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Multi-Stage Robust Chinese Remainder Theorem

Li Xiao*, Xiang-Gen Xid, and Wenjie Wang

Abstract

It is well-known that the traditional Chinese remainderaitean (CRT) is not robust in the sense that a small
error in a remainder may cause a large error in the reconigtnusolution. A robust CRT was recently proposed
for a special case when the greatest common divisor (gcd)l #fieamoduli is more thari and the remaining
integers factorized by the gcd of all the moduli are co-pritmethis special case, a closed-form reconstruction
from erroneous remainders was proposed and a necessaryfficakist condition on the remainder errors was
obtained. It basically says that the reconstruction ersangper bounded by the remainder error lewéf 7 is
smaller than a quarter of the gcd of all the moduli. In thisgrapve consider the robust reconstruction problem
for a general set of moduli. We first present a necessary affidisnt condition for the remainder errors for a
robust reconstruction from erroneous remainders with agrset of muduli and also a corresponding robust
reconstruction method. This can be thought of as a singestabust CRT. We then propose a two-stage robust
CRT by grouping the moduli into several groups as followsst-ithe single stage robust CRT is applied to each
group. Then, with these robust reconstructions from allgtmips, the single stage robust CRT is applied again
across the groups. This is then easily generalized to rstate robust CRT. Interestingly, with this two-stage
robust CRT, the robust reconstruction holds even when theireler error level- is above the quarter of the
gcd of all the moduli. In this paper, we also propose an allgorion how to group a set of moduli for a better

reconstruction robustness of the two-stage robust CRT rimesspecial cases.

Index Terms

Chinese remainder theorem, robustness, frequency estimfedm undersamplings, greatest common divisor,

moduli

. INTRODUCTION

The problem of reconstructing a large integer from its ssvegmainders modulo several smaller positive
integers (called moduli) may occur in many applicationshsas phase unwrapping in radar signal processing [10],
[14]-[23] and frequency determination from several undemgled waveforms [8],]9]. The traditional solution
for this problem is the Chinese remainder theorem (CRT)feeexample,[[1], [2], that uniquely formulates the

solution from the remainders if all the moduli are co-primmel dhe large integer is less than the product of all
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the moduli. When the moduli are not co-prime, the large iatetan be uniquely determined if it is less than
the least common multiple (Icm) of all the modudli [3]] [4], et one may also find the reconstruction methods.
However, it is well-known that the above solution is not rebin the sense that a small error in a remainder
may cause a large error in the reconstruction solution, kvhi@y degrade the performance of its applications
in phase unwrapping and frequency determination, sinchase applications, signals are usually noisy and the
detected remainders may be erroneous. For the robusthess, have been several studies recently [11]-[13].
Robust reconstructions from erroneous remainders wesntigcproposed in[[12],[13] for a special case when
the greatest common divisor (gcd) of all the moduli is mor@nth and the remaining integers factorized by the
gcd of all the moduli are co-prime. In this special case, aaisform reconstruction from erroneous remainders
was proposed ir [13] and a necessary and sufficient conditiotine remainder errors was also obtained in [13].
It basically says that the reconstruction error is uppembled by the remainder error levelif 7 is smaller
than a quarter of the gcd of all the moduli [12]. A special @msof this result was obtained earlier in [10].
In some applications, an unknown, such as the phase unw@ppid frequency estimation, is real valued in
general. So, in[[13] the closed-form robust CRT algorithns waturally generalized to real numbers. Also, a
lattice based method was proposed(inl [25] to address thdemnobf estimating a real unknown distance with
a closed-form algorithm using phase measurements takerultiple co-prime wavelengths. One can see that
there are constraints on the moduli in previous works. Thestaints on the moduli may, however, limit the
robustness when the range (called dynamic range) of thendieible integers is roughly fixed.

Different from robustly reconstructing the large integesnfi its erroneous remainders, another existing ap-
proach is to accurately determine the large integer by usomge of the error-free remainders among all the
remainders[[5],[[6],[I9], which may require that significlgnihany remainders are error-free and a large number
of moduli/remainders may be needed. This approach mayfisadtie dynamic range for a given set of moduli (or
undersampling rate51[9]) and furthermore, in some signatgssing applications, to obtain error-free remainders
may not be even possible, because observed signals ardyusamly. A probabilistic approach to deal with
noises in CRT was proposed in [7], where all the moduli arelired to be primes.

In this paper, we consider the robust reconstruction prolite a general set of moduli on which the constraint
used in [12], [13] is no longer required. We first present aessary and sufficient condition for the remainder
errors for a robust reconstruction from erroneous remaidéh a general set of muduli, where a reconstruction
method is also proposed. This can be thought of as a single stbust CRT. We then propose a two-stage
robust CRT by grouping the moduli into several smaller gsoap follows. First, the robust single stage CRT is
applied to each group. Then, with these robust reconstmgtirom all the groups, the robust single stage CRT
is applied again across the groups. Interestingly, with tio-stage robust CRT, the robust reconstruction holds
even when the remainder error levelis above the quarter of the gcd of all the moduli. The two-stegpust
CRT is then easily generalized to multi-stage robust CRThis paper, we also propose an algorithm on how to
group a set of moduli for the better reconstruction robustred the two-stage robust CRT in some special cases.

Note that the two-stage robust CRT is first appeared_in [24f iy however, based on the special single stage
robust CRT in[[18] when the remaining factors of all the modifter factorizing out their gcd are co-prime.
With the two-stage robust CRT obtained in][24], the remairedeor levelr is, in fact, not better than the quarter



of the gcd of all the moduli. In contrast, our newly proposed-stage or multi-stage robust CRT in this paper
is based on the generalized single stage robust CRT forampithoduli also newly obtained in this paper and
as mentioned earlier, the remainder error lewvadan be above the quarter of the gcd of all the moduli, i.e., it
achieves a better robustness bound than [24] does.

This paper is organized as follows. In Sectioh II, we firseflyi introduce the robust CRT results obtained
in [12], [13]. We then propose our new single stage robust @R the necessary and sufficient condition for
a general set of moduli. In Sectignllll, we propose two-stagd multi-stage robust CRT. In Sectibnl IV, we
propose an algorithm on how to group a set of moduli for a be#eonstruction robustness of the two-stage
robust CRT. In SectionlV, we present some simulation resultsstimating integers with a general set of moduli.

In SectionV], we conclude this paper.

II. SINGLE STAGE ROBUSTCRT

Let us first see the robust remaindering problem. Nebe a positive integef) < M; < My < --- < M}, be

L moduli, andrq, 79, -+ ,r;, be theL remainders ofV, i.e.,
N =r; mod M; or N =n;M; +r;, Q)

where0 < r; < M; andn; is an unknown integer, fot < i < L. It is not hard to see tha¥V can be uniquely
reconstructed from itd remainders; if and only if 0 < N < lem (M, My, --- , My,). If all the moduli M; are
co-prime, then the Chinese Remainder Theorem (CRT) prevadgimple reconstruction formulal [1[,/[2].
The problem we are interested in this paper is how to robusttpnstructV when the remainders; have
errors:
0<7m<M;—1 and |r; —r;| <, 2

where T is an error level that may be determined by, for example, tppasto-noise ratio (SNR) and is also
called remainder error bound. Now we want to reconstiidtom these erroneous remaindéfsand the known
moduli M;. The basic idea for the robust CRT in the recent studies awlthls paper is to accurately determine
the unknown integers; in (I) which are the folding numbers that may cause large®irothe reconstructions if
they are erroneous. Therefore, the problem is to correetlgrdhine the folding numbers from these erroneous
remainders;.

Oncen; for 1 < i < L are correctly found, an estimate &f can be given by
N(l) =n;M; +71; =n;M; + r; + Ar;, for any:, 1<:< L, (3)

whereAr; = 7; — r; denote the errors of the remainders. Fréi [A);| < 7. Then, an estimate of the unknown

parameterV is the average ofV (i):
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N = [E;N(z)]

L
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where A7 is the average of the remainder errors, &hdtands for the rounding integer, i.e., for any¥ R (the
set of all reals)]x] is an integer and subject to

—%Sw—[w]<%. (5)

Clearly in this way the error of the above estimateNdfis upper bounded by
[N -N|<T, (6)

i.e., N is a robust estimate a¥.

