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Iterative Learning for Reference-Guided DNA
Sequence Assembly from Short Reads: Algorithms

and Limits of Performance
Xiaohu Shen, Manohar Shamaiah, and Haris Vikalo

Abstract

Recent emergence of next-generation DNA sequencing technology has enabled acquisition of genetic infor-
mation at unprecedented scales. In order to determine the genetic blueprint of an organism, sequencing platforms
typically employ so-called shotgun sequencing strategy to oversample the target genome with a library of relatively
short overlapping reads. The order of nucleotides in the reads is determined by processing the acquired noisy
signals generated by the sequencing instrument. Assembly of a genome from potentially erroneous short reads
is a computationally daunting task even in the scenario where a reference genome exists. Errors and gaps in the
reference, and perfect repeat regions in the target, further render the assembly challenging and cause inaccuracies. In
this paper, we formulate the reference-guided sequence assembly problem as the inference of the genome sequence
on a bipartite graph and solve it using a message-passing algorithm. The proposed algorithm can be interpreted as
the well-known classical belief propagation scheme under a certain prior. Unlike existing state-of-the-art methods,
the proposed algorithm combines the information provided by the reads without needing to know reliability of
the short reads (so-called quality scores). Relation of the message-passing algorithm to a provably convergent
power iteration scheme is discussed. To evaluate and benchmark the performance of the proposed technique, we
find an analytical expression for the probability of error of a genie-aided maximum a posteriori (MAP) decision
scheme. Results on both simulated and experimental data demonstrate that the proposed message-passing algorithm
outperforms commonly used state-of-the-art tools, and it nearly achieves the performance of the aforementioned
MAP decision scheme.

I. INTRODUCTION

In the last decade, rapid development of next-generation DNA sequencing technologies has enabled
cheap and fast generation of massive amounts of sequencing data [1], [2], [3]. Determining the order of
nucleotides in a long target DNA molecule typically involves use of shotgun sequencing strategy where
multiple copies of the target are fragmented into short templates. Each template is then analyzed by a
sequencing instrument which provides reads (i.e., information about nucleotide content of the templates)
that are used to assemble the desired long sequence. Shotgun sequencing strategy is illustrated in Fig. 1.

Fig. 1. Illustration of shotgun sequencing. Multiple copies of a long target DNA molecule are fragmented into short templates. The order
of bases in the templates (reads) is determined using a sequencing instrument, and the reads are then used to assemble the target.
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The majority of next-generation sequencing methods detect the order of nucleotides in a template by
facilitating enzymatic synthesis of a complementary strand on the template, and acquiring a signal that
indicates the type of a nucleotide successfully incorporated into the complementary strand. Quality of the
acquired signal is adversely affected by various sources of uncertainty. Base calling algorithms attempt
to infer the order of nucleotides in short templates from the acquired noisy signals [4]. Confidence in the
accuracy of base calls is expressed by their quality scores, which provide a measure of the probability
of base calling error. Conventional base calling algorithms rely on various heuristics to estimate quality
scores, while more recent methods employ Bayesian inference schemes to evaluate posteriori probabilities
of the bases in the reads [5], [6], [7]. Due to their computational efficiency, the heuristic methods are the
preferred choice for assessing confidence of the base calls – however, the resulting quality scores are not
necessarily an accurate reflection of the actual probability of base calling errors [8]. In turn, inaccurate
quality scores may adversely impact reliability of the assembly process.

The short reads generated by a sequencing instrument are used to assemble the target genome. The
assembly may be performed with or without referring to a previously determined sequence related to the
target (genome, transcriptome, proteins). De novo assembly refers to a scenario where the reconstruction
is performed without a reference sequence. This is a computationally challenging task, difficult due to
the presence of perfect repeat regions in the target sequence and short lengths of the reads [11], [12]. In
re-sequencing projects where the goal, for instance, may be to study genetic variations among individuals
or to discover new strains of bacteria [9], [10], a reference is available and used to order the reads. Such
reference-guided assembly is still challenging due to the errors in the reads and because the reference often
contains errors and gaps [13], [14]. Many of the assembly challenges are ameliorated if the target sequence
is significantly oversampled and thus the information provided by short reads is highly redundant. This
redundancy is quantified by means of a sequencing coverage – the average number of times a base in
the target sequence is present in the overlapping reads. However, the demands for higher throughput and
lower sequencing costs often limit the coverage to medium (5-20X) or low (≤ 5X). As an example, the
ongoing 1000 Genomes Project has opted for trading-off sequencing depth for the number of individuals
being sequenced [18]. In its preliminary phase, the project has focused on sequencing a large number of
individuals at a very low 3X coverage.

In the reference-guided assembly, the short reads are first mapped to a reference sequence using an
alignment algorithm (e.g., [16], [17]). Then each position along the target is determined by combining
information provided by all the reads that cover that particular position. Due to the errors in base calls,
short length of the reads, and repetitiveness in the target, both the mapping and the sequence assembly
steps are potentially erroneous. The widely used tools to analyze and assemble genome sequence from
high-throughput sequencing data include SAMtools [13] and Genome Analysis Toolkit (GATK) [14]. Note
that both of these packages rely on the quality scores provided by the sequencing platform to infer the
assembled sequence.

In this paper, we formulate the reference-guided assembly problem as the inference of the genome
sequence on a bipartite graph and solve it using a message-passing algorithm. Unlike existing state-of-
the-art methods, the proposed algorithm seeks the target sequence without needing to know reliability of
the short reads (i.e., their quality scores). Instead, it infers reliability of a base in the assembled sequence
by combining the information of all the reads covering that particular position. The proposed algorithm
can be interpreted as the classical belief propagation under a certain prior. Binary reformulation of the
problem leads to an alternative solution in the form of another message passing algorithm that is closely
related to the so-called power iteration method. The power iteration algorithm approximates the solution
to the sequence assembly problem by the leading singular vector of a matrix comprising read data.
The power iteration method has guaranteed convergence, and its careful examination provides relation
between the algorithm accuracy and the number of iterations. To evaluate and benchmark performance
of the proposed techniques, we find an analytical expression for the probability of error of a genie-
aided maximum a posteriori (MAP) sequence assembly scheme which is an idealized assembler with
perfect quality score information and error-free mapping of the reads to their locations. Results on both
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simulated and experimental data obtained by sequencing Escherichia Coli and Neisseria Meningitidis
at UT Austin’s Center for Genomic Sequencing and Analysis demonstrate that our proposed message-
passing algorithm performs close to the aforementioned genie-aided MAP assembly scheme and is superior
compared to state-of-the-art methods (in particular, it outperforms the aforementioned SAMtools and
GATK software packages). Note that the developed algorithms as well as simulation and experimental
studies are focused on haploid genomes – while modifications that enable application to diploid/polyploid
genomes are relatively straightforward, they are beyond the scope of the current manuscript.

