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Abstract—High-resolution parameter estimation algorithms
designed to exploit the prior knowledge about incident signals
from strictly second-order (SO) non-circular (NC) sourcesallow
for a lower estimation error and can resolve twice as many
sources. In this paper, we derive theR-D NC Standard ESPRIT
and the R-D NC Unitary ESPRIT algorithms that provide
a significantly better performance compared to their original
versions for arbitrary source signals. They are applicableto
shift-invariant R-D antenna arrays and do not require a centro-
symmetric array structure. Moreover, we present a first-order
asymptotic performance analysis of the proposed algorithms,
which is based on the error in the signal subspace estimate
arising from the noise perturbation. The derived expressions for
the resulting parameter estimation error are explicit in the noise
realizations and asymptotic in the effective signal-to-noise ratio
(SNR), i.e., the results become exact for either high SNRs ora
large sample size. We also provide mean squared error (MSE)
expressions, where only the assumptions of a zero mean and finite
SO moments of the noise are required, but no assumptions about
its statistics are necessary. As a main result, we analytically prove
that the asymptotic performance of bothR-D NC ESPRIT-type
algorithms is identical in the high effective SNR regime. Finally, a
case study shows that no improvement from strictly non-circular
sources can be achieved in the special case of a single source.

Index Terms—Unitary ESPRIT, non-circular sources, perfor-
mance analysis, DOA estimation.

I. I NTRODUCTION

ESTIMATING the parameters of multidimensional (R-D)
signals with R ≥ 1, e.g., their directions of arrival,

frequencies, Doppler shifts, etc., has long been of great re-
search interest, given its importance in a variety of applications
such as radar, sonar, channel sounding, and wireless commu-
nications. Among other subspace-based parameter estimation
schemes (see [1], [2]),R-D Standard ESPRIT [3],R-D Uni-
tary ESPRIT [4], [5], and their tensor extensionsR-D Standard
Tensor-ESPRIT andR-D Unitary Tensor-ESPRIT [6] are some
of the most valuable estimators due to their high resolution
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and their low complexity. However, these methods assume
arbitrary source signals and do not take prior knowledge such
as the second-order (SO) non-circularity of the received signals
into account. With the growing popularity of subspace-based
parameter estimation algorithms, their performance analysis
has attracted considerable attention. The two most prominent
performance assessment strategies have been proposed in [7]
and [8]. The concept in [7] and the follow-up papers [9]–
[11] analyze the eigenvector distribution of the sample covari-
ance matrix, originally proposed in [12]. However, it requires
Gaussianity assumptions on the source symbols and the noise,
and is only asymptotic in the sample sizeN . In contrast, [8]
and its extensions [13], [14] provide an explicit first-order
approximation of the estimation error caused by the perturbed
subspace estimate due to a small additive noise contribution.
It directly models the leakage of the noise subspace into the
signal subspace. Unlike [7], this approach is asymptotic inthe
effective signal-to-noise ratio (SNR), i.e., the results become
accurate for either high SNRs or a large sample sizeN . Thus,
it is even valid for the single snapshot caseN = 1 if the SNR
is sufficiently high. Furthermore, as it is explicit in the noise
realizations, no assumptions about the statistics of the signals
or the noise are necessary. However, for the mean squared
error (MSE) expressions in [8], a circularly symmetric noise
distribution is assumed. In [15] and [16], we have derived new
MSE expressions that only require the noise to be zero-mean
with finite SO moments regardless of its statistics and extended
the framework of [8] to the case ofR-D parameter estimation.
Further extensions of these results for the perturbation analyses
of Tensor-ESPRIT-type algorithms have been presented in [17]
and [18], respectively. The special case of the performance
assessment for a single source was considered in [7] and
the asymptotic efficiency of MUSIC and Root-MUSIC was
presented in [19] and [20], respectively. However, these results
are asymptotic in the sample sizeN or even in the number
of sensorsM . The results presented here are also accurate for
small values ofM and asymptotic in the effective SNR.

Recently, a number of improved high-resolution subspace-
based parameter estimation schemes have been proposed for
strictly non-circular (NC) sources. These include NC MU-
SIC [21], NC Root-MUSIC [22], 1-D NC Standard ESPRIT
[23], and 2-D NC Unitary ESPRIT [24]. Unlike the original
parameter estimation methods, they exploit prior knowledge
about the signals’ SO statistics, i.e., their strict SO non-
circularity [25]. Examples of such signals include BPSK,
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Offset-QPSK, PAM, and ASK-modulated signals. By applying
a preprocessing procedure similar to the concept of widely-
linear processing [25], the array aperture is virtually doubled,
which results in a significantly reduced estimation error and
the ability to resolve twice as many sources [24]. Some
potential applications are wireless communications, cognitive
radio, etc., when strictly non-circular sources are known to be
present, and radar, tracking, channel sounding, etc., where the
signals can be designed as strictly non-circular signals. The
performance of NC MUSIC has been derived in [21] based
on [7], its source resolvability has been investigated in [26],
and mutual coupling has been considered in [27]. However, a
performance analysis of NC Standard ESPRIT and NC Unitary
ESPRIT has not yet been reported in the literature.