For the above robust remaindering problem, solutions rbeust reconstruction algorithms, have been proposed
in [12], [13] for a special case when the gcd of all the modailiriore tharni and the remaining integers factorized
by the gcd of all the moduli are co-prime. The main results loarbriefly described below.

Let M be the gcd of all the moduli/; in (). ThenM; = MT;, 1 < i < L, and assume that all; for
1 <4 < L are co-prime, i.e., the gcd of any pdiy andT'; for i # j is 1. Definel’ £ ') Ty ---T'y. Forl <i < L,
let

Y &£ Ty T qligy - Ty =T/T, (7

wherey; £T5---T'p andy, 2T ---T'1_;. We now show how to accurately determine the folding numbers
in [12] and [13], respectively. First, define
S; £ {(ﬁl,ﬁi) = arg minﬁ1:0’17...’%_1’ﬁiMi + 7 —ni My — 7:1‘}. (8)
ﬁi:(]:lv"' 777,_1
Let S; ;1 denote the set of all the first componentsof the pairs(n;,n;) in setsS;, i.e.,

Si1 = {n1|(n1,n;) € S; for somen;} (9)

and define .
S2 (S (10)

=2

It is proved in [12] that if the remainder error bounds smaller than a quarter df/, i.e., 7 < M /4, the folding
numbersn; for 1 < ¢ < L can be accurately determined frofhand S;. Set.S defined above contains only
one element;, and furthermore ifny, 7;) € S;, thenn; = n;. In addition, [12] has proposediaD searching
method with the order o2(L — 1)I"; searches. Whet or I'; gets large, the searching complexity is still high.
Then, a closed-form robust CRT algorithm and its necessadysafficient condition for it to hold have been
proposed in[[13]. For the closed-form algorithm, we refer thader to[[13] with which the following necessary
and sufficient condition for the accurate determinationhef folding numbers:; is obtained in[[1B].

Proposition 1. [13] Assume that all';, for 1 < i < L are co-prime and
O§N<Icm(M1,M2,---,ML):MP1F2---FL. (11)

Then, with the closed-form algorithm determining for 1 < i < L in [13], n; = n; for 1 < i < L, i.e., the

folding numbersn; for 1 < i < L can be accurately determined, if and only if

—M/2 < Ar;—Ar; < M/2, forall 2 <i< L. (12)



Although the condition[(12) in Propositidd 1 is necessarg aufficient for the uniqueness of the solution of
the folding numbers;, it involves with two remainder errors and is hard to checkiiactice. However, with this
result the following proposition becomes obvious, whicinc@es with the much simpler sufficient condition in
[12].

Proposition 2:  [12], [13] Assume that all’; for 1 < i < L are co-prime and
O§N<Icm(M1,M2,---,ML):MP1F2---FL. (13)

If the remainder error bound satisfies
T < M/4, (14)

then we havey; = n; for 1 <i < L, i.e., the folding numbers; for 1 <i¢ < L can be accurately determined.

As it was mentioned earlier, these robust reconstructisalte are based on the assumption that the cd
of all the moduli is more than and the remaining integels; in the moduli M; factorized by their gcd\/ are
co-prime. For exampleM; =5-5 =25, My =5-7 =235, M3 =5-16 = 80, and My = 5 -19 = 95, where
M = 5. When the remainder error level< 5/4, any integer less thah-5-7-16-19 can be reconstructed within
the same error level as the remainders from the erroneousinders by using the algorithms in [12], J13]. A
natural question is what will happen if a general set of moduj are used. For example, what will happen if
My =5-14=70, My =5-15=75, M3 =5-16 = 80, and M, = 5- 18 = 907 First of all, their gcd is\/ =5
and if we divide them by their gcd, we gé4 = 14, I'; = 15, I'3 = 16, andT"y = 18 and clearly these four
I'; are not co-prime. So, we can not apply the algorithms or tesal[12], [13] directly, which may limit the
applications in practice.

We next propose an accurate determination algorithm forfdlting numbersn; from erroneous remainders
for a general set of modull/; with a new necessary and sufficient condition on the remaied®rs. Let us
first see an algorithm fon,.

Following the algorithm in[[1I3], we can generalize the résals follows. First, from[{1) we can equivalently

write it as the following system of congruences:

N =n M +mr

N =noMs + 19 (15)

N =np My, + rp,.
We want to determine,; for 1 <4 < L. To do so, we let the last — 1 equations in[(15) subtract the first one

and we then have
niM; —naMs =192 — 11

niMy —nzMs =r3 —r; (16)

L n1M1 — TLLML =7rrL —7T1.
Next, denote

M. r, —
my; = gcd(My, M;), Ty, = —, Ty = —-, andg; =
1i mi; mi;




Then, we can equivalently express equatfod (16) again as

n1l'e —nol'ar = g2

n1l'13 —ns3l'3; = g3

17)
|l —niln = g
Sincel'y; andT;; are co-prime, by Bézout's lemma (Lemma 1(inl[13]) we get
ny = q?l(ifrf_fﬁlfl)ilril (18)
n; = T 4 kg T,

wherel < i < L, k € Z (the set of integers) anh; is the modular multiplicative inverse df;; moduloT;;.

o7 Ari — A
gi1 = [T Tl] = qi1 + [u} (19)

We can use

mig miq
as an estimate aof;; for 2 < i < L. Recall that|-] stands for the rounding integer which is defined[ih (5). Let
n; for 1 <4 < L be a set of solutions of (17) whep, is replaced byg;; for 2 <i < L. In summary, we have

the following algorithm.

« Step 1: Calculate these values afy; = ged(My, M;), T'y; = me andT;; = % for 2 < i < L from the
given moduliM; for 1 < j < L, which can be done in advance.
o Step 2: Calculateg;; for 2 < i < L in (I9) from the given erroneous remaindéfsfor 1 < i < L.

o Step 3: Calculate the remainders ¢f,I'; moduloT;1, i.e.,
&1 = GaT; mod Ty (20)

for 2 <i < L, whereT; is the modular multiplicative inverse d@f;; moduloT';; and can be calculated in
advance.

o Step 4: Calculaten; from the following system of congruences:
fin =& modTyy, for2<i <L, (21)

where modulil’;; may not be co-prime, which can be done by using the algoritimnfor example, [[3],
[4], and in [4], a multi-level decoding technique to recanst the large integer is proposed.
o Step 5: Calculaten; for 2 < i < L: - A
~ n i s
m:;¥ﬁéﬁ. (22)
With the above algorithm, we have the following necessany swificient condition result for a general set of
moduli.
Theorem 1: Let M;, 1 < i < L, be L arbitrarily distinct positive integers as a given set of mibcnd
0 <N <lem(My,Ms,---,Mr). Then,n; =n; forall 1 <i < L, i.e., the folding numbers,; for 1 <i < L

can be accurately determined, if and only if

—gcd(Mq, M;) /2 < Ar; — Arp < ged(My, M;) /2, forall 2<i<L. (23)



Proof: We first prove the sufficiency. Considering the conditionZf)(and the estimate af; in (19), from

@) for the definition of the operatdr] we haveg;; = ¢;1. Then, from equatio(18); andg;;I'; have the same
remainder moduld’;;. Sinced;;, I'; andI';; are known, we can calcula@,[; = éﬂ modT;;. Thus,n; =
é:n modT';; for 2 < i < L, which form a system of simultaneous congruences,as fil modT;;. In addition,
sinceny My < N <lem(My, Mo, -+, Mp), it is not hard to see that; is less than lenil';, sy, -+ ,T'z1). So,
according to the algorithm about generalized CRTLin {4],can be uniquely reconstructed by solving the above
system, andi; = 7.

After n; is determined, we can obtain other integeydor 2 < : < L from equations[(17) of(18). Therefore,
n; = n; for 2 <4 < L. Hence, the sufficiency is proved.

