands rather than power
spectrum for each frequency. They consider overdetermined
and undertermined, or compressive systems. In the latter case,
CS techniques are used, which exploit the signal’s sparsity,
whereas the former setting does not assume any sparsity. In
[17], the authors assume that the sampling pattern is such that



the system they obtain has a unique solution but no specific
sampling pattern or rate satisfying this condition is discussed.
In [18]], sampling patterns generated uniformly at random and
the Golomb ruler are considered in simulations but no analysis
of the required rate is performed. Another recent paper [21]]
considers the analog model with multicoset samplingin the
non sparse setting. The authors derive necessary and sufficient
conditions for perfect power spectrum reconstruction in noise
free settings. They show that any universal sampling pattern
guarantees perfect recovery under that sufficient conditions.
They further investigate two other sub-optimal patterns that
lead to perfect reconstruction under lower sampling rates.

In this paper, we aim at filling several gaps in the current
literature. First, to the best of our knowledge, no comparison
has been made between the two models and their respective
results. Second, the general conditions required from the
sampling matrix and the resulting minimal sampling rate for
perfect power spectrum reconstruction in a noiseless environ-
ment have not been analyzed. In [15], [16]], only multicoset
sampling is considered and no universal minimal rate is
provided. Rather, several compression ratios given by the sub-
optimal solution of the minimal sparse ruler are shown to
suffice. In [|17]], [[18]], no proof of the uniqueness of the solution
is given. The authors in [21] provide necessary and sufficient
conditions for perfect recovery, but only for the analog model
in the non sparse setting. In this paper, we aim at providing a
unifying framework for power spectrum reconstruction from
sub-Nyquist samples by bridging between the two models.

We thus consider the two different signal models: the analog
or multiband model and the digital one that we relate to
the multi-tone model in order to anchor it to the original
analog signal. For the analog model, we focus on sampling
schemes that operate on the bins of the signal’s spectrum and
provide samples that are linear transformations of these. Two
examples of such schemes are the sampling methods proposed
in [12]-[14]], namely multicoset sampling and the Modulated
Wideband Converter (MWC). For the digital model, we anal-
yse a generic sampling scheme and provide two different
reconstruction approaches. The first, considered for example in
[15], [16]], is performed in the time domain whereas the second
is realized in the frequency domain. While the analysis of the
conditions for perfect reconstruction turns out to be difficult in
the time domain, we show that it is convenient in the frequency
one. There, both the analog and the digital model lead to
similar relations and can therefore be investigated jointly. It
is interesting to notice that other applications based on sub-
Nyquist sampling, such as radar [22], use frequency domain
analysis as well. We examine three different scenarii: (1) the
signal is not assumed to be sparse, (2) the signal is assumed
to be sparse and the carrier frequencies of the narrowband
transmissions are known, (3) the signal is sparse but we do
not assume carrier knowledge.

The main contributions of this paper are twofold. First, for
each one of the scenarii, we derive the minimal sampling rate
for perfect power spectrum reconstruction with respect to our
settings in a noise-free environment. We show that the rate
required for power spectrum reconstruction is half the rate
that allows for perfect signal reconstruction, for each one of

the scenarii, namely the Nyquist rate, the Landau rate [23]]
and twice the Landau rate [13]. Second, we present recon-
struction techniques that achieve those rates for both signal
models. Throughout the paper, minimal sampling rate refers
to the lowest rate enabling perfect reconstruction of the power
spectrum in a noiseless environment for a general sampling
scheme. We do not consider the minimal rate achievable for
a specific design of the sampling system. For instance, in
[15], [16], the authors show that designing the multicoset
sampling matrix according to the minimal sparse ruler pattern
results in a minimal rate below ours. Some other specific
sampling patterns are considered in [21]]. In contrast, we focus
on generic systems without any particular structure.

This paper is organized as follows. In Section we
present the stationary multiband and multi-tone models and
formulate the problem. Section [[II| describes the sub-Nyquist
sampling stage and ties the original signal’s power spectrum
to correlation between the samples. In Section we derive
the minimal sampling rate for each one of the three scenarii
described above and present recovery techniques that achieve
those rates. Numerical experiments are presented in Sec-
tion [V] We demonstrate power spectrum reconstruction from
sub-Nyquist samples, show the impact of several practical
parameters on the detection performance, and compare our
detection results to Nyquist rate sampling and to spectrum
based detection from sub-Nyquist samples [[12].

II. SYSTEM MODELS AND GOAL
A. Analog Model

Let x(t) be a real-valued continuous-time signal, supported
on F = [—TNyq/2, +INyq/2] and composed of up to N
uncorrelated stationary transmissions, such that

Nsig

z(t) = Zpisi(t). (1)

i=1

Here p; € {0,1} and s;(t) is a zero-mean wide-sense station-
ary signal. The value of p; determines whether or not the ¢th
transmission is active. The bandwidth of each transmission is
assumed to not exceed 2B (where we consider both positive
and negative frequency bands). Formally, the Fourier transform
of z(t) defined by

X(f) = /OO a(t)e I ta 2

—0o0

is zero for every f ¢ F. We denote by fnyq = 1/Tnyq the
Nyquist rate of z(t) and by S, the support of X (f).