In this paper, we first present theR-D NC Standard ESPRIT
and theR-D NC Unitary ESPRIT algorithms as an extension
of [23] and [24]. They exploit the strict SO non-circularityof
stationary sources. The algorithms in [23] and [24] are only
designed for the case of 1-D parameter estimation and require
a shift-invariant and centro-symmetric array structure. Here,
we relax this requirement to only shift-invariant-structured
arrays and additionally consider the case ofR-D (R ≥ 1)
parameter estimation. Furthermore, we show that the prepro-
cessing step for non-circular sources automatically includes
forward-backward averaging (FBA) [28], which is in this case
even applicable to arrays without centro-symmetry. In analogy
to [4], R-D NC Unitary ESPRIT can also be efficiently
implemented in terms of only real-valued computations by
mapping the centro-Hermitian FBA-processed measurement
matrix into a real-valued matrix [29]. This substantially re-
duces the computational complexity. Regarding the estimation
error,R-D NC Unitary ESPRIT performs better thanR-D NC
Standard ESPRIT at low signal-to-noise ratios (SNR), while
simultaneously requiring a lower computational load. Both
algorithms achieve a significantly lower estimation error than
their traditional (non-NC) counterpartsR-D Standard ESPRIT
andR-D Unitary ESPRIT [5].

In our second contribution, we extend our initial results in
[30] and derive a first-order asymptotic performance analysis
of the proposedR-D NC Standard andR-D NC Unitary
ESPRIT algorithms. Least squares (LS) is used to solve
the resulting augmented shift invariance equations after the
preprocessing for non-circular sources. Due to its discussed
advantages, we resort to the framework in [8] combined
with [16] for our presented performance analysis. We fur-
ther extend [16] by incorporating the preprocessing for non-
circular sources and derive an explicit first-order expansion
of the estimation error in terms of the noise perturbation.
The noise is assumed to be small compared to the signals
but no assumptions about its statistics are required. We also
provide MSE expressions, where only the assumptions of a
zero mean and finite SO moments of the noise are needed.
Thus, they also give insights into the achievable performance
in scenarios with non-Gaussian and non-circular perturbations
that can, for instance, be caused by clutter environments
in radar applications [31]. All the obtained expressions are
asymptotic in the effective SNR, i.e., they become accurate
for either high SNRs or large sample sizes. Furthermore, we

analytically prove thatR-D NC Standard ESPRIT andR-D
NC Unitary ESPRIT have the same asymptotic performance
in the high effective SNR regime. In contrast to [30], we here
also take the real-valued transformation inR-D NC Unitary
ESPRIT into account for the proof.

Finally, we present simplifiedR-D MSE expressions for
both NC ESPRIT-type algorithms in the special case of a
single strictly non-circular source, where a uniform sampling
grid and circularly symmetric white noise are assumed. The
obtained closed-form expressions only depend on the physical
parameters, i.e., the array sizeM and the effective SNR.
They facilitate design decisions onM to achieve a certain
performance for specific SNRs. Furthermore, we also simplify
the deterministicR-D NC Cramér-Rao bound (CRB) [32]1 for
this case and analytically compute the asymptotic efficiency
of the proposed algorithms forR = 1. Note that in [33] and
[34], we have also incorporated structured least squares and
spatial smoothing into the performance analysis, respectively.

This remainder of this paper is organized as follows: The
data model and the preprocessing for strictly non-circular
sources are introduced in Section II and Section III. In Section
IV, the R-D NC Standard ESPRIT andR-D NC Unitary
ESPRIT algorithms are derived. Their performance analysis
is presented in Section V before the special case of a single
source is analyzed in Section VI. Section VII illustrates and
discusses the numerical results, and concluding remarks are
drawn in Section VIII.

Notation: We use italic letters for scalars, lower-case bold-
face letters for column vectors, and upper-case bold-face letters
for matrices. The superscriptsT, ∗, H, −1, and+ denote the
transposition, complex conjugation, conjugate transposition,
matrix inversion, and the Moore-Penrose pseudo inverse of
a matrix, respectively. The Kronecker product is denoted as
⊗ and the Hadamard product is defined as⊙. The operator
vec {A} stacks the columns of the matrixA ∈ CM×N into
a column vector of lengthMN × 1 and arg{·} extracts the
phase of a complex number. The operatordiag{a} returns a
diagonal matrix with the elements ofa placed on its diagonal
andblkdiag{·} creates a block diagonal matrix. The operator
O{·} denotes the highest order with respect to a parameter.
The matrixΠM is the M × M exchange matrix with ones
on its antidiagonal and zeros elsewhere. Also, the matrices
1M and0M denote theM ×M matrices of ones and zeros,
respectively. Moreover,Re {·} andIm {·} extract the real and
imaginary part of a complex number or a matrix respectively,
‖x‖2 represents the 2-norm of the vectorx, andE {·} stands
for the statistical expectation.