We next prove the necessity. Assume that there exists at ée@sremainder that does not satidfy1(23). For
example, thg-th remainder;, 2 < j < L, does not satisfy (23). This equivalently lead$(ttxr; — Ary) /ma;] #
0 and thereforej;; # ¢;1. We then have the following two cases.
Case A: When([(Ar; — Ary) /mq;] # kI'j; for any k € Z. We want to prove that the remaindersg@fI’; and

gj1I'; moduloT;; are different. Assum@;;T'; andg;;T'; have the same remainder modulg,, i.e.,
4i1L'j — gL'y = kI'j1, for somek € Z. (24)
Multiplying both sides of[(24) byl'y; and considering’y;I'; = 1 + kI';; for somek € Z, we have
¢j1 — q;1 = kI';j1, for somek € Z. (25)
According to [19), we have
[(Ar; — Arq) /ma;] = kT'j1, for somek € Z. (26)

This contradicts with the assumption. Hence, the remaindé(j;;I'; and ¢;;I'; moduloT';; are different, i.e.,
n1 andn; have different congruences. Thus, # 7.
Case B: For every2 < i < L, [(Ar; — Ary) /my;] = kT';7 for somek € Z but there exists at least opewith
2 < j < Lsuchthaf(Ar; — Ary) /my;] # 0, i.e.,gj1 # ¢;1. From equation((19), we havg,I'; = ¢;;I'; mod I';
for 2 < i < L. Hence, from the first equation ih {(18) and according to theegaized CRTy; can be uniquely
reconstructed. Thus, from Steps 1-4 in the above algorithenhavern; = n;.

However, sincej;i # ¢;1, from equations[(17) or the second equation[in (18) we hgvg n;. This proves
the necessity. [ |

The above result involves with two remainder errors and isl ha check in practice. Let be the maximal
remainder error level, i.e|Ar;| = |7; —r;| < 7, for 1 < < L. Similar to Propositiof]2, we can also present a
simpler sufficient condition.

Corollary 1: Let M;, 1 < ¢ < L, be L arbitrarily distinct positive integers as a given set of mibénd
0 < N <lem(My, My, --- , My). If the remainder error bound satisfies

cd M;, M
7 < max min M, (27)
1<i<L1<j#i<L 4

then, we havé,; = n; forall 1 <i < L, i.e., the folding numbers; for 1 < i < L can be accurately determined.



Proof: Recall that in the procedure of proving Theorlelm 1 we justteatily selected the first equation in_15)
to be a reference to be subtracted from the other equatiogsttf6). In fact, to improve the robustness through
selecting a proper reference equation to differentiatecare choose the indexsuch thatmin gcd(M;, M;) >

J

min gcd(M;, M;) for I # 4. Without loss of generality, modulus/; satisfies
J

. gcd(M;, M) B . gcd(My, M;)
max min —_— = min _— .
1<i<L 1<j#4i<L 4 1<j#1<L 4

Then, we haver < gcd My, M;)/4 for i # 1. Sincer is the maximal remainder error level, i.eAr;| =

|r; —ri| <7, for 1 <i < L, we can obtain
|Ar; — Ary| < ged(My, M;) /2, for 2 <i < L. (28)

Clearly, equation[{28) implies the sufficient conditidn](28 Theorem{ll. Hencep; = n; for all 1 < ¢ < L.
Therefore, we complete the proof. |

Remark 1: Since in the above new result, there is no any constraintéartbduli M; for 1 < i < L, some
of the moduli may be redundant with respect to the ramge N < lcm (M, Mo, --- , M) of the determinable
unknown integerN. The first case is when there exist a pair of modulj, and M;, such thatM;, = nlM;,
for n € N (the set of all positive integers) and in this cagg, is redundant for the determinable range/of
i.e., the lcm of allM;. The other case is when there exists one modglj that is a factor of some other (more
than one) moduli’s Icm, i.e., lcfV;,, M, ,--- , M;, ) = nM;, for somen € N andk > 4, and in this casé/;,
is redundant similarly. When a determinable rangeNofs fixed, we can add or delete some of the redundant
moduli to or from the moduli set in order to get a better robass bound for. For example, the redundant
modulus30 in moduli set{20, 45,30} improves the robustness bound compared with the robusbwessl of
moduli set{20,45} from 5/4 to 10/4. On the other hand, the redundant modulosin {10,45,30} with its
robustness bountld/4 does not help but worsens the robustness bound compared Syithof {45,30}, so it
is better to delete the moduld$® from the moduli set. Below is a general result.

Corollary 2: If there exist a pair of moduld;, andM;, such thatV/;, = nM;, for n € N, then, the redundant
modulus/;, does not help to increase the robustness bound and it canldtedl&om the set of moduli.

Proof: Without loss of generality, we can assume for a moduli{sét, Mo, --- , My} that gcd M, Ms) >
gcd My, Ms) > --- > gcd My, M) and the robustness bound is
gcd(M;, M) _ gcd M, My)

max min .
1<6<L1<j#i<L 4 4

Consider another set of modufiM,, Ma, --- , My, M1} where My, is a factor of one moduliM/, in
{My,My,--- ,Mp}, i.e., My =nMp iy forn e N, 1 < ¢ < L. For the moduli{M;, My, --- , My, M1}, its

robustness bound is
ng(Mi, M])
max min —_—
1<6<L+1 1<j#i<L+1 4

To calculate it, we split <i < L + 1 into two parts:1 <i < L andi =L + 1. And,
ng(Mlv MJ) ng(MU MJ) min ng(ML-l-b MJ)

max min ————° —max{ max  min ,
1<i<L+1 1<j#i<L+1 4 1<i<L 1<j#i<L+1 4 1<5<L 4

}.

A B



As for A, since

cd(M;, M; cd(M;, M;
min ged(M;, M) < min gcd(M;, ])’
1<j#4i<L+1 4 1<j#i<L 4
1<i<L 1<i<L

we have
cd(M;, M;
A< max min 999MiMj) _ ged My, My)
1<i<L1<j£i<L 4 4

As for B, since
ged M+, M;) < ged My, M;) for 1 < j < L,

we have

B < min 9 ( LAl J) < max min 9 ( 2y J) _ g CK 1 L)
1<j#¢<L 4 1<i<L1<j#i<L 4 4

Thus, we can derive

cd(M;, M; cd(M;, M, cd My, M
max min ged(M;, M;) =max{4, B} < max min ged(M;, M;) _9 AN, L).
1<i<L+11<j#i<L+1 4 1<i<L 1<j#i<L 4 4
This tells us that the redundant modul; . ; does not help to increase the robustness bound of the set of
moduli { My, My, --- , My, M1} compared with that of My, M, --- , M }. [ |

From the result of Corollaril2, for a set of moduli, we can tlgis kind of redundant modulu¥/;, when
there exists one modulu¥/;, in the moduli set such that/;, = nM;,. So, throughout this paper, a set of moduli
we consider does not include such a pair of moduli in a singlgesrobust CRT.

From the above results, one can see that the choice of themeteremainder is important in determining the
maximal possible robustness bound fowhen the whole moduli set of arbitrary moduli is considered once
as above. In fact, when the moduli satisfy the constraiet, I; are co-prime, in Propositidn 2 in [12], [13], it
has been pointed out and analyzedlin| [13] that a proper refereemainder indeed plays an important role in
improving the performance in practice.

Going back to the necessary and sufficient conditiod (23 can see that the remainder error difference
bound depends on ggti/;, M;), that varies with eacld/;, and the choice of the reference modulus. This
means that for the robust reconstruction /6f the error levels of its remainders for different: may have
different requirements. Also, as it was mentioned earlising M; as the reference modulus is not necessary.
Let us choose the reference modulus that satisfies

cd(My,, M; cd(M;, M;
i 9CdMe, M) w) (29)
1<j#k<L 4 1<i<L 1<j#i<L 4
and the remainder error boung for the reference remaindef. satisfy
_ . ged(My, M;)
= |Fr — < =
|Arg| = |7, — ri] <71 < 1§1£511?§L 1 (30)

Then, we have the following result.
Corollary 3: Let M;, 1 < ¢ < L, be L arbitrarily distinct positive integers as a given set of mibénd

0 <N <lem(My, Ms,---, M), define the remainder error bound faras;, i.e.,

A?”Z“ = ‘7:2 — TZ" < for

1 <1 < L, and the reference modulus and its corresponding remagrder bound arelM;, and 7, satisfying

(29) and [(3D) above for somewith 1 < k < L. If the remainder error bound, 1 < i # k < L, satisfies
d(M;y,, M; d(Mj,, M;

ged(My, M) . ged(My, M;)

Aril =157 —r| <7 <
|Arif = |7 —ri| <7i < 2 1<j#k<L 4 ’

(31)



then, we havé,; = n; forall 1 <i < L, i.e., the folding numbers; for 1 < i < L can be accurately determined.

