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Multi-Stage Robust Chinese Remainder Theorem
Li Xiao∗, Xiang-Gen Xia∗, and Wenjie Wang†

Abstract

It is well-known that the traditional Chinese remainder theorem (CRT) is not robust in the sense that a small

error in a remainder may cause a large error in the reconstruction solution. A robust CRT was recently proposed

for a special case when the greatest common divisor (gcd) of all the moduli is more than1 and the remaining

integers factorized by the gcd of all the moduli are co-prime. In this special case, a closed-form reconstruction

from erroneous remainders was proposed and a necessary and sufficient condition on the remainder errors was

obtained. It basically says that the reconstruction error is upper bounded by the remainder error levelτ if τ is

smaller than a quarter of the gcd of all the moduli. In this paper, we consider the robust reconstruction problem

for a general set of moduli. We first present a necessary and sufficient condition for the remainder errors for a

robust reconstruction from erroneous remainders with a general set of muduli and also a corresponding robust

reconstruction method. This can be thought of as a single stage robust CRT. We then propose a two-stage robust

CRT by grouping the moduli into several groups as follows. First, the single stage robust CRT is applied to each

group. Then, with these robust reconstructions from all thegroups, the single stage robust CRT is applied again

across the groups. This is then easily generalized to multi-stage robust CRT. Interestingly, with this two-stage

robust CRT, the robust reconstruction holds even when the remainder error levelτ is above the quarter of the

gcd of all the moduli. In this paper, we also propose an algorithm on how to group a set of moduli for a better

reconstruction robustness of the two-stage robust CRT in some special cases.

Index Terms

Chinese remainder theorem, robustness, frequency estimation from undersamplings, greatest common divisor,

moduli

I. INTRODUCTION

The problem of reconstructing a large integer from its several remainders modulo several smaller positive

integers (called moduli) may occur in many applications, such as phase unwrapping in radar signal processing [10],

[14]–[23] and frequency determination from several undersampled waveforms [8], [9]. The traditional solution

for this problem is the Chinese remainder theorem (CRT), seefor example, [1], [2], that uniquely formulates the

solution from the remainders if all the moduli are co-prime and the large integer is less than the product of all
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the moduli. When the moduli are not co-prime, the large integer can be uniquely determined if it is less than

the least common multiple (lcm) of all the moduli [3], [4], where one may also find the reconstruction methods.

However, it is well-known that the above solution is not robust in the sense that a small error in a remainder

may cause a large error in the reconstruction solution, which may degrade the performance of its applications

in phase unwrapping and frequency determination, since in these applications, signals are usually noisy and the

detected remainders may be erroneous. For the robustness, there have been several studies recently [11]–[13].

Robust reconstructions from erroneous remainders were recently proposed in [12], [13] for a special case when

the greatest common divisor (gcd) of all the moduli is more than 1 and the remaining integers factorized by the

gcd of all the moduli are co-prime. In this special case, a closed-form reconstruction from erroneous remainders

was proposed in [13] and a necessary and sufficient conditionon the remainder errors was also obtained in [13].

It basically says that the reconstruction error is upper bounded by the remainder error levelτ if τ is smaller

than a quarter of the gcd of all the moduli [12]. A special version of this result was obtained earlier in [10].

In some applications, an unknown, such as the phase unwrapping and frequency estimation, is real valued in

general. So, in [13] the closed-form robust CRT algorithm was naturally generalized to real numbers. Also, a

lattice based method was proposed in [25] to address the problem of estimating a real unknown distance with

a closed-form algorithm using phase measurements taken at multiple co-prime wavelengths. One can see that

there are constraints on the moduli in previous works. The constraints on the moduli may, however, limit the

robustness when the range (called dynamic range) of the determinable integers is roughly fixed.

Different from robustly reconstructing the large integer from its erroneous remainders, another existing ap-

proach is to accurately determine the large integer by usingsome of the error-free remainders among all the

remainders [5], [6], [9], which may require that significantly many remainders are error-free and a large number

of moduli/remainders may be needed. This approach may sacrifice the dynamic range for a given set of moduli (or

undersampling rates [9]) and furthermore, in some signal processing applications, to obtain error-free remainders

may not be even possible, because observed signals are usually noisy. A probabilistic approach to deal with

noises in CRT was proposed in [7], where all the moduli are required to be primes.

In this paper, we consider the robust reconstruction problem for a general set of moduli on which the constraint

used in [12], [13] is no longer required. We first present a necessary and sufficient condition for the remainder

errors for a robust reconstruction from erroneous remainders with a general set of muduli, where a reconstruction

method is also proposed. This can be thought of as a single stage robust CRT. We then propose a two-stage

robust CRT by grouping the moduli into several smaller groups as follows. First, the robust single stage CRT is

applied to each group. Then, with these robust reconstructions from all the groups, the robust single stage CRT

is applied again across the groups. Interestingly, with this two-stage robust CRT, the robust reconstruction holds

even when the remainder error levelτ is above the quarter of the gcd of all the moduli. The two-stage robust

CRT is then easily generalized to multi-stage robust CRT. Inthis paper, we also propose an algorithm on how to

group a set of moduli for the better reconstruction robustness of the two-stage robust CRT in some special cases.

Note that the two-stage robust CRT is first appeared in [24] that is, however, based on the special single stage

robust CRT in [13] when the remaining factors of all the moduli after factorizing out their gcd are co-prime.

With the two-stage robust CRT obtained in [24], the remainder error levelτ is, in fact, not better than the quarter
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of the gcd of all the moduli. In contrast, our newly proposed two-stage or multi-stage robust CRT in this paper

is based on the generalized single stage robust CRT for arbitrary moduli also newly obtained in this paper and

as mentioned earlier, the remainder error levelτ can be above the quarter of the gcd of all the moduli, i.e., it

achieves a better robustness bound than [24] does.

This paper is organized as follows. In Section II, we first briefly introduce the robust CRT results obtained

in [12], [13]. We then propose our new single stage robust CRTwith the necessary and sufficient condition for

a general set of moduli. In Section III, we propose two-stageand multi-stage robust CRT. In Section IV, we

propose an algorithm on how to group a set of moduli for a better reconstruction robustness of the two-stage

robust CRT. In Section V, we present some simulation resultson estimating integers with a general set of moduli.

In Section VI, we conclude this paper.

II. SINGLE STAGE ROBUST CRT

Let us first see the robust remaindering problem. LetN be a positive integer,0 < M1 < M2 < · · · < ML be

L moduli, andr1, r2, · · · , rL be theL remainders ofN , i.e.,

N ≡ ri modMi or N = niMi + ri, (1)

where0 ≤ ri < Mi andni is an unknown integer, for1 ≤ i ≤ L. It is not hard to see thatN can be uniquely

reconstructed from itsL remaindersri if and only if 0 ≤ N < lcm(M1,M2, · · · ,ML). If all the moduliMi are

co-prime, then the Chinese Remainder Theorem (CRT) provides a simple reconstruction formula [1], [2].

The problem we are interested in this paper is how to robustlyreconstructN when the remaindersri have

errors:

0 ≤ r̃i ≤ Mi − 1 and |r̃i − ri| ≤ τ, (2)

whereτ is an error level that may be determined by, for example, the signal-to-noise ratio (SNR) and is also

called remainder error bound. Now we want to reconstructN from these erroneous remaindersr̃i and the known

moduliMi. The basic idea for the robust CRT in the recent studies and also this paper is to accurately determine

the unknown integersni in (1) which are the folding numbers that may cause large errors in the reconstructions if

they are erroneous. Therefore, the problem is to correctly determine the folding numbersni from these erroneous

remainders̃ri.

Onceni for 1 ≤ i ≤ L are correctly found, an estimate ofN can be given by

N̂(i) = niMi + r̃i = niMi + ri +∆ri, for any i, 1 ≤ i ≤ L, (3)

where∆ri = r̃i− ri denote the errors of the remainders. From (2),|∆ri| ≤ τ . Then, an estimate of the unknown

parameterN is the average of̂N(i):

N̂ =

[

1

L

L∑

i=1

N̂(i)

]

= N +

[

1

L

L∑

i=1

∆ri

]

= N +∆r̄,

(4)
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where∆r̄ is the average of the remainder errors, and[·] stands for the rounding integer, i.e., for anyx ∈ R (the

set of all reals),[x] is an integer and subject to

−
1

2
≤ x− [x] <

1

2
. (5)

Clearly in this way the error of the above estimate ofN is upper bounded by

|N̂ −N | ≤ τ, (6)

i.e., N̂ is a robust estimate ofN .

For the above robust remaindering problem, solutions, i.e., robust reconstruction algorithms, have been proposed

in [12], [13] for a special case when the gcd of all the moduli is more than1 and the remaining integers factorized

by the gcd of all the moduli are co-prime. The main results canbe briefly described below.