The paper is organized as follows. In Section II, we introduce the bipartite graphical model and a
message passing based sequence assembly algorithm. In Section III, we show that this message passing
algorithm can be interpreted as the classical belief propagation under a certain prior. In Section IV, we
derive an alternative message passing scheme based on a binary reformulation of the sequence assembly
problem. In Section V, we derive an expression for the probability of error of a genie-aided MAP assembly
scheme. In Section VI, we present simulations as well as experimental results obtained by applying the
proposed methods on the Escherichia Coli and Neisseria Meningitidis data sets. Section VII concludes
the paper and outlines potential future work.

Preliminary work on the basic message passing scheme discussed in Section III was
presented in [19], [20]. Implementation code of the algorithm in C++ is available at
https://sourceforge.net/projects/mpsequencing/.

II. GRAPHICAL MODEL AND THE MESSAGE-PASSING ASSEMBLY ALGORITHM

To facilitate processing of the short reads generated by next-generation sequencing instruments, we
introduce a bipartite graph representing the reads and bases in the target sequence that needs to be
assembled. The fundamental building blocks of a sequence – the nucleotides A, C, G, and T – are
numerically represented using 4-dimensional unit vectors containing a single non-zero component whose
position indicates type of a nucleotide. In particular, the 4-dimensional unit vectors that we use are
eA = [1 0 0 0]T , eC = [0 1 0 0]T , eG = [0 0 1 0]T , and eT = [0 0 0 1]T . Assume the target sequence
has length L, and denote the bases in the sequence by b1:L. Then each base in the target sequence is
represented by a vector bi ∈ {eA, eC , eG, eT}. For convenience, we will assume that all the short reads
at our disposal are generated by the same sequencing instrument and thus have identical read length l;
note, however, that there is no loss of generality and that our scheme can combine reads generated by
sequencing the same target on different instruments and of different read lengths. Let us denote the set
of short reads by R = {rj}, j = 1, 2, . . . , n. In general, the base calls in these reads are erroneous due to
various uncertainties in the underlying sequencing-by-synthesis process. Average base-calling error rates
of most current next-generation sequencing systems are on the order of 10−2.

In applications where a reference sequence is available (i.e., in the so-called reference guided sequence
assembly scenario), the short reads are mapped onto the reference using one among many recently
developed short-sequence alignment algorithms [16], [17]. Note that the reads comprising bases with low
quality scores are often discarded by the alignment algorithms. Ideally, the remaining reads (the ones of
high fidelity) are accurately mapped to their corresponding locations on the reference sequence. However,
for some reads there may exist several candidate positions which leads to possible mis-alignments and,
consequently, might provide erroneous information about the regions of the target sequence where the
read is mis-aligned. As pointed out in [14], the misalignment rate for reads from genome regions which
contains homozygous indels (where the chromosomes in a homologous pair have the same sequence but
contain insertion or deletion as compared to the reference genome) can be as high as 15%.

We represent the reference-guided assembly problem by a graph shown in Fig. 2. The bipartite graph
G(b1:L ∪ r1:n, E) illustrated in the figure has L base nodes (representing the target genome sequence) and
n read nodes. Since we assume that all reads are of the same length l, each read node is connected to
exactly l base nodes. The edge (i, j) in the edge set E connecting bi and rj is associated with a unit
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Fig. 2. Illustration of the reference-guided DNA sequence assembly problem using short reads. Nodes bi represent bases in the target DNA
sequence and rj represent reads. Each read node is connected to l base nodes, where l denotes the read length.

vector eij indicating information about the type of base bi provided by the read rj . Note that the bipartite
graph described here is reminiscent of the graphical representation of the crowdsourcing problem in [21].
Motivated by the iterative learning scheme proposed there, we employ a message-passing algorithm to
infer the target genome sequence using overlapping reads. Note that the previously mentioned problem
of having multiple candidate locations for mapping reads can be incorporated in the proposed graphical
representation and resolved using the algorithm that we describe next.

The message passing algorithms rely on the exchange of messages between neighboring nodes in
the graph [24]. Our algorithm operates on real-valued base messages {xi→j}(i,j)∈E and read messages
{yj→i}(i,j)∈E . A base message xi→j is a 4× 1 vector representing the likelihood of the base bi being A,
C, G, or T, while a read message yj→i represents the reliability of read j. Read messages are initialized
from a random distribution, and the message update rules at iteration k are given by

x
(k)
i→j ←

∑
j′∈∂i\j

(2eij′ − 1)y
(k−1)
j′→i , (1)

y
(k)
j→i ←

1

l − 1

∑
i′∈∂j\i

eTi′jx
(k)
i′→j, (2)

where ∂i and ∂j denote collection of the neighboring nodes of nodes i and j, respectively, and 1 is a
4 × 1 vector containing all 1’s. Note that 2eij′ − 1 has element 1 in the position corresponding to the
nucleotide base bij′ represented by eij′ , and −1’s elsewhere. Hence a read with positive reliability value
yj′→i will increase the likelihood of bij′ and decrease the likelihood of other bases. Finally, the likelihood
of a base being A, C, G, or T is calculated as the sum of the information provided by the reads weighted
by each read’s reliability. The symbol with the highest likelihood is chosen as the estimate of the base in
the corresponding position. The estimate rule for the ith base is

b̂i = arg max
t∈{A,C,G,T}

x
{t}
i , (3)

where the decision vector xi =
∑

j∈∂i(2eij − 1)y
(km)
j→i . Here, km denotes the number of iterations

performed and x
{t}
i denotes the likelihood corresponding to symbol t ∈ {A,C,G, T} in the vector

xi =
[
x
{A}
i x

{C}
i x

{G}
i x

{T}
i

]T
. The procedure is formalized as Algorithm 1.