Proof: If the reference modulus and its corresponding remainder bound are\f;,, andr, 1 < k < L, we
just need to provéAr; — Ary| < gcd M;, My)/2 for all 1 < i # k < L, which implies the sufficient condition
(23) in Theoreni.

Since|Ar;| < 7; < w — min w we have
1<j#k<L
cd(My,, M;
|Ar; — Arg| < |Ar| 4+ |Arg| < 7+ 1 < W (32)
Thus, CorollanB is proved. [ |

Next, we consider the example mentioned before again.

Example 1: Let M7 =5-14 =70, My =5-15=75, M3 =5-16 =80, andM, =5-18 = 90. It is easy to
see that their gcd i3/ = 5, and{M, },—1 234 do not satisfy the constraint of Propositidds 1 anhd Zin [{23].
Thus, their results can not be applied here. However, fraardisult of Corollary 1, we can obtain the maximal
robustness bound for all remainders ag0/4, which is even larger thafi/4, a quarter of the gcd of all the
moduli. From the result of Corollafyl 3, we choos€; as the reference modulus that does satisfy (29), and we
can get the robustness bound for each remainder as follaws:10/4, 7 < 20/4, 73 < 10/4 and 1y < 10/4.
One can see that, if we treat remainder error bounds indilfiglas above, the remainder error bounds for some
of the individual remainders, such as the second remaimdéris example, may be larger than that[inl(27) in
Corollary[1 for all the remainder error levels. In additidhe robust reconstruction range &fis also0 < N <
lem( My, My, Ms, My).

It is clear that when modull’;; for 2 < i < L are co-prime similar to the case 6f [13], from the system of
congruenceg(21) in Step 4 in the above algorithm, a closed-ingle stage CRT can be obtained[as [13] and
we can replace Step 4 with the following Stép

o Step 4*: Calculaten;:
L
ny = Zéilbilrll mod ~, (33)
i=2 ¢

whereb;; is the modular multiplicative inverse of/T";; moduloT';;, which can be calculated in advance, and
v =T9I'3; ---I'z1. After that, from [22) we can get the formulas for othigrfor 2 < i < L.
Next, let us consider the result in [24]. If we consider thkofsing special case of moduli in Corollafy 3, we

can obtain a better result of the remainder error bounds tianin [24]. Let a set of moduli be
{My, My, My, 1} = {MT11,MT 12, ,MTy 1, MM To1, MM Tos,-- ,MMTsp,},

where L; > 2. Then, we have the following corollary.

Corollary 4. Assume that all th&;;, 1 <4 < L;, j = 1,2, are pair-wisely co-prime, lét; ; = I'; M, where
F171 is an integer, an® < N < lem(My, M,,--- , My, +1,). Denoter; as the error bound for each remainder
r;forl1 <i¢< Li+ Lo If

|Ar| <71 < M/4,
|Ar;| <7 < M/4, forall 2<i<Ly, (34)
|Ar;| <7 < MM' /2 — M/4, forall Li+1<i<Lj+ Lo,
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then with a closed-form algorithm we have = n; for 1 < ¢ < L; + Lo, i.e., the folding numbers,; for
1 <1< Ly + Ly can be accurately determined.
Proof: Since
gcd(M;, M;) . gcd(M;, M;)

min ———* = max min ,
1<j<Li+Lo 4 1<i<Ly+Lo 1<j#i<Li+Lo 4

we can setV/; as the reference modulus and the error bounet 1<j1§nLi?+L2 w =4 in (30).

Then, from [B1) wher2 < i < Ly, i, < M/2 — M/4 = M/4; and whenL; +1 < i < Ly + Lo, 73 <
MM’ /2 — M/4. So we can accurately determine the folding numbgrior 1 < i < L; 4 L,. Next, we can get
Ty = gﬁ%zw) =TIy, for2<i<Lyandly =Ty, for L1 +1 <i < Ly + Lo, all of which are co-prime.
Thus, we can obtain a simple closed-form reconstructiomfba for 7; similar to [33) and then; by (22) for
2<i<Lj+ Lo. [ |

Example 2. In the above, letM = 10, M = 3,111 =33,T'12 =31,y = 3522 = 37, and the moduli
are { My, My, M3, My} = {10- 33,10 - 31,30 - 35,30 - 37}. From Corollany(#, we can get < 10/4, 7 < 10/4,

73 < 50/4, 74 < 50/4. In addition, it has a closed-form algorithm to robustlyamstruct an unknown integey
for 0 < N < lem(M;, My, M3, M,). However, according to the result 6f [24], the remaindeorebounds would
ber <10/4, 7o < 10/4, 13 < 30/4, 14 < 30/4.

Interestingly, the robustness bound result in this corplia even better than that obtained [n[24] using a
two-stage robust CRT. What the result here tells us thatHerset of moduli in Corollar{]4, which is the set
considered in[[24], it is not necessary to use a two-stagastoBRT as what is done ih [24]. Another remark
we make here is that the notatiop above denotes théih remainder error bound. Later, without causing any

notational confusionr; will denote the remainder error bound for the remaindersienjtth group.

[1l. M ULTI-STAGE RoBUSTCRT

From the study in the previous section, one can see that thestimess bound is kind of dependent on the
gcd of the moduli. The larger the gcd is, the better the rofmsst bound is. However, the large gcd reduces the
Icm of the moduli, i.e., reduces the determinable range efuhknown integerV. When a set of moduli are
given, the maximal determinable range is given too, whickh&r Icm. Then, the question is for a given set
of moduli, can we improve the robustness bound obtained il@oy [1? Note that in the single stage robust
CRT obtained in the previous section, all the remainderstheit related system of congruence equations are
considered and solved together simultaneously. A natwastipn is: can we split the set of moduli into several
groups so that the moduli in each group have a large gcd andimears and their corresponding system of
congruence equations in each group are considered andlsoblependently using the single stage robust CRT
obtained in the previous section? If so, can we obtain a beitristness bound than that in Corollaty 1 for the
single stage robust CRT? To answer these questions, letstsdie an example.

Suppose that a set of modyli80, 220,486,513} are given and the gcd of thedemoduli is 1. These four
moduli can be split to two group§180,220} and {486,513}. The gcd of the two moduli in the first group is
M =20 with T'; = 180/20 =9, 'y = 220/20 = 11, and the gcd of the two moduli in the second groupis= 27
with I'; = 486/27 = 18, 'y = 513/27 = 19. One can see that each group satisfies the condition in Atiops§l
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and2 and therefore the closed-form robust CRT in [13] or thgls stage robust CRT in the previous section can
be applied for the robust reconstruction of an unknown ietég with robustness bound < 20/4 or 7 < 27/4,
if N < lem{180,220} = 1980 2 @1 = 18-110 or N < lem{486,513} = 9234 2 g2 = 18 - 513, respectively.
Using the first group with modul/; = 180 and M, = 220 and two remainders; andr,, if the integerN
is in the range of0, lcm(M;, M>)), then N can be uniquely determined by its two error free remaindersnd
ro @as Ny with 0 < Ny < ¢1; otherwise
N = N; mod ¢;. (35)

Using two erroneous remaindefs and 7, with error levelr, and the closed-form robust CRT in_|13] or the

single stage robust CRT in the previous section for the firstig, we can obtain an integé¥; and
if 7 < ged M, My)/4=20/4, then|N; — Ny| < 7. (36)

Similarly, using the second group with moduli; = 486 and M, = 513 and two remainders; and ry, if
the integerN is in the range ofl0,lcm(Ms, M,)), then N can be uniquely determined by its two error free

remainderss andr, as Ny with 0 < Ny < ¢9; otherwise
N = N, mod gs. (37)