Let M be the gcd of all the moduliMi in (1). ThenMi = MΓi, 1 ≤ i ≤ L, and assume that allΓi for

1 ≤ i ≤ L are co-prime, i.e., the gcd of any pairΓi andΓj for i 6= j is 1. DefineΓ , Γ1Γ2 · · ·ΓL. For1 ≤ i ≤ L,

let

γi , Γ1 · · ·Γi−1Γi+1 · · ·ΓL = Γ/Γi, (7)

whereγ1 , Γ2 · · ·ΓL andγL , Γ1 · · ·ΓL−1. We now show how to accurately determine the folding numbersni

in [12] and [13], respectively. First, define

Si ,

{

(n̄1, n̄i) = argminn̂1=0,1,··· ,γ1−1
n̂i=0,1,··· ,γi−1

|n̂iMi + r̃i − n̂1M1 − r̃1|
}

. (8)

Let Si,1 denote the set of all the first componentsn̄1 of the pairs(n̄1, n̄i) in setSi, i.e.,

Si,1 , {n̄1|(n̄1, n̄i) ∈ Si for some n̄i} (9)

and define

S ,

L⋂

i=2

Si,1. (10)

It is proved in [12] that if the remainder error boundτ is smaller than a quarter ofM , i.e.,τ < M/4, the folding

numbersni for 1 ≤ i ≤ L can be accurately determined fromS and Si. SetS defined above contains only

one elementn1, and furthermore if(n1, n̄i) ∈ Si, then n̄i = ni. In addition, [12] has proposed a1-D searching

method with the order of2(L− 1)Γi searches. WhenL or Γi gets large, the searching complexity is still high.

Then, a closed-form robust CRT algorithm and its necessary and sufficient condition for it to hold have been

proposed in [13]. For the closed-form algorithm, we refer the reader to [13] with which the following necessary

and sufficient condition for the accurate determination of the folding numbersni is obtained in [13].

Proposition 1: [13] Assume that allΓi, for 1 ≤ i ≤ L are co-prime and

0 ≤ N < lcm(M1,M2, · · · ,ML) = MΓ1Γ2 · · ·ΓL. (11)

Then, with the closed-form algorithm determiningn̂i for 1 ≤ i ≤ L in [13], n̂i = ni for 1 ≤ i ≤ L, i.e., the

folding numbersni for 1 ≤ i ≤ L can be accurately determined, if and only if

−M/2 ≤ ∆ri −∆r1 < M/2, for all 2 ≤ i ≤ L. (12)
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Although the condition (12) in Proposition 1 is necessary and sufficient for the uniqueness of the solution of

the folding numbersni, it involves with two remainder errors and is hard to check inpractice. However, with this

result the following proposition becomes obvious, which coincides with the much simpler sufficient condition in

[12].

Proposition 2: [12], [13] Assume that allΓi for 1 ≤ i ≤ L are co-prime and

0 ≤ N < lcm(M1,M2, · · · ,ML) = MΓ1Γ2 · · ·ΓL. (13)

If the remainder error boundτ satisfies

τ < M/4, (14)

then we havêni = ni for 1 ≤ i ≤ L, i.e., the folding numbersni for 1 ≤ i ≤ L can be accurately determined.

As it was mentioned earlier, these robust reconstruction results are based on the assumption that the gcdM

of all the moduli is more than1 and the remaining integersΓi in the moduliMi factorized by their gcdM are

co-prime. For example,M1 = 5 · 5 = 25, M2 = 5 · 7 = 35, M3 = 5 · 16 = 80, andM4 = 5 · 19 = 95, where

M = 5. When the remainder error levelτ < 5/4, any integer less than5 ·5 ·7 ·16 ·19 can be reconstructed within

the same error level as the remainders from the erroneous remainders by using the algorithms in [12], [13]. A

natural question is what will happen if a general set of moduli Mi are used. For example, what will happen if

M1 = 5 · 14 = 70, M2 = 5 · 15 = 75, M3 = 5 · 16 = 80, andM4 = 5 · 18 = 90? First of all, their gcd isM = 5

and if we divide them by their gcd, we getΓ1 = 14, Γ2 = 15, Γ3 = 16, andΓ4 = 18 and clearly these four

Γi are not co-prime. So, we can not apply the algorithms or results in [12], [13] directly, which may limit the

applications in practice.

We next propose an accurate determination algorithm for thefolding numbersni from erroneous remainders

for a general set of moduliMi with a new necessary and sufficient condition on the remainder errors. Let us

first see an algorithm forni.

Following the algorithm in [13], we can generalize the results as follows. First, from (1) we can equivalently

write it as the following system of congruences:






N = n1M1 + r1

N = n2M2 + r2
...

N = nLML + rL.

(15)

We want to determineni for 1 ≤ i ≤ L. To do so, we let the lastL− 1 equations in (15) subtract the first one

and we then have 





n1M1 − n2M2 = r2 − r1

n1M1 − n3M3 = r3 − r1
...

n1M1 − nLML = rL − r1.

(16)

Next, denote

m1i = gcd(M1,Mi) , Γ1i =
M1

m1i
, Γi1 =

Mi

m1i
, andqi1 =

ri − r1
m1i

.
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Then, we can equivalently express equation (16) again as






n1Γ12 − n2Γ21 = q21

n1Γ13 − n3Γ31 = q31
...

n1Γ1L − nLΓL1 = qL1.

(17)

SinceΓ1i andΓi1 are co-prime, by Bézout’s lemma (Lemma 1 in [13]) we get






n1 = qi1Γi + kqi1Γi1

ni =
qi1(ΓiΓ1i−1)

Γi1
+ kqi1Γ1i,

(18)

where1 ≤ i ≤ L, k ∈ Z (the set of integers) andΓi is the modular multiplicative inverse ofΓ1i moduloΓi1.

We can use

q̂i1 =

[
r̃i − r̃1
m1i

]

= qi1 +

[
∆ri −∆r1

m1i

]

(19)

as an estimate ofqi1 for 2 ≤ i ≤ L. Recall that[·] stands for the rounding integer which is defined in (5). Let

n̂i for 1 ≤ i ≤ L be a set of solutions of (17) whenqi1 is replaced bŷqi1 for 2 ≤ i ≤ L. In summary, we have

the following algorithm.

• Step 1: Calculate these values ofm1i = gcd(M1,Mi), Γ1i =
M1

m1i
andΓi1 = Mi

m1i
for 2 ≤ i ≤ L from the

given moduliMj for 1 ≤ j ≤ L, which can be done in advance.

• Step 2: Calculateq̂i1 for 2 ≤ i ≤ L in (19) from the given erroneous remaindersr̃i for 1 ≤ i ≤ L.

• Step 3: Calculate the remainders of̂qi1Γi moduloΓi1, i.e.,

ξ̂i1 ≡ q̂i1Γi modΓi1 (20)

for 2 ≤ i ≤ L, whereΓi is the modular multiplicative inverse ofΓ1i moduloΓi1 and can be calculated in

advance.

• Step 4: Calculaten̂1 from the following system of congruences:

n̂1 ≡ ξ̂i1 modΓi1, for 2 ≤ i ≤ L, (21)

where moduliΓi1 may not be co-prime, which can be done by using the algorithmsin, for example, [3],

[4], and in [4], a multi-level decoding technique to reconstruct the large integer is proposed.

• Step 5: Calculaten̂i for 2 ≤ i ≤ L:

n̂i =
n̂1Γ1i − q̂i1

Γi1
. (22)

With the above algorithm, we have the following necessary and sufficient condition result for a general set of

moduli.

Theorem 1: Let Mi, 1 ≤ i ≤ L, be L arbitrarily distinct positive integers as a given set of moduli and

0 ≤ N < lcm(M1,M2, · · · ,ML). Then,n̂i = ni for all 1 ≤ i ≤ L, i.e., the folding numbersni for 1 ≤ i ≤ L

can be accurately determined, if and only if

− gcd(M1,Mi) /2 ≤ ∆ri −∆r1 < gcd(M1,Mi) /2, for all 2 ≤ i ≤ L. (23)
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Proof: We first prove the sufficiency. Considering the condition in (23) and the estimate ofqi1 in (19), from

(5) for the definition of the operator[·] we haveq̂i1 = qi1. Then, from equation (18),n1 and q̂i1Γi have the same

remainder moduloΓi1. Since q̂i1, Γi and Γi1 are known, we can calculatêqi1Γi ≡ ξ̂i1 modΓi1. Thus,n1 ≡

ξ̂i1 mod Γi1 for 2 ≤ i ≤ L, which form a system of simultaneous congruences asn̂1 ≡ ξ̂i1 modΓi1. In addition,

sincen1M1 ≤ N <lcm(M1,M2, · · · ,ML), it is not hard to see thatn1 is less than lcm(Γ21,Γ31, · · · ,ΓL1). So,

according to the algorithm about generalized CRT in [4],n1 can be uniquely reconstructed by solving the above

system, andn1 = n̂1.

After n1 is determined, we can obtain other integersni for 2 ≤ i ≤ L from equations (17) or (18). Therefore,

n̂i = ni for 2 ≤ i ≤ L. Hence, the sufficiency is proved.

We next prove the necessity. Assume that there exists at least one remainder that does not satisfy (23). For

example, thej-th remainder̃rj, 2 ≤ j ≤ L, does not satisfy (23). This equivalently leads to[(∆rj −∆r1) /m1j ] 6=

0 and thereforêqj1 6= qj1. We then have the following two cases.

