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Abstract

Recently, a number of mostly ℓ1-norm regularized least squares type

deterministic algorithms have been proposed to address the problem

of sparse adaptive signal estimation and system identification. From

a Bayesian perspective, this task is equivalent to maximum a poste-

riori probability estimation under a sparsity promoting heavy-tailed

prior for the parameters of interest. Following a different approach,

this paper develops a unifying framework of sparse variational Bayes

algorithms that employ heavy-tailed priors in conjugate hierarchical

form to facilitate posterior inference. The resulting fully automated

variational schemes are first presented in a batch iterative form. Then

it is shown that by properly exploiting the structure of the batch es-

timation task, new sparse adaptive variational Bayes algorithms can
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be derived, which have the ability to impose and track sparsity dur-

ing real-time processing in a time-varying environment. The most

important feature of the proposed algorithms is that they completely

eliminate the need for computationally costly parameter fine-tuning, a

necessary ingredient of sparse adaptive deterministic algorithms. Ex-

tensive simulation results are provided to demonstrate the effectiveness

of the new sparse variational Bayes algorithms against state-of-the-art

deterministic techniques for adaptive channel estimation. The results

show that the proposed algorithms are numerically robust and exhibit

in general superior estimation performance compared to their deter-

ministic counterparts.

1 Introduction

Adaptive estimation of time-varying signals and systems is a research field

that has attracted tremendous attention in the statistical signal processing

literature, has triggered extensive research, and has had a great impact in a

plethora of applications [1, 2]. A large number of adaptive estimation tech-

niques have been developed and analyzed during the past decades, which

have the ability to process streaming data and provide real-time estimates

of the parameters of interest in an online fashion. It has long ago been

recognized that apart from being time-varying, most signals and systems,

both natural and man-made, also admit a parsimonious or so-called sparse

representation in a certain domain. This fact has nowadays sparkled new

interest in the area of adaptive estimation, as the recent advances and tools

developed in the compressive sensing (CS) field [3, 4], provide the means to
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effectively exploit sparsity in a time-varying environment. It has been antic-

ipated that by suitably exploiting system sparsity, significant improvements

in convergence rate and estimation performance of adaptive techniques could

be achieved.

It is not surprising that the majority of sparsity aware adaptive esti-

mation methods developed so far, stem from a deterministic framework.

Capitalizing on the celebrated least absolute shrinkage and selection opera-

tor (lasso) [5], an ℓ1 regularization term is introduced in the cost function of

these methods. In this context, by incorporating an ℓ1 (or a log-sum) penalty

term in the cost function of the standard least mean square (LMS) algorithm,

adaptive LMS algorithms that are able to recursively identify sparse systems

are derived in [6]. Inclusion of an ℓ1 regularization factor or a more gen-

eral regularizing term in the least squares (LS) cost function has also been

proposed in [7] and [8], respectively. In [7] adaptive coordinate-descent type

algorithms are developed with sparsity being imposed via soft-thresholding,

while in [8] recursive LS (RLS) type schemes are designed. An ℓ1 regularized

RLS type algorithm that utilizes the expectation maximization (EM) algo-

rithm as a low-complexity solver is described in [9]. In a different spirit, a

subgradient projection-based adaptive algorithm that induces sparsity using

projections on weighted ℓ1 balls is developed and analyzed in [10]. Adaptive

greedy variable selection schemes have been also recently reported, e.g. [11].

However, these algorithms require, at least, a rough knowledge of the signal

sparsity level and work effectively for sufficiently high signal sparsity.

In this paper, we depart from the deterministic setting adopted so far in

previous works and deal with the sparse adaptive estimation problem within
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a Bayesian framework. In such a framework, a Bayesian model is first defined

comprising, a) a likelihood function specified by the assumed measurement

data generation process and b) prior distributions for all model parameters,

(which are thus considered as random variables), properly chosen to adhere

to the constraints of the problem. In particular, to induce sparsity, suitable

heavy-tailed sparsity promoting priors are assigned to the weight parame-

ters of interest. Then a variational Bayesian inference method is utilized to

approximate the joint posterior distribution of all model parameters, from

which estimates of the sought parameters can be obtained via suitably de-

fined iterative algorithms. It should be emphasized though that the various

Bayesian inference methods are designed to solve the batch estimation prob-

lem, i.e. they provide the parameter estimates based on a given fixed size

block of data and observations.

In the context described above, the contribution of this work is twofold.

First, we provide a unified derivation of a family of Bayesian batch esti-

mation techniques. Such a derivation passes through a) the selection of a

generalized prior distribution for the sparsity inducing parameters of the

model and b) the adoption of a mean-field variational approach [12–14] to

perform Bayesian inference. The adopted fully factorized variational ap-

proximation method relies on an independence assumption on the posterior

of all involved model parameters and leads to simple sparsity aware iter-

ative batch estimation schemes with proven convergence. The derivation

of the above batch estimation algorithms constitutes the prerequisite step

that facilitates the deduction of the novel adaptive variational Bayes al-

gorithms, which marks the second contribution and main objective of this
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work. The proposed adaptive algorithms consist of two parts, namely, a

common part encompassing time update formulas of the basic model pa-

rameters and a sparsity enforcing mechanism, which is different for the vari-

ous Bayesian model priors assumed. The algorithms are numerically robust

and are based on second order statistics having a computational complexity

similar to that of other related sparsity aware deterministic schemes. More-

over, extensive simulations under various time-varying conditions show that

they converge faster to sparse solutions and offer, in principle, lower steady-

state estimation error compared to existing algorithms. The major advan-

tage, though, of the proposed algorithms is that thanks to their Bayesian

origin, they are fully automated. While related sparse deterministic algo-

rithms (in order to achieve optimum performance) involve application- and

conditions-dependent regularization parameters that need to be predeter-

mined via exhaustive fine-tuning, the Bayesian algorithms presented in this

paper directly infer all model parameters from the data, and hence, the

need for parameter fine-tuning is entirely eliminated. This, combined with

their robust sparsity inducing properties, makes them particularly attractive

for use in practice. A preliminary version of a part of this work has been

presented in [15]1.

The rest of the paper is organized as follows. Section 2 defines the

mathematical formulation of the adaptive estimation problem from a LS

point of view. In Section 3 the adopted hierarchical Bayesian model is

1Note that a Bayesian approach to adaptive filtering has been previously proposed
in [16]. However, in [16] a type-II maximum likelihood inference method is adopted that
leads to a regularized RLS-type scheme. This is completely different from the approach
and algorithms described in this work.
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described. A family of batch variational Bayes iterative schemes is presented

in Section 4. The new sparse adaptive variational Bayes algorithms are

developed in Section 5. In Section 6 an analysis of the proposed algorithms

is presented and their relation to other known algorithms is established.

Extensive experimental results are provided in Section 7 and concluding

remarks are given in Section 8.

Notation: Column vectors are represented as boldface lowercase letters,

e.g. x, and matrices as boldface uppercase letters, e.g. X, while the i-th

component of vector x is denoted by xi and the ij-th element of matrix X

by xij. Moreover, (·)T denotes transposition, ‖·‖1 stands for the ℓ1-norm,

‖·‖ stands for the standard ℓ2-norm, | · | denotes the determinant of a ma-

trix or absolute value in case of a scalar, N (·) is the Gaussian distribution,

G(·) is the Gamma distribution, IG(·) is the inverse Gamma distribution,

GIG(·) is the generalized inverse Gaussian distribution, Γ(·) is the Gamma

function, 〈·〉 is the expectation operator, diag(x) denotes a diagonal matrix

whose diagonal entries are the elements of x, and diag(X) is a column vector

containing the main diagonal elements of a square matrix X. Finally, we

use the semicolon (; ) and the vertical bar (|) characters to express the de-

pendence of a random variable on parameters and other random variables,

respectively.