Using two erroneous remaindefg and 74 with error levelr, and the closed-form robust CRT in_|13] or the

single stage robust CRT in the previous section for the sgpoup, we can obtain an integdk and
if 7 < gedMs, My)/4 =27/4, then|Ny — No| < 7. (38)

On the other hand, if integeN is in the range of{0, lem(M;, My, M3, My)) = [0, lem(qi,q2)), it can
be uniquely determined by its four error free remainders-, r3,r4. This can be done either from the four
remainders directly or from the two new remaindé¥s and N, of N with two new modulig; and ¢» with
equations[(35) and(B7), respectively. For the robustressye mentioned earlier, the closed-form robust CRT
and the results in Propositiohs 1 ddd 2 can not be appliedetdotlr moduli and the four erroneous remainders
directly since they do not satisfy the co-prime conditianalldition, according to our single stage robust CRT in
Theoreni ]l and Corollafy 1 obtained in the previous sectismpbustness bound would be< 9/4 (interestingly,
for the 4 moduli, their gcd is onlyl). However, using the above grouping idea, the reconstmaif N can be
done in two stages: the first stage is to reconstflicin [38) andN in (38) from the two groups, respectively;
the second stage is to reconstricfrom its two possibly erroneous remaindéys and N, with two new moduli

g1 andg,. From the second stage, using the known robust CRT again bieéno
if 7 < gecdqy,qo)/4=18/4, then,|N — N| < 7. (39)

Thus, we have a robust reconstruction too. In order to kelepedualities [36),[(38) and (B9), one can see that
with this two-stage approach, the robustness bound on thaineler error levet is 18/4 which is surprisingly
even better tha® /4 that is the robustness bound in Corollaly 1 using the singlgesrobust CRT for general
moduli obtained in the previous section. This means thatgusivo or more groups for a set of moduli may
have a better robustness bound than that using a single ¢potipe whole set of moduli. Clearly, for the better

robustness, the way to group the moduli or remainders plagsyaimportant role as one can see from the bounds
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above. Note that the robustness bound 9/4 in Corollary[1 for the single stage robust CRT for the modeti s
{180,220, 486,513} is only half of the robustness bound< 18/4 for the same moduli s€t180, 220, 486,513}
but with the grouping and the two-stage approach. We neseniteour results for general cases. First, we consider
the case of two groups and two stages.

Let {My1,My2,--- , My p,,Ms1,Ms2,---,Msr,} be the whole set of moduli that may not be necessarily
all distinct. It is split to two groups with Group 1 df; moduli: 0 < My < M2 < --- < My r,; and Gruop
2 of Ly moduli: 0 < My < Mo < --- < My ,. These two groups do not have to be disjoint. Détbe a

positive integer, anety 1,712, -+ ,71,1,,72,1,72,2, - , 72,1, D€ the corresponding remainders/¥f i.e.,
N =mn;iMj; + 754, (40)

where0 < r;; < M;; andn;; is an unknown integer fot < i < L;, j = 1 or2. As we know, N can

be uniquely reconstructed from it6; + Lo remainders if and only i0 < N < lecm(dy,d2), where §; 2

lem(My 1, M2, -+, M ,) andd, 2 lcm(May 1, M2, - -+, My 1,). The congruence system {40) can be converted
into the following two-stage congruences.

For j = 1,2, and Groupj, we can write
Nj = KjiMji + 1y
0< Nj < 5j (41)
1<i<L
Then, the abovéV; and N, can be combined to form a new system of congruences:

N =101 + N
N = 1302 + N (42)
0 <N <lem(dy,02) .
Whend; = d9, the two congruence equations are degenerated to a singd¢i@yand without loss of generality,
we assume); # Jo here and such a similar degenerated case is not considéhed ® what follows in this
paper. ReplacingV; and N, in (42) by equationd (41), we have
N =101+ Ki;Mi;+r1, 1<i< Ly
N =l9dy + Ko ;M +12;, 1 <i< Lo (43)
0 <N <lem(dy,62) .
It is not hard to see that
N=1;0;+ K;iMj;+rj;, = (lj% + K i) M +rj,
where

for1 <i < Lj, j=1or2. Clearly,
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From the known values of all the modyliV/;;} and all the erroneous remaind€ps; ; }, if we can accurately
determinek;; and [;, then we can accurately determing;. Thus, we propose the following algorithm to

robustly reconstructV, called two-stage robust CRT, when the remainders are eum

« Step 1: Following the single stage robust CRT algorithm of Steps ib-Section[]], calculatef{ﬂ for
1 <i < Lj in the system of congruence equations| (41) from erroneausirglers{r;} for eachj = 1, 2.
o Step 2: After obtainingf(j,i for1 <i < Lj, j =1,2, calculate the average estimdfg of N; for j =1,2

by equations[({3) and4):
L.
. 1 <&

Nj= |7 > (KM +754) | (44)
J =1

where|[] stands for the rounding integéd (5).
« Step 3: Treating N, and N, as the new erroneous remainders in the system of congruenedians [(4R)
and following the single stage robust CRT algorithm Stefisifi-Sectior 1l again, we calculalge ands.
« Step 4: Calculaten;; for 1 <i < L; andj =1,2:
L
njﬂ- = ZJM—]N + Kj,i- (45)

. Step 5: Calculate the average estimate of the unknown integeiV:

L1 L2
1 . _ . _
I L <Z (g i My +71) + Z (9, Ma; + Tz,i))] ; (46)

i=1 =1

~

where|:] stands for the rounding integéd (5).
Then, we have the following result. Fgr= 1,2, let 7; denote the error level of the remaindets in the j-th
group, i.e.,
|Argal = 1750 = rjal <75,

for1 <:i<L;and
gcd(M; i, M; 4)

Gj = max  min
1<i<L; 1<q#i<L; 4
Let
cd(dy, 0
a9 (41> 2)

In the above, when the j-th group has only one modulfls;, thenG; = Mi*l and the corresponding lcnjy,

is jUSt Mj71.
Theorem 2: If
|Arj,i| < T < min(Gj,G), forall 1 <i< Lj andj =1,2, (47)

then, we can accurately determine the folding numbigrs= n;; for 1 <i < L;, j = 1,2, and the average
estimateN of the unknown integeN in (@8) satisfies

Lim + Lom ]

48
L+ Lo (48)

IN—le[

where|:] stands for the rounding integéd (5).
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Proof: For j = 1,2, according to Corollary]1, whefAr;;| < 7; < G;, we can accurately determirf€; ;

in the systems of congruence equatidng (41):
Kiji=Kj; for1<i<L;. (49)
Furthermore, for the average estimafés and N, in (@4) in Step 2 above, we have
|AN;| = |N; = Nj| <7,

which keeps the same error level as the remaindgydor 1 <i < L;, j =1,2.

In the second stag& (¥2)V;, and N, become the erroneous remainders. To accurately deterimiagd [,
according to Propositionl 2 or Corollaky 1, the error levdisudd satisfyr; < G = w andm, < G =
gcds, 6.
===, then

I; =1;, forj=1,2. (50)

Thus, combining with the first stage, we have the conditiprn< min(G;,G) and 72 < min(G2,G) so that
Kj; = K;;andl; =[; for 1 <i < L;, j = 1,2. Namely, we have:, ; = 7;,; from (@B).
After we accurately determine the folding numberg = n;; for 1 <i < L;, j = 1,2, we can get the average

estimateN in (@8) of the unknown integeN, i.e.,

L] L2
. 1 X ~ . ~
N = |—— Z (R My +71,) + Z (g, i Mo ; + T2,4)
L+ L2 \ o i=1
. =L L (51)
s (Do X e
From|Ar;;| <7 for 1 <i < L; for j =1,2, we can easily obtain
. Li71 + Lom
N-N|<|———=1. 52
¥ < | 2REpn] (52
Therefore the proof is completed. [ |

The above results for two groups of moduli can be easily gdized to a general number of groups of moduli
by using Corollanf1L twice for the two stages of the congreeequations as follows.