Case A: When [(∆rj −∆r1) /m1j ] 6= kΓj1 for any k ∈ Z. We want to prove that the remainders ofq̂j1Γj and

qj1Γj moduloΓj1 are different. Assumêqj1Γj andqj1Γj have the same remainder moduloΓj1, i.e.,

q̂j1Γj − qj1Γj = kΓj1, for somek ∈ Z. (24)

Multiplying both sides of (24) byΓ1j and consideringΓ1jΓj = 1 + kΓj1 for somek ∈ Z, we have

q̂j1 − qj1 = kΓj1, for somek ∈ Z. (25)

According to (19), we have

[(∆rj −∆r1) /m1j ] = kΓj1, for somek ∈ Z. (26)

This contradicts with the assumption. Hence, the remainders of q̂j1Γj and qj1Γj moduloΓj1 are different, i.e.,

n1 and n̂1 have different congruences. Thus,n1 6= n̂1.

Case B: For every2 ≤ i ≤ L, [(∆ri −∆r1) /m1i] = kΓi1 for somek ∈ Z but there exists at least onej with

2 ≤ j ≤ L such that[(∆rj −∆r1) /m1j ] 6= 0, i.e., q̂j1 6= qj1. From equation (19), we havêqi1Γi ≡ qi1Γi mod Γi1

for 2 ≤ i ≤ L. Hence, from the first equation in (18) and according to the generalized CRT,n1 can be uniquely

reconstructed. Thus, from Steps 1-4 in the above algorithm,we haven̂1 = n1.

However, sincêqj1 6= qj1, from equations (17) or the second equation in (18) we havenj 6= n̂j. This proves

the necessity.

The above result involves with two remainder errors and is hard to check in practice. Letτ be the maximal

remainder error level, i.e.,|∆ri| = |r̃i − ri| ≤ τ , for 1 ≤ i ≤ L. Similar to Proposition 2, we can also present a

simpler sufficient condition.

Corollary 1: Let Mi, 1 ≤ i ≤ L, be L arbitrarily distinct positive integers as a given set of moduli and

0 ≤ N < lcm(M1,M2, · · · ,ML). If the remainder error boundτ satisfies

τ < max
1≤i≤L

min
1≤j 6=i≤L

gcd(Mi,Mj)

4
, (27)

then, we havêni = ni for all 1 ≤ i ≤ L, i.e., the folding numbersni for 1 ≤ i ≤ L can be accurately determined.
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Proof: Recall that in the procedure of proving Theorem 1 we just arbitrarily selected the first equation in (15)

to be a reference to be subtracted from the other equations toget (16). In fact, to improve the robustness through

selecting a proper reference equation to differentiate, wecan choose the indexi such thatmin
j

gcd(Mi,Mj) ≥

min
j

gcd(Ml,Mj) for l 6= i. Without loss of generality, modulusM1 satisfies

max
1≤i≤L

min
1≤j 6=i≤L

gcd(Mi,Mj)

4
= min

1≤j 6=1≤L

gcd(M1,Mj)

4
.

Then, we haveτ < gcd(M1,Mi)/4 for i 6= 1. Since τ is the maximal remainder error level, i.e.,|∆ri| =

|r̃i − ri| ≤ τ , for 1 ≤ i ≤ L, we can obtain

|∆ri −∆r1| < gcd(M1,Mi) /2, for 2 ≤ i ≤ L. (28)

Clearly, equation (28) implies the sufficient condition (23) in Theorem 1. Hence,̂ni = ni for all 1 ≤ i ≤ L.

Therefore, we complete the proof.

Remark 1: Since in the above new result, there is no any constraint to the moduliMi for 1 ≤ i ≤ L, some

of the moduli may be redundant with respect to the range0 ≤ N < lcm(M1,M2, · · · ,ML) of the determinable

unknown integerN . The first case is when there exist a pair of moduliMi1 andMi2 such thatMi1 = nMi2

for n ∈ N (the set of all positive integers) and in this caseMi2 is redundant for the determinable range ofN ,

i.e., the lcm of allMi. The other case is when there exists one moduliMi3 that is a factor of some other (more

than one) moduli’s lcm, i.e., lcm(Mi4 ,Mi5 , · · · ,Mik) = nMi3 for somen ∈ N andk > 4, and in this caseMi3

is redundant similarly. When a determinable range ofN is fixed, we can add or delete some of the redundant

moduli to or from the moduli set in order to get a better robustness bound forτ . For example, the redundant

modulus30 in moduli set{20, 45, 30} improves the robustness bound compared with the robustnessbound of

moduli set{20, 45} from 5/4 to 10/4. On the other hand, the redundant modulus10 in {10, 45, 30} with its

robustness bound10/4 does not help but worsens the robustness bound compared with15/4 of {45, 30}, so it

is better to delete the modulus10 from the moduli set. Below is a general result.

Corollary 2: If there exist a pair of moduliMi1 andMi2 such thatMi1 = nMi2 for n ∈ N, then, the redundant

modulusMi2 does not help to increase the robustness bound and it can be deleted from the set of moduli.

Proof: Without loss of generality, we can assume for a moduli set{M1,M2, · · · ,ML} that gcd(M1,M2) ≥

gcd(M1,M3) ≥ · · · ≥ gcd(M1,ML) and the robustness bound is

max
1≤i≤L

min
1≤j 6=i≤L

gcd(Mi,Mj)

4
=

gcd(M1,ML)

4
.

Consider another set of moduli{M1,M2, · · · ,ML,ML+1} whereML+1 is a factor of one moduliMq in

{M1,M2, · · · ,ML}, i.e., Mq = nML+1 for n ∈ N, 1 ≤ q ≤ L. For the moduli{M1,M2, · · · ,ML,ML+1}, its

robustness bound is

max
1≤i≤L+1

min
1≤j 6=i≤L+1

gcd(Mi,Mj)

4
.

To calculate it, we split1 ≤ i ≤ L+ 1 into two parts:1 ≤ i ≤ L and i = L+ 1. And,

max
1≤i≤L+1

min
1≤j 6=i≤L+1

gcd(Mi,Mj)

4
= max{ max

1≤i≤L
min

1≤j 6=i≤L+1

gcd(Mi,Mj)

4
︸ ︷︷ ︸

A

, min
1≤j≤L

gcd(ML+1,Mj)

4
︸ ︷︷ ︸

B

}.
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As for A, since

min
1≤j 6=i≤L+1
1≤i≤L

gcd(Mi,Mj)

4
≤ min

1≤j 6=i≤L
1≤i≤L

gcd(Mi,Mj)

4
,

we have

A ≤ max
1≤i≤L

min
1≤j 6=i≤L

gcd(Mi,Mj)

4
=

gcd(M1,ML)

4
.

As for B, since

gcd(ML+1,Mj) ≤ gcd(Mq,Mj) for 1 ≤ j ≤ L,

we have

B ≤ min
1≤j 6=q≤L

gcd(ML+1,Mj)

4
≤ max

1≤i≤L
min

1≤j 6=i≤L

gcd(Mi,Mj)

4
=

gcd(M1,ML)

4
.

Thus, we can derive

max
1≤i≤L+1

min
1≤j 6=i≤L+1

gcd(Mi,Mj)

4
= max{A,B} ≤ max

1≤i≤L
min

1≤j 6=i≤L

gcd(Mi,Mj)

4
=

gcd(M1,ML)

4
.

This tells us that the redundant modulusML+1 does not help to increase the robustness bound of the set of

moduli {M1,M2, · · · ,ML,ML+1} compared with that of{M1,M2, · · · ,ML}.

From the result of Corollary 2, for a set of moduli, we can delete this kind of redundant modulusMi2 when

there exists one modulusMi1 in the moduli set such thatMi1 = nMi2 . So, throughout this paper, a set of moduli

we consider does not include such a pair of moduli in a single stage robust CRT.

From the above results, one can see that the choice of the reference remainder is important in determining the

maximal possible robustness bound forτ when the whole moduli set ofL arbitrary moduli is considered once

as above. In fact, when the moduli satisfy the constraint, i.e.,Γi are co-prime, in Proposition 2 in [12], [13], it

has been pointed out and analyzed in [13] that a proper reference remainder indeed plays an important role in

improving the performance in practice.

Going back to the necessary and sufficient condition (23), one can see that the remainder error difference

bound depends on gcd(M1,Mi), that varies with eachMi, and the choice of the reference modulusM1. This

means that for the robust reconstruction ofN , the error levels of its remainders̃ri for different i may have

different requirements. Also, as it was mentioned earlier,usingM1 as the reference modulus is not necessary.

Let us choose the reference modulusMk that satisfies

min
1≤j 6=k≤L

gcd(Mk,Mj)

4
= max

1≤i≤L
min

1≤j 6=i≤L

gcd(Mi,Mj)

4
, (29)

and the remainder error boundτk for the reference remainderrk satisfy

|∆rk| = |r̃k − rk| ≤ τk < min
1≤j 6=k≤L

gcd(Mk,Mj)

4
. (30)

Then, we have the following result.

Corollary 3: Let Mi, 1 ≤ i ≤ L, be L arbitrarily distinct positive integers as a given set of moduli and

0 ≤ N < lcm(M1,M2, · · · ,ML), define the remainder error bound forri as τi, i.e., |∆ri| = |r̃i − ri| ≤ τi for

1 ≤ i ≤ L, and the reference modulus and its corresponding remaindererror bound areMk and τk satisfying

(29) and (30) above for somek with 1 ≤ k ≤ L. If the remainder error boundτi, 1 ≤ i 6= k ≤ L, satisfies

|∆ri| = |r̃i − ri| ≤ τi ≤
gcd(Mk,Mi)

2
− min

1≤j 6=k≤L

gcd(Mk,Mj)

4
, (31)
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then, we havêni = ni for all 1 ≤ i ≤ L, i.e., the folding numbersni for 1 ≤ i ≤ L can be accurately determined.

