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Abstract—Many natural signals exhibit a sparse representation, when-
ever a suitable describing model is given. Here, a linear generative model
is considered, where many sparsity-based signal processing techniques
rely on such a simplified model. As this model is often unknown for
many classes of the signals, we need to select such a model based on the
domain knowledge or using some exemplar signals. This paper presents a
new exemplar based approach for the linear model (called the dictionary)
selection, for such sparse inverse problems. The problem of dictionary
selection, which has also been called the dictionary learning in this setting,
is first reformulated as a joint sparsity model. The joint sparsity model
here differs from the standard joint sparsity model as it considers an
overcompleteness in the representation of each signal, within the range of
selected subspaces. The new dictionary selection paradigm is examined
with some synthetic and realistic simulations.

I. INTRODUCTION

The sparse signal model is one the most successful low-
dimensional signal models for modern signal processing applications
[1]. In this model, any considered signal y ∈ Rm, can be represented
as the sum of a few elementary functions, called the atoms, plus some
noise n ∈ Rm, as follows,

y = Dx + n,

where D ∈ Rm×p, called the dictionary, is the collection of the
atoms and x ∈ Rp is a sparse vector. In this setting, y is often
called a sparse signal in D. The additive noise is used to consider
the inaccuracy of the measurement device or the model mismatch.
While choosing an overcomplete dictionary, i.e. p > m, gives us a
flexibility to choose sparser representation, the extra redundancy can
be damaging in ducking failures coefficient recovery. Therefore, the
success of sparse signal models depends on how well we choose a
redundant D, which is the main focus of this paper.

There is a lot of interest in building redundant dictionaries to
make more flexible models and various techniques have already been
proposed to design the dictionary using some domain knowledge,
see for example [2], or learning the dictionary using a given set of
exemplars [3], see [4] and [5] for a more complete review on different
dictionary selection techniques. The advantage of the first approach
is the possibility of incorporating already known signal structures
and often fast implementation of the dictionary. The second approach
does not need such prior information about the signals, but they often
find an unstructured dictionary with a computationally expensive
implementation. We will combine these two methods in this paper, by
considering a large set of potentially good atoms Φ ∈ Rm×n, n > p,
called a mother dictionary here, and selecting a smaller set of atoms
as the final dictionary D. Fast implementation of such dictionaries are
guaranteed, if the mother dictionary has such a property. For instance,
scalar products of a given signal x with a family of Gabor atoms of
length m can be implemented with a computational complexity of
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O(m logm). Also, as we restrict the search space to the dictionaries
with mother atoms, it can be learned using much less exemplars. In
other words, restricting the dictionary to a subset of mother atoms,
regularises the dictionary learning problem and reduces the necessary
amount of training data.

As all the atoms of D exist in Φ, any sparse signal in D, can
be represented using Φ. The reader may ask, if we can use the
large dictionary Φ, why we need to shrink it to find a dictionary
which at best can only sparsify the signal to the same level. The
answer to this question can be given by noting that, finding the sparse
approximations have non-polynomial complexity, in a general setting.
The success of practical sparse approximation algorithms depends on
some internal structures of the dictionary, including mutual coherence
[6], Restricted Isometry Property (RIP) [7] or the null-space property
[8]. Dictionary size indirectly affects these properties such that larger
dictionaries mostly make the sparse recovery more difficult. Roughly
speaking, it is caused by the fact that by putting more atoms in the
dictionary, the atoms become more similar. Such similarities between
different atoms, indeed make it more challenging to find which set
of atoms represents the signals more accurately, i.e the problem of
exact (support) recovery. The approximation in such large dictionaries
would also be noise sensitive, as small noise may cause the wrong
atoms to become selected. Finally, in coding, the cost of indexing
which atoms being used in the representation (x), a.k.a. the binary
significance map, grows by increasing the dictionary size.

A. Related Work

The problem of dictionary design by combining the atoms of a
mother dictionary was considered in [9]–[11]. In this setting, an
auxiliary sparse matrix combines the mother atoms, to generate a
dictionary which fits the given learning samples. The size of dictio-
nary is fixed here and as the learned dictionary is the multiplication
of a sparse matrix and a structured matrix (with a possibly fast
multiplication), we can implement such a dictionary in two steps,
where each of them are cheaper than O(p2). The dictionary selection
problem can be interpreted as a particular case of sparse dictionary
learning, when the sparse matrix can have only p < n non-zero
elements, with one non-zero on each row.

The problem of learning a dictionary, when the size of dictionary
is not given, has been investigated in [12]. The dictionary selection
problem has also a similar approach, by finding smaller size dictio-
naries from the given larger reference dictionaries. The difference
is that the reference dictionary is fixed throughout the learning here,
which allows us to handle significantly larger problems and find some
computationally fast dictionaries.

The dictionary selection, which will be considered in this paper,
is also related to the problem of subset selection in machine learning
[13], [14], where the goal is to select the most relevant subset, which
describes the whole set. [13] uses the fact that such a model selection
can be formulated as a submodular cost minimisation. For such a
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formulation, there exist some canonical solvers, which guarantee
to find a neighbourhood solution. The derived neighbourhood is
indeed not small, which motivated Das and Kempe [14] to present
an alternative submodular formulation to reduce the approximation
error.