II. DATA MODEL

Let a noise-corrupted linear superposition ofd undamped
exponentials be sampled on an arbitraryR-dimensional (R-D)
shift-invariant-structured grid2 of sizeM1 × . . . × MR at N
subsequent time instants [5]. Thetn-th time snapshot of the
observedR-D data sequence can be modeled as

1 [32] only considers the 2-D case, but theR-D extension is straightforward.
2The grid needs to be decomposable into the outer product ofR one-

dimensional sampling grids [16].
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xm1,...,mR
(tn) =

d
∑

i=1

si(tn)
R
∏

r=1

ejkmr
µ
(r)
i + nm1,...,mR

(tn), (1)

wheremr = 1, . . . ,Mr, n = 1, . . . , N , si(tn) denotes the
complex amplitude of thei-th undamped exponential at time
instanttn, andkmr

defines the sampling grid3. Furthermore,
µ
(r)
i is the spatial frequency in ther-th mode fori = 1, . . . , d

andr = 1, . . . , R, andnm1,...,mR
(tn) contains the samples of

the zero-mean additive noise component. In the array signal
processing context, each of theR-D exponentials represents
a narrow-band planar wavefront emitted from stationary far-
field sources and the complex amplitudessi(tn) are the source
symbols. The objective is to estimate thed spatial frequencies
µi = [µ

(1)
i , . . . , µ

(R)
i ]T, ∀i, from (1). We assume thatd is

known and has been estimated beforehand using model order
selection techniques, e.g., [35]–[37].

In order to obtain a more compact formulation of (1),
we collect the observed samples into a measurement matrix
X ∈ CM×N with M =

∏R

r=1 Mr by stacking theR spatial
dimensions along the rows and aligning theN time snapshots
as the columns. We can then modelX as

X = AS +N ∈ C
M×N , (2)

whereA = [a(µ1), . . . ,a(µd)] ∈ CM×d is the array steering
matrix. It consists of the array steering vectorsa(µi) corre-
sponding to thei-th spatial frequency defined by

a(µi) = a(1)
(

µ
(1)
i

)

⊗ · · · ⊗ a(R)
(

µ
(R)
i

)

∈ C
M×1, (3)

wherea(r)
(

µ
(r)
i

)

∈ C
Mr×1 is the array steering vector in

the r-th mode. Furthermore,S ∈ Cd×N represents the source
symbol matrix andN ∈ CM×N contains the samples of the
additive sensor noise. Due to the assumption of strictly SO
non-circular sources, the complex symbol amplitudes of each
source form a rotated line in the complex plane so thatS can
be decomposed as [24]

S = ΨS0, (4)

where S0 ∈ Rd×N is a real-valued symbol matrix and
Ψ = diag{[ejϕ1 , . . . , ejϕd ]T} ∈ Cd×d contains stationary
complex phase shifts on its diagonal that can be different for
each source.

III. PREPROCESSING FORR-D NC ESPRIT-TYPE

ALGORITHMS

In this section, we derive the NC model resulting from the
preprocessing for strictly non-circular sources. We show that
the shift invariance equations also hold in the NC case and
that the virtual array always possesses a centro-symmetric
structure, even if the physical array is not centro-symmetric.

In order to take advantage of the benefits associated with
strictly non-circular sources, we apply a preprocessing proce-
dure and define the augmented measurement matrixX(nc) ∈

3For a uniform sampling grid, we havekmr
= mr − 1. An example

for a non-uniform grid is provided in Fig. 3, wherekm1 = 0, 1, 2, 4, 5 and
km2 = 0, 1, 3, 4.

C2M×N as

X(nc) =

[

X

ΠMX∗

]

=

[

AS

ΠMA∗S∗

]

+

[

N

ΠMN∗

]

=

[

A

ΠMA∗
Ψ

∗
Ψ

∗

]

S +

[

N

ΠMN∗

]

(5)

= A(nc)S +N (nc) = X
(nc)
0 +N (nc), (6)

where the multiplication byΠM is used to facilitate the real-
valued implementation ofR-D NC Unitary ESPRIT later in
(21). Moreover,A(nc) ∈ C2M×d and N (nc) ∈ C2M×N are
the augmented array steering matrix and the augmented noise
matrix, respectively,X(nc)

0 ∈ C2M×N is the unperturbed
augmented measurement matrix, and we have used the fact
thatS0 = Ψ

∗S in (5). The extended dimensions ofA(nc) can
be interpreted as a virtual doubling of the number of sensor
elements, which also doubles the number of detectable sources
and provides a lower estimation error.