Proof: If the reference modulus and its corresponding remainder error bound areMk andτk, 1 ≤ k ≤ L, we

just need to prove|∆ri −∆rk| < gcd(Mi,Mk)/2 for all 1 ≤ i 6= k ≤ L, which implies the sufficient condition

(23) in Theorem 1.

Since|∆ri| ≤ τi ≤
gcd(Mk,Mi)

2 − min
1≤j 6=k≤L

gcd(Mk,Mj)
4 , we have

|∆ri −∆rk| ≤ |∆ri|+ |∆rk| ≤ τi + τk <
gcd(Mk,Mi)

2
. (32)

Thus, Corollary 3 is proved.

Next, we consider the example mentioned before again.

Example 1: Let M1 = 5 · 14 = 70, M2 = 5 · 15 = 75, M3 = 5 · 16 = 80, andM4 = 5 · 18 = 90. It is easy to

see that their gcd isM = 5, and{Mi}i=1,2,3,4 do not satisfy the constraint of Propositions 1 and 2 in [12],[13].

Thus, their results can not be applied here. However, from the result of Corollary 1, we can obtain the maximal

robustness boundτ for all remainders as10/4, which is even larger than5/4, a quarter of the gcd of all the

moduli. From the result of Corollary 3, we chooseM4 as the reference modulus that does satisfy (29), and we

can get the robustness bound for each remainder as follows:τ1 ≤ 10/4, τ2 ≤ 20/4, τ3 ≤ 10/4 andτ4 < 10/4.

One can see that, if we treat remainder error bounds individually as above, the remainder error bounds for some

of the individual remainders, such as the second remainder in this example, may be larger than that in (27) in

Corollary 1 for all the remainder error levels. In addition,the robust reconstruction range ofN is also0 ≤ N <

lcm(M1,M2,M3,M4).

It is clear that when moduliΓi1 for 2 ≤ i ≤ L are co-prime similar to the case of [13], from the system of

congruences (21) in Step 4 in the above algorithm, a closed-form single stage CRT can be obtained as [13] and

we can replace Step 4 with the following Step4⋆.

• Step 4⋆: Calculaten̂1:

n̂1 =

L∑

i=2

ξ̂i1bi1
γ

Γi1
mod γ, (33)

wherebi1 is the modular multiplicative inverse ofγ/Γi1 moduloΓi1, which can be calculated in advance, and

γ = Γ21Γ31 · · ·ΓL1. After that, from (22) we can get the formulas for othern̂i for 2 ≤ i ≤ L.

Next, let us consider the result in [24]. If we consider the following special case of moduli in Corollary 3, we

can obtain a better result of the remainder error bounds thanthat in [24]. Let a set of moduli be

{M1,M2, · · · ,ML1+L2
} = {MΓ1,1,MΓ1,2, · · · ,MΓ1,L1

,MM
′

Γ2,1,MM
′

Γ2,2, · · · ,MM
′

Γ2,L2
},

whereL1 ≥ 2. Then, we have the following corollary.

Corollary 4: Assume that all theΓj,i, 1 ≤ i ≤ Lj, j = 1, 2, are pair-wisely co-prime, letΓ1,1 = Γ̇1,1M
′

, where

Γ̇1,1 is an integer, and0 ≤ N < lcm(M1,M2, · · · ,ML1+L2
). Denoteτi as the error bound for each remainder

ri for 1 ≤ i ≤ L1 + L2. If

|∆r1| ≤ τ1 < M/4,

|∆ri| ≤ τi ≤ M/4, for all 2 ≤ i ≤ L1,

|∆ri| ≤ τi ≤ MM
′

/2−M/4, for all L1 + 1 ≤ i ≤ L1 + L2,

(34)
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then with a closed-form algorithm we havêni = ni for 1 ≤ i ≤ L1 + L2, i.e., the folding numbersni for

1 ≤ i ≤ L1 + L2 can be accurately determined.

Proof: Since

min
1<j≤L1+L2

gcd(M1,Mj)

4
= max

1≤i≤L1+L2

min
1≤j 6=i≤L1+L2

gcd(Mi,Mj)

4
,

we can setM1 as the reference modulus and the error boundτ1 < min
1<j≤L1+L2

gcd(M1,Mj)
4 = M

4 in (30).

Then, from (31) when2 ≤ i ≤ L1, τi ≤ M/2 − M/4 = M/4; and whenL1 + 1 ≤ i ≤ L1 + L2, τi <

MM
′

/2−M/4. So we can accurately determine the folding numbersni for 1 ≤ i ≤ L1 +L2. Next, we can get

Γi1 = Mi

gcd(M1,Mi)
= Γ1,i for 2 ≤ i ≤ L1 andΓi1 = Γ2,i for L1 + 1 ≤ i ≤ L1 + L2, all of which are co-prime.

Thus, we can obtain a simple closed-form reconstruction formula for n̂1 similar to (33) and then̂ni by (22) for

2 ≤ i ≤ L1 + L2.

Example 2: In the above, letM = 10,M
′

= 3,Γ1,1 = 33,Γ1,2 = 31,Γ2,1 = 35,Γ2,2 = 37, and the moduli

are{M1,M2,M3,M4} = {10 · 33, 10 · 31, 30 · 35, 30 · 37}. From Corollary 4, we can getτ1 < 10/4, τ2 ≤ 10/4,

τ3 ≤ 50/4, τ4 ≤ 50/4. In addition, it has a closed-form algorithm to robustly reconstruct an unknown integerN

for 0 ≤ N < lcm(M1,M2,M3,M4). However, according to the result of [24], the remainder error bounds would

be τ1 < 10/4, τ2 < 10/4, τ3 < 30/4, τ4 < 30/4.

Interestingly, the robustness bound result in this corollary is even better than that obtained in [24] using a

two-stage robust CRT. What the result here tells us that for the set of moduli in Corollary 4, which is the set

considered in [24], it is not necessary to use a two-stage robust CRT as what is done in [24]. Another remark

we make here is that the notationτi above denotes theith remainder error bound. Later, without causing any

notational confusion,τj will denote the remainder error bound for the remainders in the j-th group.

III. M ULTI -STAGE ROBUST CRT

From the study in the previous section, one can see that the robustness bound is kind of dependent on the

gcd of the moduli. The larger the gcd is, the better the robustness bound is. However, the large gcd reduces the

lcm of the moduli, i.e., reduces the determinable range of the unknown integerN . When a set of moduli are

given, the maximal determinable range is given too, which istheir lcm. Then, the question is for a given set

of moduli, can we improve the robustness bound obtained in Corollary 1? Note that in the single stage robust

CRT obtained in the previous section, all the remainders andtheir related system of congruence equations are

considered and solved together simultaneously. A natural question is: can we split the set of moduli into several

groups so that the moduli in each group have a large gcd and remainders and their corresponding system of

congruence equations in each group are considered and solved independently using the single stage robust CRT

obtained in the previous section? If so, can we obtain a better robustness bound than that in Corollary 1 for the

single stage robust CRT? To answer these questions, let us first see an example.

Suppose that a set of moduli{180, 220, 486, 513} are given and the gcd of these4 moduli is 1. These four

moduli can be split to two groups{180, 220} and{486, 513}. The gcd of the two moduli in the first group is

M = 20 with Γ1 = 180/20 = 9, Γ2 = 220/20 = 11, and the gcd of the two moduli in the second group isM = 27

with Γ1 = 486/27 = 18, Γ2 = 513/27 = 19. One can see that each group satisfies the condition in Propositions 1
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and 2 and therefore the closed-form robust CRT in [13] or the single stage robust CRT in the previous section can

be applied for the robust reconstruction of an unknown integerN with robustness boundτ < 20/4 or τ < 27/4,

if N < lcm{180, 220} = 1980
∆
= q1 = 18 · 110 or N < lcm{486, 513} = 9234

∆
= q2 = 18 · 513, respectively.