Assume there are groups of moduli withs > 2. For everyl < j < s, the elements in the j-th group are
denoted a®) < M;, < Mjo < --- < M;,, let§; £ lem (M, Mj,,--- , M; 1) and; denote the error level
of the remainders;;, 1 < i < Lj, from the moduli in the j-th group, and when the j-th group hasre than

one element, define
ged(M;i, M q)

G=mEL T 3)
If the j-th group has only one element/; ;, defineG; = %1, Let
G = max min M (54)
1<i<s 1<g#i<s 4

Then, we have the following result.
Theorem 3: If
|Ar;i| <7 <min(Gy,G), foralll1 <i<L;andl <j<s, (55)
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then, we can accurately determine the folding numbgrs= n;; for 1 <i < L; and1 < j < s, thus we can

robustly reconstruciV as an estimate oV when0 < N < lem (61,2, -+ ,ds):
1 &
N=|ss—7 DS (M +74) | (56)
Zj:l 7 j=1i=1
and
. S LT
IN - N| < M . (57)
Zj:l L;

Proof: The proof is similar to the proof of Theordr 2. In the first #taga [55%) we can accurately determine
the folding numbersk;; for 1 <i < L;, 1 < j < s, and obtain the robust estimatds of N; for the j-th group
with the error boundN; — N;| < 7; < min(G}, G), where0 < N; < §; for all 1 < j < s.

Then, in the second stage we take these estimﬁ;els erroneous remainders afjdas moduli forl < j <
to form a new congruence system. Applying the result of Garp[d again, we can accurately determine the
unknown folding numberg; for 1 < j < s. By that, we can accurately determing; for 1 < i < L; with
1<j<s.

Lastly, once we get the accurate valuesngf, the average estimat® of N can be found. The error bound
of N is proved similar to Theorefd 2. Hence, the theorem is proved. |

Similar to Corollary[B for the single stage robust CRT, in 8econd stage with moduli; and erroneous
remaindersZVj for 1 < j < s, we can also individually consider the remainder error lléeeeach remaindeNj
with respect to modulus; and have the following result.

Corollary 5: Assume that the reference modulusijsfor somek with 1 < k < s, which satisfies

gcd(8x, d,) . gcd(9;,0g)

G = min ———* = max min
1<q#k<s 4 1<i<s 1<q#i<s 4

and its corresponding remainder error boupd G. If

’ATk’i‘ <7 < min(Gk,G), forall1<i< Ly, (58)
|Ari4) < 7 < min(G, w ~min(Gy, @), forall 1<i<L;andl<j#k<s, (59

then we can accurately determine the folding numbigrs=n;; for 1 <i < L; and1 < j <.

Example 3: Given three groups of modul{26 - 5,26 - 6}, {27 - 7,27 - 13}, and{28 - 15,28 - 11}. We can get
G1 = 26/4, Go = 27/4, G3 = 28/4 and G = 21/4. So, from Theoreml3, we obtain the robustness bounds:
71 < min(G1,G) = 21/4, o < min(Ga,G) = 21/4 and 3 < min(Gs, G) = 21/4. If we use the result of
Corollary[8, we can get a better error bound for some grougsllsvs: 71 < 26/4, 75 < 21/4 and 73 < 21/4.

For a given set ofL. moduli M;, 1 < i < L, there are many different grouping methods of the rema@mder
and therefore, many ways to robustly reconstruct the unknioteger from its erroneous remainders. Let us see
an example.

Example 4: Consider the moduli sefM;, My, M3, My} = {48 - 4,48 - 3,56 - 3,56 - 2}. First, consider all
the moduli as a single group and we obtain the robustnessdb®ufit according to Corollary]l. Second, we
group the four moduli into two group§4s - 4,48 - 3} and {56 - 3,56 - 2} with G; = 48/4, G = 56/4 and
G = w = 48/4 in Theoreni 2. Accordingly, the robustness bound in this ase < 48/4 andm, < 48/4.
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Lastly, if we group the four moduli into another two groupss - 4,56 - 2} and {48 - 3,56 - 3} with G; = 16/4,
Go = 24/4 and G = 336/4, then, the robustness bound in this case;is 16/4 and s < 24/4.

From this example, we can see that different grouping metthead to different robustness bounds. Compared
with the robustness bound by using a single stage robust GRihé whole set of moduli, sometimes a grouping
can enlarge the robustness bound while sometimes a groo@gglecrease the robustness bound. Thus, another
question is whether there exists a proper grouping methcehsure the robustness bound larger than that in
Corollary[1 using the single stage robust CRT. We next prtegseasult that tells us when there exists a grouping
method with a better robustness bound for remainders in gmmeps using a two-stage robust CRT than that
using the single stage robust CRT.

Corollary 6: For a given set of. moduli {M;, : =1,--- , L}, the robustness bound can not be enlarged for
remainders in any group by using a two-stage robust CRT wihoaping method of the moduli if and only if
it is the case of([13], i.e., the remaining factdtsof the modulilM; = MT; divided by their gcdM, 1 <i < L,
are co-prime.

Proof: It is easy to prove the sufficiency as follows. When the moddjisatisfy the constraint i [13], i.e.,
I'; are co-prime, its robustness bound using the single stdgestr@RT with a single group moduli i%//4. On
the other hand, from Theorelm 3, eaGh of any grouping and~ are both)/ /4. Hence, we cannot enlarge the
robustness bound in this case.

We next prove the necessity. Assume that the robustnessilfouremainders in any group can not be enlarged
by the two-stage robust CRT with a grouping method of the Mialer the robustness bound of the single stage
robust CRT of the whole set of the moduli. Denote gtf}, M,) = m,,. Without loss of generality, we can
assume

miL gcd(My, My,) . gcd(M;, My)

= max min -——,
4 4 1<6<L 1<q#i<L 4

and

Mg > mMi3 > -+ 2> ML.

Thus, according to Corollary] 1, its robustness bound udlig single stage robust CRT with a single group
moduli ismq7,/4. We then have the following two cases.

Case |: There exists ong with 2 < ¢ < L such that
Mmig 2 -+ 2 Mig > My(g1) = = MIL.

If we group the moduli as Group XM, --- , M,}; and Group 2{M;, Myy1,--- , M }. With this grouping,
we have thatGy > mqp/4 and Go > mqyr/4, G > M;/4 > myp/4. Thus, we obtain < min{G;, G},
7o < min{Gq, G}, wheremin{G,,G} > mi/4 = 7, which contradicts with the assumption that we cannot
enlarge the robustness bound for the remainders in Grougny astwo-stage robust CRT. This proves that
mig = mi3 = -+ = MiL.

Case |1: Under the condition ofnjy = my3 = --- = my, = M, we know that anyn,, = gcd(M;, M,) > M,
since M is a factor of all the moduli}M;. Suppose that there exists ong, > M with ¢ # ¢ # 1. We can
group the moduli as Group X:M;, M}, and Group 2:{M;, {M;, }i,+4 or ;}. Similar to Case 1,G1 > M/4,
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Go > M/4 andG > M;/4 > M /4. So, we can enlarge the robustness bound for the remainu&soup 1 by
using the two-stage robust CRT with this grouping. This asotradicts with the assumption.

From the above two cases we conclude thgf = M forall 1 <i# ¢ <L, i.e,, it is the case of [13]. |

Now, we give an explicit example. Suppose that there are af sevduli with the form of{ My K1, Mo K1, My Ko,
M>K3}, where My, K1, Ko, K3 are co-prime. According to Corollafyl 1, the robustness ldousing the sin-
gle stage robust CRT i$ < min (My, Kigcd(My, Ms)) /4. If the moduli are grouped into two groups as
{M1 Ky, MyK;,} and {M>K1, MyK,, M>K3}. Then, according to Theorefd 2, its robustness bound, i<
Kygcd(M;y, Ms) /4 and o < My /4, one of which is greater than the robustness bowia Ms, K1gcd( M,
Ms))/4 when M, # Kyged(My, M,).

Example 5: Let M; = 8, My = 14, K; = 3, Ky, = 5, and K3 = 7. Then we can calculate, < 6/4 and
T9 < 14/4 from the two-stage robust CRT. One can see that 14/4 is significantly greater tham < 6/4
using the single stage robust CRT.