B. Contributions

We here choose a different path to the mentioned dictionary selec-
tion techniques in previous section, by reformulating the problem as a
generalised form of joint sparse representation problem [15], [16]. To
the authors’ knowledge, it is the first time that the dictionary selection
problem is modelled in this way. In this model, representation of
each signal is not only p-joint sparse, it is also k-sparse in the
selected joint sparsity support. We here assume p > m, which
makes the representation of each signal in the selected p-joint support,
non-unique, where k-sparsity constraint can help to find the correct
representation.

Based on the new signal model, we need to solve a quadratic
objective. As the signal model and the objective include unbounded
solutions, we need to investigate the conditions that the problem is
well-defined. Such an analysis is useful for the convergence study
of any algorithm for solving the problem. The boundedness and
uniqueness of the solutions of the introduced optimisation problem
are also investigated in this paper.

As the dictionary can be found using the active rows of the
coefficient matrix of the introduced optimisation program, we need
to practically solve a non-polynomial time complexity problem. We
here introduce a technique, which is inspired by the Iterative Hard
Thresholding (IHT) for sparse approximations [17], [18], to find such
an active set of atoms. IHT is an iterative method that at each itera-
tion, thresholds the coefficient vector, after updating in the gradient
direction. The algorithm is equipped with a line-search technique to
guarantee the monotonic decrease of the (positive) objective. With
some numerical experiments, the new approach is shown to recover
the exact dictionary, in a large range of sparsity/overcompleteness
parameters.

C. Paper Organisation

We initially formulate the dictionary selection problem as an
overcomplete joint sparse representation problem in Section II. We
then introduce an iterative algorithm to solve the problem approx-
imately in Section III and show some dictionary recovery results
with the synthetic data simulation in Section IV. We also show some
simulation results on the Curvelet and harmonic based sub-dictionary
selections, respectively for the finger print and audio data in this
section. The paper will be concluded in Section V.

II. MATHEMATICAL MODELING

Let Y = [yl]l∈[1,L] be a matrix made by training samples yl ∈ Rm
and Φ = [φi]i∈I , |I| = n be a mother dictionary of normalised
atoms φi ∈ Rm. We assume that the generative dictionary D ∈
Rm×p, m ≤ p is made by a subset selection of atoms in Φ, i.e.
D = [φi]i∈J where J ⊂ I and |J | = p < n. We assume that each
yl is approximately generated by a k-sparse coefficient vector γl,

yl ≈ Dγl,

with respect to the Euclidean metric, i.e. ‖yl −Dγl‖2/‖yl‖2 � 1.
We want to find a dictionary that fulfils the two (apparently con-
tradictory) objectives: few elements in the dictionary, and sparsest
decomposition for each signal. In other words D which is both
small and efficient! The problem of dictionary subselection can

thus be defined as finding the index set J meeting those criteria,
given Y, Φ, p and k. Let X ∈ Rn×L be a coefficient matrix
and fJ (i) : [1, p] 7→ [1, n] be the mapping that assigns the
corresponding atom index of Φ to the ith component of γl. By
assigning {xl}fJ (i) ← {γl}i, ∀i ∈ [1, p], ∀l ∈ [1, L], while the
other elements of X are set to zero, the generative model can be
reformulated as,

Y ≈ ΦX, (1)

with respect to the canonical Euclidean metric, i.e. ‖Y −
ΦX‖F /‖Y‖F � 1. As X is k-sparse in each column and p-row-
sparse, i.e. only p rows of X have non-zero components, it lies in
the intersection of the following sets,

K :=
n

Θ ∈ Rn×L : ‖θl‖0 ≤ k, ∀l ∈ [1, L]
o

(2)

P :=
n

Θ ∈ Rn×L : ‖Θ‖0,∞ ≤ p
o

(3)

where θl is the lth column of Θ, ‖Θ‖0,∞ = ‖ν‖0, with {ν}i :=
‖θ(i)‖∞ and θ(i) is the ith row of Θ. In other words, sets K and P
are the sets of n by L matrices which respectively have k non-zero
elements on each column and p non zero rows. The class of signals
which can be represented with some coefficient matrices in K∩P , is
called here the (k, p)-(overcomplete) joint sparse signals. We actually
combine the coefficient matrix and the dictionary parameters, i.e.
the index set of optimal dictionary, in a single matrix X, where the
optimal atom indices are specified by the locations of non-zero rows
of X.

The optimal dictionary D, which can alternatively be indicated by
J , is defined as the solution of the following problem,

min
Θ
‖Y −ΦΘ‖2F , s. t. Θ ∈ K ∩ P. (4)

D can actually be found using the solution of (4), by selecting
the atoms of Φ which have been used at least once in the rep-
resentation of Y. This formulation has some similarities with the
convex formulation of Friedman et al. [19], where they combine the
convex `1 and `2 penalties to promote an overcomplete joint sparsity
model. The alternative formulation (4), used in this study, has the
benefit of being directly related to the size-p dictionary selection
problem. Furthermore, the associated iterative algorithm, as presented
in Section III offers a complexity that scales well with the dimension
of the problem, that can be large in many practical problems.