Note that Algorithm 1 needs to be appropriately initialized. In our experimental studies presented in
Section VI, we initialize y(0)

j→i by drawing from both Gaussian distribution N (1, 1) and uniform distribution
U [0, 1]. For the data sets under consideration, it turns out that different initializations lead to identical
solutions. The algorithm is terminated when the reliability increment between subsequent iterations is
small, i.e.,

∑
|y(k)
j→i − y

(k−1)
j→i | < ε. As pointed out earlier, the algorithm does not require exact knowledge

of quality scores, and iteratively infers reliability of individual reads.
Since the reads originating from a single sequencing instrument have identical lengths, the degree of the

read nodes in the graph is uniform. On the other hand, degree of a base node is the number of reads that
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Algorithm 1 Message passing for sequence assembly
Input: E, {eij}(i,j)∈E
1 Initialize read messages:
for all (i, j) ∈ E do

Initialize y(0)
j→i;

end for
2 Iterations:
for k = 1→ km do

for all (i, j) ∈ E do
Update base message:
x

(k)
i→j ←

∑
j′∈∂i\j(2eij′ − 1)y

(k−1)
j′→i ;

Normalize x
(k)
i→j:

x
(k)
i→j ←

x
(k)
i→j

||x(k)
i→j ||2

.

end for
for all (i, j) ∈ E do

Update read message
y

(k)
j→i ← 1

l−1

∑
i′∈∂j\i e

T
i′jx

(k)
i′→j;

end for
end for
3 Estimation:
for i = 1→ L do

Calculate decision vector xi =
∑

j∈∂i(2eij − 1)y
(km)
j→i ;

Estimate the bases
b̂i = arg maxt∈{A,C,G,T} x

{t}
i ;

end for

cover the corresponding base, usually referred to as the sequencing coverage. Typically, coverage varies
from one position to another and, consequently, degree of the base nodes varies. Note that fragmentation
of multiple copies of the target sequence – a fundamental step in shotgun sequencing procedure – can be
viewed as a uniform sampling from the original DNA strand. The resulting coverage is a random variable
that can be described well by a Poisson distribution [26], [28].

Let c̄ denote the average sequencing coverage. The computational complexity of the base message
updating step (1), which needs to be performed in each iteration of Algorithm 1, is O(nlc̄) on average,
while the complexity of the read message updating step (2) is O(nl2). Since Lc̄ = nl, the complexity of the
algorithm is O(kmnl(l+c̄)) = O(kmLc̄(l+c̄)), where km denotes the number of iterations (i.e., the number
of message updates). On the other hand, simple plurality voting scheme has complexity O(Lc̄ log c̄). Our
experimental studies show that km ≤ 30 is sufficient for the convergence of the algorithm. We tested the
algorithm on a broad range of parameters (in particular, for read lengths l ≤ 100, coverage c̄ ≤ 60), and
found that the runtimes are comparable to those of the state-of-the-art techniques (SAMtools and GATK)
– a specific comparison of runtimes is reported in Section VI.

III. RELATION TO STANDARD BELIEF PROPAGATION

As an alternative to the intuitively pleasing but basically heuristic message passing scheme proposed in
Section II, we can also derive a standard belief propagation algorithm for the reference-guided sequence
assembly. To this end, we seek the sequence b̂1:L that maximizes the joint probability P (b̂1:L, p1:n), where
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p1:n denotes confidences of the aligned read data and pj ∈ [0, 1]. This maximization can be formalized as

max
b̂1:L,p1:n

n∏
j=1

D(pj)
∏

(i,j)∈E

{
pjδ(b̂i = eij) + p̄jδ(b̂i 6= eij)

}
, (4)

where D(pi) denotes the prior distribution on pi and p̄j = 1−pj . δ(·) denotes an indicator function taking
value 1 if its argument is true and is 0 otherwise. The joint optimization is computationally challenging and
thus often practically not feasible. As an alternative, belief propagation provides an approximate solution
to (4) by computing the marginal distributions of the optimization variables and selecting their most likely
values according to the computed distributions. A thorough review of theoretical and practical aspects of
the belief propagation method can be found in [23]. For the graphical model proposed in Section II, we
define two messages to facilitate belief propagation: x̃i→j and ỹj→i. The former is the belief on b̂i and
essentially represents a distribution over the four possible nucleotide bases {eA, eC , eG, eT}. The latter is
a probability of pj on [0, 1]. In the kth iteration of the belief propagation algorithm, message update rules
are given by (see, e.g., [23] and the references therein)

ỹ
(k)
j→i(pj) ∝ D(pj)

∏
i′∈∂j\i

∑
m=A,C,G,T

{
pjδ(ei′j = em)

+p̄jδ(ei′j 6= em)
}
x̃

(k)
i′→j(em), (5)

x̃
(k+1)
i→j (b̂i) ∝

∏
j′∈∂i\j

∫ (
ỹ

(k)
j′→i(pj′)(pj′δ(b̂i = eij′)

+p̄j′δ(b̂i 6= eij′)
)
dpj′ . (6)

After the completion of the iterative procedure, the bases bi in the target genome are estimated by first
computing the beliefs x̃i(b̂i) ∝∏

j′∈∂i

∫ (
ỹ

(k)
j′→i(pj′)(pj′δ(b̂i = eij′) + p̄j′δ(b̂i 6= eij′))

)
dpj′ , (7)

where b̂i ∈ {eA, eC , eG, eT}, and then choosing the base with the highest x̃i value. Note that, by exploiting
the symmetry of the expression (4), we can write

x̃
(k+1)
i→j (b̂i 6= em) ∝

∏
j′∈∂i\j

∫ (
ỹ

(k)
j′→i(pj′)(pj′δ(eij′ 6= em)

+p̄j′δ(eij′ = em)
)
dpj′ .