2 Problem statement

Let w(n) = [w1(n), w2(n), . . . , wN (n)]T ∈ R
N denote a sparse time-varying

weight vector having ξ ≪ N non-zero elements, where n is the time in-
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dex. We wish to estimate and track w(n) in time by observing a stream of

sequential data obeying to the following linear regression model,

y(n) = xT (n)w(n) + ǫ(n), (1)

where x(n) = [x1(n), x2(n), . . . , xN (n)]T is a known N×1 regression vector,

and ǫ(n) denotes the uncorrelated with x(n) added Gaussian noise of zero

mean and variance β−1 (or precision β), i.e. ǫ(n) ∼ N (ǫ(n)|0, β−1). The

linear data generation model given in (1) fits very well or, at least, approx-

imates adequately the hidden mechanisms in many signal processing tasks.

Let

y(n) = [y(1), y(2), . . . , y(n)]T (2)

and

X(n) = [x(1),x(2), . . . ,x(n)]T (3)

be the n × 1 vector of observations and the n × N input data matrix re-

spectively, up to time n. Then, the unknown weight vector w(n) can be

estimated by minimizing with respect to (w.r.t.) ŵ(n) the following expo-

nentially weighted LS cost function2,

JLS(n) =
n∑

j=1

λn−j |y(j)− xT (j)ŵ(n)|2 = ‖Λ1/2(n)y(n) −Λ1/2(n)X(n)ŵ(n)‖2.

(4)

2Note that a fixed size sliding in time data window could be also used.
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The parameter λ, 0 ≪ λ ≤ 1, is commonly referred to as the forgetting

factor (because it weights more heavily recent data and ‘forgets’ gradually

old data), and Λ(n) = diag([λn−1, λn−2, . . . , 1]T ). It is well-known that the

vector ŵ(n) that minimizes JLS(n) is given by the solution of the celebrated

normal equations [1]. In an adaptive estimation setting, the cost function in

(4) can be optimized recursively in time by utilizing the RLS algorithm. The

RLS algorithm, a) reduces the computational complexity fromO(N3), which

is required for solving the normal equations per time iteration, to O(N2),

b) has constant memory requirements despite the fact that the size of the

data grows with n, and, c) has the ability of tracking possible variations of

w(n) as n increases.

However, the RLS algorithm does not specifically exploit the inherent

sparsity of the parameter vectorw(n), so as to improve its initial convergence

rate and estimation performance. To deal with this issue, a number of

adaptive deterministic LS-type algorithms have been recently proposed, e.g.

[7–9]. In all these schemes, the LS cost function is supplemented with a

regularization term that penalizes the ℓ1-norm of the unknown weight vector,

i.e.,

JLS−ℓ1(n) = ‖Λ1/2(n)y(n) −Λ1/2(n)X(n)ŵ(n)‖2 + τ‖ŵ(n)‖1, (5)

where τ > 0 is a regularization parameter controlling the sparsity of ŵ(n),

that should be properly selected. Regularization with the ℓ1-norm has its

origin in the widely known lasso operator, [5], and is known to promote

sparse solutions.
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In this paper, unlike previous studies, we provide an analysis of the

sparse adaptive estimation problem from a Bayesian perspective. In this

framework, we derive a class of variational Bayes estimators that are built

upon hierarchical Bayesian models featuring heavy-tailed priors. A basic

characteristic of heavy-tailed priors is their sparsity inducing nature. These

prior distributions are known to improve robustness of regression and clas-

sification tasks to outliers and have been widely used in variable selection

problems, [17, 18]. The variational Bayesian inference approach adopted in

this paper, a) exhibits low computational complexity compared to (the possi-

ble alternative) Markov Chain Monte Carlo (MCMC) sampling method, [14],

and b) performs inference for all model parameters, including the sparsity

promoting parameter τ , as opposed to deterministic methods. In the fol-

lowing, we analyze a general hierarchical Bayesian model for the batch es-

timation problem first (i.e., when n is considered fixed), and then we show

how the proposed variational Bayes inference method can be extended in an

adaptive estimation setting.

3 Bayesian modeling

To simplify the description of the hierarchical Bayesian model we temporar-

ily drop the dependence of all model quantities from the time indicator n.

Time dependency will be re-introduced in Section 5, where the proposed

adaptive variational schemes are presented. To consider the estimation

problem at hand from a Bayesian point of view, we first define a likelihood

function based on the given data generation model and then we introduce
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sparsity to our estimate by assigning a suitable heavy-tailed prior distribu-

tion over the parameter vector w. In order to account for the exponentially

weighted data windowing used in (4), the following observation model is

considered

y = Xw + ε (6)

where ε ∼ N (ε|0, β−1Λ−1). From this observation model and the statistics

of the noise vector ε, it turns out that the corresponding likelihood function

is

p(y|w, β) = (2π)−
n
2 β

n
2 |Λ| 12 exp

[

−β

2
‖Λ 1

2y−Λ
1

2Xw‖2
]

. (7)

Notice that the maximum likelihood estimator of (7) coincides with the LS

estimator that minimizes (4). However, as mentioned previously, our esti-

mator should be further constrained to be sparse. To this end, the likelihood

is complemented by suitable conjugate priors w.r.t. (7) over the parameters

w and β [19, 20]. The prior for the noise precision β is selected to be a

Gamma distribution with parameters ρ and δ, i.e.,

p(β; ρ, δ) = G(β; ρ, δ) = δρ

Γ(ρ)
βρ−1exp [−δβ] . (8)

Next, a two-level hierarchical heavy-tailed prior is selected for the parameter

vector w, that reflects our knowledge that many of its components are zero

or nearly zero. In the first level of hierarchy, a Gaussian prior is attached
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on w, i.e.,

p(w|α, β) = N (w|0, β−1A−1) =

N∏

i=1

p(wi|αi, β) =

N∏

i=1

(2π)−
1

2 β
1

2α
1

2

i exp

[

−β

2
w2
i αi

]

.

(9)

where α = [α1, α2, . . . , αN ]T is the vector of the precision parameters of the

wi’s, A = diag(α) and the wi’s have been assumed a priori independent.

Now, depending on the choice of the prior distribution for the precision

parameters in α at the second level of hierarchy, various heavy-tailed distri-

butions may arise for w, such as the Student-t or the Laplace distribution.

To provide a unification of all these distributions in a single model, we as-

sume that the sparsity enforcing parameters αi follow a generalized inverse

Gaussian (GIG) distribution, expressed as3

p(αi; a, b, c) = GIG(αi; a, b, c) =
(a/b)(c/2)

2Kc(
√
ab)

αc−1
i exp[−1

2
(aαi + b/αi)], (10)

where a, b ≥ 0, c ∈ R and Kc(·) is the modified Bessel function of the second

kind. Our analysis will be developed for a special case of (10), which arises

by setting b = 0, a > 0, and c > 0 4. Other special cases of (10) that also

lead to sparse estimates for w will be discussed in the next Section. Hence,

by selecting b = 0 and c > 0, it can be shown that (10) becomes a Gamma

distribution with scale parameter c and rate parameter a/2,

p(αi; c, a) = G(αi; c, a/2) =
(a/2)c

Γ(c)
αc−1
i exp

[

−a

2
αi

]

, (11)

3More general models can be found in [21].
4Note that for b = 0, a > 0, c > 0 the GIG distribution is well defined, [21].
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for i = 1, 2, . . . , N . If we integrate out the precision parameter α from (9)

using (11) as a prior, it is easily verified that the two-level hierarchical prior

defined by (9) and (11) is equivalent to assigning a Student-t distribution

over the parameter vector w, which depends on the hyperparameters c and

a, [22]. Besides, the prior in (11) for each αi, i = 1, 2, . . . , N , is the conjugate

pair of q(wi|αi, β) in (9). The existence of conjugacy among the distribu-

tions of the Bayesian hierarchical model is crucial for the development of a

computationally efficient variational inference approach.

It should be noted here that not all members of the GIG class of distribu-

tions lead to conjugacy among the distributions of the Bayesian hierarchical

model. The Bayesian model presented above (Eqs. (7), (8), (9), (11)) is

similar to that proposed in [22], except for the normalization by β of the

variances of wi’s in (9). However, it can be shown that the modification

adopted here ensures the unimodality of the posterior joint distribution, [20],

and leads to simpler and more compact parameter update expressions, as

will be seen later.