A. Boundedness and Uniqueness of the Solutions

The constraint set K ∩ P is unbounded. This means that for any
given finite value t, there exists at least a point X ∈ K∩P such that
maxi ‖xi‖∞ > t. It is necessary to find a condition which guarantees
the boundedness of the solution of (4). Such a condition is given in
Lemma 1. To prove this lemma, we use the following proposition.

Proposition 1: Let B∞r be an open ball centred at the origin, with
the radius r, defined by B∞r = {A ∈ Rm×L,maxi,j |{A}i,j | < r}.
For a given ζ ∈ R+, if

Null(Φ) ∩ K ∩ P = {0}, (5)

there exists a finite radius r ∈ R+ such that, ∀XKP ∈ (K∩P)\B∞r ,

min
XN∈Null(Φ)

‖XKP −XN‖F > ζ,

Proof: Null(Φ) is a (linear) subspace of Rm×L and K∩P is a
union of subspaces [20], which intersect at the origin. The shortest
distance between a given non-zero point XKP in K∩P and Null(Φ)



3

is non-zero, as 0 is the only point in Null(Φ)∩K∩P . This distance
becomes larger, with αXKP , for increasing α ∈ R+. Therefore,
there exists a radius r, which any point in K∩P , located outside of
B∞r , is at least ζ away from the closest point in Null(Φ).

Lemma 1: Let the null space of the operator Φ, in the space
Rm×L, be noted by N . The set of all solutions of (4) is bounded if
and only if N ∩K ∩ P = {0}.

Proof: Let X be a solution of (4) and XN and XR respectively
be the projection of X onto the null-space and range of Φ. As
‖X‖2F = ‖XN ‖2F + ‖XR‖2F , we only need to show that ‖XN ‖F
and ‖XR‖F are bounded for any solution of (4)1. As the matrix
0 ∈ K ∩ P , any solution of (4) should then have smaller objective
than this matrix. We can then have,

2‖Y‖F ≥ ‖Y‖F + ‖Y −ΦX‖F
≥ ‖ΦX‖F
≥ σmin‖XR‖F ,

where σmin is the minimum (non-zero) singular value of Φ. This
induces ‖XR‖F ≤ 2σ−1

min‖Y‖F , which is the boundedness of
‖XR‖F .

We respectively denote Λ and Λ̄ as the support index of X,
i.e. Xλ 6= 0, λ ∈ Λ, and its complement. The matrix AΛ

(respectively AΛ̄) is a matrix which is equal to A on the support
index (respectively on the complement of support index) and zero on
the other indices. The solution X is zero on the indices specified by Λ̄,
i.e. XΛ̄ = 0. XΛ̄ = XNΛ̄

+ XRΛ̄
= 0, shows that XNΛ̄

= −XRΛ̄
.

On the other hand,

‖XRΛ̄
‖2F = ‖XR‖2F − ‖XRΛ‖

2
F

≤ 4σ−2
min‖Y‖

2
F ,

which assures the boundedness of XNΛ̄
. We finally need to show that

XNΛ is also bounded. Momentarily assume that XNΛ is unbounded.
XΛ = XRΛ + XNΛ is in K ∩ P and XN ∈ N . As XΛ is
unbounded when XNΛ is unbounded, we can use Proposition 1 with
ζ =

`
‖XRΛ‖

2
F + ‖XNΛ̄

‖2F
´ 1

2 as follows,

ζ2 < ‖XΛ −XN ‖2F
= ‖ (XRΛ + XNΛ)−

`
XNΛ̄

+ XNΛ

´
‖2F

= ‖XRΛ −XNΛ̄
‖2F

= ‖XRΛ‖
2
F + ‖XNΛ̄

‖2F ,

which contradicts with the fact that ζ2 = ‖XRΛ‖
2
F + ‖XNΛ̄

‖2F .
Therefore the assumption of unboundedness of XNΛ is incorrect,
which complete the proof of boundedness of X.

If (5) is not valid, we have a non-zero ∆ ∈ Rm×L in the null
space of Φ, which is also overcomplete joint sparse. This means that
any non-zero (k, p)-joint sparse solution X, with the same support
as ∆, generates another solution of (4) given by X + λ∆, for any
λ ∈ R, which lies in K ∩ P , since X and ∆ share the support.
Hence, λ can be chosen arbitrary large, which shows that the set of
all solutions of (4) cannot be bounded.

It is generally difficult to check (5) for a given mother dictionary.
However, if the mother dictionary is in a general position, when the
dimension of signal space nL is larger than the sum of the dimension
of null space L(n−m) and each subspace kL, which means k < m,
the Lebesgue measure of the lhs of (5) is zero.

Although this lemma shows the boundedness of the solutions, it
does not provide any explicit bound for the results. It means that if
the Null(Φ) subspace is very close to one of the subspaces in K∩P ,
ζ can become very large.

1We here show that Frobenius norm of X is bounded, which induces the
boundedness of maxi ‖xi‖∞.

The reader may notice that from the optimality of X in the proof
of Lemma 1, we only used the fact that the objective at X is less than
the objective at 0. Therefore we can easily extend this lemma to Θ’s
which are not the optimal solutions, but satisfy a similar condition
and derive the boundedness of the search space.

Corollary 1: The set {Θ ∈ K ∩ P, ‖Y − ΦΘ‖F ≤ ‖Y‖F } is
bounded if (5) is true.