For the brevity of notation, we denote x̃(k)
i→j(em) = x̃

(k)
i→j(b̂i = em). Assuming that the prior distribution on

pj , D(pj), is Beta(0,0) (which is essentially as same as the Bernoulli(1/2) distribution), the read confidence
is a binary variable,

pj =

{
0, w.p. 1/2,
1, w.p. 1/2.

Define a log-likelihood ratio

ykj→i = log
( ỹ(k)

j→i(1)

ỹ
(k)
j→i(0)

)
. (8)
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x
(k)
i→j(1) = log

x
(k)
i→j(eA)

x
(k)
i→j(b̂i 6= eA)

=
∑

j′∈∂i\j

log

∫ (
ỹ

(k−1)

j′→i (pj′)(pj′δ(eij′ = eA) + p̄j′δ(eij′ 6= eA)
)
dpj′∫ (

ỹ
(k−1)

j′→i (pj′)(pj′δ(eij′ 6= eA) + p̄j′δ(eij′ = eA)
)
dpj′

=


log

ỹ
(k−1)

j′→i
(1)

ỹ
(k)

j′→i
(0)

= y
(k−1)

j′→i if eij′ = eA

− log
ỹ
(k−1)

j′→i
(1)

ỹ
(k)

j′→i
(0)

= −y(k−1)

j′→i if eij′ 6= eA

(11)

After substituting (5) in (8), we obtain

y
(k)
j→i =

∑
i′∈∂j\i

log
x̃

(k)
i′→j(ei′j)∑

em 6=ei′j
x̃

(k)
i′→j(em)

=
∑
i′∈∂j\i

log
x̃

(k)
i′→j(ei′j)

x̃
(k)
i′→j(b̂i′ 6= ei′j)

. (9)

Define a 4× 1 vector message x
(k)
i→j as

x
(k)
i→j =

[
x

(k)
i→j(1) x

(k)
i→j(2) x

(k)
i→j(3) x

(k)
i→j(4)

]T
,

where
x

(k)
i→j(1) = log

x̃
(k)
i→j(eA)

x̃
(k)
i→j(b̂i 6=eA)

, x
(k)
i→j(2) = log

x̃
(k)
i→j(eC)

x̃
(k)
i→j(b̂i 6=eC)

,

x
(k)
i→j(3) = log

x̃
(k)
i→j(eG)

x̃
(k)

i′→j(b̂i′ 6=eG)
, x

(k)
i→j(4) = log

x̃
(k)
i→j(eT )

x̃
(k)

i′→j(b̂i′ 6=eT )
.

It is straightforward to write
y

(k)
j→i =

∑
i′∈∂j\i

ei′jx
(k)
i′→j. (10)

A closer examination of the first element of x
(k)
i→j , x

(k)
i→j(1), leads to simplification shown in (11), where

we implicitly used the assumption that pj is binary. We can obtain similar expressions to (11) for other
components of x(k)

i→j . As a result, the updating rule for x(k)
i→j simplifies,

x
(k)
i→j =

∑
j′∈∂i\j

(2eij′ − 1)y
(k−1)
j′→i , (12)

where the vector 2eij′−1 has element 1 in the position corresponding to the nucleotide base bij′ represented
by eij′ , and −1’s elsewhere. Therefore, the belief propagation update rule (12) is identical to the update
rule (1) of our message passing algorithm presented in Section II. Moreover, update rule (10) is identical
(up to the scaling factor) to the message update rule (2). Therefore, message passing scheme proposed
in Section II can be interpreted as the belief propagation under a specific prior on the confidence of the
aligned data pj – in particular, pj should come from a Beta(0,0) distribution, i.e., be treated as a binary
variable.
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IV. BINARY REPRESENTATION, MESSAGE PASSING, AND POWER ITERATION ALGORITHM

So far, we discussed reference-guided assembly schemes that rely on a representation of the nucleotide
basis with 4-dimensional vectors {eA, eC , eG, eT}. As an alternative, in this section we rely on a binary
representation of nucleotides to formulate a message passing scheme and discuss the provably convergent
power iteration algorithm for finding the target genome sequence. The power iteration scheme finds the
desired sequence by computing the leading singular vectors of an appropriately defined data matrix.

The four-letter alphabet {A,C,G, T} in DNA sequencing data can be represented using binary symbols,
e.g., {+1,−1}. In particular, we encode the nucleotide basis as A = {−1,−1}, C = {−1,+1}, G =
{+1,−1}, and T = {+1,+1}, and represent reads as binary sequences comprising {±1}. Similar to how
we built a model utilizing 4-dimensional vectors {eA, eC , eG, eT} in Section II, we define a bipartite graph
where each base bi is represented by two binary nodes b̃2i−1 and b̃2i. Using the output of an alignment
algorithm, each read node of the bipartite graph is connected to 2l binary base nodes in the node set b̃1:2L,
where l denotes read length and L is the length of the target sequence. For convenience, let us denote
the resulting graph by G(b̃1:2L∪ r1:n, Ẽ). The edge (k, j) in Ẽ connecting b̃k and rj is assigned a variable
ekj ∈ {±1}, the binary representation of b̃k provided by read rj . Given such a graphical representation,
we can apply a binary message passing algorithm as in [21]. In particular, the read and base messages
are scalars and the update equations are given by

x
(k)
i→j ←

∑
j′∈∂i\j

eij′y
(k−1)
j′→i , (13)

y
(k)
j→i ←

∑
i′∈∂j\i

eTi′jx
(k)
i′→j. (14)

After the iterative procedure reaches a stopping criterion, the binary string representing unknown target
DNA sequence is obtained as the weighted average

b̃i = sign(
∑
j′∈∂i\j

eij′yj′→i). (15)

The above algorithm is known to converge to the optimal solution when the bi-partite graph is regular [22].
In our application, however, the graph is not regular since the sequencing coverage varies. Nevertheless, we
find that the binary message-passing algorithm performs very well in both simulations and on experimental
data, as we demonstrate in Section VI. The binary message passing algorithm is also closely related to the
so-called power iteration scheme for computing the leading singular vector of an appropriately defined
data matrix. We next examine the power iteration algorithm and argue its convergence.