The power spectrum of z(t) is the Fourier transform of its
autocorrelation, namely

P.(f) = / - o (T)e 92T dr, (3)

— 00

where 7, (1) = E [z(¢t)x(t — 7)] is the autocorrelation function
of z(t). From [24], it holds that

Pu(f) =E|X(f)P. )



Thus, obviously, the support of P,(f) is identical to that of
X (f), namely S,,. Our goal is to reconstruct P, (f) from sub-
Nyquist samples. In Section we describe our sampling
schemes and show how one can relate P,(f) to correlation of
the samples.

We consider three different scenarii.

1) No sparsity assumption: In the first scenario, we assume
no a priori knowledge on the signal and we do not suppose
that z(t) is sparse, namely Ny, B can be on the order of fyyq.

2) Sparsity assumption and non blind detection: Here, we
assume that z(t) is sparse, namely Nz B < fnyq. We denote
Ky = 2Ng,. Moreover, the support of the potentially active
transmissions is known and corresponds to the frequency sup-
port of licensed users defined by the communication standard.
However, since the PUs’ activity can vary over time, we wish
to develop a detection algorithm that is independent of a
specific known signal support.

3) Sparsity assumption and blind detection: In the last
scenario as in the previous one, we assume that x(¢) is sparse,
but we do not assume any a priori knowledge on the carrier
frequencies. Only the maximal number of transmissions Ng;e
and the maximal bandwidth 2B are assumed to be known.

B. Digital Model

The second model we consider is the multi-tone model.
Let x(t) be a continuous-time signal defined over the interval
[0,T) and composed of up to N, transmissions, such that

Nsig
2(t) =Y pisi(t),  t€[0,T). )

i=1
Again, p; € {0,1} and s;(t) is a wide-sense stationary signal.
Since xz(t) is defined over [0,7"), it has a Fourier series
representation

Q/2
te[0,7), (6)
k=—Q/2

where ()/(27) is the maximal possible frequency in z(t). Each

transmission s;(¢) has a finite number of Fourier coefficients,
up to 2K,,4. < @ + 1, so that

si(t) =Y clkle? T,

keQ;

t€0,7), (7

where ); is a set of integers with |Q;] < 2K, and
maxyeq,} |k| < Q/2. Thus, here the support S, of x(t) is
Sy = UNE Q.

For mathematical convenience, for this model we will
consider the Nyquist samples of z(¢), namely

z[n] = 2(nTnyq), 0 <n < T/TNygs )

where Tnyg = T'/(Q +1). Since z(t) is wide-sense stationary,
it follows that x is wide-sense stationary as well. Let us define
N = T/TNyq = @ + 1. From @ the autocorrelation of x,
namely rx[v] = E [z[n]x[n — v]], has a Fourier representation

Q/2

Z sx[k:]ej%”,

k=—Q/2

rlt] = 0<vEN-1, ©

where

sx[k] = E [*[K]], —2<k< (10)
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From the stationarity property of the signal, namely ry[v] is
a function of v only, it holds that

E [c[k]e*[l]] = 0, (11)

From (10), it is obvious that the Fourier coefficients of r,[v]
lie in the same support as those of z(t), namely S,.

Again, we consider three different scenarii.

1) No sparsity assumption: In the first scenario, we assume
no a priori knowledge on the signal and we do not suppose
that x(t) is sparse, namely Ny, Ko can be on the order of
Q+1

2) Sparsity assumption and non blind detection: Here, we
assume that () is sparse, namely NgjoKmax < @ + 1 and
that the Fourier frequencies in the Fourier series expansions
of s;(t), namely Q;,1 < ¢ < Ny, are known. We denote
Kf = 2NsigKmax-

3) Sparsity assumption and blind detection: In the last
scenario, we assume that x(t) is sparse but we do not assume
any a priori knowledge on the Fourier frequencies in the
Fourier series expansions of s;(t).

Q Q
—5 Sk#l< .

C. Problem Formulation

In each one of the scenarii defined in the previous section,
our goal is to assess which of the N;, transmissions are active
from sub-Nyquist samples of x(¢). For each signal, we define
the hypothesis H; o and #; 1, namely the th transmission is
absent and active, respectively.

In order to determine which of the Ny, transmissions are
active, we first reconstruct the power spectrum of z(t) for
the first model , or the Fourier coefficients of the signal’s
sampled autocorrelation for the second one (I0). In the first
and third scenarii, we fully reconstruct the power spectrum.
In the second one, we exploit our prior knowledge and re-
construct it only at the potentially occupied locations. We can
then perform detection on the fully or partially reconstructed
power spectrum. Note that, to do so, we do not sample x(¢)
at its Nyquist rate, nor compute its Nyquist rate samples. For
each one of the scenarii, we derive the minimal rate enabling
perfect reconstruction of (3) and (I0) respectively, in a noise-
free environment, and present recovery techniques that achieve
those rates.

By performing e.g. energy detection on the reconstructed
power spectrum, we can detect unoccupied spectral bands,
namely spectrum holes, from sub-Nyquist samples. This
makes the detection process faster, more efficient and less
power consuming, which fits the requirements of CRs. Other
forms of detection are also possible, once the power spectrum
is recovered.

III. SPECTRUM RECONSTRUCTION FROM SUB-NYQUIST
SAMPLES

A. Analog Model: Sampling and the Analog Spectrum

We begin with the analog model. For this model, we
consider two different sampling schemes: multicoset sampling



[13] and the MWC [12] which were previously proposed for
sparse multiband signals. We show that both schemes lead
to identical expressions of the signal’s power spectrum in
terms of that of the samples. In this section, we consider
reconstruction of the whole power spectrum. In Section [[V-B]
we show how we can reconstruct the power spectrum only
at potentially occupied locations when we have a priori
knowledge on the carrier frequencies.