4 Mean-Field Variational Bayesian inference

So far we have presented a generative model for the observations data (Eq.

(6)) and a hierarchical Bayesian model (Eqs. (8), (9), (11)), treating the

model parameters as random variables. To proceed with Bayesian inference,

the computation of the joint posterior distribution over the model parame-
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ters is required. Using Bayes’ law, this distribution is expressed as

p(w, β,α|y) = p(y,w, β,α)
∫
p(y,w, β,α)dwdβdα

. (12)

However, due to the complexity of the model, we cannot directly compute

the posterior of interest, since the integral in (12) can not be expressed in

closed form. Thus, we resort to approximations. In this paper, we adopt the

variational framework, [12, 13, 23–25], to approximate the posterior in (12)

with a simpler, variational distribution q(w, β,α). From an optimization

point of view, the parameters of q(w, β,α) are selected so as to minimize the

Kullback-Leibler divergence metric between the true posterior p(w, β,α|y)

and the variational distribution q(w, β,α) [24]. This minimization is equiv-

alent to maximizing the evidence lower bound (ELBO) (which is a lower

bound on the logarithm of the data marginal likelihood logp(y)) w. r.t.

the variational distribution q(w, β,α), [25]. Based on the mean-field the-

ory from statistical physics [26], we constrain q(w, β,α) to the family of

distributions, which are fully factorized w.r.t. their parameters yielding

q(w, β,α) = q(w)q(β)q(α) =

N∏

i=1

q(wi)q(β)

N∏

i=1

q(αi), (13)

that is, all model parameters are assumed to be a posteriori independent.

This fully factorized form of the approximating distribution q(w, β,α) turns

out to be very convenient, mainly because it results to an optimization

problem that is computationally tractable. In fact, if we let θi denote the i-

th component of the vector θ = [w1, . . . , wN , β, α1, . . . , αN ]T containing the
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parameters of the Bayesian hierarchical model, maximization of the ELBO

results in the following expression for q(θi), [14],

q(θi) =
exp [〈logp(y,θ)〉j 6=i]

∫
exp [〈logp(y,θ)〉j 6=i] dθi

, (14)

where 〈·〉j 6=i denotes the expectation w.r.t.
∏

j 6=i q(θj). Note that this is not

a closed form solution, since every factor q(θi) depends on the remaining

factors q(θj), for j 6= i. However, the interdependence between the factors

q(θi) gives rise to a cyclic optimization scheme, where the factors are initial-

ized appropriately, and each one is then updated via (14), by holding the

remaining factors fixed. Each update cycle is known to increase the ELBO

until convergence, [25].

Applying (14) to the proposed model (exact computations are reported

in Appendix 9), the approximating distribution for each coordinate wi, i =

1, 2, . . . , N , is found to be Gaussian,

q(wi) = N (wi;µi, σ
2
i ) = (2π)−

1

2σ−1
i exp

[

−1

2

(wi − µi)
2

σ2
i

]

, (15)

with parameters µi and σ2
i given by

σ2
i = 〈β〉−1(xT

i Λxi + 〈αi〉)−1, (16)

µi = 〈β〉σ2
i x

T
i Λ(y −X¬iµ¬i). (17)

In (17), X¬i results from the data matrix X after removing its i-th column

xi, µ = [µ1, µ2, . . . , µN ]T is the posterior mean value of w, µ¬i results from

µ after the exclusion of its i-th element, and expectation 〈·〉 is w.r.t. the
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variational distributions q(·) of the parameters appearing within each pair

of brackets. Notice that each element wi of w is treated separately and thus

q(wi) constitutes an individual factor in the rightmost hand side of (13), as

opposed to having a single factor q(w) for the whole vector w, as in [27];

this is beneficial for the development of the adaptive schemes that will be

presented in the next Section. Working in a similar manner for the noise

precision β, we get that q(β) is a Gamma distribution expressed as

q(β) = G(β; ρ̃, δ̃) = δ̃ρ̃

Γ(ρ̃)
βρ̃−1exp

[

−δ̃β
]

, (18)

with ρ̃ = n+N
2 + ρ and δ̃ = δ + 1

2

〈

‖Λ 1

2y−Λ
1

2Xw‖2
〉

+ 1
2

〈
wTAw

〉
.

Finally, the variational distribution of the precision parameters αi’s turns

out to be also Gamma given by,

q(αi) =

(
〈β〉〈w2

i 〉
2 + a

)c+ 1

2

Γ(c+ 1
2)

α
c− 1

2

i exp

[

−
(〈β〉〈w2

i 〉
2

+ a

)

αi

]

. (19)

Owing to the conjugacy of our hierarchical Bayesian model, the variational

distributions in (15), (18), and (19) are expressed in a standard exponential

form. Notice also that the parameters of all variational distributions are

expressed in terms of expectations of expressions of the other parameters.

More specifically from (18) and (19) we get

〈β〉 =
n+N
2 + ρ

δ + 1
2

〈

‖Λ 1

2y −Λ
1

2Xw‖2
〉

+ 1
2

∑N
i=1〈w2

i 〉〈αi〉
, (20)
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〈αi〉 =
2c+ 1

a+ 〈β〉〈w2
i 〉
, (21)

for i = 1, 2, . . . , N respectively, whereas 〈wi〉 ≡ µi, i = 1, 2, . . . , N is given

by (17). In addition, since 〈w2
i 〉 = µ2

i + σ2
i , it can be easily shown that

the middle term in the denominator of the right hand side (RHS) of (20) is

evaluated as

〈

‖Λ 1

2y −Λ
1

2Xw‖2
〉

= ‖Λ 1

2y −Λ
1

2Xµ‖2 +
N∑

i=1

σ2
i x

T
i Λxi. (22)

The final variational scheme involves updating (16), (17), for i = 1, 2, . . . , N ,

(20), and (21) for i = 1, 2, . . . , N in a sequential manner. The hyperparam-

eters ρ, δ, c, a are set to very small values corresponding to almost noninfor-

mative priors for β and the αi’s. The variational algorithm solves the batch

estimation problem defined in (4) and due to the convexity of the factors

q(wi), q(β) and q(αi) converges to a sparse solution in a few cycles [14]. The

final estimate of the sparse vector w is the mean µ of the approximating

posterior q(w). A summary of the sparse variational Bayes procedure uti-

lizing a hierarchical Student-t prior is shown in Table 1. The Table includes

a description of the initial Bayesian model, the resulting variational dis-

tributions and the corresponding sparse variational Bayes Student-t based

(SVB-S) iterative scheme.

4.1 Batch variational Laplace algorithms

As mentioned in Section 3, depending on the choice of the prior for the

precision parameters αi’s, various sparsity inducing prior distributions may
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arise for w. Such a prior is obtained by setting a = 0 and c = −1 in (10),

in which case the following inverse Gamma distribution is obtained

p(αi|b) = IG(αi|1,
b

2
) =

b

2
α−2
i exp

[

− b

2

1

αi

]

(23)

for i = 1, 2, . . . , N , while b is assumed to follow a conjugate Gamma distri-

bution, b ∼ G(b;κ, ν). As shown in Appendix 10, if we integrate out α from

the hierarchical prior of w defined by (9) and (23), a sparsity promoting

multivariate Laplace distribution arises for w. In addition, it can be shown

that the resulting Bayesian model preserves an equivalence relation with

the lasso [5] in that its maximum a posteriori probability (MAP) estima-

tor coincides with the vector that minimizes the lasso criterion [19, 28]5. A

summary of this alternative model including a description of the resulting

sparse variational Bayes iterative scheme based on a Laplace prior (SVB-L),

is shown in Table 2. Note from Table 2 that the variational distribution

q(αi) now becomes the following GIG distribution

q(αi) = GIG
(
αi; 〈β〉〈w2

i 〉, 〈b〉,−1/2
)
. (24)