From Corollary{6, one can see that as londg'asn moduli M/; are not all co-prime, using a two-stage robust
CRT with some grouping method has a larger robustness baunikinainders in some groups than the single
stage robust CRT does. In the same way, we may {i@ab,, - -- ,0s} as a new set of moduli and group it again
so that the single stage robust CRT is applied three timds thé following result. We call it three-stage robust
CRT.

Let us split{d1,d2,--- ,ds} in Theoren B tok groups. For eveni < ¢t < k, the elements in the t-th group
are denoted a8 < 6,1 < -+ < dyy,, let & 2 lcm(d¢1,--- ,6,,) and define

gcd(dei, t,q)

T, = max min ——2—2%~,

1<i<y: 1<q#i<y, 4
Let
T = max min M.
1<i<k 1<q#i<k 4
We then have the following result.
Theorem 4: If
|Arjil <15 < min(Gj,mtin{Tt 20; € {01, 01y, 1Y), foralll1 <i<L;1<j<sandl<t<k,
(60)
then, we can accurately determine the folding numbgrs= n;; for 1 <i < L; and1 < j < s, thus we can
robustly reconstruciV as an estimate oV when0 < N < lem (61,92, -+ ,ds):
. 1 s L
N = ST, ZZ (RgiMji +754) | (61)
j= j=1i=1
and S L
N - N < [i] . (62)
Zj:l L;
Proof: The congruence system
N =n;;:M;; +1rj;,
where0 < r;; < M;; for1 <i<L; 1<j<sand0 <N <lcm(d;,ds,---,ds), can be converted into the

following three-stage congruences.
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For1 < j < s, and Groupj in the first stage, we can write
Nj = KjiMji + 1
0< Nj < 5j (63)
1<i<L;

In the second stage,
.
Py = Hy ;015 + Ny

0< P <&

I<i<wy

(64)

1<t<k.

Then, in the third stage, we can write

N =4L& + P
0< N <lem(éy, -, &) (65)
1<t<LE.

As long as we can accurately determine all/6f;, H,; and[; in each congruence system, we can then

accurately determine; ;. According to conditions[(80), we can accurately determitig for 1 < i < Lj,

1 < j < s and get the error bound
[Nj = Nj| <75 < min(Gj,min{Y; : 65 € {01, 00, 1}, T).

Next, in each group of the second stage we take these ea‘timﬁ@m erroneous remainders afdas moduli.
Applying the result of Corollar]1, we can accurately detieerf/, ;, and also get the robust estimatesatisfying

[P — P < min(Gy,min{Y; : 65 € {01, 00y}, T).

Similarly, treat the estimated, as the erroneous remainders &pds moduli in the third stage. Sin¢é—B| <
T, from Corollary[1 again, we can accurately determingnce we accurately determine these unknown folding
numbers in each congruence system, we can accurately deteryy and then obtain the robust estimateof
the unknown integeV. As for the error bound of the estimafé, the proof is the same to that of TheorEin 2.
Therefore, we complete the proof. [ |
Example 6: Consider a given set of modu{i96 - 2,96 - 3,72 - 3,72 - 5,64 - 5,64 - 7}. Treating them as one
group and using the single robust CRT, we get its error boufimt the remainders satisfying < 32/4. If we
split the moduli to three group$96-2,96-3}, {72-3,72-5} and{64-5,64-7}, we getG; = 96/4, Gy = 72/4,
G3=64/4,01=96-2-3, 0, =72-3-5,03 =64-5-7 andG = 64/4. By using the two-stage robust CRT, we
can get the error bounds for the remainders in Group for j = 1,2,3 satisfyingm; < min(G1,G) = 64/4,
T < min(Gy, G) = 64/4 and 3 < min(Gs,G) = 64/4, all of which are larger than the bours2/4 in the
single robust CRT. If we use the three-stage robust CRT afid &9, 02,03} to two groups again{di, Jo }
and {d3}. We can getY; = 72/4, T = 320/4. So, in this three-stage robust CRT, the error bounds gatisf
71 < min(G1,Y1,T) = 72/4, 75 < min(Ga, Y1, Y) = 72/4 and 3 < min(Gs, T) = 64/4. Compared with the
two-stage robust CRT, we increase the robustness boundsimp@ and Group2 from 64/4 to 72/4 by using
the three-stage robust CRT.
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The above three-stage robust CRT can be easily generatizeantulti-stage robust CRT with more than three
stages. Although we can use a multi-stage robust CRT withesgnouping methods to obtain a larger robustness
bound for remainders in some groups, there are some chafieaigout how to choose moduli in a group and
how many groups and stages we should split in order to find terb@tbustness bound such that we can enlarge
all the robustness bounds in every group.

Let us first look at the simplest case when there are only thmeduli {M;, Ms, M3}. Without loss of
generality, we can assume that dad,, M>) > gcd(My, M3) > gcd(Ms, M3). Regarding the three moduli as
one group and by Corollafy 1, the robustness bound i§ §6d M3) /4. Since gcd M3, Ms) < ged(Ms, My), if
we want to obtain a robustness bound strictly larger than §d Ms) /4, the modulusMs must independently
form an individual group by itself, and in the meantime it da®t allow other groups to includ&/s. Thus,
there is only one possible grouping method {dds} and {M;, M>}. The robustness bound therein7g <
gcd(Ms, lem (M;, Ms)) /4 andry < min (ged(M;, M), gcd(Ms, lem (M, Ms))) /4, which may be both larger
than gcd M, Ms) /4. Otherwise, we have to group them g8&/;, M3} and{M;, M,} and in this way we may
only enlarge one group’s (not all group’s) robustness boamevhat is used in the proof of Corolldry 6.

Example 7. WhenM; = 560, M, = 480 and M3 = 210, we can see that g¢d/;, M>) = gcd(560, 480) = 80,
gcd(M,, Ms) = ged(560,210) = 70 and gcd Ma, M3) = ged(480,210) = 30. Regarding these three moduli as
a single group, the robustness bound of the single stagestr@®RT is gcd M, M3) /4 = gcd(560,210) /4 =
70/4. In order to find a larger robustness bound, we just only darghe robustness bound of the case of two
groups:{Ms} and { My, M>}. We can get; < 210/4 andr, < 80/4, which are all larger thafi0/4.

The above special case is about only three moduli's groupigen the number of given moduli is larger, it

becomes more complicated. In the next section, we analyre special cases.

IV. AN ALGORITHM FOR GROUPING MODULI IN TWO-STAGE ROBUSTCRT

From the above study, one may see that for a given set of madiiough its determinable range for an integer
from its remainders is fixed, i.e., the lcm of all the modufie trobustness bounds for an erroneous remainder
and a reconstructed integer depend on a reconstructionitalgofrom erroneous remainders, which depends on
the grouping of the moduli in a multi-stage robust CRT. Foreaayal set of moduli, it is not obvious on how
to group them in a multi-stage (or even two-stage) robust,@Rparticular when the number of moduli is not
small. In this section, based on Theorgim 3 for the two-stabast CRT, we propose an algorithm for grouping
a general set of moduli to possibly obtain a larger robustiesind for remainders in every group than that in
Corollary[1 for the single stage robust CRT.

For a given set of modul\ = {M;y, Ms,--- , My}, L > 3, we first assume that the set of moduli does not
include any pair ofA/;, and M;, satisfyingM;, = nM;,, because Corollaryl 2 has told us that such a redundant
modulus}/;, does not help to increase the determinable rang®& 06 < N < lcm(My, My, --- , M) nor the
robustness bound in a single stage robust CRT. From condf) we need to assure that &l} in (83) andG
in (54) after a grouping strictly greater th@ 2 max min w in Corollary[1 for the single stage

1<i<L 1<j#i<L
robust CRT. Then, we have an algorithm as follows.

1) For eachM;, 1 < i < L, find all M;, 1 < j # i < L, satisfying 90252~ g With Az, form the
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corresponding semM;:

M; = {MZ‘,MJ' : w > @}
Thus, with each seM;, we have
M;eM, 4

If modulus M; satisfiesw <O forall Mj;, 1<j+#i<L,then we letM; = {M;}.