1) Multicoset sampling: Multicoset sampling [19] can be
described as the selection of certain samples from the uniform
grid. More precisely, the uniform grid is divided into blocks
of N consecutive samples, from which only M are kept. The
ith sampling sequence is defined as

relrl = { g(nTNyq)’ n=mN +ci,m 7

, otherwise, 2)

where 0 <c; <cp <+ <cy < N—1. Let fs = 1 > B
be the sampling rate of each channel and F = [— f5 / 2. fg /2].
Following the derivations from multicoset sampling [[13]], we
obtain

z(f) = Ax(f),  feF

where z;(f) = X,,(e/27/Twa) 0 < i < M —1 are the discrete-
time Fourier transforms (DTFTs) of the multicoset samples
and

(13)

Xk(f) = X(f+kas)a

where K, = k— &1 < k < N for odd N and Kj, =
k — #,1 < k < N for even N. Each entry of x(f) is
referred to as a bin since it consists of a slice of the spectrum
of z(t). The ikth element of the M x N matrix A is given
by

1<k<N, (14)

1
NTryg

2) MWC sampling: The MWC [12] is composed of M
parallel channels. In each channel, an analog mixing front-end,
where z(t) is multiplied by a mixing function p;(t), aliases
the spectrum, such that each band appears in baseband. The
mixing functions p;(t) are required to be periodic. We denote
by T, their period and we require f, = 1/7, > B. The
function p;(t) has a Fourier expansion

o0 5
t) = g cie’ Tr

l=—00

Ay = eI Feikn, (15)

(16)

In each channel, the signal goes through a lowpass filter
with cut-off frequency f,/2 and is sampled at rate f; > f,.
For the sake of simplicity, we choose f; = f,. The overall
sampling rate is M f, where M < N = fnyq/fs. Repeating
the calculations in [[12]], we derive the relation between the
known DTFTs of the samples z;[n] and the unknown X (f)

z(f) = Ax(/f),

where z(f) is a vector of length M with ith element z;(f) =
Z;(e7271T5). The unknown vector x(f) is given by . The
M x N matrix A contains the coefficients c;;:

feFs, a7)

Ail = Ci’,l = C:l. (18)

For both sampling schemes, the overall sampling rate is

M
ﬁfNyq-

ftot

3) Analog Power Spectrum Reconstruction: We note that
systems (13) and are identical for both sampling schemes.
The only difference is the sampling matrix A. We assume that
A is full spark in both cases [12]], [13]], namely, that every M
columns of A are linearly independent. We thus can derive a
method for reconstruction of the analog power spectrum for
both sampling schemes together. We will reconstruct P.(f)
from the correlation between z(f), defined in and (17).

Since x(t) is a wide-sense stationary process we have [24]

E[X(f1)X*(f2)] = Pe(f1)0(f1 — f2) (20)

where P,(f) is given by (3). We define the autocorrelation
matrix Rx(f) = E[x(f)x"(f)], where () denotes the
Hermitian operation. From , R (f) is a diagonal matrix
with Rx(u)(f) = P.(f+ K,fs) [17], where K; is defined in
Section Clearly, our goal can be stated as recovery of
R (f), since once Ry (f) is known, P, (f) follows for all f.

We now relate Ry (f) to the correlation of the sub-Nyquist
samples. From (I3) or (I7), we have

Rz(f):ARx(f)AHv feFs,
where R, (f) = E[z(f)z" (f)]. It follows that
r,(f) = (A ® A)vec(Rx(f) = (A ® A)Bry(f) =

=Mfs = 19)

2

er(f )a

(22)
where @ = (A®A)B = A®A, and A denotes the conjugate
matrix of A. Here ® is the Kronecker product, © denotes the
Khatri-Rao product, r,(f) = vec(R,(f)), and Bisa N> x N
selection matrix that has a 1 in the jth column and [(j—1)N +
jlth row, 1 < j < N and zeros elsewhere. Thus, ry,(f) =
P.(f + K;fs) and by recovering ry(f) for all f € F;, we
recover the entire power spectrum of x(t).

We now discuss the sparsity of ry(f) for the second and
third scenarii. We chose fs > B so that each transmission
contributes only a single non zero element to ry(f) (referring
to a specific f), and consequently ry(f) has at most Ky < N
non zeros for each f [12f], corresponding to S,. In the next
section, we derive conditions on the sampling rate for to
have a unique solution.

It is interesting to note that , which is written in the
frequency domain, is valid in the time domain as well. We
can therefore estimate r,(f) and reconstruct ry(f) in the
frequency domain, or alternatively, we can estimate r,[n] and
reconstruct ry[n] in the time domain using

r [n] = ®ry[n)].

Note that r«(f) is Ky-sparse for each specific frequency
f € Fs, whereas ry[n] is 2K ;-sparse since each transmission
can be split into two bins. Therefore, in Section [[V-C| we
show that the minimal sampling rate is achieved only in the
frequency domain. Since the vectors ry[n] are jointly sparse,
we can recover the support S, from one sample in each
channel, provided that the value of the samples in the occupied
bins is not zero for each n. However, in order to ensure

(23)



robustness to noise and better performance, we consider more
than one sample in the simulations.

As a final comment, below we assume full knowledge of
r,(f) or r [n], or the possibility to compute them. In Section
we show how to approximate r(f) and r,[n] from a finite
data block.