It is always useful to know when an optimisation problem like (4),
has a unique solution. This is particularly useful in the dictionary de-
sign problem, as the other formulations often have multiple solutions.
This is caused by the fact that any permutation of a dictionary is also
a solution for the problem. This indeed makes the convexification of
the problem much more challenging.

We can use a general theorem of the Union of Subspaces (UoS)
model to show the injection of the mapping Φ. In the UoS signal
model, we assume that, while a given class of signals spans the
whole space, each signal (approximately) lies in a low-dimensional
subspace. The UoS model is a general and useful model for many
sampling and signal processing applications. Here, we only consider a
finite union of subspaces model. For more information and extensions
to other types of UoS model, please see [21]. [21] expresses that:

Theorem 1 (Th. 2.6 of [21]): Let A be a union of subspace,
equipped with a proper measure. Almost all linear maps Φ :
RN → RM are one to one on almost all elements of A, whenever
k < M ≤ kmax − 1, where k and kmax respectively are the
(maximum) dimension of each subspace and the maximum dimension
of the union of two subspaces of A.

In our setting, if k < m, almost all linear maps Φd = diag{Φ} ∈
RmL×nL, with Φ ∈ Rm×n, are one to one on almost all elements
of the (k, p)-joint sparse matrices. Φd is a diagonal matrix with Φ
on the main diagonal. Interested readers may notice that the derived
condition, i.e. k < m, is indeed the sufficient condition for the lhs
of (5) to have zero measure.

We now derive a sufficient condition for the uniqueness of the
solution in a deterministic sense. It is indeed a particular case of the
uniqueness results for the UoS model [20]. The one to one map of
an operator Φ : x→ Φx, i.e. invertible sampling, is defined as,

Definition 1 (Def. 2 in [20]): We call Φ an invertible sampling
operator for a union of subspace A, if each x ∈ A is uniquely
determined by its sampling data Φx; that means for every x1 and
x2 in A,

Φx1 = Φx2 implies x1 = x2

With this definition we can derive a sufficient condition for the
uniqueness of the solution of (4) as follows,

Lemma 2: Let k ≤ m
2
, p ≤ n

2
, N = Null{Φ} and

K2k :=
˘
X ∈ Cm×L : ‖xl‖0 ≤ 2k, ∀l ∈ [1, L]

¯
and P2p :=˘

X ∈ Cm×L : ‖X‖0,∞ ≤ 2p
¯

The optimisation problem (4) has a
unique solution if

N ∩K2k ∩ P2p = {0} (6)

Proof: Let the solution not be unique and we have X1 and X2 as
two distinctive solutions of (4). We have ΦX1 = ΦX2 = Y, which
means Φ(X1−X2) = 0. As X1−X2 ∈ K2k∩P2p and X1−X2 ∈
N , it should be 0, which gives X1 = X2 and it contradicts with the
fact that they are distinctive solutions.

Remark 1: Note that Lemma 2 presents a sufficient condition for
the uniqueness of the solution, which is different to the standard k-
sparse and p-joint sparse UoS models. Similar to the general form
of block-sparse model, this is caused by the fact that some of the
sparsity patterns in K2k ∩ P2p cannot be divided to two disjoint
sparsity patterns in K ∩ P .

Remark 2: The boundedness of the solutions of (4) needs a weaker
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condition than its uniqueness. We can actually use the uniqueness
condition of Lemma 2 to show the boundedness of the solution.

B. Number of Subspaces

It was mentioned that the introduced signal model is a UoS
model, as fixing the support coefficient, generates a low-dimensional
subspace of the Rm×L. We are restricting the set of matrices which
are k-sparse on each column, to the matrices which are also p-
joint sparse. Such a restriction reduces the number of admissible
subspaces, which increases the robustness of the mapping Φ on
its domains. In practical applications, we need some robustness to
the noise and model mismatches for a successful sparse recovery.
This is indirectly related to the distance between each two distinct
points, after mapping. If two points have some small distance after the
mapping, the embedding is sensitive to the noise. A measure which
characterises such a robustness is the restricted isometry constant δ
for each UoS model [7]: a large δ ensures a more robust embedding.
We refer the readers to [7] for more information about the definition
and implication of the restricted isometry constant.

Based upon [21, Corollary 3.6], a necessary number of measure-
ments to have a robust embedding with a particular δ, has a lower
bound, which is proportional to ln(Ns) and inversely proportional
to cδ − ln(∆s), where Ns is the total number of subspaces, cδ is
a function of δ and ∆s is the subspace separation of the proposed
UoS [21, Eq. (18)]. ∆s decreases by restricting the UoS to a subset
of the original UoS. We therefore reduce the necessary number of
training samples in this context, by decreasing Ns. In the following,
we characterise the reduction in the number of subspaces, using the
proposed UoS model, in the comparison with the k-sparse signal
model.