With the adopted binary encoding of nucleotides, we can represent sequencing reads by a sparse n×2L
matrix D. The 2L columns of D correspond to the L positions in the target sequence whereas the
jth row of D comprises binary data representing read rj . In each row, only 2l entries are non-zero
(representing an l-long read) while the remaining ones are filled with zeros. Therefore, matrix D has
entries Dij ∈ {0,+1,−1}. Since the percentage of nonzero entries of D is 2l

L
and L � l, D is a sparse

matrix. It is easy to show (see, e.g., [22]) that if each row of D has the same number of nonzero entries,
and the same holds for each column, the left singular vector corresponding to the largest singular value of
D is a reliable estimate of the target genome sequence when the measurement noise (i.e., read error rate)
is low. Here is an illustration. Let s denote the 2L× 1 binary vector with alphabet {−1,+1} representing
the true sequence of length L, and let the number of nonzero entries in each columns of D be c. Consider
the case where the reads are error-free and s is a 2L× 1 all one vector 12L. Since DDT12L = 2Lc12L,
then s is an eigenvector of DDT . Here D is a non-negative matrix with entries 0s and 1s and thus, by
Perron-Frobenius theorem, 12L is a left singular vector corresponding to D’s largest singular value. In
the general case where s consists of both 1 and −1, we can represent s = S12L where S is a 2L × 2L
diagonal matrix with diag(S) = s. In this case, it is straightforward to generalize the above analysis and
show that s remains to be proportional to the leading singular vector of the matrix D.
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Performing singular value decomposition is roughly cubic in the dimension of D and, for our problem
dimensions, clearly infeasible. Fortunately, we only need to find u, the leading singular vector of D, and
then estimate the target sequence s as sign(u). This can be done in a computationally efficient way using
the power iteration technique due to sparsity of D. In particular, the power iteration procedure entails
computing

x(k) = Dy(k−1), y(k) = DTx(k). (16)

To demonstrate convergence of the power iteration scheme (16), let us denote the singular values of D as
σi(D), where σ1(D) ≥ σ2(D) ≥ ... ≥ 0. With a random initialization y(0), power iterations will converge
to the singular vector u if the inequality σ1(D) > σ2(D) holds strictly. The speed of the convergence
of power iterations depends on the ratio σ2(D)/σ1(D). This can be easily shown by an analysis of the
consecutive projections of the iteratively updated vectors x(k) onto the singular vector u. In particular, the
projection of x(k) onto u is (uTx(k))u. A closer look into the singular value decomposition shows that
uTx(k)u = (σ1(D))2uTx(k−1)u and (x(k) − uTx(k)u) ≤ (σ2(D))2(x(k−1) − uTx(k−1)u). Therefore,

||x(k) − uTx(k)u||
||uTx(k)u||

≤
(
σ2(D)

σ1(D)

)2 ||x(k−1) − uTx(k−1)u||
||uTx(k−1)u||

≤
(
σ2(D)

σ1(D)

)2k ||x(0) − uTx(0)u||
||uTx(0)u||

.

Clearly, power iterations will converge with any initialization if σ1(D) > σ2(D), and the speed of
convergence depends on the ratio of σ1(D) and σ2(D) – the larger the ratio, the faster the convergence.
On the other hand, from (16) it directly follows that the update equations for the entries of x(k) and y(k)

can be written as
x

(k)
i =

∑
j∈∂i

Dijy
(k−1)
j , y

(k)
j =

∑
i∈∂j

Dijx
(k)
i . (17)

Note that the power iterations (17) differ from the message update rules (13) and (14) in only one term. As
our results in Section VI show, accuracy of message passing and power iterations is essentially identical,
while the former converges in significantly fewer iterations than the latter. Moreover, both message-passing
schemes – the one based on the representation of basis via 4-dimensional vectors {eA, eC , eG, eT} as well
as the one relying on the binary representation of nucleotides – converge after approximately the same
number of iterations.

V. BENCHMARKING PERFORMANCE OF THE PROPOSED ASSEMBLY SCHEMES

To assess and benchmark performance of the proposed iterative learning schemes, in this section we
analyze the probability of error of a genie-aided maximum a posteriori (MAP) estimator of the bases in
the target genome sequence. In this problem, ”genie-aided” is referring to an idealized scenario where
short reads are mapped to the reference genome with no errors, i.e., there are no misplacements of the
reads along the reference sequence and the MAP estimator knows exact probabilities of mis-calling the
bases in the short reads (i.e., has exact quality score information). Recall that neither our message-passing
schemes nor the power iteration algorithm make such practically unrealistic assumptions and, in fact, do
not require prior knowledge of quality scores.

A. Genie-aided MAP estimator
Let bk denote the kth base in the target sequence, and let y(i)

k denote the signal generated by the
sequencing platform as it examines bk, i = 1, 2, . . . , ck, where ck stands for the total number of reads
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covering bk. Assume that the probability of erroneously calling bk in the ith read is p(i)
k . Given the base

calls of the reads covering bk, y(i)
k , the MAP estimate b̂k is readily found as

b̂k = arg max
x

ck∏
i=1

P (y
(i)
k , bk = x)

= arg max
x

ck∏
i=1

P (y
(i)
k |bk = x)P (bk = x)

= arg max
x

ck∏
i=1

(1− p(i)
k )δ(y

(i)
k =x)(p

(i)
k )(1−δ(y(i)

k =x))P (bk = x)

= arg max
x

ck∑
i=1

[
δ(y

(i)
k = x) log(1− p(i)

k )

+ (1− δ(y(i)
k = x)) log(p

(i)
k )
]

+ log(P (bk = x))

= arg max
x

ck∑
i=1

δ(y
(i)
k = x)w

(i)
k + log(p

(i)
k )

+ log(P (bk = x)),

where we introduced w
(i)
k = log

(
1−p(i)

k

p
(i)
k

)
. Therefore, the MAP estimate b̂k formed by combining the

information provided by ck reads covering bk is given by

b̂k = arg max
x

ck∑
i=1

w
(i)
k δ(y

(i)
k = x) + log(P (bk = x)). (18)

In the absence of prior information P (bk = x), the MAP estimation of bk in (18) is identical to the so-
called weighted plurality voting [25]. Note that if p(i)

k = p for all i and k, (18) becomes the well-known
plurality voting scheme.