B. Discrete Model: Reconstruction of the Digital Spectrum

In this model, we wish to recover the Fourier coefficients
of the autocorrelation of x, defined in . The traditional
approach in this setting exploits the time domain characteris-
tics of the stationary signal. Unfortunately, the analysis of the
recovery conditions of the Fourier coefficients of x turns out to
be quite involved. Therefore, we propose a second approach,
that exploits the equivalent frequency domain properties of the
signal. We show that in that case, the same analysis as for the
analog model can be performed.

1) Time domain: Define the autocorrelation matrix as

Ry, = E [X[n]xH [n— 1/]] (24)
rx[0] x[1] coo rx[N —1]
r«[1] 75[0] r«[N — 2]
[N —1] rx[N —2] % [0]
From (9),
Sx = Fry, (25)
where sy is defined in (I0), F is the N x N DFT matrix and
re = [ 0] 1] IN=11".  (@6)
Therefore,
vec(Ry) = Bry = %BFHSX, 27)

where Bis a N2x N repetition matrix whose ith row is given
by the [||%] — (i — 1) mod N|+ 1]th row of the N x N
identity matrix.

We now relate sy to the covariance matrix of the sub-
Nyquist samples R, = E [zz]. We start by deriving the
relationship between R, and Ry. From (32)), we have

R, = AR AH. (28)

Here, we assume that A is full spark. Vectorizing both sides
of (28) and using (27), we obtain

_ 1 - -
r, = (A ® A)vec(Ry) = N(A ® A)BFs, 2 Ws,, (29)
where ¥ = L (A ® A)BFH is of size M? x N. We recall
that r, is a vector of size M2 and sy is a vector of size N.
Since F is invertible, rank(®) = rank((A ® A)B). Note
that we can express C = (A ® A)B as

§1®a1+52®a2+~~+5N®aN

c a; ®az+az®a; +az®ag+---+an@an-_1

a; ®an +an ® ap
where a; denotes the jth column of A. Analyzing conditions
for C to be full rank does not appear to be straightforward.
We therefore propose instead to investigate the following
frequency domain approach.

2) Frequency domain: From (6),

c = Fx. (30)

Here, x is given by @]) the entries of ¢ are the Fourier
coefficients of x (see (B)) and F is the N x N DFT matrix.
Since F is orthogonal,

X = iFH c. (31)

N

Define the autocorrelation matrix R, = E [ccH ] From ,
R. is a diagonal matrix and it holds that Rc(i,7) = sx|i —
(N +1)/2]. Clearly, our goal can be stated as recovery of Re,
since once R is known, sy follows.

We now relate R, to the correlation of the sub-Nyquist
samples. A variety of different sub-Nyquist schemes can be
used to sample x(t) [[12], [13]], [25], even when its Fourier
series is not sparse as we will show in Section Let
z € RM denote the vector of sub-Nyquist samples of x(t),0 <
t < T, sampled at rate f; with fs < N/T. For simplicity, we
assume that M = fT < N is an integer. We express the
sub-Nyquist samples z in terms of the Nyquist samples x as

z = Ax, (32)

where A is a M x N matrix. Combining and (32), we
obtain )
= —_AFfc2 G 33
Z N ¢ C, (33)
where G = %AFH . We assume that G is full spark, namely
spark(G) = M + 1.
Let R, = E [zzH ] be the covariance matrix of the sub-
Nyquist samples. We now relate R, to Rc. From (33), we
have

R, = GR.G". (34)
Vectorizing both sides of (34),
r, = (G ® G)vec(Re) = (G ® G)Br, 2 ®r..  (35)

Here, B is as defined in Section b = ((_} ® G)B is
of size M? x N and r. is a vector of size N that contains the
potentially non-zero elements, namely the diagonal elements,
of Re, that is rc(i) = Re(4,4),1 < i < N.

In the second and third scenarii, r¢ has only Ky < N non
zero elements, which correspond to the Ky non zero Fourier
cofficients in .S,. In Section we discuss the conditions for
(35) and to have a unique solution, and we derive the
minimal sampling rate accordingly.

Again, we assume full knowledge of r, and will show how
it can be approximated in Section

We observe that we obtain a similar relation and
in both models. Therefore, the next section refers to both
together. We used the same notation for different parameters
in the two models so that they both lead to the same relation.
In order to avoid confusion, we summarize the notation in
Table [l We also note that, in the analog model, we define
an infinite number of equations (22), more precisely one per
frequency (f € Fs), whereas in the digital model we obtain a

single equation (33).



Parameter | Analog Model | Discrete Model

M 7 measurements # sub-Nyquist samples
N # frequency bins # Nyquist samples
Ky # potentially non # potentially non zero
zero frequency bands | fourier coefficients
Sz continuous support discrete Fourier series
of z(t) support
TABLE I

PARAMETERS NOTATION IN BOTH MODELS

IV. MINIMAL SAMPLING RATE AND RECONSTRUCTION
A. No sparsity Constraints

1) Minimal Rate for Perfect Reconstruction: The systems
defined in (22) and are overdetermined for M2 > N,
if @ is full column rank. The following proposition provides
conditions for the systems defined in (22) and (35) to have a
unique solution.

Proposition 1. Let T be a full spark M x N matrix (M < N)
and B be a N? x N selection matrix that has a 1 in the jth
column and [(j — 1)N + jlth row, 1 < j < N and zeros
elsewhere. The matrix C = (T @ T)B = TOT is full column
rank ifM2 > N and 2M > N.