Moreover, except for the mean of αi

〈αi〉 =
√

〈b〉
〈β〉〈w2

i 〉
, (25)

5Note, however, that in [19, 28] a different, (in terms of the parametres that impose
sparsity), model is described. Specifically, instead of the precisions αi’s of wi’s, their
variances γi’s are used, with γi = α−1

i , on which Gamma priors of the form G(γi|1,
b
2
) are

assigned.
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the expectation 〈 1
αi
〉 w.r.t. q(αi) is also required, which can be expressed as

〈
1

αi

〉

= 〈γi〉 =
1

〈αi〉
+

1

〈b〉 . (26)

As noted in [29], the single shrinkage parameter b penalizes both zero and

non-zero coefficients equally and it is not flexible enough to express the

variability of sparsity among the unknown weight coefficients. In many

circumstances, this leads to limited posterior inference and, evidently, to

poor estimation performance. Hence, a slightly different (but, as it will

be shown, much more powerful) model can be constructed by allowing for

multiple parameters bi, one for each αi in (23), i.e,

p(αi|bi) = IG(αi|1,
bi
2
) =

bi
2
α−2
i exp

[

−bi
2

1

αi

]

(27)

and bi ∼ G(bi;κ, ν), [30]. Working as in Appendix 10, it is easily shown

that for such a prior for αi’s, the resulting prior for w is a multivariate,

multi-parameter Laplace distribution (each bi corresponds to a single wi).

Furthermore, the MAP estimator for this model is identical to the vector

that minimizes the so-called adaptive (or weighted) lasso cost function [30–

32]. A summary of the proposed sparse variational Bayes scheme, which is

based on a multiparameter Laplace prior (SVB-mpL) is shown in Table 3.

By inspecting Tables 1, 2 and 3, we see that SVB-S, SVB-L and SVB-

mpL share common rules concerning the computation of the “high in the

hierarchy” model parameters w, β, while they differ in the way the sparsity

imposing precision parameters in α are computed. To the best of our knowl-
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edge, it is the first time that these three schemes are derived via a mean-field

fully factorized variational Bayes inference approach, under a unified frame-

work. Such a presentation not only highlights their common features and

differences, but it also facilitates a unified derivation of the corresponding

adaptive algorithms that will be described in the next Section.

5 Sparse variational Bayes Adaptive Estimation

The variational schemes presented in Tables 1, 2 and 3 deal with the batch

estimation problem associated with (4), that is, given the n×N data matrix

X and the n × 1 vector of observations y, they provide a sparse estimate

(ŵ ≡ µ) of w after a few iterations. However, in an adaptive estimation

setting, solving the size-increasing (by n) batch problem in each time iter-

ation is computationally prohibitive. Therefore, SVB-S, SVB-L and SVB-

mpL should be properly modified and adjusted in order to perform adaptive

processing in a computationally efficient manner, giving rise to ASVB-S,

ASVB-L and ASVB-mpL respectively. In this regard, the time index n is

reestablished here and the expectation operator 〈·〉 is removed from the re-

spective parameters, keeping in mind that henceforth these will refer to pos-

terior parameters. By carefully inspecting (16), (17), (20), and (22) (which

are common for all three schemes) we reveal the following time-dependent

quantities that are commonly met in LS estimation tasks,

R(n) = XT (n)Λ(n)X(n) +A(n− 1), (28)

z(n) = XT (n)Λ(n)y(n), (29)
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d(n) = yT (n)Λ(n)y(n). (30)

Note that in (28) a time-delayed regularization term A(n−1) is considered.

This is related to the update ordering of the various algorithmic quantities

and does affect the derivation and performance of the new algorithms. From

the definitions of y(n) and X(n) in (2) and (3) and that of Λ(n), it is easily

shown that R(n), z(n) and d(n) can be efficiently time-updated as follows:

R(n) = λR(n − 1) + x(n)xT (n)− λA(n− 2) +A(n− 1) (31)

z(n) = λz(n − 1) + x(n)y(n), (32)

d(n) = λd(n − 1) + y2(n). (33)

It is readily recognized that R(n) is the exponentially weighted sample au-

tocorrelation matrix of x(n) regularized by the diagonal matrix A(n − 1),

z(n) is the exponentially weighted crosscorrelation vector between x(n) and

y(n), and d(n) is the exponentially weighted energy of the observation vector

y(n). By substituting (16) in (17) (with the time index n now included) and

using (28) and (29), it is straightforward to show that the adaptive weights

ŵi(n)(≡ µi(n)) can be efficiently computed in time for i = 1, 2, . . . , N , as

follows

ŵi(n) =
1

rii(n)

(
zi(n)− rT¬i(n)ŵ¬i(n)

)
. (34)

In the last equation, zi(n) = xT
i (n)Λ(n)y(n) is the i-th element of z(n),

rii(n) = xT
i (n)Λ(n)xi(n) + αi(n − 1) is the i-th diagonal element of R(n),
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rT¬i(n) = xT
i (n)Λ(n)X¬i(n) is the i-th row of R(n) after removing its i-th

element rii(n), and

ŵ¬i(n) = [ŵ1(n), . . . , ŵi−1(n), ŵi+1(n− 1), . . . , ŵN (n− 1)]T . (35)

From (34) and (35) it is easily noticed that each weight estimate ŵi(n) de-

pends on the most recent estimates in time of the other N −1 weights. This

is in full agreement with the spirit of the variational Bayes approach and

the batch SVB schemes presented in the previous Section, where each model

parameter is computed based on the most recent values of the remaining pa-

rameters. As far as the noise precision parameter β(n) is concerned, despite

its relatively complex expression given in (20), it is shown in Appendix 11

that it can be estimated with O(N) operations per time iteration as follows

β(n) =
(1− λ)−1 +N + 2ρ

2δ + d(n)− zT (n)ŵ(n − 1) + rT (n)σ(n − 1)
. (36)

In (36), the term (1 − λ)−1 represents the active time window in an expo-

nentially weighted LS setting, r(n) = diag(R(n)) and σ(n − 1) = [σ2
1(n −

1), σ2
2(n − 1), . . . , σ2

N (n − 1)]T is the vector of posterior weight variances at

time n− 1 with

σ2
i (n− 1) =

1

β(n − 1)rii(n− 1)
, (37)

according to Eq. (16). Note that Eqs. (34) and (36) are common in all

adaptive schemes described in this paper. What differentiates the algorithms

is the way their sparsity enforcing precision parameters αi(n) are computed
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in time. More specifically, from (21), (16) and the fact that 〈w2
i 〉 = ŵ2

i +σ2
i ,

we get for ASVB-S,

αi(n) =
2c+ 1

a+ β(n)ŵ2
i (n) + r−1

ii (n)
. (38)

Concerning ASVB-L, from Table 2 we obtain the following time update

recursions,

αi(n) =

√

b(n− 1)

β(n)ŵ2
i (n) + r−1

ii (n)
(39)

γi(n) =
1

αi(n)
+

1

b(n − 1)
(40)

b(n) =
N + κ

ν + 1
2

∑N
i=1 γi(n)

. (41)

Finally, for ASVB-mpL we get expressions similar to (39) and (40) with

b(n− 1) being replaced by bi(n− 1), while bi(n) is expressed as

bi(n) =
1 + κ

ν + 1
2γi(n)

(42)

The main steps of the proposed adaptive sparse variational Bayes algorithms

are given in Table 4. In the Table, the hyperparameters ρ, δ, κ and ν take

very small values (of the order of 10−6). All three algorithms have robust

performance, which could be attributed to the absence of matrix inversions

or other numerically sensitive computation steps. The algorithms are based
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on second-order statistics and have an O(N2) complexity, similar to that of

the classical RLS. Their most computationally costly steps, which require

O(N2) operations, are those related to the updates of R(n) and ŵ(n). Note,

though, that in an adaptive filtering setting, this complexity can be dramat-

ically reduced (and become practically O(N)) by taking advantage of the

underlying shift invariance property of the data vector x(n) [7]. As shown

in the simulations of Section 7, the algorithms converge very fast to sparse

estimates for w(n) and in the case of ASVB-S and ASVB-mpL, offer lower

steady-state estimation error compared to other competing deterministic

sparse adaptive schemes. Additionally, while the latter require knowledge of

the noise variance beforehand, this variance is naturally estimated in time

as 1/β(n) during the execution of the new algorithms.