When the matrix is k-sparse on rows, we have L times
`
n
k

´
options

to choose the support. The number of subspaces is thus
`
n
k

´L. If
we also restrict the matrices to be p-joint sparse, we choose k
positions for each row, within the selected p rows. We have therefore`
p
k

´L`n
p

´
subspaces. To quantify exponential reduction in the number

of subspaces using the (k, p)-joint sparsity model, we approximate
R, defined as,

R := log2

`
p
k

´L`n
p

´`
n
k

´L . (7)

To find some upper and lower bounds for R, we use the concept
of binary entropy H from Information Theory, which is defined as

follows,

H(τ) , −τ log2(τ)− (1− τ) log2(1− τ) (8)

where 0 ≤ τ ≤ 1 is the probability of a binary number. We can now
bound

`
n
k

´
as follows [22, eq. 12.40],

1

n+ 1
2nH( kn ) ≤

 
n

k

!
≤ 2nH( kn ). (9)

Using the similar bounds for
`
p
k

´
and

`
n
p

´
, and after some simple

algebraic manipulations, we can derive a bound for R as follows,

−L log2(p+ 1)− log2(n+ 1) + f(k, p, n, L)

≤ R ≤ L log2(n+ 1) + f(k, p, n, L),
(10)

where f(k, p, n, L) , nH
`
p
n

´
+ LpH

“
k
p

”
− nLH

`
k
n

´
If we

replace the binary entropy in f(k, p, n, L), we can derive an explicit
formulation for f as follows,

f(k, p, n, L) =

„
p log2

n

n− p + p log2

n− p
p

«
− L

„
n log2

n

n− k − p log2

p

p− k + k log2

n− k
p− k

«
.

(11)

As (10) depends on many parameters, it is hard to figure out the
reduction in the number of subspaces from R. To demonstrate this
better, we can fix δ = p

n
, β = k

p
and t = L

n
, and plot f based on n,

which is an approximation for R, and showing the bounds of (10)
with some error bars. If we choose δ = 1

4
, β = 1

10
and t = 100,

the bounds for R are plotted as functions of n in Figure 1. As 2R

is the ratio between the number of subspaces in the new model and
k-sparsity model, we can see that ratio is significantly reduced for
large n. In other words, the search space for the solution is now much
smaller, which may boost the exact recovery using practical recovery
algorithms, as we can see in the simulation section.

III. A PRACTICAL OPTIMISATION ALGORITHM

Although the objective of (4) is quadratic, the optimisation of (4)
subject to the non-convex constraints K and P , is not easy. Most of
the efficient optimisation techniques cannot be used in this setting. A
powerful technique, called the projected gradient, can be used when
the projection onto the admissible set is available. In the space of
real matrices Rn×L, the projection of a point X ∈ Rn×L onto a
closed set κ ⊆ Rn×L is defined by Pκ(X) := arg minΘ∈κ ‖Θ −
X‖χ, where ‖ · ‖χ is the norm of the proposed space. We use the
Hilbert - Schmidt, or Frobenius, norm here, as it is more related to
the quadratic objective (3), i.e. using the same normed space, and
we can analytically find the projection. In this setting, a projection
onto K can be found by keeping the k largest coefficients of each
column and letting the others be zero. The projection onto P can be
found by keeping the p rows of X with the largest maximum absolute
values and letting the other rows be zero. Sadly, the projection onto
the intersection of K and P is not analytically possible, the projected
gradient algorithm cannot be used in its canonical form. A property
of the admissible sets K and P is that the consequent projections
of a point in these sets provide a point in the intersection of them,
which may indeed not necessarily be the projection onto K ∩ P .
The following lemma shows that alternating projection onto K and
P converges in a single consecutive projections, i.e. two projections
in total.

Lemma 3: Let X be a matrix in Rn×L. The following two
statements hold,

PPPK(X) ∈ P ∩ K
PKPP(X) ∈ P ∩ K.

(12)
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Proof: Projections of X onto K or P shrinks some of X’s non-
zero elements to zero and does not produce any further non-zero
elements. This simply shows that the projection of a point in K, onto
P , gives a new point which is still in K. It assures the first statement.
The second statement can be shown similarly.

Remark 3: According to Lemma 3, although P ∩ K includes
PPPK(X) and PKPP(X), for any X, it does not induce that these
operators are identical. We practically found that using PKPP(X)
works better for the purpose of this paper.

Remark 4: The sets K and P are non-convex and the projection
onto each of these sets may thus be non-unique. In this case we can
randomly choose one of the projections.

A. Overcomplete Joint Sparsity Dictionary Selection Algorithm
(OJSDS)

We use a gradient based method which iteratively updates the cur-
rent solution X[n], in the negative gradient direction and maps onto a
point in K∩P , to approximately solve (4). If ψ(X) := ‖Y−ΦX‖2F ,
the gradient of ψ can be found as follows,

G :=
∂

∂X
ψ(X) = 2ΦH (ΦX−Y) . (13)

An important part of the gradient descent methods, is how to
select the step size. An efficient step size selection technique for
unconstrained quadratic minimisation problems, with objectives like
ψ(X), is to use half of the spectral radius of linear operator, here Φ,
as follows,

µ =
1

2

GHΦHΦG

GHG

Such a step size is optimal for the first order gradient descent
minimisation of the unconstrained problem with the quadratic objec-
tive ψ(X). In a constrained minimisation scenario, we can choose a
similar initial step size and shrink the size, if the objective increases.
It thus needs an extra step to check that the objective is actually not
increased after each update of the parameters. A more clever initial
step size was selected in [18] for the sparse approximations of k-
sparse signals. If the support of sparse coefficient vectors are fixed,
i.e. the overall projection steps do not change the support, the update
is only in the direction which changes current non-zero coefficients.
When the problem size is shrunk to the space of current support, the
problem is quadratic and the step size can be similarly calculated
using the gradient matrix G, constrained to the support, as follows,