Intuitively, we expect that the performance of the MAP decision scheme improves as we increase the
coverage ck. Note that the above expressions are predicated on the assumption of error-free read mapping.

B. Performance of the genie-aided MAP estimator
For notational convenience, let us write the expression for the estimate in (18) as

b̂k = arg max
x

Wk(x), (19)

where Wk(x) =
∑

i:y
(i)
k =x

w
(i)
k + log(P (bk = x)). 1 The probability of error is defined as P (b̂k 6= bk) =

1− P (b̂k = bk).
To characterize the probability of error of the MAP decision scheme, we rely on the so-called universal

generating functions often used in reliability analysis of multi-state systems [27]. Consider n independent
discrete random variables X1, . . . , Xn with probability mass functions (pmf) represented by vectors (xi,pi)
(e.g., P (Xi = xij) = pij). In order to evaluate the pmf of an arbitrary function f(X1, . . . , XN), one has
to find the vector y of all the possible values of f(·) and the vector q of the corresponding probabilities.
The total number of possible combinations (X1, . . . , XN) is K =

∏n
i=1(ki + 1), where (ki + 1) is the

number of different realizations of Xi. Since the variables are independent, the probability of each unique

1Without a loss of generality, we will assume that ties where two different bases x and y lead to identical Wk(x) = Wk(y) do not happen.
The extension to this case is trivial but requires more cumbersome notation.
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combination is equal to the product of the probabilities of the realizations of arguments composing this
combination. The probability of the jth combination of the realizations of the variables is qj =

∏n
i=1 pij

and the corresponding value of the function is fj = f(x1j1 , . . . , xnjn). If different combinations produce
the same value of the function, then the probability that f(·) takes that value is equal to the sum of
probabilities of the combinations resulting in it. As an illustration, let Ah denote the set of combinations
resulting in the particular function value fh. If the total number of different values that the function
of random variables f(X1, . . . , Xn) may assume is H , then its probability mass function is completely
specified with a pair of vectors (y, q) defined as

y = (fh : 1 ≤ h ≤ H),

q =
( ∑

(x1j1
,...,xnjn )∈Ah

n∏
i=1

piji : 1 ≤ h ≤ H
)
.

A compact representation of the probability mass function of a random variable Xi,
(xi0, xi1, . . . , xiki , pi0, pi1, . . . , piki), is given by a z-transform that takes the polynomial form

ui(z) =

ki∑
j=0

pijz
xij . (20)

Such a representation is convenient since, to find the probability that Xi ∈ Φ, one can use operator δ
defined as

Pr(Xi ∈ Φ) = δ(ui(z),Φ) =
∑

j:xij∈Φ

pij. (21)

Moreover, the z-transform representation enables straightforward calculation of the probability mass
function of an arbitrary function f of n independent random variables. This can be facilitated via the
composition operator ⊗f applied to z-transform representations of the probability mass functions of the
variables,

⊗f
( ki∑
ji=0

pijiz
xiji

)
=

k1∑
j1=0

. . .
kn∑
j1=0

( n∏
i=0

pijiz
f(x1j1

,...,xnjn )
)
. (22)

The technique for finding probability mass functions that relies on the z-transform and composition
operators ⊗f is referred to as the universal z-transform or the universal (moment) generating function
(UGF) technique. In the context of this technique, the z-transform of a random variable for which the
operator ⊗f is defined is often referred to as its U-function. For additional background on this subject,
we refer an interested reader to [27]. Here, we rely on this technique to characterize the probability of
error of the genie-aided sequence assembly scheme.

Consider the U-function (similar to (20)) defined for each read position

Ui(z) =
4∑

m=1

simz
vim

= r(i)
x1
z[wi(x1) 0 0 0] + r(i)

x2
z[0wi(x2) 0 0]

+ r(i)
x3
z[0 0wi(x3) 0] + r(i)

x3
z[0 0 0wi(x4)], (23)

where rixj denotes the probability that the symbol from read i is xj , and wi(xj) is the weight associated
with the information provided by read i (essentially given by the quality scores, which the genie-aided
scheme assumes to be perfectly known). To obtain a U-function of the decision for two positions having
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respective U-functions U1(z) and U2(z), the following composition operator can be used,

U1,2(z) = Ω
(
U1(z), U2(z)

)
= Ω

( 4∑
m=1

s1
mz

v1
m ,

4∑
m=1

s2
mz

v2
m

)
=

4∑
m=1

4∑
n=1

s1
ms

2
nz

v1
m+v2

m

=
∑
m

s{1,2}m zv
{1,2}
m . (24)

Note that some combinations of v1
m and v2

m may lead to the same v1
m + v2

m and hence there may be
multiple terms in (24) that involve zv1

m+v2
m . If so, in the last step in (24), such terms are summed up to

obtain s{1,2}m which is referred to as the read output distribution of reads 1 and 2. The support set of s{1,2}m

is at most 42 = 16, but may be smaller due to aforementioned grouping of the terms that involve identical
vectors.