Most recently reported deterministic sparse adaptive estimation algo-

rithms are sequential variants of the lasso estimator, performing variable

selection via soft-thresholding, e.g. the algorithms developed in [7]. To

achieve their best possible performances though, such approaches necessi-

tate the use of suitably selected regularization parameters, whose values, in

most cases, are determined via time-demanding cross-validation and fine-

tuning. Moreover, this procedure should be repeated depending on the

application and the application conditions. Unlike the approach followed in

deterministic schemes, a completely different sparsity inducing mechanism

is used in the proposed algorithms. More specifically, as the algorithms

progress in time, many of the exponentially distributed precision parame-

ters αi(n−1)’s are automatically driven to very large values, forcing also the

corresponding diagonal elements rii(n) of R(n) to become excessively large
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(Eq. (28)) . As a result, according to (34), many weight parameters are

forced to become almost zero, thus imposing sparsity. Notably, this sparsity

inducing mechanism alleviates the need for fine-tuning or cross-validating of

any parameters, which makes the proposed schemes fully automated, and

thus, particularly attractive from a practical point of view.

6 Discussion on the proposed algorithms

Let us now concentrate on the weight updating mechanism given in (34),

which is common in all proposed schemes, and attempt to interpret it. To

this end, we define the following regularized LS cost function,

JLS−R(n) = ‖Λ1/2(n)y(n)−Λ1/2(n)X(n)ŵ(n)‖2

+ ŵT (n)A(n − 1)ŵ(n), (43)

where the diagonal matrix A(n − 1) has positive diagonal entries and is

assumed known, (i.e. for the moment we ignore the procedure that produces

A(n− 1)). As it is well-known the vector ŵ(n) that minimizes JLS−R(n) is

the solution of the following system of equations,

R(n)ŵ(n) = z(n) (44)

where R(n) and z(n) are given in (28) and (29), respectively. Let us now

write,

R(n) = L(n) +D(n) +U(n), (45)
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where L(n) is the strictly lower triangular component of R(n), D(n) its

diagonal component and U(n) its strictly upper triangular component. This

matrix decomposition is the basis of the Gauss-Seidel method [33], and, if

substituted in (44) leads to the following iterative scheme for obtaining the

optimum ŵ(n),

(D(n) + L(n))ŵ(k)(n) = z(n)−U(n)ŵ(k−1)(n), (46)

where k is the iterations index and the time index n is considered fixed

(batch mode). From the last equation, it is easily verified that by using

forward substitution, the elements of w(k)(n) can be computed sequentially

as follows for i = 1, 2, . . . , N ,

ŵ
(k)
i (n) =

1

rii(n)



zi(n)−
∑

j<i

rij(n)ŵ
(k)
j (n)−

∑

j>i

rij(n)ŵ
(k−1)
j (n)



 . (47)

Since the regularized autocorrelation matrix R(n) is symmetric and positive

definite, the Gauss-Seidel scheme in (46) converges (for n fixed) after a

few iterations to the solution of (44), irrespective of the initial choice for

ŵ(0)(n) [33]. Therefore, in an adaptive estimation setting, optimization is

achieved by executing a sufficiently high number of Gauss-Seidel iterations

in each time step n. An alternative, more computationally efficient approach

though, is to match the iteration and time indices, k and n in (47); that is to

consider that a single time iteration n of the adaptive algorithm entails just a

single iteration of the Gauss-Seidel procedure over each coordinate of ŵ(n).

By doing so, we end up with the weight updating formula given previously in
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(34). Such a Gauss-Seidel adaptive algorithm has been previously reported

in [34,35] for the conventional LS cost function JLS(n) given in (4), without

considering any regularization and/or sparsity issues. It has been termed as

the Euclidean direction set (EDS) algorithm. Relevant convergence results

have been also presented in [36]. However, in that analysis the time-invariant

limiting values of the autocorrelation and crosscorelation quantities have

been employed and thus, the obtained convergence results are not valid for

the adaptive Gauss-Seidel algorithm described in [34,35].

Apart from the Gauss-Seidel viewpoint presented above, a different equiv-

alent approach to arrive at the same weight updating formula as in (34) is

the following. We start with the cost function in (43) and minimize it w.r.t.

a single weight component in a cyclic fashion. This leads to a cyclic coordi-

nate descent (CCD) algorithm [37] for minimizing JLS−R(n) for n fixed. If

we now execute only one cycle of the CCD algorithm per time iteration n, we

obtain an adaptive algorithm whose weight updating formula is expressed as

in (34). CCD algorithms for sparse adaptive estimation have been recently

proposed in [7]. These algorithms, however, are based on the minimiza-

tion of JLS−ℓ1(n) given in (5), which explicitly incorporates an ℓ1 penalizing

term. In [7] the proposed algorithms have been supported theoretically by

relevant convergence results. To the best of our knowledge, [7] is the only

contribution where a proof of convergence of CCD adaptive algorithms has

been presented and documented.

From the previous analysis, we conclude that the proposed fully fac-

torized variational methodology described in this paper leads to adaptive

estimation schemes where, a) the model weights are adapted in time by
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using a Gauss-Seidel or CCD type updating rule and b) explicit mecha-

nisms (different for each algorithm) are embedded for computing in time the

regularization matrix A(n) that imposes sparsity to the adaptive weights.

The algorithms are fully automated, alleviating the need for predetermining

and/or fine-tuning of any penalizing or other regularization parameters.

The convergence properties of the proposed algorithmic family is un-

doubtedly of major importance. Notice that in [7] the following ergodicity

assumptions are made as a prerequesite for proving convergence,

lim
n→∞

Prob

[
1

n
R(n) = R∞

]

= 1 and R∞positive definite (48)

lim
n→∞

Prob

[
1

n
z(n) = z∞

]

= 1, (49)

where R(n) = XT (n)X(n) and z(n) = XT (n)y(n) in [7]. If these assump-

tions hold in our case (with R(n) defined as in (28)) then the convergence

analysis presented in [7] would be also valid for the adaptive algorithms de-

scribed in this paper, with only slight modifications. For this to happen,

matrix A(n) should be either constant, or dependent solely on the data.

This is, however, not true owing to the nonlinear dependence of ai(n)’s on

the corresponding weight components as shown in (38) and (39). Such a

nonlinear interrelation among the parameters of the adaptive algorithms

renders the analysis of their convergence an extremely difficult task. In any

case, relevant efforts have been undertaken and the problem is under current

investigation.
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7 Experimental results

In this section we present experimental results obtained from applying the

proposed variational algorithmic framework to the estimation of a time-

varying sparse wireless channel. To assess the estimation performance of the

proposed adaptive sparse variational Bayesian algorithms6, a comparison

against a number of state-of-the-art deterministic adaptive algorithms is

made, such as the sparsity agnostic RLS, [1], the sparse RLS (SPARLS),

[9], the time weighted lasso (TWL), [7], and the time and norm weighted

lasso (TNWL), [7]. Moreover, an RLS that operates only on the a priori

known support set of the channel coefficients, termed as the genie aided

RLS (GARLS), is also included in the experiments, in order to serve as a

benchmark. To set a fair comparison from a performance point of view,

the optimal parameters of the deterministic algorithms are obtained via

exhaustive cross-validation in order to acquire the best of their performances.

We consider a wireless channel with 64 coefficients, which are generated

according to Jake’s model, [38]. Unless otherwise stated, only 8 of these co-

efficients are nonzero, having arbitrary positions (support set), and following

a Rayleigh distribution with normalized Doppler frequency fd Ts = 5×10−5.