Based on the assumption that the array steering matrix
A is shift-invariant, we next analyze the properties of the
augmented array steering matrixA(nc). The shift invariance
properties for the physical array described byA are given by

J̃
(r)
1 A Φ

(r) = J̃
(r)
2 A, r = 1, . . . , R, (7)

where J̃
(r)
1 and J̃

(r)
2 ∈ R

M

Mr
M(sel)

r
×M are the effectiveR-

D selection matrices, which selectM (sel)
r elements for the

first and the second subarray in ther-th mode, respectively.
They are compactly defined as̃J(r)

k = I∏r−1
l=1 Ml

⊗ J
(r)
k ⊗

I∏R

l=r+1 Ml
for k = 1, 2, whereJ(r)

k ∈ RM(sel)
r

×Mr are the
r-mode selection matrices for the first and second subarray
[5]. The diagonal matrixΦ(r) = diag{[ejµ(r)

1 , . . . , ejµ
(r)
d ]T} ∈

Cd×d contains the spatial frequencies in ther-th mode to be
estimated.

The first important property of the augmented steering
matrix A(nc) is formulated in the following theorem:

Theorem 1. If the array steering matrixA is shift-invariant
(7), thenA(nc) is also shift-invariant and satisfies

J̃
(nc)(r)
1 A(nc)

Φ
(r) = J̃

(nc)(r)
2 A(nc), r = 1, . . . , R, (8)

where

J̃
(nc)(r)
k = I∏r−1

l=1 Ml
⊗ J

(nc)(r)
k ⊗ I∏R

l=r+1 Ml
, k = 1, 2, (9)

J
(nc)(r)
1 =blkdiag

{

J
(r)
1 ,Π

M
(sel)
r

J
(r)
2 ΠMr

}

∈ R
2M(sel)

r
×2Mr ,

J
(nc)(r)
2 =blkdiag

{

J
(r)
2 ,Π

M
(sel)
r

J
(r)
1 ΠMr

}

∈ R
2M(sel)

r
×2Mr .

Proof: See Appendix A.
If the physical array is centro-symmetric, i.e., it is symmet-

ric with respect to its centroid, its array steering matrixAc

satisfies [4]
ΠMA∗

c = Ac∆c, (10)

where∆c ∈ Cd×d is a unitary diagonal matrix4. If (10) holds,
we haveJ(r)

2 = Π
M

(sel)
r

J
(r)
1 ΠMr

and hence the augmented

4In case of a physical centro-symmetric array,∆c depends on the phase
center of the array. If the phase center coincides with the array’s centroid, we
have∆c = Id.
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selection matricesJ(nc)(r)
1 andJ(nc)(r)

2 simplify to

J
(nc)(r)
k = I2 ⊗ J

(r)
k , k = 1, 2. (11)

Note that this special case was assumed in [23] and [24].
The second important property ofA(nc) is stated in the

following theorem:

Theorem 2. The augmented steering matrixA(nc) always
exhibits centro-symmetry even ifA is not centro-symmetric.

Proof: Assuming thatA does not necessarily satisfy (10),
we have

Π2MA(nc)∗ =

[

0 ΠM

ΠM 0

] [

A∗

ΠMAΨΨ

]

=

[

AΨΨ

ΠMA∗

]

=

[

A

ΠMA∗
Ψ

∗
Ψ

∗

]

ΨΨ = A(nc)
∆c, (12)

where ∆c becomesΨΨ, which is unitary and diagonal.
Therefore,A(nc) satisfies (10), which shows that it is centro-
symmetric regardless of the centro-symmetry ofA.

This result shows thatR-D NC Unitary ESPRIT, derived
in the next section, can be applied to a broader variety of
array geometries thanR-D Unitary ESPRIT, which requires a
centro-symmetric array. An example is provided in Fig. 2 of
Section VII.

IV. PROPOSEDR-D NC ESPRIT-TYPE ALGORITHMS

In this section, we present the NC Standard ESPRIT and
the NC Unitary ESPRIT algorithms for arbitrarily formedR-
dimensional shift-invariant-structured array geometries, where
centro-symmetry is not required. Furthermore, we summarize
some important properties at the end.

A. R-D NC Standard ESPRIT Algorithm

Based on the noisy augmented data model (6), we estimate
the signal subspacêU (nc)

s ∈ C2M×d by computing thed
dominant left singular vectors ofX(nc). As A(nc) andÛ (nc)

s

span approximately the same column space, we can find a
non-singular matrixT ∈ Cd×d such thatA(nc) ≈ Û

(nc)
s T .