The above procedure leads to a representation of the probability of error of arriving at the decision
for a particular sequence position by combining information provided by two reads. Given an arbitrary
subset of reads λ (e.g., so far we discussed λ = {1, 2}), it is straightforward to obtain the U-function for
an extended subset λ ∪ j with an arbitrary j /∈ λ as

Uλ∪j(z) = Ω
(
Uλ(z), Uj(z)

)
=
∑
m

sλ∪jm zv
λ∪j
m . (25)

We can further simplify and arrive at more explicit expressions in the following way. Consider the U-
function of an arbitrary weighted voting classifier (WVC) over a subset of reads λ,

Uλ(z) =
∑
m

sλmz
vλm . (26)

Let WΛ =
∑

j∈Λwj be the total weight of all the votes belonging to the WVC, and let the total weight
of the subsystem λ be given by Wλ. The weight not belonging to λ can be expressed as

σ =
∑
j 6=λ

wj = WΛ −Wλ. (27)

Note that if W is the largest element of the vector vλm and vλm(W ) − vλm(i) > σ, then any element
vλm(i) 6= W can be set to zero since this does not affect the probability of reliability even if all of the
remaining votes are given to i. Similarly, vectors satisfying vλm(W )− vλm(1) > σ, W 6= 1 can be removed
from further consideration for the same reason. After these simplifications, the probability of correctly
identifying the base is given by

P (b̂k = bk) = rk = δ(UΛ, b̂k) =
∑

b̂k(V Λ
m)=bk

sΛ
m, (28)

where Λ = {1, 2, . . . , ck}. The steps for computing the error probability of decision for a given set of
read positions are summarized below.

Having computed the probability of error P (b̂k 6= bk) for a fixed coverage ck (where the MAP estimator
forms b̂k by combining information from ck reads that cover the kth base), we can readily evaluate the
probability of error for a random coverage. In particular, the average assembly error probability Perror
can be found by evaluating

Perror =
∑
ck

P (c = ck)P (errc|c = ck), (29)
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Algorithm 2 Computation of P (b̂k = b)

1. For each observations y(i)
k , 1 ≤ i ≤ ck, define Ui(Z) according to (23).

2. Determine U-functions UΛ(z) for entire reads (in an arbitrary order) by applying (24) and (25) and
collecting identical terms in the intermediate U-function.
3. Simplify expressions (zeroing or removing as discussed).
4. Apply δ-operator (28) to obtain the probability of correct classification rk and the probability of
error as 1− rk.

where errck denotes the error averaged over different read positions given a fixed ck. The probability
distribution of c is often assumed to be Poisson [26], [28] with some parameter λ. Assuming a non-zero
coverage, the mean coverage is given by c̄ = λ

1−exp(−λ)
[28]. With bases not covered by any reads we

associate the probability of error of 3
4
. Thus we can write the average error probability (conditioned on

the coverage depth being at least 1) as

Perror =
1

1− exp(−λ)

∞∑
ck=1

λc exp−λ

c!
P (errc|c = ck). (30)

Note that the fraction of bases not covered by any read is given by exp(−λ) and thus the overall probability
of error is given by Ptotal = 3

4
exp(−λ) + Perror. For distributions other than Poisson, e.g., empirical

distributions inferred from data, one can still apply the above approach to perform a semi-analytical
evaluation of Perror.

VI. EXPERIMENTAL RESULTS

In this section we present performance studies using both simulations and experimental data sets.
First, using realistic synthetic data, we compare the performance of the message passing algorithm
from Section II (Algorithm 1), the binary message passing algorithm and the power iteration algorithm.
Moreover, we examine the convergence properties of all these schemes and benchmark their accuracy by
comparing it with the genie-aided MAP estimation employed in the idealistic scenario where the exact
error probabilities of the reads are known. Then we proceed by testing the algorithms on the experimental
data we obtained by sequencing E. Coli and N. Meningitides using the Illumina’s HiSeq sequencing
instrument that provides 100-bp long reads. In particular, we compare the performance of our developed
reference-guided sequence assembly algorithms with the commonly used sequencing data analysis tools
including GATK and SAMtools.

A. Simulation data
We simulated reference-guided sequence assembly of the genome of a strain of Neisseria Meningitidis.

The reference sequence is obtained from GenBank (http://www.ncbi.nlm.nih.gov/nuccore) database and is
L = 2, 184, 406 bases long. The reference is used to generate target sequences having 1% variation rate.
We then uniformly select starting positions along the sequence and simulate short reads of length l = 76
(mimicking Illumina’s Genome Analyzer II platform). Sequencing errors in these reads are simulated
according to the position-dependent base calling error profile typical of this particular sequencing platform
[6]. The average error rate of the base calling procedure is 0.015 (averaged over all reads and bases in the
reads). To construct the bipartite graphical model, we map the reads to the reference sequence using an
alignment algorithm based on the Burrows-Wheeler transform [16] and thus establish connections (i.e.,
edges) between the read nodes and their aligned base nodes. The read nodes with multiple candidate
mapping positions are replicated (where each replica may be assigned different confidence score), and
each replica is connected to its corresponding set of base nodes. The bipartite graph with binary base nodes
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introduced in Section IV is constructed in the same way. We apply both the message passing algorithms
from Section II and Section IV to infer the target sequence (note that since the algorithms are randomly
initialized, the stopping points and hence the resulting assembled sequences may be different). We also
form the binary data matrix representing all the short read data and employ the power iteration method to
infer the target genome sequence. While the analysis in Section IV gives a guarantee of convergence of
the power iteration algorithm, we found that its convergence is usually faster than the theoretical bound.
We set the stopping criterion for all these iterative learning methods as

∑
|y(k)
j→i − y

(k−1)
j→i | < ε = 0.01L.

It turns out that both message passing algorithms need ∼ 30 iterations to converge, while the power
iterations converge in ∼ 50 iterations. We initialize all these algorithm by generating y(0)

j→i from Gaussian
distribution N (1, 1) and uniform distribution U(0, 1) – our extensive simulation studies indicate that
different initializations lead to the same error rate of the considered iterative schemes.

For a comparison, we also consider the plurality voting based decision scheme often used in practice
(see, e.g., [26]). Here, multiple calls for a base in any given position along the target sequence are
consolidated by performing plurality voting. Notice that, in both message passing and plurality voting,
we assume the error profiles of the reads (i.e., base calling error rates) are unknown. Plurality voting
assumes all reads has equal reliability while message passing scheme iteratively infers the reliability
of each read. We also consider probability of error of the MAP decision scheme in Section III which
assumes perfect knowledge of the positions of reads along the target sequence and exact information about
position-dependent base calling errors (both assumptions are unrealistic in practice). The error rates of
these algorithms are shown in Fig. 3 for various sequencing coverages (horizontal axis shows the average
coverage). As can be seen from Fig. 3, the message-passing scheme and the power iteration algorithm
outperform plurality voting. The binary message passing algorithm has almost identical accuracy as power
iterations, while being slightly worse than Algorithm 1. Moreover, we see that the error rates of message
passing are close to the genie-aided MAP decision scheme.