Proof: First, we require M? > N in order for C to have
a smaller or equal number of columns than of rows.

Let x be a vector of length N in the null space of C, namely
Cx = 0. We show that if 2M/ > N, then x = 0. Assume by
contradiction that x £ 0. We denote by €2, the set of indices
1 < j < N such that z; # 0 and N, = [Q.]. It holds that
1< N, <N.

Note that we can express C as

C = [t1®0t; T2t In®tn |,

where t; denotes the jth column of T. Let

h; = [ tiuz1  tipwo LiNTN ]T, 1<i<M
Then Cx = 0 if and only if
Th; =0, 1<i<M. (36)

That is, the M vectors h; are in the null space of T.

If N, < M, then since T is full spark, holds if and only
if tj;2;, =0,V1 < ¢ < M and Vj € . Again, since T is
full spark, none of its columns is the zero vector and therefore
that z; = 0,Vj € €, and we obtained a contradiction.

If N, > M, then we show that the vectors h;,1 <i < M
are linearly independent. Since T is full spark, every set of M
columns are linearly independent. Let us consider M columns
t; of T such that j € €. It follows that

E:%%%:U
j

if and only if v;x; = 0. From the definition of €2, this holds
if and only if v; = 0, that is the M vectors x;a; are linearly
independent. Thus, the M vectors h; are linearly independent
as well. We denote by nullity(T) the dimension of the null

space of T. From the rank-nullity theorem, nullity(T) = N —

rank(T) = N — M. Since the dimension of the space spanned
by h; is M, if M > N — M, then x = 0. O
The following theorem follows directly from Proposition [T}

Theorem 1. The systems (analog model) and (digital
model) have a unique solution if

1) A in the analog model and AF® in the digital model
are full spark.
2) M2 > N and 2M > N.

This can happen even for M < N which is our basic
assumption. If M > 2, we have M? > 2M. Thus, in this
case, the values of M for which we obtain a unique solution
are N/2 < M < N. The minimal sampling rate is then

N f Nyq

=Mf,>—-B=2M,
fay f>2 9

This means that even without any sparsity constraints on the
signal, we can retrieve its power spectrum by exploiting its sta-
tionarity property, whereas the measurement vector z exhibits
no stationary constraints in general. This was already observed
in [26] for the digital model, but no proof was provided. In
[21]], the authors show that 2M > N is a sufficient condition
on M so that ® is full column rank in the analog model. Then,
a universal sampling pattern can guarantee the full column
rank of ®. In [[17], [18], [21], the authors claim that the
system is overdetermined if M (M — 1) +1 > N and if the
multicoset sampling pattern is such that it yields a full column
rank matrix ®. In [21], some simple sub-optimal multicoset
sampling patterns are given, that achieve compression rate
below 1/2. Some examples of optimal patterns, namely that
guarantee a unique solution under M (M — 1) +1 = N, are
given in [17], [18]] but it is not clear what condition is required
from the pattern, or alternatively from the sampling matrix A,
in order for @ to have full column rank. Here, the condition
for having a solution is given with respect to the sampling
matrix A, which directly depends on the sampling pattern,
rather than the matrix ®.

2) Power Spectrum Reconstruction: If the conditions of
Proposition [I] are satisfied, namely if the sampling rate
f > fa), then the systems defined in and are
overdetermined, respectively. The power spectrums ry(f) and
r. are given by

(37

i (f) = @Trz(f),

in the analog model, and

(38)

fo = ®ir,,

(39)

in the digital one. Here | denotes the Moore-Penrose pseudo-
inverse.

B. Sparsity Constraints - Non-Blind Detection

1) Minimal Rate for Perfect Reconstruction: We now con-
sider the second scheme, where we have a priori knowledge
on the frequency support of x(¢) and we assume that it is
sparse. Instead of reconstructing the entire power spectrum,
we exploit the knowledge of the signal’s frequencies in order
to recover the potentially occupied bands (analog model) or
the potential Fourier series coefficients of the autocorrelation



function (discrete model). This will allow us to further reduce
the sampling rate.

In this scenario, r«(f) (first model) and r. (second model)
contain only Ky < N potentially non zero elements as
discussed in Section In the first model, the reduced
problem can be expressed as

rs(f) = @sr3(f).
S

Here, 1 (f) is the vector r(f) reduced to its K potentially
non zero elements and g contains the corresponding Ky
columns of ®. Here, the support S of ry(f) depends on the
specific frequency f since the support of the power spectrum
of each transmission s;(t) can be split into two different bins
of r«(f). Obviously, S can be calculated for each f from the
known S,.
In the second model, the reduced problem becomes

(40)

r, = ®ors. (41)

Here, rc is the reduction of r¢ to its Ky potentially non zero
elements, ¥ 5 contains the corresponding Ky columns of W.
In the digital case, it holds that the support S = S,.

The following proposition provides conditions for the sys-
tems defined in and to have a unique solution.

Proposition 2. Let T be a full spark M x N matrix (M < N)
and B be defined as in Proposition |l| Let C = (T @ T)B
and H be the N x K that selects any Ky < N columns of
C. The matrix D = CH is full column rank if M? > Ky and
2M > K.

Proof: First, we require M? > K in order for D to have
a smaller or equal number of columns than of rows. Let T'g
be the M x K; matrix composed of the Ky columns of T
corresponding to the Ky selected columns of C:

Ts=[ tp t

Here t;;,1 <4 < K denotes the column of t corresponding
to the ith selected column of C. We have

tKe) ] :

D=[ @ty tg oty b, @ty |-

If Ky > M, then, since spark(T)= M +1, Tg is full spark
as well. Applying Proposition [I[] with T'g, we have that D is
full column rank if 2M > Kj.