Using the first group with moduliM1 = 180 andM2 = 220 and two remaindersr1 andr2, if the integerN

is in the range of[0, lcm(M1,M2)), thenN can be uniquely determined by its two error free remaindersr1 and

r2 asN1 with 0 ≤ N1 < q1; otherwise

N = N1 mod q1. (35)

Using two erroneous remainders̃r1 and r̃2 with error levelτ , and the closed-form robust CRT in [13] or the

single stage robust CRT in the previous section for the first group, we can obtain an integer̂N1 and

if τ < gcd(M1,M2)/4 = 20/4, then |N1 − N̂1| ≤ τ. (36)

Similarly, using the second group with moduliM3 = 486 andM4 = 513 and two remaindersr3 and r4, if

the integerN is in the range of[0, lcm(M3,M4)), thenN can be uniquely determined by its two error free

remaindersr3 andr4 asN2 with 0 ≤ N2 < q2; otherwise

N = N2 mod q2. (37)

Using two erroneous remainders̃r3 and r̃4 with error levelτ , and the closed-form robust CRT in [13] or the

single stage robust CRT in the previous section for the second group, we can obtain an integer̂N2 and

if τ < gcd(M3,M4)/4 = 27/4, then |N2 − N̂2| ≤ τ. (38)

On the other hand, if integerN is in the range of[0, lcm(M1,M2,M3,M4)) = [0, lcm(q1, q2)), it can

be uniquely determined by its four error free remaindersr1, r2, r3, r4. This can be done either from the four

remainders directly or from the two new remaindersN1 and N2 of N with two new moduliq1 and q2 with

equations (35) and (37), respectively. For the robustness,as we mentioned earlier, the closed-form robust CRT

and the results in Propositions 1 and 2 can not be applied to the four moduli and the four erroneous remainders

directly since they do not satisfy the co-prime condition. In addition, according to our single stage robust CRT in

Theorem 1 and Corollary 1 obtained in the previous section, its robustness bound would beτ < 9/4 (interestingly,

for the 4 moduli, their gcd is only1). However, using the above grouping idea, the reconstruction of N can be

done in two stages: the first stage is to reconstructN̂1 in (36) andN̂2 in (38) from the two groups, respectively;

the second stage is to reconstructN̂ from its two possibly erroneous remaindersN̂1 andN̂2 with two new moduli

q1 andq2. From the second stage, using the known robust CRT again, we obtain

if τ < gcd(q1, q2)/4 = 18/4, then, |N − N̂ | ≤ τ. (39)

Thus, we have a robust reconstruction too. In order to keep all inequalities (36), (38) and (39), one can see that

with this two-stage approach, the robustness bound on the remainder error levelτ is 18/4 which is surprisingly

even better than9/4 that is the robustness bound in Corollary 1 using the single stage robust CRT for general

moduli obtained in the previous section. This means that using two or more groups for a set of moduli may

have a better robustness bound than that using a single groupfor the whole set of moduli. Clearly, for the better

robustness, the way to group the moduli or remainders plays avery important role as one can see from the bounds
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above. Note that the robustness boundτ < 9/4 in Corollary 1 for the single stage robust CRT for the moduli set

{180, 220, 486, 513} is only half of the robustness boundτ < 18/4 for the same moduli set{180, 220, 486, 513}

but with the grouping and the two-stage approach. We next present our results for general cases. First, we consider

the case of two groups and two stages.

Let {M1,1,M1,2, · · · ,M1,L1
,M2,1,M2,2, · · · ,M2,L2

} be the whole set of moduli that may not be necessarily

all distinct. It is split to two groups with Group 1 ofL1 moduli: 0 < M1,1 < M1,2 < · · · < M1,L1
; and Gruop

2 of L2 moduli: 0 < M2,1 < M2,2 < · · · < M2,L2
. These two groups do not have to be disjoint. LetN be a

positive integer, andr1,1, r1,2, · · · , r1,L1
, r2,1, r2,2, · · · , r2,L2

be the corresponding remainders ofN , i.e.,

N = nj,iMj,i + rj,i, (40)

where 0 ≤ rj,i < Mj,i and nj,i is an unknown integer for1 ≤ i ≤ Lj, j = 1 or 2. As we know,N can

be uniquely reconstructed from itsL1 + L2 remainders if and only if0 ≤ N < lcm(δ1, δ2), where δ1
∆
=

lcm(M1,1,M1,2, · · · ,M1,L1
) andδ2

∆
= lcm(M2,1,M2,2, · · · ,M2,L2

). The congruence system (40) can be converted

into the following two-stage congruences.

For j = 1, 2, and Groupj, we can write






Nj = Kj,iMj,i + rj,i

0 ≤ Nj < δj

1 ≤ i ≤ Lj.

(41)

Then, the aboveN1 andN2 can be combined to form a new system of congruences:






N = l1δ1 +N1

N = l2δ2 +N2

0 ≤ N < lcm(δ1, δ2) .

(42)

Whenδ1 = δ2, the two congruence equations are degenerated to a single equation and without loss of generality,

we assumeδ1 6= δ2 here and such a similar degenerated case is not considered either in what follows in this

paper. ReplacingN1 andN2 in (42) by equations (41), we have






N = l1δ1 +K1,iM1,i + r1,i, 1 ≤ i ≤ L1

N = l2δ2 +K2,iM2,i + r2,i, 1 ≤ i ≤ L2

0 ≤ N < lcm(δ1, δ2) .

(43)

It is not hard to see that

N = ljδj +Kj,iMj,i + rj,i = (lj
δj
Mj,i

+Kj,i)Mj,i + rj,i,

where

Kj,i <
δj
Mj,i

for 1 ≤ i ≤ Lj, j = 1 or 2. Clearly,

nj,i = lj
δj
Mj,i

+Kj,i, 1 ≤ i ≤ Lj , j = 1, 2.
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From the known values of all the moduli{Mj,i} and all the erroneous remainders{r̃j,i}, if we can accurately

determineKj,i and lj , then we can accurately determinenj,i. Thus, we propose the following algorithm to

robustly reconstructN , called two-stage robust CRT, when the remainders are erroneous.

• Step 1: Following the single stage robust CRT algorithm of Steps 1-5in Section II, calculateK̂j,i for

1 ≤ i ≤ Lj in the system of congruence equations (41) from erroneous remainders{r̃i} for eachj = 1, 2.

• Step 2: After obtainingK̂j,i for 1 ≤ i ≤ Lj, j = 1, 2, calculate the average estimatêNj of Nj for j = 1, 2

by equations (3) and (4):

N̂j =




1

Lj

Lj∑

i=1

(K̂j,iMj,i + r̃j,i)



 , (44)

where[·] stands for the rounding integer (5).

• Step 3: TreatingN̂1 and N̂2 as the new erroneous remainders in the system of congruence equations (42)

and following the single stage robust CRT algorithm Steps 1-5 in Section II again, we calculatêl1 and l̂2.

• Step 4: Calculaten̂j,i for 1 ≤ i ≤ Lj andj = 1, 2:

n̂j,i = l̂j
δj
Mj,i

+ K̂j,i. (45)

• Step 5: Calculate the average estimatêN of the unknown integerN :

N̂ =

[

1

L1 + L2

(
L1∑

i=1

(n̂1,iM1,i + r̃1,i) +

L2∑

i=1

(n̂2,iM2,i + r̃2,i)

)]

, (46)

where[·] stands for the rounding integer (5).

Then, we have the following result. Forj = 1, 2, let τj denote the error level of the remaindersrj,i in the j-th

group, i.e.,

|∆rj,i| = |r̃j,i − rj,i| ≤ τj ,

for 1 ≤ i ≤ Lj and

Gj = max
1≤i≤Lj

min
1≤q 6=i≤Lj

gcd(Mj,i,Mj,q)

4
.

Let

G =
gcd(δ1, δ2)

4
.

In the above, when the j-th group has only one modulusMj,1, thenGj = Mj,1

4 and the corresponding lcm,δj ,

is justMj,1.

Theorem 2: If

|△rj,i| ≤ τj < min(Gj , G), for all 1 ≤ i ≤ Lj andj = 1, 2, (47)

then, we can accurately determine the folding numbersn̂j,i = nj,i for 1 ≤ i ≤ Lj , j = 1, 2, and the average

estimateN̂ of the unknown integerN in (46) satisfies

|N̂ −N | ≤

[
L1τ1 + L2τ2
L1 + L2

]

, (48)

where[·] stands for the rounding integer (5).
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Proof: For j = 1, 2, according to Corollary 1, when|∆rj,i| ≤ τj < Gj , we can accurately determineKj,i

in the systems of congruence equations (41):

Kj,i = K̂j,i, for 1 ≤ i ≤ Lj . (49)

Furthermore, for the average estimatesN̂1 andN̂2 in (44) in Step 2 above, we have

|∆Nj| = |Nj − N̂j| ≤ τj,

which keeps the same error level as the remaindersrj,i for 1 ≤ i ≤ Lj, j = 1, 2.

In the second stage (42),̂N1 and N̂2 become the erroneous remainders. To accurately determinel1 and l2,

according to Proposition 2 or Corollary 1, the error levels should satisfyτ1 < G =
gcd(δ1,δ2)

4 and τ2 < G =
gcd(δ1,δ2)

4 , then

lj = l̂j , for j = 1, 2. (50)

Thus, combining with the first stage, we have the conditionτ1 < min(G1, G) and τ2 < min(G2, G) so that

Kj,i = K̂j,i and lj = l̂j for 1 ≤ i ≤ Lj, j = 1, 2. Namely, we havenj,i = n̂j,i from (45).

After we accurately determine the folding numbersnj,i = n̂j,i for 1 ≤ i ≤ Lj, j = 1, 2, we can get the average

estimateN̂ in (46) of the unknown integerN , i.e.,

N̂ =

[

1

L1 + L2

(
L1∑

i=1

(n̂1,iM1,i + r̃1,i) +

L2∑

i=1

(n̂2,iM2,i + r̃2,i)

)]

= N +

[

1

L1 + L2

(
L1∑

i=1

(∆r1,i) +

L2∑

i=1

(∆r2,i)

)]

.

(51)

From |∆rj,i| ≤ τj for 1 ≤ i ≤ Lj for j = 1, 2, we can easily obtain

|N̂ −N | ≤

[
L1τ1 + L2τ2
L1 + L2

]

. (52)

Therefore the proof is completed.

The above results for two groups of moduli can be easily generalized to a general number of groups of moduli

by using Corollary 1 twice for the two stages of the congruence equations as follows.