µ =
1

2

GH
S ΦHΦGS

GH
S GS

where GS ∈ Rm×L is the gradient matrix G masked by the support
of X, S, as follows,

{GS}i,j =

(
{G}i,j {X}i,j 6= 0

0 Otherwise

A pseudo-code for the algorithm is presented in Algorithm 1.
The condition which is checked in line 10, guarantees that the
algorithm reduces the objective by updating the coefficients. As the
dictionary selection algorithm 1 is based upon a gradient projection
type technique, the learned dictionary may be more suitable for such
greedy sparse approximation techniques. However, the simulation
results show that the reference dictionary can be recovered using
this algorithm, given a rich set of training samples. If the real signal
is sparse and the dictionary satisfies the exact recovery conditions,
the dictionary is thus optimal for any sparse recovery algorithms.

1: initialisation: X[0] = PK
`
PP
`
ΦHY

´´
, S = supp

“
X[0]

”
,

ρ < 1, β < 1, ε� 1, t = 0, K ≥ 1
and i = 0

2: while i < K & t 6= 1 do
3: G = 2ΦH

“
ΦX[i] −Y

”
4: µ = 1

2

GH
S ΦHΦGS

GH
S

GS

5: Z = PK
“
PP
“
X[i] − µG

””
6: if ‖X[i] − Z‖2F < ε then
7: t = 1
8: end if
9: if t 6= 1 then

10: while µ > ρ
2

‖X[i]−Z‖2F
‖Φ(X[i]−Z)‖2F

do
11: µ = β.µ

12: Z = PK
“
PP
“
X[i] − µG

””
13: end while
14: end if
15: i = i+ 1
16: X[i] = Z
17: S = supp

“
X[i]

”
18: end while
19: X∗ = X[i−1]

20: output: X∗

Algorithm 1: Alternating Projected Gradient for Dictionary Se-
lection
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Fig. 2. Dictionary selection results using, (a) K, (b) P and (c) K ∩ P as
admissible sets. The black dots in each plot indicate non-zero coefficients. In
plot (b), as dots are very populated, we observe solid horizontal lines. Gray
horizontal lines are plotted as a guideline, for the correct dictionary.

In the following theorem, we prove that Algorithm 1 is numerically
stable and the generated sequence has limit points.

Theorem 2: Let X[0] ∈ Rm×L be a bounded initial point. The
gradient based method of Algorithm 1, generates a bounded sequence
of solutions, which accumulate.

Proof: As the algorithm reduces the objective at each iteration,
the search space is a bounded subset of K∩P , based upon Corollary
1. K∩P is a closed set, the search space is then a compact subset of
Rm×L. The sequence generated by Algorithm 1, lives in a compact
set, which is enough to have bounded accumulation points, based on
the Bolzano-Weierstrass theorem.
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Fig. 3. Phase transition using, (a) K, (b) P and (c) K ∩ P as admissible
sets. The black area indicates successful recovery of the dictionary.

IV. SIMULATIONS

In the first experiment, a dictionary Φ ∈ R20×80 was randomly
generated using a normal zero mean distribution with unit variance
and normalised to have unit `2-norm on each column. The target
dictionary D ∈ R20×30 was generated by randomly selecting p = 30
atoms of Φ. A number L = 320 of k-sparse coefficient vectors (with
k = 4), were generated by randomly selecting the support, with a
uniform distribution of the magnitudes in [0.2, 1] and random signs.
A set of training matrix Y of length L were generated using the
generative model and randomly generated sparse vectors. To recover
the reference dictionary D, given Y, p and k, we used a gradient
descent based algorithm similar to Algorithm 1, with three different
admissible sets, and demonstrate the advantages of the proposed
technique. We first used K from (2) and no constraint on the row-
sparsity of the coefficient matrix X and showed the recovered support
of the sparse matrix in the left panel (a) of Figure 2. If we only assume
joint sparsity model and use P from (3) as the admissible set, we find
the coefficient matrix whose support is shown in the middle panel
(b) of the same figure. Using both constraint sets, as explained in
Algorithm 1, provides a coefficient matrix whose support is shown
in the right panel. The correct J is shown in these plots using some
grey lines. It is clear that the proposed projected gradient onto both
sets can correctly recover J , where the other two methods have some
errors in the recovery.

This experiment can be repeated for different δ = p
n

and ρ = k
m

by selecting a range of p and k’s, while keeping m and n fixed. If
we repeat the simulations 100 times for each setting and calculate the
average exact dictionary recovery, we can plot the phase transition
for each methods. We have plotted such phase transitions in Figure
3, with k sparsity constraint in (a), p joint sparsity constraint in (b)
and proposed constraint in (c). The black colour means high exact
dictionary recovery. The area with exact recovery in (c) is larger than
the same areas in (a) and (b) added together. This clearly demonstrates
the relevance of the new framework.