The forgetting factor is set to λ = 0.99. The channel’s input is a random

sequence of binary phase-shift keying (BPSK) ±1 symbols. The symbols

are organized in packets of length 1000 per transmission. Gaussian noise

is added to the channel, whose variance is adjusted according to the SNR

level of each experiment. The estimation performance of the algorithms is

6A Matlab implementation of the variational framework presented in this paper is
publicly available at http://members.noa.gr/themelis.
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measured in terms of the normalized mean square error (NMSE), which is

defined as

NMSE =

〈
‖w − ŵ‖2

〉

〈‖w‖2〉 , (50)

where ŵ is the estimate of the actual channel vector w. All performance

curves are ensemble average of 200 transmission packets, channels, and noise

realizations.

The first experiment demonstrates the estimation performance of the

sparse adaptive estimation algorithms. Fig. 1 shows the NMSE curves of

the RLS, GARLS, SPARLS, TWL, TNWL, ASVB-S, ASVB-L, and ASVB-

mpL versus time. The SNR is set to 15dB. Observe that all sparsity aware

algorithms perform better than the RLS algorithm, whose channel tap es-

timates always take non-zero values, even if the actual channel coefficients

are zero. Interestingly, there is an improvement margin of about 8dB in the

steady-state NMSE between the RLS and the GARLS, which, as expected,

achieves the overall best performance. Moreover, the proposed ASVB-L al-

gorithm has better performance than RLS, but although it promotes sparse

estimates, it does not reach the performance level of ASVB-S and ASVB-

mpL. From Fig. 1 it is clear that both ASVB-S and ASVB-mpL outperform

TNWL, which, in turn, has the best performance among the deterministic

algorithms. The ASVB-mpL algorithm reaches an error floor that is closer

to the one of GARLS, and it provides an NMSE improvement of 1dB over

TNWL and 3dB over SPARLS and TWL.

At this point we should shed some light on the relationship between
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the estimation performance and the complexity of the deterministic algo-

rithms. In a nutshell, the key objective of SPARLS, TWL and TNWL is to

optimize the ℓ1 regularized LS cost function given in (5) w.r.t. ŵ(n) and

in a sequential manner. Their estimates, however, are inherently sensitive

to the selection of the sparsity imposing parameter τ . The NMSE curves

shown in Fig. 1 are obtained after fine-tuning the values of the respective

parameters of SPARLS, TWL and TNWL through extensive experimenta-

tion. Nonetheless, the thus obtained gain in estimation accuracy adds to the

computational complexity of the optimization task. On the other hand, the

proposed adaptive variational methods are fully automatic, all parameters

are directly inferred from the data, and a single execution suffices to provide

the depicted experimental results.

Observe also in Fig 1 that, as expected, all sparsity aware algorithms

converge faster than RLS, requiring an average of approximately 100 fewer

iterations in order to reach the NMSE level of −17dB compared to RLS.

Among the deterministic algorithms, TNWL is the one with the fastest

convergence rate. In comparison, ASVB-mpL needs almost 10 iterations

more than TNWL to converge, but it converges to a lower error floor. Again,

the convergence speed of the GARLS is unrivaled.

The next experiment explores the performance of the proposed algo-

rithms for a fast fading channel. The settings of the first experiment are

kept the same, with the difference that the normalized Doppler frequency

is now increased to fd Ts = 8.35 × 10−4, that suits better to a high mobil-

ity application. Specifically, this Doppler results for a system operating at a

carrier frequency equal to 1.8GHz, with a sampling period Ts = 5×10−6 and
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a mobile user velocity 100Km/h. To account for fast channel variations, the

forgetting factor is reduced to λ = 0.96 (except for ASVB-L, where λ = 0.98

is used). Fig. 2 shows the resulting NMSE curves for all algorithms versus

the number of iterations. In comparison to Fig. 1, we observe that the

steady-state NMSE of all algorithms has an expected increase. The algo-

rithms’ relative performance is the same, with the exception of ASVB-L,

which has higher relative steady-state NMSE and is sensitive to λ. Never-

theless, the proposed ASVB-S and ASVB-mpL converge to a better error

floor compared to all deterministic algorithms and their NMSE margin to

TNWL is more perceptible now.

In the next simulation example, we investigate the tracking performance

of the proposed sparse variational algorithms. The experimental settings are

identical to those of Fig. 1, with the exception that the packet length is now

increased to 1500 symbols, and an extra non-zero Rayleigh fading coefficient

is added to the channel at the 750th time instant. Note that until the 750th

time mark all algorithms have converged to their steady state. The resulting

NMSE curves versus time are depicted in Fig. 3. The abrupt change of the

channel causes all algorithms to record a sudden fluctuation in their NMSE

curves. Nonetheless, the proposed ASVB-S and ASVB-mpL respond faster

than the other algorithms to the sudden change and they successfully track

the channel coefficients until they converge to error floors that are again

closer to the benchmark GARLS.

To get a closer look, Fig. 4 depicts the variations in time of the added

channel coefficient and the respective estimates of the proposed algorithms.

Notice by Fig. 4 that after the first 100 iterations the ASVB-S and ASVB-
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mpL have converged to a zero estimate for the specific channel coefficient,

as opposed to the ASVB-L algorithm, whose estimate is around zero but

with higher variations in time. When the value of the true signal suddenly

changes, all algorithms track the change after a few iterations. The ASVB-

S and ASVB-mpL algorithms converge faster than AVSBL-L to the new

signal values. In the sequel, all three algorithms track the slowly fading

coefficient, with the estimates of ASVB-S and ASVB-mpL being closer to

that of GARLS.

As mentioned previously in Section 5, in contrast to all deterministic

algorithms the proposed variational algorithmic framework offers the ad-

vantage of estimating not only the channel coefficients, but also the noise

variance. This is a useful byproduct that can be exploited in many applica-

tions, e.g. in the area of wireless communications, where the noise variance

estimate can be used when performing minimum mean square error (MMSE)

channel estimation and equalization. Fig. 5 depicts the estimation of the

noise variance offered by the Bayesian algorithms ASVB-S, ASVB-L and

ASVB-mpL across time. Observe that ASVB-S and ASVB-mpL estimate

accurately the true noise variance, as opposed to ASVB-L which constantly

overestimates it. This is probably the reason why ASVB-L has in general

inferior performance compared to ASVB-S and ASVB-mpL. It is worth men-

tioning that another useful byproduct of the variational framework is the

variance of the estimates ŵ(n), given in (16). These variances can be used

to build confidence intervals for the weight estimate ŵ(n).

The next experiments evaluate the performance of the proposed algo-

rithms as a function of the SNR and the level of sparsity using the general
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settings of the first experiment. The corresponding simulation results are

summarized in Figs. 6 and 7. It can be seen in Fig. 6 that both ASVB-S

and ASVB-mpL outperform all deterministic algorithms for all SNR levels.

Specifically, ASVB-mpL achieves an NMSE improvement in all SNR levels of

approximately 1dB over TNWL and 3dB over SPARLS and TWL, as noted

earlier. Moreover, in Fig. 7 the curves affirm the natural increase in the

NMSE of the sparsity inducing algorithms as the level of sparsity decreases.

The simulation results suggest that the performance of the proposed ASVB-

S and ASVB-mpL is closest to the optimal performance of GARLS, for all

sparsity levels. We should also comment that only the sparsity agnostic

RLS algorithm is not affected by the increase of the number of the channel’s

nonzero components.

As a final experiment, we test the performance of the sparse adaptive

algorithms for a colored input signal. To produce a colored input sequence, a

Gaussian sequence of zero mean and unit variance is lowpass filtered. For our

purposes, a 5th order Butterworth filter is used with a cut-off frequency 1/4

the sampling rate. The remaining settings of our experiment are the same

as in the first experiment. Fig. 8 depicts the corresponding NMSE curves

for all adaptive algorithms considered in this Section. It is clear from the

figure that all algorithms’ NMSE performance degrades, owning to the worse

conditioning of the autocorrelation matrix R(n). The convergence speed of

all algorithms is also slower than in Fig. 1. Interestingly, RLS and SPARLS

diverge. In addition, the poor performance of RLS has a direct impact on

TNWL, since, by construction, the inverses of the RLS coefficient estimates

are used to weight the ℓ1-norm in TNWL’s cost function. Regardless, both
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ASVB-S and ASVB-mpL are robust, exhibiting immunity to the coloring of

the input sequence.