Assume there ares groups of moduli withs > 2. For every1 ≤ j ≤ s, the elements in the j-th group are

denoted as0 < Mj,1 < Mj,2 < · · · < Mj,Lj
, let δj

∆
= lcm

(
Mj,1,Mj,2, · · · ,Mj,Lj

)
andτj denote the error level

of the remaindersrj,i, 1 ≤ i ≤ Lj, from the moduli in the j-th group, and when the j-th group hasmore than

one element, define

Gj = max
1≤i≤Lj

min
1≤q 6=i≤Lj

gcd(Mj,i,Mj,q)

4
. (53)

If the j-th group has only one element,Mj,1, defineGj =
Mj,1

4 . Let

G = max
1≤i≤s

min
1≤q 6=i≤s

gcd(δi, δq)
4

. (54)

Then, we have the following result.

Theorem 3: If

|△rj,i| ≤ τj < min(Gj , G), for all 1 ≤ i ≤ Lj and1 ≤ j ≤ s, (55)
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then, we can accurately determine the folding numbersn̂j,i = nj,i for 1 ≤ i ≤ Lj and1 ≤ j ≤ s, thus we can

robustly reconstruct̂N as an estimate ofN when0 ≤ N < lcm(δ1, δ2, · · · , δs):

N̂ =




1

∑s
j=1 Lj

s∑

j=1

Lj∑

i=1

(n̂j,iMj,i + r̃j,i)



 , (56)

and

|N̂ −N | ≤

[∑s
j=1 Ljτj
∑s

j=1 Lj

]

. (57)

Proof: The proof is similar to the proof of Theorem 2. In the first stage, via (55) we can accurately determine

the folding numbersKj,i for 1 ≤ i ≤ Lj , 1 ≤ j ≤ s, and obtain the robust estimateŝNj of Nj for the j-th group

with the error bound|N̂j −Nj| ≤ τj < min(Gj , G), where0 ≤ Nj < δj for all 1 ≤ j ≤ s.

Then, in the second stage we take these estimatesN̂j as erroneous remainders andδj as moduli for1 ≤ j ≤ s

to form a new congruence system. Applying the result of Corollary 1 again, we can accurately determine the

unknown folding numberslj for 1 ≤ j ≤ s. By that, we can accurately determinenj,i for 1 ≤ i ≤ Lj with

1 ≤ j ≤ s.

Lastly, once we get the accurate values ofnj,i, the average estimatêN of N can be found. The error bound

of N is proved similar to Theorem 2. Hence, the theorem is proved.

Similar to Corollary 3 for the single stage robust CRT, in thesecond stage with moduliδj and erroneous

remaindersN̂j for 1 ≤ j ≤ s, we can also individually consider the remainder error level for each remainder̂Nj

with respect to modulusδj and have the following result.

Corollary 5: Assume that the reference modulus isδk for somek with 1 ≤ k ≤ s, which satisfies

G = min
1≤q 6=k≤s

gcd(δk, δq)
4

= max
1≤i≤s

min
1≤q 6=i≤s

gcd(δi, δq)
4

and its corresponding remainder error boundτk < G. If

|△rk,i| ≤ τk < min(Gk, G), for all 1 ≤ i ≤ Lk, (58)

|△rj,i| ≤ τj < min(Gj ,
gcd(δj , δk)

2
−min(Gk, G)), for all 1 ≤ i ≤ Lj and1 ≤ j 6= k ≤ s, (59)

then we can accurately determine the folding numbersn̂j,i = nj,i for 1 ≤ i ≤ Lj and1 ≤ j ≤ s.

Example 3: Given three groups of moduli:{26 · 5, 26 · 6}, {27 · 7, 27 · 13}, and{28 · 15, 28 · 11}. We can get

G1 = 26/4, G2 = 27/4, G3 = 28/4 andG = 21/4. So, from Theorem 3, we obtain the robustness bounds:

τ1 < min(G1, G) = 21/4, τ2 < min(G2, G) = 21/4 and τ3 < min(G3, G) = 21/4. If we use the result of

Corollary 5, we can get a better error bound for some groups asfollows: τ1 ≤ 26/4, τ2 ≤ 21/4 andτ3 < 21/4.

For a given set ofL moduli Mi, 1 ≤ i ≤ L, there are many different grouping methods of the remainders,

and therefore, many ways to robustly reconstruct the unknown integer from its erroneous remainders. Let us see

an example.

Example 4: Consider the moduli set{M1,M2,M3,M4} = {48 · 4, 48 · 3, 56 · 3, 56 · 2}. First, consider all

the moduli as a single group and we obtain the robustness bound 24/4 according to Corollary 1. Second, we

group the four moduli into two groups{48 · 4, 48 · 3} and {56 · 3, 56 · 2} with G1 = 48/4, G2 = 56/4 and

G =
gcd(δ1,δ2)

4 = 48/4 in Theorem 2. Accordingly, the robustness bound in this caseis τ1 < 48/4 andτ2 < 48/4.
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Lastly, if we group the four moduli into another two groups{48 · 4, 56 · 2} and{48 · 3, 56 · 3} with G1 = 16/4,

G2 = 24/4 andG = 336/4, then, the robustness bound in this case isτ1 < 16/4 andτ2 < 24/4.

From this example, we can see that different grouping methods lead to different robustness bounds. Compared

with the robustness bound by using a single stage robust CRT for the whole set of moduli, sometimes a grouping

can enlarge the robustness bound while sometimes a groupingmay decrease the robustness bound. Thus, another

question is whether there exists a proper grouping method toensure the robustness bound larger than that in

Corollary 1 using the single stage robust CRT. We next present a result that tells us when there exists a grouping

method with a better robustness bound for remainders in somegroups using a two-stage robust CRT than that

using the single stage robust CRT.

Corollary 6: For a given set ofL moduli {Mi, i = 1, · · · , L}, the robustness bound can not be enlarged for

remainders in any group by using a two-stage robust CRT with agrouping method of the moduli if and only if

it is the case of [13], i.e., the remaining factorsΓi of the moduliMi = MΓi divided by their gcdM , 1 ≤ i ≤ L,

are co-prime.

Proof: It is easy to prove the sufficiency as follows. When the moduliMi satisfy the constraint in [13], i.e.,

Γi are co-prime, its robustness bound using the single stage robust CRT with a single group moduli isM/4. On

the other hand, from Theorem 3, eachGj of any grouping andG are bothM/4. Hence, we cannot enlarge the

robustness bound in this case.

We next prove the necessity. Assume that the robustness bound for remainders in any group can not be enlarged

by the two-stage robust CRT with a grouping method of the moduli over the robustness bound of the single stage

robust CRT of the whole set of the moduli. Denote gcd(Mi,Mq) = miq. Without loss of generality, we can

assume
m1L

4
=

gcd(M1,ML)

4
= max

1≤i≤L
min

1≤q 6=i≤L

gcd(Mi,Mq)

4
,

and

m12 ≥ m13 ≥ · · · ≥ m1L.

Thus, according to Corollary 1, its robustness bound using the single stage robust CRT with a single group

moduli ism1L/4. We then have the following two cases.

Case I: There exists oneq with 2 ≤ q < L such that

m12 ≥ · · · ≥ m1q > m1(q+1) ≥ · · · ≥ m1L.

If we group the moduli as Group 1:{M1, · · · ,Mq}; and Group 2:{M1,Mq+1, · · · ,ML}. With this grouping,

we have thatG1 > m1L/4 and G2 ≥ m1L/4, G ≥ M1/4 > m1L/4. Thus, we obtainτ1 < min{G1, G},

τ2 < min{G2, G}, wheremin{G1, G} > m1L/4 = τ , which contradicts with the assumption that we cannot

enlarge the robustness bound for the remainders in Group 1 using a two-stage robust CRT. This proves that

m12 = m13 = · · · = m1L.

Case II: Under the condition ofm12 = m13 = · · · = m1L = M , we know that anymiq = gcd(Mi,Mq) ≥ M ,

sinceM is a factor of all the moduliMi. Suppose that there exists onemiq > M with q 6= i 6= 1. We can

group the moduli as Group 1:{Mi,Mq}, and Group 2:{Mi, {Mi1}i1 6=q or i}. Similar to Case I,G1 > M/4,
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G2 ≥ M/4 andG ≥ Mi/4 > M/4. So, we can enlarge the robustness bound for the remainders in Group 1 by

using the two-stage robust CRT with this grouping. This alsocontradicts with the assumption.

From the above two cases we conclude thatmiq = M for all 1 ≤ i 6= q ≤ L, i.e., it is the case of [13].

Now, we give an explicit example. Suppose that there are a setof moduli with the form of{M1K1,M2K1,M2K2,

M2K3}, whereM1,K1,K2,K3 are co-prime. According to Corollary 1, the robustness bound using the sin-

gle stage robust CRT isτ < min (M2,K1gcd(M1,M2)) /4. If the moduli are grouped into two groups as

{M1K1,M2K1} and {M2K1,M2K2,M2K3}. Then, according to Theorem 2, its robustness bound isτ1 <

K1gcd(M1,M2) /4 andτ2 < M2/4, one of which is greater than the robustness boundmin(M2,K1gcd(M1,

M2))/4 whenM2 6= K1gcd(M1,M2).