Using this relation, the overdetermined set ofR augmented
shift invariance equations (8) can be expressed in terms of the
estimated augmented signal subspace, yielding

J̃
(nc)(r)
1 Û (nc)

s Γ
(r) ≈ J̃

(nc)(r)
2 Û (nc)

s , r = 1, . . . , R (13)

with Γ
(r) = TΦ

(r)T−1. Often, theR unknown matrices
Γ
(r) ∈ Cd×d are estimated using least squares (LS), i.e.,

Γ̂
(r) =

(

J̃
(nc)(r)
1 Û (nc)

s

)+

J̃
(nc)(r)
2 Û (nc)

s ∈ C
d×d. (14)

Finally, after solving (14) for̂Γ(r) in each mode independently,
the correctly paired spatial frequency estimates are givenby
µ̂
(r)
i = arg{λ̂(r)

i }, i = 1, . . . , d. The eigenvalueŝλ(r)
i of

Γ̂
(r) are obtained by performing a joint eigendecomposition

across allR dimensions [38] or via the simultaneous Schur
decomposition [5]. TheR-D NC Standard ESPRIT algorithm
is summarized in Table I.

TABLE I
SUMMARY OF THE R-D NC STANDARD ESPRIT ALGORITHM

1) Estimate the augmented signal subspaceÛ
(nc)
s ∈ C

2M×d

via the truncated SVD of the augmented observation
X(nc) ∈ C

2M×N .

2) Solve the overdetermined set of augmented shift invari-
ance equations

J̃
(nc)(r)
1 Û

(nc)
s Γ

(r) ≈ J̃
(nc)(r)
2 Û

(nc)
s

for Γ
(r) ∈ C

d×d, r = 1, . . . , R, by using an LS

algorithm, whereJ̃(nc)(r)
k ∈ R

M

Mr
M

(sel)
r ×2M

, k = 1, 2,
is defined in (9).

3) Compute the eigenvalueŝλ(r)
i , i = 1, . . . , d of Γ

(r)

jointly for all r = 1, . . . , R. Recover the correctly paired
spatial frequencieŝµ(r)

i via

µ̂
(r)
i = arg{λ̂(r)

i }.

B. R-D NC Unitary ESPRIT Algorithm

As a main feature,R-D Unitary ESPRIT involves forward-
backward averaging (FBA) [28] of the measurement matrix
X, which results in a centro-Hermitian matrix, i.e, matrices
Z ∈ Cp×q that satisfyΠpZ

∗
Πq = Z. Therefore, it can

be efficiently formulated in terms of only real-valued com-
putations [4]. This is achieved by a bijective mapping of the
set of centro-Hermitian matrices onto the set of real-valued
matrices [29]. To this end, let us define leftΠ-real matrices,
i.e., matricesQ ∈ Cp×q satisfyingΠpQ

∗ = Q. A sparse and
square unitary leftΠ-real matrix of odd order is given by

Q2n+1 =
1√
2
·





In 0n×1 jIn
0
T
n×1

√
2 0

T
n×1

Πn 0n×1 −jΠn



 . (15)

A unitary left Π-real matrix of even order is obtained from
(15) by dropping its center row and center column. More left
Π-real matrices can be constructed by post-multiplying a left
Π-real matrixQ by an arbitrary real matrixR of appropriate
size. Using this definition, any centro-Hermitian matrixZ ∈
C

p×q can be transformed into a real-valued matrix through the
transformation [29]

ϕ(Z) = QH
p ZQq ∈ R

p×q. (16)

In Unitary ESPRIT, the centro-Hermitian matrix obtained after
FBA is given by [4]

X̃ =
[

X ΠMX∗ΠN

]

∈ C
M×2N . (17)

Next, we extend the concept of Unitary ESPRIT to the
augmented data model in (6) and derive theR-D NC Unitary
ESPRIT algorithm. Therefore, the FBA step as well as the
real-valued transformation have to be applied toX(nc). Here,
FBA is performed by replacing the NC measurement matrix
X(nc) ∈ C

2M×N by the column-wise augmented measure-
ment matrixX̃(nc) ∈ C2M×2N defined by

X̃(nc) =
[

X(nc)
Π2MX(nc)∗

ΠN

]

(18)

=

[

X XΠN

ΠMX∗
ΠMX∗

ΠN

]

=
[

X(nc) X(nc)
ΠN

]

. (19)
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Due to the fact that equivalently to (17),̃X(nc) is centro-
Hermitian, it can be transformed into a real-valued matrix that
takes the simple form

ϕ(X̃(nc)) = QH
2MX̃(nc)Q2N (20)