In the next set of experiments, we will select a subset of the
Curvelet [23] dictionary for the sparse representation of fingerprints.
We chose a Curvelet transform for the image size 64 by 64. The
mother dictionary Φ ∈ R4096×10521 is roughly 2.59 times overcom-
plete, which we want to shrink to half size, i.e. D ∈ R4096×5260.
This is indeed a large scale dictionary learning problem, which is
difficult to solve in a standard dictionary learning setting. With the
help of the proposed method, we can handle such a big dictionary
selection process, as we need fewer training samples, only need to
keep a sparse matrix, i.e. sparse representation matrix, in the memory
and use the fact that the mother dictionary has a fast implementation.
We assume the sparsity of each image patch is k = 1052 ≈ 0.1N
and L = 64. We used two different settings here to choose the
dictionary, a) p-joint sparsity model and b) (k, p)-overcomplete joint
sparse model. The simulations were done in the Matlab environment,

on a 12-core, 2.6 GHz linux machine, which respectively took 72
and 90 seconds to learn Dp and D(k,p). Another fingerprint image
was used to test the selected dictionaries. The original image and
the k sparse representation of the original image with Φ are shown
in the first row of Figure 4. The k-sparse representation with the
learned D’s are shown in the second row of this figure. The left
image is the representation with learned Dp, when the model was
p-joint sparse and the right image is the same, but with D(k,p),
where the (k, p)-overcomplete joint sparse model was incorporated.
As we can see the PSNR of the representation with the shrunk
dictionary D(k,p) is slightly better than the other. We can also see
the bottom-right quarter of these images in Figure 5, in the same
order. The sparse reconstructed images are actually denoised and the
reconstructed image using D(k,p) is more similar than Dp to the
image reconstructed using Φ.

We setup a new experiment with audio signals to demonstrate
the performance of the proposed dictionary selection algorithm in
comparison with the fixed dictionaries and another dictionary learning
methods. To this end, we used some recorded audio data from BBC
radio 3 (mostly classical musics), and down-sampled the signals at
a sampling rate of 32k samples per second, as there is very little
energy above 16 kHz. We randomly selected a Y ∈ R1025×8196

from more than eight hours of recorded audio. A three times
overcomplete mother dictionary was generated using a two times
frequency oversampled DCT plus the Delta Dirac transform, i.e.
identity matrix. The reason for such a selection is to incorporate
the temporal and harmonic properties of the audio. There has been
a question on how useful can be to combine such dictionaries and
how many DCT atoms are necessary. We thus found a subset, i.e.
p = 3

2
∗1024, of the mother atoms. If we run the proposed dictionary

selection algorithm with k = 128, for K = 1000 iterations, and plot
the frequency of appearance of the mother atoms in X, we get the
plot of Figure 6. The low-frequency DCT atoms have been used
most, while high-frequency DCT atoms have not been selected in D.
Although there is no regular pattern for the selected delta Diracs, it
is clear that some Dirac atoms close to the boundary of the window
have been selected, i.e. close to the atom indices 2048 and 3072. If we
plot the `2 errors of representing a set of test data bY ∈ R1025×8196,
which is randomly selected from the same audio database, through
out the iterations, we get the plots of Figure 7. The `2 errors
corresponding to using the mother and two times overcomplete DCT
dictionaries, are also shown for the reference with solid and dash-
doted lines, respectively. The final SNR using the selected dictionary
is 26.43dB, which is slightly worse than using the mother dictionary,
i.e. 26.53dB, but is also significantly better than using the two times
overcomplete DCT, i.e. 25.96dB. For a comparison, we also ran the
sparse dictionary learning [10], with the same training data samples.
The reason for selecting this dictionary learning algorithm is that
it has some similarities with the proposed framework here, and it
provides a relatively fast dictionary, i.e. an extra sparse matrix-vector
multiplication is also necessary. In the sparse dictionary learning,
we used the same mother dictionary we used earlier, the objective
multipliers λ = γ = .01 and ran the simulations for 1000 iterations.
The `2 errors of using the sparse learned dictionary is shown by the
dotted line in Figure 7. The final SNR is not as good as when we use
other dictionaries. As one aim of the proposed dictionary selection
method is to provide a fast dictionary, we also measured the average
calculation time of the forward and backward applications of D on
the same desktop machine as previous experiments, while using a
single core of the processor, for a fair comparison. The application
of subselected dictionary D and DT , using a regular matrix-vector
multiplication and a fast operator implementation, are shown in Table
I. This table shows that, using a fast selected dictionary, speeds up the
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TABLE I
COMPUTATION TIME OF SINGLE USE SUBSELECTED DICTIONARY AND ITS

TRANSPOSE IN ms.

D DT

Regular 288 285
Fast 230 124

TABLE II
COMPUTATION TIME OF DIFFERENT DICTIONARY LEARNING/SELECTION
ALGORITHMS (IN SECONDS) WITH DIFFERENT AUDIO SIGNAL SIZES, i.e.

256, 512 AND 1024.

256 512 1024
OJSDS 1315 9194 35873
SparseDL [10] 4273 14122 48294
K-SVD [24] 5665 29447 -

practical sparse approximation algorithms, as applying the dictionary
and its transposed, often are the most computationally expensive parts
of such algorithms.