Example 5: Let M1 = 8, M2 = 14, K1 = 3, K2 = 5, andK3 = 7. Then we can calculateτ1 < 6/4 and

τ2 < 14/4 from the two-stage robust CRT. One can see thatτ2 < 14/4 is significantly greater thanτ < 6/4

using the single stage robust CRT.

From Corollary 6, one can see that as long asΓi in moduli Mi are not all co-prime, using a two-stage robust

CRT with some grouping method has a larger robustness bound for remainders in some groups than the single

stage robust CRT does. In the same way, we may treat{δ1, δ2, · · · , δs} as a new set of moduli and group it again

so that the single stage robust CRT is applied three times with the following result. We call it three-stage robust

CRT.

Let us split{δ1, δ2, · · · , δs} in Theorem 3 tok groups. For every1 ≤ t ≤ k, the elements in the t-th group

are denoted as0 < δt,1 < · · · < δt,yt
, let ξt

∆
= lcm(δt,1, · · · , δt,yt

) and define

Υt = max
1≤i≤yt

min
1≤q 6=i≤yt

gcd(δt,i, δt,q)
4

.

Let

Υ = max
1≤i≤k

min
1≤q 6=i≤k

gcd(ξi, ξq)
4

.

We then have the following result.

Theorem 4: If

|△rj,i| ≤ τj < min(Gj ,min
t
{Υt : δj ∈ {δt,1, · · · , δt,yt

}},Υ), for all 1 ≤ i ≤ Lj, 1 ≤ j ≤ s and1 ≤ t ≤ k,

(60)

then, we can accurately determine the folding numbersn̂j,i = nj,i for 1 ≤ i ≤ Lj and1 ≤ j ≤ s, thus we can

robustly reconstruct̂N as an estimate ofN when0 ≤ N < lcm(δ1, δ2, · · · , δs):

N̂ =




1

∑s
j=1 Lj

s∑

j=1

Lj∑

i=1

(n̂j,iMj,i + r̃j,i)



 , (61)

and

|N̂ −N | ≤

[∑s
j=1 Ljτj
∑s

j=1 Lj

]

. (62)

Proof: The congruence system

N = nj,iMj,i + rj,i,

where0 ≤ rj,i < Mj,i for 1 ≤ i ≤ Lj, 1 ≤ j ≤ s and0 ≤ N < lcm(δ1, δ2, · · · , δs), can be converted into the

following three-stage congruences.
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For 1 ≤ j ≤ s, and Groupj in the first stage, we can write






Nj = Kj,iMj,i + rj,i

0 ≤ Nj < δj

1 ≤ i ≤ Lj.

(63)

In the second stage, 





Pt = Ht,iδt,i +Nt,i

0 ≤ Pt < ξt

1 ≤ i ≤ yt

1 ≤ t ≤ k.

(64)

Then, in the third stage, we can write






N = ltξt + Pt

0 ≤ N < lcm(ξ1, · · · , ξk)

1 ≤ t ≤ k.

(65)

As long as we can accurately determine all ofKj,i, Ht,i and lt in each congruence system, we can then

accurately determinenj,i. According to conditions (60), we can accurately determineKj,i for 1 ≤ i ≤ Lj,

1 ≤ j ≤ s and get the error bound

|N̂j −Nj| ≤ τj < min(Gj ,min
t
{Υt : δj ∈ {δt,1, · · · , δt,yt

}},Υ).

Next, in each group of the second stage we take these estimates N̂j as erroneous remainders andδj as moduli.

Applying the result of Corollary 1, we can accurately determineHt,i, and also get the robust estimateP̂t satisfying

|P̂t − Pt| < min(Gj ,min
t
{Υt : δj ∈ {δt,1, · · · , δt,yt

}},Υ).

Similarly, treat the estimateŝPt as the erroneous remainders andξt as moduli in the third stage. Since|P̂t−Pt| <

Υ, from Corollary 1 again, we can accurately determinelt. Once we accurately determine these unknown folding

numbers in each congruence system, we can accurately determine nj,i and then obtain the robust estimatêN of

the unknown integerN . As for the error bound of the estimatêN , the proof is the same to that of Theorem 2.

Therefore, we complete the proof.

Example 6: Consider a given set of moduli{96 · 2, 96 · 3, 72 · 3, 72 · 5, 64 · 5, 64 · 7}. Treating them as one

group and using the single robust CRT, we get its error boundτ for the remainders satisfyingτ < 32/4. If we

split the moduli to three groups:{96 ·2, 96 ·3}, {72 ·3, 72 ·5} and{64 ·5, 64 ·7}, we getG1 = 96/4, G2 = 72/4,

G3 = 64/4, δ1 = 96 · 2 · 3, δ2 = 72 · 3 · 5, δ3 = 64 · 5 · 7 andG = 64/4. By using the two-stage robust CRT, we

can get the error boundsτj for the remainders in Groupj for j = 1, 2, 3 satisfyingτ1 < min(G1, G) = 64/4,

τ2 < min(G2, G) = 64/4 and τ3 < min(G3, G) = 64/4, all of which are larger than the bound32/4 in the

single robust CRT. If we use the three-stage robust CRT and split {δ1, δ2, δ3} to two groups again:{δ1, δ2}

and {δ3}. We can getΥ1 = 72/4, Υ = 320/4. So, in this three-stage robust CRT, the error bounds satisfy

τ1 < min(G1,Υ1,Υ) = 72/4, τ2 < min(G2,Υ1,Υ) = 72/4 andτ3 < min(G3,Υ) = 64/4. Compared with the

two-stage robust CRT, we increase the robustness bounds in Group 1 and Group2 from 64/4 to 72/4 by using

the three-stage robust CRT.
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The above three-stage robust CRT can be easily generalized to a multi-stage robust CRT with more than three

stages. Although we can use a multi-stage robust CRT with some grouping methods to obtain a larger robustness

bound for remainders in some groups, there are some challenges about how to choose moduli in a group and

how many groups and stages we should split in order to find a better robustness bound such that we can enlarge

all the robustness bounds in every group.

Let us first look at the simplest case when there are only threemoduli {M1,M2,M3}. Without loss of

generality, we can assume that gcd(M1,M2) ≥ gcd(M1,M3) ≥ gcd(M2,M3). Regarding the three moduli as

one group and by Corollary 1, the robustness bound is gcd(M1,M3) /4. Since gcd(M3,M2) ≤ gcd(M3,M1), if

we want to obtain a robustness bound strictly larger than gcd(M1,M3) /4, the modulusM3 must independently

form an individual group by itself, and in the meantime it does not allow other groups to includeM3. Thus,

there is only one possible grouping method as{M3} and {M1,M2}. The robustness bound therein isτ1 <

gcd(M3, lcm (M1,M2)) /4 andτ2 < min (gcd(M1,M2) ,gcd(M3, lcm (M1,M2))) /4, which may be both larger

than gcd(M1,M3) /4. Otherwise, we have to group them as{M1,M3} and{M1,M2} and in this way we may

only enlarge one group’s (not all group’s) robustness boundas what is used in the proof of Corollary 6.

Example 7: WhenM1 = 560,M2 = 480 andM3 = 210, we can see that gcd(M1,M2) = gcd(560, 480) = 80,

gcd(M1,M3) = gcd(560, 210) = 70 and gcd(M2,M3) = gcd(480, 210) = 30. Regarding these three moduli as

a single group, the robustness bound of the single stage robust CRT is gcd(M1,M3) /4 = gcd(560, 210) /4 =

70/4. In order to find a larger robustness bound, we just only consider the robustness bound of the case of two

groups:{M3} and{M1,M2}. We can getτ1 < 210/4 andτ2 < 80/4, which are all larger than70/4.

The above special case is about only three moduli’s grouping. When the number of given moduli is larger, it

becomes more complicated. In the next section, we analyze some special cases.

IV. A N ALGORITHM FOR GROUPING MODULI IN TWO-STAGE ROBUST CRT

From the above study, one may see that for a given set of moduli, although its determinable range for an integer

from its remainders is fixed, i.e., the lcm of all the moduli, the robustness bounds for an erroneous remainder

and a reconstructed integer depend on a reconstruction algorithm from erroneous remainders, which depends on

the grouping of the moduli in a multi-stage robust CRT. For a general set of moduli, it is not obvious on how

to group them in a multi-stage (or even two-stage) robust CRT, in particular when the number of moduli is not

small. In this section, based on Theorem 3 for the two-stage robust CRT, we propose an algorithm for grouping

a general set of moduli to possibly obtain a larger robustness bound for remainders in every group than that in

Corollary 1 for the single stage robust CRT.

For a given set of moduliM = {M1,M2, · · · ,ML}, L ≥ 3, we first assume that the set of moduli does not

include any pair ofMi1 andMi2 satisfyingMi1 = nMi2 , because Corollary 2 has told us that such a redundant

modulusMi2 does not help to increase the determinable range ofN , 0 ≤ N < lcm(M1,M2, · · · ,ML) nor the

robustness bound in a single stage robust CRT. From condition (55) we need to assure that allGj in (53) andG

in (54) after a grouping strictly greater thanΘ
∆
= max

1≤i≤L
min

1≤j 6=i≤L

gcd(Mi,Mj)
4 in Corollary 1 for the single stage

robust CRT. Then, we have an algorithm as follows.