If Ky < M, then from spark(T)= M + 1 > Ky, Tg is
full column rank. Since rank(Ts ® Tg) = rank(Ts)?= K7,
the matrix Tg ® Tg is also full column rank. It can be seen
that the matrix D is obtained by selecting Ky columns from
Ts ® Tg. It follows that D is full column rank as well. [

The following theorem follows directly from Proposition [2]

Theorem 2. The systems [{#0) (analog model) and [{1)) (digital
model) have a unique solution if

1) A in the analog model and AF™ in the digital model
are full spark.
2) M? > Ky and 2M > Kj.

In this case, the minimal sampling rate is

K
foy=Mfs> =B =NyB. (42)

Landau [23]] developed a minimal rate requirement for perfect
signal reconstruction in the non-blind setting, which corre-
sponds to the actual band occupancy, namely 2N, B. Here,
we find that the minimal sampling rate for perfect spectrum
recovery in this setting is half the Landau rate.

2) Power Spectrum Reconstruction: If the conditions of
Proposition [2] are satisfied, namely the sampling rate f > f(2),
then we can reconstruct the signal’s power spectrum by
first reducing the systems as shown in @0) and (@I). The
reconstructed power spectrum ry(f) and r. are given by

£(f) = ®kr.(f) 43)
x,(f) = 0 Vi¢s,

in the first model, and
fe. = ®lr, (44)
fe, = 0 Vig¢gs,

in the second one.

C. Sparsity Constraints - Blind Detection

1) Minimal Rate for Perfect Reconstruction: We now con-
sider the third scheme, namely x(t) is sparse, without any
a priori knowledge on the support. In the previous section,
we showed that ®¢ is full column rank, for any choice of
Ky < 2M columns of ®. Thus, for M > 2, we have
spark(®) > 2M. Therefore, in the blind setting, if r(f) or r¢
is Kg-sparse, with Ky < M, it is the unique sparsest solution
to or (35), respectively [27]. In this case, the minimal
sampling rate is

f(5) = Mfs > KfB = 2NsigBa (45)

which is twice the rate obtained in the previous scenario. As
in signal recovery, the minimal rate for blind reconstruction is
twice the minimal rate for non-blind reconstruction [[13].

The authors in [18]] consider the sparse case as well for a
model similar to our analog model. Again, the conditions for
the system to be overdetermined are given with respect to ®,
as in the non sparse case. Moreover, the authors reconstruct
the average spectrum of the signal over each bin, rather than
the spectrum itself at each frequency. Here, the two approaches
become fundamentally different since in this scenario, we deal
with a system of equations of infinite measure whereas in [[18]],
the authors obtain a standard compressed sensing problem
aiming at recovering a finite vector.

2) Power Spectrum Reconstruction: In this scenario, there
exists an inherent difference between the two models. In the
digital model, we have to solve a single equation (35) whereas
in the analog model, consists of an infinite number of
linear systems because f is a continuous variable.

Therefore, in the digital case, we can use classical com-
pressed sensing (CS) techniques [27] in order to recover the
sparse vector r. from the measurement vector r,, namely

(46)

fo = argmin||rc|lo st rp, = Pre.
Tc

In the analog model, the reconstruction can be divided
into two stages: support recovery and spectrum recovery. We



use the support recovery paradigm from [13] that produces
a finite system of equations, called multiple measurement
vectors (MMYV) from an infinite number of linear systems. This
reduction is performed by what is referred to as the continuous
to finite (CTF) block. From (22), we have

Q=o78" (47)
where
Q= rZ(f)rzH(f)df (48)
feFs
is a M x M matrix and
Z= / (e (f)df (49)
fEF.

is a NV x N matrix. We then construct a frame V such that Q =
VVH, Clearly, there are many possible ways to select V. We
choose to construct it by performing an eigendecomposition
of Q and select V as the matrix of eigenvectors corresponding
to the non zero eigenvalues. We can then define the following
linear system

V =%U (50

From [13] (Propositions 2-3), the support of the unique
sparsest solution of (50) is the same as the support of our
original set of equations (22).

As discussed in Section r«(f) is Ky-sparse for each
specific f € Fs. However, after combining the frequencies,
the matrix U is 2K -sparse (at most), since the spectrum
of each transmission can be split into two bins of ry(f).
Therefore, the above algorithm, referred to as SBR4 in [[13]]
(for signal reconstruction as opposed to spectrum reconstruc-
tion), requires a minimal sampling rate of 2f3). In order to
achieve the minimal rate f(3), the SBR2 algorithm regains the
factor of two in the sampling rate at the expense of increased
complexity [[13]. In a nutshell, SBR2 is a recursive algorithm
that alternates between the CTF described above and a bi-
section process. The bi-section splits the original frequency
interval into two equal width intervals on which the CTF is
applied, until the level of sparsity of U is less or equal to
K. As opposed to SBR4 which can be performed both in the
time and in the frequency domains, SBR2 can obviously be
performed only in the frequency domain. We refer the reader
to [13]] for more details.

Once the support S is known, perfect reconstruction of the
spectrum can be obtained as follows

£5(f) ®Lr,(f)
P (f) = 0 VigS5.