8 Concluding remarks

In this paper a unifying variational Bayes framework featuring heavy-tailed

priors is presented for the estimation of sparse signals and systems. Both

batch and adaptive coordinate-descent type estimation algorithms with ver-

satile sparsity promoting capabilities are described with the emphasis placed

on the latter, which, to the best of our knowledge, are reported for the first

time within a variational Bayesian setting. As opposed to state-of-the-art

deterministic techniques, the proposed adaptive schemes are fully automated

and, in addition, they naturally provide useful by-products, such as the es-

timate of the noise variance in time. Experimental results have shown that

the new Bayesian algorithms are robust under various conditions and in

general perform better than their deterministic counterparts in terms of

NMSE. Extension of the proposed schemes for complex signals can be made

in a straightforward manner. Further developments concerning analytical

convergence results and faster versions of the algorithms that update only

the non-zero weights (support set) in each time iteration are currently under

investigation.
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9 Derivation of the variational distribution q(wi)

Starting from (14), the variational distribution q(wi) is computed as follows

q(wi) =
exp [〈logp(y|w, β) + logp(w|α, β)〉]

∫
exp [〈logp(y|w, β) + logp(w|α, β)〉] dwi

=
exp

[〈

−β
2 ‖Λ1/2y−Λ1/2X¬iw¬i −Λ1/2xiwi‖2 − β

2αiw
2
i

〉]

∫
exp

[〈

−β
2 ‖Λ1/2y−Λ1/2X¬iw¬i −Λ1/2xiwi‖2 − β

2αiw2
i

〉]

dwi

=
exp

[〈

−β
2

(
xT
i Λxiw

2
i − 2xT

i Λ (y −X¬iw¬i)wi + αiw
2
i

)〉]

∫
exp

[〈

−β
2

(
xT
i Λxiw

2
i − 2xT

i Λ (y −X¬iw¬i)wi + αiw
2
i

)〉]

dwi

=
exp

[〈
−1

2

(
β
(
xT
i Λxi + αi

)
w2
i − 2βxT

i Λ (y −X¬iw¬i)wi

)〉]

∫
exp

[〈
−1

2

(
β
(
xT
i Λxi + αi

)
w2
i − 2βxT

i Λ (y −X¬iw¬i)wi

)〉]
dwi

=
exp

[
−1

2

(
〈β〉

(
xT
i Λxi + 〈αi〉

)
w2
i − 2〈β〉xT

i Λ (y −X¬i〈w¬i〉)wi

)]

∫
exp

[
−1

2

(
〈β〉

(
xT
i Λxi + 〈αi〉

)
w2
i − 2〈β〉xT

i Λ (y −X¬i〈w¬i〉)wi

)]
dwi

= (2π)−1/2σ−1
i exp

[

−1

2

(wi − µi)
2

σ2
i

]

, (51)

where µi and σ2
i are given in (17) and (16) respectively.

10 Hierarchical Laplace prior

From (9) and (23) we can write,

p(w|b, β) =
∫

p(w|α, β)p(α|b)dα =
N∏

i=1

∫ ∞

0
p(wi|αi, β)p(αi|b)dαi

= (2π)−
N
2 β

N
2

(
b

2

)N N∏

i=1

∫ ∞

0
α
− 3

2

i exp

[

−1

2

(

βw2
i αi +

b

αi

)]

dαi (52)

From the definition of the GIG distribution GIG(αi|βw2
i , b,−1

2 ) (cf. (10))

the integral in the last equation can be computed and (52) is then rewritten
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as

p(w|b, β) = (2π)−
N
2 β

N
2

(
b

2

)N

2N
N∏

i=1

K−1/2(
√

βw2
i b)

(
βw2

i
b

)− 1

4

(53)

In addition,

K−1/2(x) = K1/2(x) =

√
π

2
x−

1

2 exp [−x] . (54)

Using (54) in (53) and after some straightforward simplifications, we get the

multivariate Laplace distribution with parameter
√
βb,

p(w|b, β) =
(√

βb

2

)N

exp
[

−
√

βb‖w‖1
]

, (55)

which proves our statement.

11 Update equation for β(n)

By substituting (22) in (20), removing 〈·〉 and replacing µ with ŵ yields,

β =
n+N + 2ρ

2δ + ‖Λ 1

2y−Λ
1

2Xŵ‖2 +∑N
i=1 σ

2
i x

T
i Λxi +

∑N
i=1(ŵ

2
i + σ2

i )αi

(56)

Since exponentially data weighting is used, the actual time window size n

should be replaced by the effective time window size (1 − λ)−1 =
∑∞

j=0 λ
j
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and (56) is rewritten as

β =
(1− λ)−1 +N + 2ρ

2δ + yTΛy − 2zT ŵ + ŵTXTΛXŵ + ŵTAŵ +
∑N

i=1 σ
2
i (x

T
i Λxi + αi)

︸ ︷︷ ︸

rii

(57)

or

β =
(1− λ)−1 +N + 2ρ

2δ + d− 2zT ŵ + ŵTRŵ + σT r
(58)

This is an exact expression for estimating the posterior noise precision β,

which can be used in the proposed algorithms. However, in order to avoid

the computation of ŵTRŵ, which entails N2 operations, we set ŵ = R−1z

in (58), that is we assume that in each time iteration, ŵ attains its optimum

value according to (44)7. Then (58) is expressed as,

β =
(1− λ)−1 +N + 2ρ

2δ + d− zT ŵ + σT r
(59)

Based on the update ordering of the various parameters of the algorithms

in time, the respective terms in (59) are expressed in terms of either n − 1

or n, leading to Eq. (36).
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Figure 1: NMSE curves of adaptive algorithms applied to the estimation
of a sparse 64-length time-varying channel with 8 nonzero coefficients. The
SNR is set to 15dB.
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Figure 2: NMSE curves of adaptive algorithms applied to the estimation of a
fast-fading sparse 64-length time-varying channel with 8 nonzero coefficients.
The SNR is set to 15dB.
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Figure 3: NMSE curves of adaptive algorithms applied to the estimation of
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non-zero coefficient added at the 750th time mark. The SNR is set to 15dB.
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Figure 7: NMSE versus the level of sparsity of the channel. The SNR is set
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Sparse variational Bayes with a Student-t prior

Data likelihood p(y|w, β) = (2π)−
n
2 β

n
2 |Λ|1/2exp

[

−β
2‖Λ1/2y −Λ1/2Xw‖2

]

Prior distributions p(β; ρ, δ) = G(β; ρ, δ) = δρ

Γ(ρ)β
ρ−1exp [−δβ]

p(w|α, β) = N (w|0, β−1A−1) =
∏N

i=1 (2π)
− 1

2 β
1

2α
1

2

i exp
[

−β
2w

2
i αi

]

p(αi; c, a) = G(αi; c, a/2) =
(a/2)c

Γ(c) αc−1
i exp

[
−a

2αi

]
, i =

1, 2, . . . , N

Variational distributions q(β) = G(β; ρ̃, δ̃), with ρ̃ = n+N
2 + ρ and

δ̃ = δ + 1
2

〈

‖Λ 1

2y −Λ
1

2Xw‖2
〉

+ 1
2

〈
wTAw

〉

q(wi) = N (wi;µi, σ
2
i ), with σ2

i = 〈β〉−1(xT
i Λxi + 〈αi〉)−1 and

µi = 〈β〉σ2
i x

T
i Λ(y −X¬iµ¬i), i = 1, 2, . . . , N

q(αi) = G(β; c̃, ã), with c̃ = c+ 1
2 and

ã =
〈β〉〈w2

i 〉+a
2 , i = 1, 2, . . . , N

Variational updates 〈β〉 = (n+N + 2ρ)/

(2δ +
〈

‖Λ1/2y −Λ1/2Xw‖2
〉

+
∑N

i=1

〈
w2
i

〉
〈αi〉)