= 2 ·
[

Re {X} 0M×N

Im {X} 0M×N

]

. (21)

The proof is given in Appendix B.
In the next step, we define the transformed augmented

steering matrix asD(nc) = QH
2MA(nc). Based on theR-D

shift invariance property ofA(nc) proven in Theorem 1, it can
easily be verified thatD(nc) obeys

K̃
(nc)(r)
1 D(nc)

Ω
(r) = K̃

(nc)(r)
2 D(nc), r = 1, . . . , R, (22)

where theR pairs of augmented selection matrices in (9) are
transformed according to [4] as

K̃
(nc)(r)
1 = 2 ·Re

{

QH
M

Mr
M

(sel)
r

J̃
(nc)(r)
2 Q2M

}

(23)

K̃
(nc)(r)
2 = 2 · Im

{

QH
M

Mr
M

(sel)
r

J̃
(nc)(r)
2 Q2M

}

. (24)

Moreover, the real-valued set of diagonal matricesΩ
(r) =

diag{[ω(r)
1 , . . . , ω

(r)
d ]T} ∈ Rd×d with ω

(r)
i = tan(µ

(r)
i /2)

contain the spatial frequencies in ther-th mode.
Using the preprocessed noisy data in (21), we then estimate

the real-valued augmented signal subspaceÊ
(nc)
s ∈ R2M×d by

computing thed dominant left singular vectors ofϕ(X̃(nc)).
Note that the zero block matrices and the scaling factor of 2 in
(21) can be dropped as they do not alter the signal subspace of
ϕ(X̃(nc)). As D(nc) andÊ(nc)

s span approximately the same
column space, we can find a non-singular matrixT ∈ Cd×d

such thatD(nc) ≈ Ê
(nc)
s T . Substituting this relation into

(22), the overdetermined set ofR real-valued shift invariance
equations in terms of the estimated augmented signal subspace
is given by

K̃
(nc)(r)
1 Ê(nc)

s Υ
(r) ≈ K̃

(nc)(r)
2 Ê(nc)

s , r = 1, . . . , R (25)

with Υ
(r) = TΩ

(r)T−1. Often, theR unknown real-valued
diagonal matricesΥ(r) are estimated using least squares (LS),
i.e.,

Υ̂
(r) =

(

K̃
(nc)(r)
1 Ê(nc)

s

)+

K̃
(nc)(r)
2 Ê(nc)

s ∈ R
d×d. (26)

Finally, the correctly paired spatial frequency estimatesare
obtained by µ̂(r)

i = 2 · arctan(ω̂(r)
i ), i = 1, . . . , d. The

eigenvalueŝω(r)
i of Υ̂(r) are computed by performing a joint

eigendecomposition across allR dimensions [38] or via the
simultaneous Schur decomposition [5]. If all the eigenvalues
are real, they provide reliable estimates [4]. A summary of
R-D NC Unitary ESPRIT is given in Table II.

C. Properties ofR-D NC ESPRIT-Type Algorithms

The proposedR-D NC Standard ESPRIT andR-D NC Uni-
tary ESPRIT algorithms have a number of important properties
that are summarized in this subsection. Firstly, both algorithms
can be applied to estimate the parameters of stationary strictly
SO non-circular sources via shift-invariantR-D arrays, where

TABLE II
SUMMARY OF THE R-D NC UNITARY ESPRIT ALGORITHM

1) Estimate the augmented real-valued signal subspace
Ê

(nc)
s ∈ R

2M×d via the truncated SVD of the stacked
observation

[Re {X}T , Im {X}T]T ∈ R
2M×N .

2) Solve the overdetermined set of augmented shift invari-
ance equations

K̃
(nc)(r)
1 Ê

(nc)
s Υ

(r) ≈ K̃
(nc)(r)
2 Ê

(nc)
s

for Υ
(r) ∈ R

d×d, r = 1, . . . , R, by using an LS algo-

rithm, whereK̃(nc)(r)
k ∈ R

M

Mr
M

(sel)
r ×2M

, k = 1, 2 and
J̃

(nc)(r)
2 are defined in (23), (24), and (9), respectively.