(G

V. SIMULATION RESULTS

We now demonstrate power spectrum reconstruction from
sub-Nyquist samples for the first and third scenarii, respec-
tively. We also investigate the impact of several simulation
parameters on the receiver operating characteristic (ROC) of
our detector: signal-to-noise ratio (SNR), sensing time, number
of averages (for estimating the autocorrelation matrix R,
as explained below) and sampling rate. Last, we compare
the performance of our detector to one based on spectrum

reconstruction from sub-Nyquist samples and a second one
based on power spectrum reconstruction from Nyquist sam-
ples. Throughout the simulations we consider the analog model
and use the MWC analog front-end for the sampling stage.

A. Reconstruction in time and frequency domains and detec-
tion

We first explain how we estimate the elements of r,. The
overall sensing time is divided into P frames of length K
samples. In Section we examine different choices of P
and K for a fixed sensing time. In the digital model, the esti-
mate of r, is simply obtained by averaging the autocorrelation
between the samples z over P frames as follows

1 E
=5 ZZP(ZP)H
p=1

where z” is the vector of sub-Nyquist samples of the pth frame.

In the analog model, in order to estimate the autocorrelation
matrix R,(f) in the frequency domain, we first compute the
estimates of z;(f),1 < i < M, 2;(f), using FFT on the
samples z;[n] over a finite time window. We then estimate the
elements of R,(f) as

(52)

R.(i, 5, f) = 225, f), feFs, (53)

By
where P is the number of frames for the averaging of the
spectrum and 2P (4, f) is the value of the FFT of the samples
z;[n] from the pth frame, at frequency f. In order to estimate
the autocorrelation matrix R,[n] in the time domain, we
convolve the samples z;[n] over a finite time window as

PZ

We then use or in order to reconstruct ¥ (f), or their
time-domain equivalents to reconstruct £x[n].

We note that the number of samples dictates the number
of DFT cofficients in the frequency domain and therefore
the resolution of the reconstructed spectrum in the frequency
domain.

For the analog model, we use the following test statistic

Ti= il

where the sum is performed over frequency or over time,
depending on which domain we chose to reconstruct Tx.
Obviously, other detection statistics can be used on the re-
constructed power spectrum.

20,7, € [0,T/Tnyg]- (54)

1<i<N, (55)

B. Spectrum reconstruction

We first consider spectrum reconstruction of a non sparse
signal. Let z(t) be white Gaussian noise with variance 100,
and Nyquist rate fnyq = 10GHz with two stop bands. We
consider N = 65 spectral bands and M = 33 analog channels,
each with sampling rate fs = 154M Hz and with Ny = 131
samples each. The overall sampling rate is therefore equal to
50.77% of the Nyquist rate. Figure [1| shows the original and



w10 Original Spectrum
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Fig. 1. Original and reconstructed spectrum of a non sparse signal at half
the Nyquist rate.

the reconstructed spectrum at half the Nyquist rate (both with
averaging over P = 1000).

We now consider the blind reconstruction of the power
spectrum of a sparse signal. Let the number of potentially
active transmissions Ny, = 3. Each transmission is generated
from filtering white Gaussian noise with a low pass filter
whose two-sided bandwidth is B = 80M H z, and modulating
it with a carrier frequency drawn uniformly at random between
—fNyq/2 = —B5GHz and fnyg/2 = 5GHz. We consider
N = 65 spectral bands and M = 7 analog channels, each with
sampling rate fy = 154M Hz and with K = 171 samples per
channel and per frame. The overall sampling rate is equal to
10.8% of the Nyquist rate, and 1.9 times the Landau rate. We
consider additive white Gaussian noise. Figures shows the
original and the reconstructed power spectrum for different
values of the number of frames P and of the SNR.
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Fig. 2. Original and reconstructed spectrum: P = 1 and SNR= 0dB.

w10t Original Spectrum
4t i
2 L 4
0 . " .- . . . .
5 -4 -3 -2 -1 i 1 2 3 4 5
f x10°
w10t Reconstructed Spectrum

=] o
b
[——

[
[—
1

Fig. 3. Original and reconstructed spectrum: P = 25 and SNR= 0dB.
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Fig. 4. Original and reconstructed spectrum: P = 50 and SNR= 0dB.

C. Practical parameters

In this section, we consider the influence of several practical
parameters on the performance of our detector. The experi-
ments are set up as follows. We consider two scenarios where
the actual number of transmissions is 2 and 3, namely H( and
H1 respectively. The number of potentially active transmis-
sions Ng;, is set to be 6. Each transmission is similar to those
described in the previous experiment. We consider N = 115
spectral bands and M analog channels, each with sampling
rate fs = 87M Hz. The number of samples per channel and
per frame is K and the averaging is performed over P frames.
Each experiment is repeated over 500 realisations.

In the first experiment, we illustrate the impact of SNR on
the detection performance. We consider M = 8 channels. The
overall sampling rate is thus 695M H z, which is a little below
7% of the Nyquist rate and a little above 1.2 times the Landau
rate. Here, K = 171 and P = 10 frames. Figure @] shows the
ROC of the detector for different values of SNR. We observe
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w1078 Original Spectrum
B T T T T
Fys J
alL i
D Il 1
-5 4 3 2 1 0 1 2 3 4 =1
f w0
w100 Reconstructed Spectrum
B
F1s J
2 L -
0 . . \ \ | . . . .
-4 4 3 2 1 0 1 2 3 4 9
f %10
Fig. 6. Original and reconstructed spectrum: P = 100 and SNR= 0dB.

that up to a certain value of the SNR (between 5dB and 0dB
in this setting), the detection performance does not decrease
much. Below that, the performance decreases rapidly. Another
observation that can be made concerns the particular form of
the ROC curves. These can be split into two parts. The first
part corresponds to a regular ROC curve, where the probability
of detection increases faster than linearly with the probability
of false alarm. After a certain point, the increase becomes
linear. This corresponds to the realisations where the support
recovery failed and the energy measured in the band of interest
is zero both for Hy and H1. The more such realisations there
are, the lower the point where the curve’s nature changes. As
one can expect, this point is lower for lower SNRs.