2) Among all of theL sets M, for 1 < i < L, there may be one or more paitd{;, and M,,, satisfying
M;, € M,,. In this case, we can delete the smaller 8¢t and only keep the larger sétt;,.

3) After lStep 2), from the remaining sets oM;}, we find all such combinations diM;,, M;,, -+, M;,}

that (J M;, exactly includes all moduliM. In other words, if anyone\; for 1 < s <[ is deleted from

7=1
!
a combinatior{ M;,, M;,,--- ,M; }, then |J M;, is a proper subset oM, i.e.,
j=1&j#s
! !
M#£ ) My cmc (M, (66)
j=18j#s j=1

4) As for every combination in the above, treat eakfy, as a small group and calculate its Icm &s,
1 < j <. Then, check whether

cd(9; ,9;
G = max min w
1<p<11<q#p<l 4

> 0. (67)
If there is one combinatiofM;, } as above to make inequalify (67) hold, then eveiy(G;,,G), 1 < j </,
is strictly greater tha®. According to [5b) in Theoreim 3, one can see that this contibimés just a grouping
as desired and it enlarges a robustness bound for remaimdevery group by using the two-stage robust
CRT. Otherwise, if for every possible combination in StepiBgquality [6Y) does not hold, then it is said
that we fail to use this algorithm to enlarge a robustnessiddar remainders in every group by using the
two-stage robust CRT.

Let us first consider the above grouping algorithm for theecafs[13], i.e., the remaining factors; of the
moduli M; = MT; divided by their gcdM, 1 < i < L, are co-prime. First, we find alM; = {M;}, 1 <i < L.
Next, there is only one combinatidn\, Mo, --- , M} satisfying [€6), and we treat eagWl; = {M;} as one
group, then calculat& = M /4 in (67), which equals t® = M /4. In conclusion, we fail to find a grouping to
enlarge a robustness bound for remainders in every grouing the two-stage robust CRT, which can be also
confirmed from the earlier result in Corollaly 6. Next, weeia positive example.

Example 8: Consider a set of moduf210M, 143M, 77M, 128 M, 81M,125M,169M }, where M is an in-
teger. As one group, using the single stage robust CRT, isstoess bound i® = M/4. According to the
above grouping algorithm, find sets: M = {210M, 77M, 128 M, 81 M,125M }, My = {143M,7T7TM,169M },
Mz = {77TM,210M,143M}, M, = {128M,210M}, M5 = {81M,210M}, Mg = {125M,210M} and
Mz = {169M,143M }. Among them, there are only four combinations satisfy[n@) (&s follows:{ M, M5},
{My, Mz}, {Ma, My, M5, Mg} and { M3, My, M5, Mg, Mz}. Then, check whether one of the above four
combinations satisfies inequalify {67). Fortunately, foe first combination{ M;, M-}, inequality [67) holds.
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We can calculatér; = 2M /4, Gy = 11M /4 andG = 7M /4, all of which are strictly greater tham//4. Thus,
we have obtained a grouping method of the moduli to enlarggbastness bound for remainders in every group
by using the two-stage robust CRT.

Remark 2: As one can see in the proof of Corolldry 6 and in the above dlgorand examples, a modulus
M; may be repeatedly used in more than one groups in the twe-stagist CRT. Its aim is to maké and
G after grouping greater than or equal to the robustness bbynasing the single stage robust CRT for the
whole set of moduli. Recall the case of grouping a set of timeduli { A/}, My, Ms3}. Assume gcdM;, Msy) >
gcd(My, M3) > gcd(Ms, Ms). From Corollary[l, the robustness bound for using the simglist CRT is
w. According to the above grouping moduli algorithm in twage robust CRT, they are split to two
groups: { My, My} and {M3}. One can see that’; = w Gy = % 01 = lem(My, M), 62 =
Ms; and G = w. In this grouping method, the robustness bound for remasnde group { My, Ms}
is min(G1,G) and the robustness bound for remainders in gréffs} is min(Gq, G). As G; and G are
greater thanw, a robustness bound for remainders in each group dependseovatue ofG. When
G = w is less thanw, a robustness bound for remainders in each group is worseftaafor the
single robust CRT. Thus, we should repeat modulfisin group {3}, and the two groups becomr@/;, M}
and {M;y, Ms}. In this way, we enlarge a robustness bound for grolifi, M>} and keep the robustness bound

gcd]f“M?’), we do not

for group{M;, M3} non-changed. On the other hand, wh&nr- w is larger tha
need to repeat modulug, since the robustness bound for group;, M, } and the robustness bound for group
{Ms} are both greater thagw. This example tells us that, to enlarge the robustness haunether a

modulus); is repeatedly used or not in multiple groups depends on thepjng method and the set of moduli.

Repeating a modulus, sometimes, may help to enlarge thetredgss bound but sometimes may not.

V. SIMULATIONS

In this section, we present some simple simulation resaltsvaluate the proposed single stage robust CRT
algorithm and the two-stage robust CRT algorithm for integeith a general set of moduli. Let us first consider
the case whed/f; = 9-15, My = 9-20 and M3 = 9-18. These three moduli do not satisfy the condition that
i =1,2,3, are co-prime and thus the robust CRT obtained in [12], [B3] oot be applied directly. However, we
can use our proposed single stage robust CRT. According toll@y [I, the maximal range of the determinable
N is 1620 and the maximal remainder error levelfor the robustness is upper boundedby: 2?7 from (27).

In this simulation, the unknown integéY is uniformly distributed in the interval0, 1620). We consider the
maximal remainder error levels= 0, 1,2, 3, 4,5,6, and the errors are also uniformly distributed [0nr] in the
remainders2000000 trials for each of them are implemented. The mean effg? — N|) between the estimated
N in @) and the trueV is plotted by the solid line marked withl, and the theoretical estimation error upper
bound in [6) is plotted by the solid line marked with in Fig.[d. Obviously, one can see that for a general set
of moduli the reconstruction errors &f from the erroneous remainders are small compared to thes rahly.

Next, we compare the robustness between the single stagthartdio-stage robust CRT algorithms for the
above same set of moduli. In this case, the conditions of theimmal remainder error levels for the single stage

and the two-stage robust CRT algorithms of two gro{ps;, M>} and {M;} are 2 and £, i.e.,, 7 < 6 and
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11, respectively. Let us consider the maximal remainder dewels from 0 to 25, and2000000 trials for each

of them. The unknown intege¥ is taken as before. Fi@] 2 shows the curves of the error boandgshe mean
estimation errorsZ(| N — N|) for both the single stage and the two-stage robust CRT algosi. Note that from
our single stage robust CRT theory, the valid error boundrfas only upto6, which can be seen from the
simulation results that the mean estimation edgfN — N|) starts to deviate the previous line trendrat 7,
then increases significantly and breaks the linear errontbathenr is further greater, i.e., robust reconstruction
may not hold. On the other hand, with the two-stage robust @Rdrithm, one can see that the curve of the
mean estimation erraE(|N — N|) is always below the curve of the error bound, i.e., we cansthpueconstruct
N, 0 < N < 1620, even when the maximal error level i3 that is the upper bound far obtained in this paper

for the two-stage robust CRT algorithm. These simulati‘gults confirm the theory obtained in this paper.

VI. CONCLUSION

In this paper, we considered the robust reconstructionlenolirom erroneous remainders, namely robust CRT
problem, for a general set of moduli that may not satisfy thiedition needed in the previous robust CRT studies
in [12], [13]. We obtained a necessary and sufficiency caomdifor the robust CRT when all the erroneous
remainders are used together, called single stage robuktI@@restingly, our proposed single stage robust CRT
may have better robustness than that of the robust CRT eotam[12], [13] even when it could be applied.
To further improve the robustness, we then proposed a stalje robust CRT, where the moduli are grouped
into several groups. As an example, for the two-stage roB&St, our proposed single stage robust CRT is first
applied to each group and then applied across the groupsiddicoe. Also, an algorithm on how to group a

given set of moduli was proposed. We finally presented somelations to verify our proposed theory.
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