Fig. 3. Error rates performance of the iterative learning schemes (message passing, binary message passing, and power iterations) compared
with the plurality voting and genie-aided MAP schemes. The error rates of iterative learning schemes and plurality voting are averaged over
20 experiments.

B. Experimental data
In addition to the simulation studies, we tested the performance of our proposed iterative learning

schemes for reference-guided sequence assembly using two experimental data sets. In particular, we
sequenced Escherichia Coli (from strain MG1655, 4.64 × 106 bases long) and Neisseria Meningitidis
(from strain FAM18, having length 2.2 × 106) at the Center for Genomic Sequencing and Analysis of
the University of Texas at Austin. The data is obtained using Illumina’s HiSeq platform that provides
100bp-long paired-end reads, and the performance of our proposed methods are compared with that of



15

Sequence Number of errors
and Coverage MP BMP SAMtools GATK

E coli
15 3484± 88 3507± 76 3655± 66 3598± 72
20 2566± 66 2599± 54 2677± 71 2634± 53
25 1243± 31 1256± 44 1298± 41 1283± 55
30 763± 20 781± 23 811± 23 798± 18

N. Meningitidis
15 2168± 35 2231± 43 2404± 37 2358± 30
20 1201± 29 1299± 26 1388± 30 1379± 20
25 899± 16 913± 20 933± 24 921± 19
30 658± 11 669± 11 681± 9 680± 15

TABLE I
Performance of the message passing algorithm (MP), binary message passing algorithm (BMP), SAMtools and GATK on E. coli and N.

Meningitidis sequencing data with various coverages. The average number of decision errors and the corresponding standard deviation are
computed over 30 runs.

the widely used sequencing analysis packages SAMtools and GATK. Both SAMtools and GATK process
aligned next-generation sequencing data stored in SAM format, the alignment file format provided by
the majority of frequently used alignment tools (e.g., BWA). These files contain the aligned reads, their
positions and the quality scores of the bases. SAMtools calculates empirical quality scores from the
alignment information and uses them to recalibrate the raw quality scores provided by the sequencing
platform. The assembled sequence is formed using the aligned bases weighted by these new quality
scores. In addition to the quality score recalibration, GATK also performs a local realignment procedure
to correct misaligned reads, especially from the target genome region containing indels compared to the
reference genome. After performing sequence assembly using quality score information, these software
packages can also perform downstream single nucleotide polymorphism (SNP) detection, while GATK
also incorporates a machine learning tool to separate true variation from sequencing platform artifacts.

The two genomes are sequenced using 67% of an HiSeq platform lane having approximately 30× 106

reads, resulting in the coverage greater than 200. This enables accurate inference of the true E. Coli and N.
Meningitides sequences using any of the techniques discussed in the paper, providing us with the ground
truth. To determine the accuracy of our proposed schemes in realistic scenarios where the coverage is
limited, we uniformly subsample the data to emulate low coverage situations. The resulting error rates are
shown in Table I. As can be seen there, the developed message passing schemes outperform both SAMtools
and GATK in terms of the accuracy. The number of iterations for each message passing scheme was set to
30, which at coverage c = 20 resulted in the average CPU runtimes of 65 and 37 minutes for processing
E. Coli and N. Meningitidis data sets, respectively (the algorithms were coded in C++, run on a 3.07G Hz
single core machine). The corresponding runtimes for SAMtools are 50 and 28 minutes, and for GATK
53 and 30 minutes. As seen from the table, increasing the coverage can dramatically improve accuracy
of the assembly – recall the discussion from Section V where we showed that the probability of error of
the genie-aided MAP estimator decreases exponentially with the coverage. However, increasing coverage
also increases the cost of the sequencing project.

Note that the sequenced genome might contain insertions as compared to the reference or, equivalently,
the reference sequence contains gaps. This structural variation can be detected in the alignment stage by
using paired-end reads [29], [30]. The paired-end reads have a known range of lengths of inserts between
the reads in a pair. The gaps in the reference can be detected by relying on a multi-read alignment of the
pairs of reads and comparing the aligned positions with the insert lengths. We used the scheme in [30]
to perform the alignment of our E. Coli data set and detected 34 gaps in the reference. We includes the
gap positions as additional base nodes in our graphical model and uses our Algorithm 1 to identify the
order of nucleotides in the gaps. As a result, 31 out of 34 gaps were reconstructed (i.e., closed).
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VII. SUMMARY AND CONCLUSION

We studied reference-guided sequence assembly from short reads generated by next-generation sequenc-
ing technologies, specifically focusing on the problem of obtaining the target genome sequence from
potentially erroneous and misaligned reads. We cast the problem as the inference of the target sequence
on an appropriately defined bipartite graph and proposed iterative learning algorithms for solving it. In
particular, we developed message passing algorithms that rely on both binary as well as representation
of nucleotide bases by 4-dimensional vectors. It was shown that the derived message passing algorithm
(in particular, Algorithm 1 in Section II) can be interpreted as the standard belief propagation under a
certain prior. In addition, the problem was rephrased so that the power iteration algorithm, employed to
find the leading singular vector of a matrix collecting all short reads, results in a good approximation of
the target sequence. Convergence of power iterations is guaranteed, while the convergence of message
passing algorithms is studied empirically. Unlike existing methods, the proposed algorithms find the desired
sequence without using reliability information (i.e., quality scores) of the short reads – in fact, message
passing algorithms infer the aforementioned quality score information.

To assess achievable accuracy of the proposed iterative learning techniques, we analyzed the probability
of error of a genie-aided maximum a posteriori decision scheme in the idealized scenario where the base
calling error rates and read mapping locations are known perfectly. It was shown empirically that the
iterative learning schemes perform close to the genie-aided estimation scheme, and that they outperform
state-of-the-art software packages for downstream processing of sequencing data.
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