In the second experiment, we vary the sensing time per
frame and keep the number of frames P = 10 constant. We
consider the same sampling parameters as in the previous
experiment and set the SNR to be 2dB. Figure [0] shows the
ROC of the detector for different values of the number of
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Fig. 7. Original and reconstructed spectrum: P = 100 and SNR= —2dB.
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Fig. 8. Influence of the SNR on the ROC.

samples per frame.

In the third experiment, we vary the number of frames and
keep the number of samples per frame K = 20 constant. We
consider the same sampling parameters as above and set the
SNR to be 0dB. Figure [I0] shows the ROC of the detector
for different values of the number of frames. We observe that
above a certain threshold, increasing the number of averages
P almost does not affect the detection performance.

An interesting question is, given a limited overall sensing
time, or equivalently a limited number of samples, how should
one set the number of frames P and the number of samples
per frame K. In the next experiment, we investigate different
choices of P and K for a fixed total number of samples
per channel PK = 100. The rest of the parameters remain
unchanged. Figure shows the ROC of the detector for
those different settings. We can see that in this case, the best
performance is attained for a balanced division of the number
of samples, namely P = 10 frames with K = 10 samples
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Fig. 10. Influence of the number of frames on the ROC.

each.

Last, we show the impact of the number of channels, namely
the overall sampling rate, on the performance of our detector.
The sampling parameters are set as above and the SNR is 0dB.
Figure (11| shows the ROC of the detector for different values
of the number of channels. The minimal number of channels
in this case is 7. Due to the noise presence, we need to sample
above that threshold to obtain good detection performance. We
observe that above 9 channels, the performance increases very
little with the number of channels whereas below the threshold
of 7 it decreases drastically.

D. Performance Comparaisons

We now compare our approach to sub-Nyquist spectrum
sensing and nyquist power spectrum sensing.

1) Power Spectrum versus Spectrum Reconstruction: First,
we consider the approach of [12] where the signal itself is
reconstructed from sub-Nyquist samples. We compute the en-
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ergy of the frequency band of interest and compare this spec-
trum based detection to our power spectrum based detection.
We consider the exact same signal as in the previous section.
The sampling parameters are as follows: N = 115 spectral
bands and M = 12 analog channels, each with sampling
rate f; = 87M Hz. We recall that the minimal sampling rate
for signal recovery is twice that needed for power spectrum
recovery. The overall sampling rate is therefore 1.04GH z,
namely a little above 10% of the Nyquist rate and almost 1.9
times the Landau rate. The number of samples per channel
and per frame is K = 10 and the averaging is performed over
P = 10 frames. In the signal reconstruction approach, no
averaging needs to be performed. Therefore, we use a total
of PK = 100 samples. Each experiment is repeated over
500 realisations. Figure [13] shows the ROC of both detectors
for different values of SNR. We oberve that power spectrum
sensing outperforms spectrum sensing.
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2) Nyquist versus Sub-Nyquist Sampling: We now compare
our approach to power spectrum sensing from Nyquist rate
samples. We consider the exact same signal and sampling
parameters as in Section [V-DI| except for the number of
channels which is set to M = 9, leading to an overall sampling
rate of 783G H z, namely a little above 7.8% of the Nyquist
rate and 1.4 times the Landau rate. Figure [I4] shows the ROC
of both detectors for different values of SNR. It can be seen
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Fig. 14.  Sub-Nyquist versus Nyquist sampling.

that our detector performs similarly as the Nyquist rate one up
to a certain SNR threshold (around 5dB in this setting). Below
that threshold, the performance of our sub-Nyquist receiver
decreases faster with SNR decrease whereas the Nyquist
rate performance detection remains almost unchanged. The
comes from the fact that the sensitivity of energy detection
is amplified when performed on sub-Nyquist samples due to
noise aliasing [28].

VI. CONCLUSION

In this paper, we considered power spectrum reconstruction
of stationary signals from sub-Nyquist samples. We investi-
gated two signal models: the multiband model referred to as
the analog model and the multi-tone model converted into a
digital model. For the analog setting, two sampling schemes
were adopted and for the digital one, two power spectrum
reconstruction schemes were considered. We showed that all
variations of both the analog and the digital models can be
treated and analyzed in a uniform way in the frequency domain
whereas a time domain analysis is a lot more complex.

We derived the minimal sampling rate for perfect power
spectrum reconstruction in noiseless settings for the cases
of sparse and non sparse signals as well as blind and non
blind detection. We also presented recovery techniques for
each one of those scenarii. Simulations show power spectrum
reconstruction at sub-Nyquist rates as well as the influence
of practical parameters such as noise, sensing time and sam-
pling rate on the ROC of the detector. We also showed
that sub-Nyquist power spectrum sensing outperforms sub-
Nyquist spectrum sensing and that our detector performance
is comparable to that of a Nyquist rate power spectrum based
detector up to a certain SNR threshold.
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