3) Compute the eigenvalueŝω(r)
i , i = 1, . . . , d of Υ

(r)

jointly for all r = 1, . . . , R. Recover the correctly paired
spatial frequencieŝµ(r)

i via

µ̂
(r)
i = 2 · arctan(ω̂(r)

i ).

a centro-symmetric array structure is not required as shown
in Theorem 1 and Theorem 2. Secondly, it will be shown
in Section V-B that the performance ofR-D NC Standard
ESPRIT andR-D NC Unitary ESPRIT is asymptotically
identical. This is due to the fact that forR-D NC Unitary
ESPRIT, applying FBA toX(nc) does not improve the signal
subspace estimate and the real-valued transformation has no
effect on the asymptotic performance. As a consequence,R-D
NC Unitary ESPRIT cannot handle coherent sources as FBA
has no decorrelation effect. However, spatial smoothing [24]
can be applied to separate coherent wavefronts. Therefore,
and thirdly,R-D NC Standard ESPRIT andR-D NC Unitary
ESPRIT can both resolve up to

min
{

min
r

(2 ·M (sel)
r M/Mr), N

}

(27)

incoherent sources as compared tomin{minr(M
(sel)
r M/Mr),

N} andmin{minr(M
(sel)
r M/Mr), 2 · N} for R-D Standard

ESPRIT andR-D Unitary ESPRIT, respectively. Thus, ifN is
large enough, we can detect twice as many incoherent sources.
Fourth, due to the exchange matrixΠM in (6), the real-valued
transformation inR-D NC Unitary ESPRIT can be efficiently
computed by stacking the real part and the imaginary part
of X on top of each other, cf. equation (21). Finally, the
computational complexity of both algorithms is dominated by
the signal subspace estimate via the SVD of (21), which is
of costO((2M)2N) [39], and the pseudo inverse in (14) and
(26), whose computational cost isO((2M)3) [39]. However,
the complexity ofR-D NC Unitary ESPRIT is lower than that
of R-D NC Standard ESPRIT as these operations are real-
valued.

V. PERFORMANCE OFR-D NC ESPRIT-TYPE

ALGORITHMS

In this section, we present the first-order analytical perfor-
mance assessment ofR-D NC Standard ESPRIT andR-D
NC Unitary ESPRIT. As will be shown in Subsection V-B,
the performance ofR-D NC Standard ESPRIT andR-D NC
Unitary ESPRIT is asymptotically identical. Therefore, wefirst
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resort to the simpler derivation of the expressions forR-D NC
Standard ESPRIT and then show their equivalence. In contrast
to our previous results in [30], we here also include the real-
valued transformation inR-D NC Unitary ESPRIT into the
proof.

A. Performance ofR-D NC Standard ESPRIT

To obtain a first-order perturbation analysis of the parameter
estimates, we adopt the analytical performance framework
proposed in [8]. Thus, we first develop a first-order subspace
error expansion in terms of the perturbationN (nc) and then
find a corresponding first-order expansion for the parameter
estimation error∆µi. It is evident from (6) that the pre-
processing does not violate the assumption of a small noise
perturbation made in [8]. Hence, we can apply the concept of
[8] to the augmented measurement matrix in (6). The results
are asymptotic in the high effective SNR and explicit in the
noise termN (nc).

Starting with the subspace error expression based on (6),
we express the SVD of the noise-free observationsX

(nc)
0 as

X
(nc)
0 =

[

U
(nc)
s U

(nc)
n

]

[

Σ
(nc)
s 0

0 0

]

[

V
(nc)
s V

(nc)
n

]H

,

whereU (nc)
s ∈ C2M×d, U (nc)

n ∈ C2M×(2M−d), andV (nc)
s ∈

CN×d span the signal subspace, the noise subspace, and
the row space respectively, andΣ(nc)

s ∈ Rd×d contains the
non-zero singular values on its diagonal. Next, we write the
perturbed signal subspace estimate ofÛ

(nc)
s from the previous

section asÛ (nc)
s = U

(nc)
s + ∆U

(nc)
s , where∆U

(nc)
s denotes

the estimation error. From [8] and its application to (6), we
obtain the first-order subspace error approximation

∆U (nc)
s = U (nc)

n U (nc)H

n N (nc)V (nc)
s Σ

(nc)−1

s +O{ν2}, (28)

where ν = ‖N (nc)‖, and ‖ · ‖ represents an arbitrary sub-
multiplicative5 norm. Equation (28) models the leakage of the
noise subspace into the signal subspace due to the effect of the
noise. The perturbation of the particular basis for the signal
subspaceU (nc)

s , which is taken into account in [13], [14] can
be ignored as the choice of this basis is irrelevant forR-D NC
Standard ESPRIT.