1) For eachMi, 1 ≤ i ≤ L, find all Mj , 1 ≤ j 6= i ≤ L, satisfying gcd(Mj ,Mi)
4 > Θ. With Mi, form the
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corresponding setMi:

Mi = {Mi,Mj :
gcd(Mj ,Mi)

4
> Θ}.

Thus, with each setMi, we have

Gi ≥ min
Mj∈Mi

gcd(Mj ,Mi)

4
> Θ.

If modulusMi satisfiesgcd(Mj ,Mi)
4 ≤ Θ for all Mj , 1 ≤ j 6= i ≤ L, then we letMi = {Mi}.

2) Among all of theL setsMi for 1 ≤ i ≤ L, there may be one or more pairs,Mi1 andMi2 , satisfying

Mi1 ⊆ Mi2 . In this case, we can delete the smaller setMi1 and only keep the larger setMi2 .

3) After Step 2), from the remaining sets of{Mi}, we find all such combinations of{Mi1 ,Mi2 , · · · ,Mil}

that
l⋃

j=1
Mij exactly includes all moduliM. In other words, if anyoneMis for 1 ≤ s ≤ l is deleted from

a combination{Mi1 ,Mi2 , · · · ,Mil}, then
l⋃

j=1&j 6=s

Mij is a proper subset ofM, i.e.,

M 6=

l⋃

j=1&j 6=s

Mij ⊂ M ⊆

l⋃

j=1

Mij . (66)

4) As for every combination in the above, treat eachMij as a small group and calculate its lcm asδij ,

1 ≤ j ≤ l. Then, check whether

G = max
1≤p≤l

min
1≤q 6=p≤l

gcd
(
δip , δiq

)

4
> Θ. (67)

If there is one combination{Mij} as above to make inequality (67) hold, then everymin(Gij , G), 1 ≤ j ≤ l,

is strictly greater thanΘ. According to (55) in Theorem 3, one can see that this combination is just a grouping

as desired and it enlarges a robustness bound for remaindersin every group by using the two-stage robust

CRT. Otherwise, if for every possible combination in Step 3), inequality (67) does not hold, then it is said

that we fail to use this algorithm to enlarge a robustness bound for remainders in every group by using the

two-stage robust CRT.

Let us first consider the above grouping algorithm for the case of [13], i.e., the remaining factorsΓi of the

moduli Mi = MΓi divided by their gcdM , 1 ≤ i ≤ L, are co-prime. First, we find allMi = {Mi}, 1 ≤ i ≤ L.

Next, there is only one combination{M1,M2, · · · ,ML} satisfying (66), and we treat eachMi = {Mi} as one

group, then calculateG = M/4 in (67), which equals toΘ = M/4. In conclusion, we fail to find a grouping to

enlarge a robustness bound for remainders in every group by using the two-stage robust CRT, which can be also

confirmed from the earlier result in Corollary 6. Next, we give a positive example.

Example 8: Consider a set of moduli{210M, 143M, 77M, 128M, 81M, 125M, 169M}, whereM is an in-

teger. As one group, using the single stage robust CRT, its robustness bound isΘ = M/4. According to the

above grouping algorithm, find7 sets:M1 = {210M, 77M, 128M, 81M, 125M}, M2 = {143M, 77M, 169M},

M3 = {77M, 210M, 143M}, M4 = {128M, 210M}, M5 = {81M, 210M}, M6 = {125M, 210M} and

M7 = {169M, 143M}. Among them, there are only four combinations satisfying (66) as follows:{M1,M2},

{M1,M7}, {M2,M4,M5,M6} and {M3,M4,M5,M6,M7}. Then, check whether one of the above four

combinations satisfies inequality (67). Fortunately, for the first combination{M1,M2}, inequality (67) holds.
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We can calculateG1 = 2M/4, G2 = 11M/4 andG = 7M/4, all of which are strictly greater thanM/4. Thus,

we have obtained a grouping method of the moduli to enlarge a robustness bound for remainders in every group

by using the two-stage robust CRT.

Remark 2: As one can see in the proof of Corollary 6 and in the above algorithm and examples, a modulus

Mi may be repeatedly used in more than one groups in the two-stage robust CRT. Its aim is to makeG and

Gj after grouping greater than or equal to the robustness boundby using the single stage robust CRT for the

whole set of moduli. Recall the case of grouping a set of threemoduli {M1,M2,M3}. Assume gcd(M1,M2) >

gcd(M1,M3) > gcd(M2,M3). From Corollary 1, the robustness bound for using the singlerobust CRT is
gcd(M1,M3)

4 . According to the above grouping moduli algorithm in two-stage robust CRT, they are split to two

groups:{M1,M2} and {M3}. One can see thatG1 =
gcd(M1,M2)

4 , G2 = M3

4 , δ1 = lcm(M1,M2), δ2 =

M3 and G =
gcd(δ1,δ2)

4 . In this grouping method, the robustness bound for remainders in group{M1,M2}

is min(G1, G) and the robustness bound for remainders in group{M3} is min(G2, G). As G1 and G2 are

greater thangcd(M1,M3)
4 , a robustness bound for remainders in each group depends on the value ofG. When

G =
gcd(δ1,δ2)

4 is less thangcd(M1,M3)
4 , a robustness bound for remainders in each group is worse than that for the

single robust CRT. Thus, we should repeat modulusM1 in group{M3}, and the two groups become{M1,M2}

and{M1,M3}. In this way, we enlarge a robustness bound for group{M1,M2} and keep the robustness bound

for group{M1,M3} non-changed. On the other hand, whenG =
gcd(δ1,δ2)

4 is larger thangcd(M1,M3)
4 , we do not

need to repeat modulusM1, since the robustness bound for group{M1,M2} and the robustness bound for group

{M3} are both greater thangcd(M1,M3)
4 . This example tells us that, to enlarge the robustness bound, whether a

modulusMi is repeatedly used or not in multiple groups depends on the grouping method and the set of moduli.

Repeating a modulus, sometimes, may help to enlarge the robustness bound but sometimes may not.

V. SIMULATIONS

In this section, we present some simple simulation results to evaluate the proposed single stage robust CRT

algorithm and the two-stage robust CRT algorithm for integers with a general set of moduli. Let us first consider

the case whenM1 = 9 ·15, M2 = 9 ·20 andM3 = 9 ·18. These three moduli do not satisfy the condition thatΓi,

i = 1, 2, 3, are co-prime and thus the robust CRT obtained in [12], [13] can not be applied directly. However, we

can use our proposed single stage robust CRT. According to Corollary 1, the maximal range of the determinable

N is 1620 and the maximal remainder error levelτ for the robustness is upper bounded byτ < 27
4 from (27).

In this simulation, the unknown integerN is uniformly distributed in the interval[0, 1620). We consider the

maximal remainder error levelsτ = 0, 1, 2, 3, 4, 5, 6, and the errors are also uniformly distributed on[0, τ ] in the

remainders.2000000 trials for each of them are implemented. The mean errorE(|N̂−N |) between the estimated

N̂ in (4) and the trueN is plotted by the solid line marked with�, and the theoretical estimation error upper

bound in (6) is plotted by the solid line marked with△ in Fig. 1. Obviously, one can see that for a general set

of moduli the reconstruction errors ofN from the erroneous remainders are small compared to the range of N .

Next, we compare the robustness between the single stage andthe two-stage robust CRT algorithms for the

above same set of moduli. In this case, the conditions of the maximal remainder error levels for the single stage

and the two-stage robust CRT algorithms of two groups{M1,M2} and {M3} are 27
4 and 45

4 , i.e., τ ≤ 6 and
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11, respectively. Let us consider the maximal remainder errorlevelsτ from 0 to 25, and2000000 trials for each

of them. The unknown integerN is taken as before. Fig. 2 shows the curves of the error boundsand the mean

estimation errorsE(|N̂ −N |) for both the single stage and the two-stage robust CRT algorithms. Note that from

our single stage robust CRT theory, the valid error bound forτ is only upto 6, which can be seen from the

simulation results that the mean estimation errorE(|N̂ −N |) starts to deviate the previous line trend atτ = 7,

then increases significantly and breaks the linear error bound whenτ is further greater, i.e., robust reconstruction

may not hold. On the other hand, with the two-stage robust CRTalgorithm, one can see that the curve of the

mean estimation errorE(|N̂ −N |) is always below the curve of the error bound, i.e., we can robustly reconstruct

N , 0 ≤ N < 1620, even when the maximal error level is11 that is the upper bound forτ obtained in this paper

for the two-stage robust CRT algorithm. These simulation results confirm the theory obtained in this paper.

VI. CONCLUSION

In this paper, we considered the robust reconstruction problem from erroneous remainders, namely robust CRT

problem, for a general set of moduli that may not satisfy the condition needed in the previous robust CRT studies

in [12], [13]. We obtained a necessary and sufficiency condition for the robust CRT when all the erroneous

remainders are used together, called single stage robust CRT. Interestingly, our proposed single stage robust CRT

may have better robustness than that of the robust CRT obtained in [12], [13] even when it could be applied.

To further improve the robustness, we then proposed a multi-stage robust CRT, where the moduli are grouped

into several groups. As an example, for the two-stage robustCRT, our proposed single stage robust CRT is first

applied to each group and then applied across the groups second time. Also, an algorithm on how to group a

given set of moduli was proposed. We finally presented some simulations to verify our proposed theory.
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Fig. 1. Mean estimation error and theoretical error bound using the single stage robust CRT
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