σ2
i = 〈β〉−1(xT

i Λxi + 〈αi〉)−1, i = 1, 2, . . . , N
〈wi〉 ≡ µi = 〈β〉σ2

i x
T
i Λ(y −X¬iµ¬i), i = 1, 2, . . . , N
〈
w2
i

〉
= µ2

i + σ2
i , i = 1, 2, . . . , N

〈αi〉 = 2c+1
a+〈β〉〈w2

i 〉 , i = 1, 2, . . . , N

Table 1: The SVB-S scheme
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Sparse variational Bayes with a Laplace prior

Data likelihood p(y|w, β) = (2π)−
n
2 β

n
2 |Λ|1/2exp

[

−β
2‖Λ1/2y −Λ1/2Xw‖2

]

Prior distributions p(β; ρ, δ) = G(β; ρ, δ) = δρ

Γ(ρ)β
ρ−1exp [−δβ]

p(w|α, β) = N (w|0, β−1A−1) =
∏N

i=1 (2π)
− 1

2 β
1

2α
1

2

i exp
[

−β
2w

2
i αi

]

p(αi|b) = IG(αi|1, b
2) =

b
2α

−2
i exp

[

− b
2

1
αi

]

, i = 1, 2, . . . , N

p(b;κ, ν) = G(b;κ, ν) = νκ

Γ(κ)b
κ−1exp [−νb]

Variational distributions q(β) = G(β; ρ̃, δ̃), with ρ̃ = n+N
2 + ρ and

δ̃ = δ + 1
2

〈

‖Λ1/2y −Λ1/2Xw‖2
〉

+ 1
2

〈
wTAw

〉

q(wi) = N (wi;µi, σ
2
i ), with σ2

i = 〈β〉−1(xT
i Λxi + 〈αi〉)−1 and

µi = 〈β〉σ2
i x

T
i Λ(y −X¬iµ¬i), i = 1, 2, . . . , N

q(αi) =

(〈β〉〈w2

i 〉/〈b〉)−1/4

2K1/2

(√

〈β〉〈w2

i 〉〈b〉
)α

−3/2
i exp

[

−1
2 〈β〉

〈
w2
i

〉
αi − 〈b〉

2
1
αi

]

, i =

1, 2, . . . , N

q(b) = G(b; κ̃, ν̃), with κ̃ = N + κ, and ν̃ = ν + 1
2

∑N
i=1

〈
1
αi

〉

Variational updates 〈β〉 = (n+N + 2ρ)/

(2δ +
〈

‖Λ1/2y −Λ1/2Xw‖2
〉

+
∑N

i=1

〈
w2
i

〉
〈αi〉)

σ2
i = 〈β〉−1(xT

i Λxi + 〈αi〉)−1, i = 1, 2, . . . , N
〈wi〉 ≡ µi = 〈β〉σ2

i x
T
i Λ(y −X¬iµ¬i), i = 1, 2, . . . , N
〈
w2
i

〉
= µ2

i + σ2
i , i = 1, 2, . . . , N

〈αi〉 =
√

〈b〉

〈β〉〈w2

i 〉 , i = 1, 2, . . . , N
〈

1
αi

〉

= γi =
1

〈αi〉
+ 1

〈b〉 , i = 1, 2, . . . , N

〈b〉 = N+κ

ν+ 1

2

∑N
i=1

〈

1

αi

〉

Table 2: The SVB-L scheme
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Sparse variational Bayes with a multiparameter Laplace prior

Data likelihood p(y|w, β) = (2π)−
n
2 β

n
2 |Λ|1/2exp

[

−β
2‖Λ1/2y −Λ1/2Xw‖2

]

Prior distributions p(β; ρ, δ) = G(β; ρ, δ) = δρ

Γ(ρ)β
ρ−1exp [−δβ]

p(w|α, β) = N (w|0, β−1A−1) =
∏N

i=1 (2π)
− 1

2 β
1

2α
1

2

i exp
[

−β
2w

2
i αi

]

p(αi|bi) = IG(αi|1, bi2 ) = bi
2 α

−2
i exp

[

− bi
2

1
αi

]

, i = 1, 2, . . . , N

p(bi;κ, ν) = G(bi;κ, ν) = νκ

Γ(κ)b
κ−1
i exp [−νbi] , i = 1, 2, . . . , N

Variational distributions q(β) = G(β; ρ̃, δ̃), with ρ̃ = n+N
2 + ρ and δ̃ =

δ + 1
2

〈

‖Λ1/2y−Λ1/2Xw‖2
〉

+ 1
2

〈
wTAw

〉
, i = 1, 2, . . . , N

q(wi) = N (wi;µi, σ
2
i ), with σ2

i = 〈β〉−1(xT
i Λxi + 〈αi〉)−1 and

µi = 〈β〉σ2
i x

T
i Λ(y −X¬iµ¬i), i = 1, 2, . . . , N

q(αi) =

(〈β〉〈w2

i 〉/〈bi〉)−1/4

2K1/2

(
√

〈β〉〈w2

i 〉〈bi〉
)α

−3/2
i exp

[

−1
2 〈β〉

〈
w2
i

〉
αi − 〈bi〉

2
1
αi

]

, i =

1, 2, . . . , N
q(bi) = G(bi; κ̃, ν̃), with κ̃ = 1 + κ and

ν̃ = ν + 1
2

〈
1
αi

〉

, i = 1, 2, . . . , N

Variational updates 〈β〉 = (n+N + 2ρ)/

(2δ +
〈

‖Λ1/2y −Λ1/2Xw‖2
〉

+
∑N

i=1

〈
w2
i

〉
〈αi〉)

σ2
i = 〈β〉−1(xT

i Λxi + 〈αi〉)−1, i = 1, 2, . . . , N
〈wi〉 ≡ µi = 〈β〉σ2

i x
T
i Λ(y −X¬iµ¬i), i = 1, 2, . . . , N
〈
w2
i

〉
= µ2

i + σ2
i , i = 1, 2, . . . , N

〈αi〉 =
√

〈bi〉

〈β〉〈w2

i 〉 , i = 1, 2, . . . , N
〈

1
αi

〉

= γi =
1

〈αi〉
+ 1

〈bi〉
, i = 1, 2, . . . , N

〈bi〉 = 1+κ

ν+ 1

2

〈

1

αi

〉 , i = 1, 2, . . . , N

Table 3: The SVB-mpL scheme
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Initialize λ, ŵ(0),A(−1),A(0),R(0), z(0), d(0),σ(0)
Set c, a, ρ, δ, κ, ν to very small values
for n = 1, 2, . . .

R(n) = λR(n−1)+x(n)xT (n)−λA(n−2)+A(n−1)
z(n) = λz(n− 1) + x(n)y(n)
d(n) = λd(n − 1) + y2(n)

β(n) = N+(1−λ)−1+2ρ
2δ+d(n)−z

T (n)ŵ(n−1)+r
T (n)σ(n−1)

for i = 1, 2, . . . , N
σ2
i (n) = 1/(β(n)rii(n))

ŵi(n) = r−1
ii (n)

(
zi(n)− rT¬i(n)ŵ¬i(n)

)

ASVB-S

αi(n) = (2c+ 1) /
(
a+ β(n)ŵ2

i (n) + r−1
ii (n)

)

ASVB-L

αi(n) =
√

b(n − 1)/(β(n)ŵ2
i (n) + r−1

ii (n))

γi(n) = 1/αi(n) + 1/b(n − 1)

ASVB-mpL

αi(n) =
√

bi(n− 1)/(β(n)ŵ2
i (n) + r−1

ii (n))

γi(n) = 1/αi(n) + 1/bi(n− 1)
bi(n) = (1 + κ)/ (ν + γi(n)/2)

end for

ASVB-L

b(n) = (N + κ)/
(

ν + 1
2

∑N
i=1 γi(n)

)

end for

Table 4: The proposed ASVB-S, ASVB-L, and ASVB-mpL algorithms
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