Learning a dictionary in the settings of previous experiment, using
the canonical dictionary learning algorithms, e.g. K-SVD, MOD
and MMDL [4], needs a large set of training samples and the
learning computational time is generally high. To compare with the
proposed method, we chose K-SVD, as it shows promising results,
using a relatively small training set. We started with a small size
problem and gradually increased the size, until the simulation was
no longer tractable for us. We used L = 8192 training samples and
repeated the previous simulations with m = 256, 512 and 1024. We
have presented the running times of the learning with the proposed
(OJSDS), Sparse and K-SVD dictionary learning algorithms in Table
II, using a single core of the processor. We were unable to apply
the K-SVD algorithm, when m = 1024, for its high computation
time. We only used L = 8m samples for OJSDS, as it does not
need a large training set. The low-complexity of our algorithm, with
respect to the other algorithms, is clearly the lowest. As we increase
the number of training samples while using different window sizes
in OJSDS, the computational cost increases faster, w.r.t. the problem
size, than the others. However, when the size of training samples are
equal, i.e. 8m = 8192 with m = 1024, our proposed technique is
still 25% faster than SparseDL.

We calculated the running time and the final SNR, using Nor-
malised IHT (NIHT) [18], k = [m/8], 32 test signals and presented
the results in Table III. This table shows that the learned dictionary
with the proposed method is slightly slower than K-SVD dictionary,
but it provides the highest SNR’s, in the sparse approximations of
audio signals. The reason for being slower than K-SVD is that the
implementation of the mother dictionary, as an operator, is slower
than, or in the same order of, a simple matrix-vector multiplication for
small size problems. Comparing the first and third columns of Table
III, we observe that, unlike the unstructured K-SVD dictionary, the
subselected dictionaries are of the order O(m), i.e. linear complexity
with respect to the signal size. It makes the subselected dictionaries
computationally suitable for large scale problems.

V. SUMMARY AND FUTURE WORK

We presented a new technique for dictionary selection for the linear
sparse representation, when a collection of possibly suitable atoms
and some exemplar signals are available. The dictionary selection
problem is reformulated as a more general form of the joint sparse
approximation problem, when the number of active locations in
sparse coefficients is larger than the size of signal space. As such
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Fig. 4. The original image (top left), the k sparse representation of the
original image with the dictionaries, Φ (top right), Dp (bottom left) and
D(k,p) (bottom right).

Fig. 5. The bottom-right quarter of the images shown in Figure 4, in the
same order.

overcomplete joint sparsity framework has generally infinitely many
solutions, the sparsity within the active set helps to regularise the
problem. It was shown that the overcomplete joint sparse approxi-
mation problem is well-defined under some conditions on the null-
space of the matrix generated by the given large set of atoms
(mother dictionary). As the objective of the introduced program is
continuously differentiable, we used a gradient mapping technique to
approximately solve the problem. The introduced algorithm converges
in a weak sense (convergence to a bounded non-empty set).

We presented some synthetic data simulation result to support this
hypothesis that the introduced algorithm can recover the original
dictionary. The phase plot of the dictionary recovery is compared with
two other cases, when we use other sparsity models, namely k-sparse
and p-joint sparse model. As the simulations with synthetic data



8

Fig. 6. The frequency of selected atoms, per 8192 trials. The first 2048
atoms are the two times frequency oversampled DCT and the last 1024 atoms
are Dirac functions.
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3X Mother Dictionary (2XDCT+Dirac), final SNR =26.5273dB
1.5X Selected Dictionary, final SNR =26.43dB
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Fig. 7. The `2 norm error of representations of 8192 testing trials, using
Normalised IHT [18] and different dictionaries. The dictionaries are: (a) three
times overcomplete DCT+Dirac mother dictionary, (b) the one and a half times
overcomplete selected dictionary, (c) a two times frequency oversampled DCT
and (d) the leaned sparse dictionary using the mother dictionary of (a) and
mothod of [10].

were promising, we also did some simulations to select a subset of a
commonly used dictionary, Curvelet and Overcomplete DCT+Dirac
dictionaries, to reduce the complexity of the sparse coding algorithm.
The size of dictionary learning problem is such that it cannot be
handled by the vast majority of current dictionary learning algorithms.
As we do not need to keep the dictionary in the memory and as the
dictionary-vector multiplications can be implemented efficiently, the
learning in the new framework is relatively easy. The results show
that we can roughly get the same image/audio quality for a specific
class of image/audio signals, when we use a smaller dictionary than
the mother dictionary.

The new overcomplete joint sparsity model seems an interesting
extension of the previously investigated joint sparsity model. We have
left the theoretical investigation of exact recovery and other sparse
signal processing applications, for the future work.

TABLE III
COMPUTATION TIME (IN SECONDS) AND RECONSTRUCTED SNR OF

SPARSE APPROXIMATION (IN DB), USING NIHT, DIFFERENT
DICTIONARIES AND AUDIO SIGNAL LENGHTS, i.e. 256, 512 AND 1024.

NIHT ITERATED 1000 TIMES.

OJSDS SparseDL [10] K-SVD [24]
(256) Time 219 398 129
(256) SNR 16.47 16.00 15.56
(512) Time 422 954 344
(512) SNR 17.97 17.90 16.67
(1024) Time 821 2685 -
(1024) SNR 18.43 17.4 -
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