For the parameter estimation error of thei-th spatial fre-
quency in ther-th mode obtained by the LS solution in (14),
we follow the lines of [8] to obtain

∆µ
(r)
i = Im

{

pT
i

(

J̃
(nc)(r)
1 U (nc)

s

)+ [

J̃
(nc)(r)
2 /λ

(r)
i

−J̃
(nc)(r)
1

]

∆U (nc)
s qi

}

+O{ν2},
(29)

whereλ(r)
i = ejµi is the i-th eigenvalue ofΓ(r) in the r-th

mode,qi represents thei-th eigenvector ofΓ(r), i.e., thei-th
column vector of the eigenvector matrixQ, andpT

i is thei-th
row vector ofP = Q−1. Hence, the eigendecomposition of
Γ
(r) in the r-th mode is given by

Γ
(r) = QΛ

(r)Q−1, (30)

5A matrix norm is called sub-multiplicative if‖A ·B‖ ≤ ‖A‖ · ‖B‖ for
arbitrary matricesA andB.

where Λ
(r) contains the eigenvaluesλ(r)

i on its diagonal.
Then, by inserting (28) into (29), we can write the first-order
approximation for the estimation errors∆µ

(r)
i explicitly in

terms of the noise perturbationN (nc).
In order to derive an analytical expression for the MSE

of R-D NC Standard ESPRIT, we resort to [16], where
we have derived an MSE expression that only depends on
the SO statistics of the noise, i.e., the covariance matrix
and the pseudo-covariance matrix, assuming the noise to
be zero-mean. As the preprocessing in (6) does not vio-
late the zero-mean assumption, [16] is applicable once the
corresponding SO statistics are found. Therefore, defining
n(nc) = vec{N (nc)} ∈ C2MN×1, its covariance matrix
R

(nc)
nn = E{n(nc)n(nc)H} ∈ C2MN×2MN , and its pseudo-

covariance matrixC(nc)
nn = E{n(nc)n(nc)T} ∈ C2MN×2MN ,

the MSE for thei-th spatial frequency in ther-th mode is
given by

E

{

(∆µ
(r)
i )2

}

=
1

2

(

r
(nc)(r)H

i W
(nc)∗

R
(nc)T

nn W
(nc)T

r
(nc)(r)
i

−Re
{

r
(nc)(r)T

i W
(nc)

C
(nc)T

nn W
(nc)T

r
(nc)(r)
i

})

+O{ν2},
(31)

where

r
(nc)(r)
i = qi ⊗

([(

J̃
(nc)(r)
1 U

(nc)
s

)+

·
(

J̃
(nc)(r)
2 /λ

(r)
i − J̃

(nc)(r)
1

) ]T

pi

)

∈ C
2Md×1

and

W
(nc) =

(

Σ
(nc)−1

s V
(nc)T

s

)

⊗
(

U
(nc)
n U

(nc)H

n

)

∈ C
2Md×2MN .

In the next step, we derive the covariance matrix and the
pseudo-covariance matrix of the augmented noise contribution
n(nc) required in (31). To this end, we use the commutation
matrix KM,N of size MN × MN , which is defined as the
unique permutation matrix satisfying [40]

KM,N · vec{A} = vec{AT} (32)

for arbitrary matricesA ∈ CM×N . We first expandn(nc) as

n(nc) = vec{N (nc)} = vec

{[

N

ΠMN∗

]}

(33)

= KT
2M,N

[

vec{NT}
vec{(ΠMN∗)T}

]

(34)

= KT
2M,N

[

KM,N · vec{N}
KM,N · vec{ΠMN∗}

]

= KT
2M,N (I2 ⊗KM,N )

[

vec{N}
vec{ΠMN∗}

]

, (35)

where we have applied property (32) to the equations (33)
and (34). By definingn = vec{N} ∈ CMN×1 and using the
property vec{AXB} = (BT ⊗ A) · vec{X} for arbitrary
matricesA, B, andX of appropriate sizes, we can formulate
(35) as

n(nc) = K̃

[

n

n∗

]

, (36)

where K̃ = KT
2M,N · blkdiag{KM,N ,KM,N (IN ⊗ΠM )}

is of size 2MN × 2MN . Thus, the SO statistics ofn(nc)

can be expressed by means of the covariance matrixRnn =
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E{nnH} and the pseudo-covariance matrixCnn = E{nnT}
of the physical noisen. Therefore, we obtain

R(nc)
nn = E

{

n(nc)n(nc)H
}

= K̃

[

Rnn Cnn

C∗
nn R∗

nn

]

K̃H (37)

and

C(nc)
nn = E

{

n(nc)n(nc)T
}

= K̃

[

Cnn Rnn

R∗
nn C∗

nn

]

K̃T. (38)

In the special case of circularly symmetric white noise with
Rnn = σ2

nIMN andCnn = 0MN , (37) and (38) simplify to

R(nc)
nn = σ2

nI2MN and C(nc)
nn = σ2

n(IN ⊗Π2M ). (39)

Note that the pseudo-covariance matrixC
(nc)
nn is always non-

zero even in the case of circularly symmetric white noise.
This is due to the preprocessing in (6). Furthermore, it is
worth mentioning that the step of solving theR augmented
shift invariance equations forΓ(r) independently and then per-
forming a joint eigendecomposition across allR dimensions to
obtainΛ(r) has no impact on the asymptotic estimation error
for high SNRs since the eigenvectors become asymptotically
equal [16].

B. Performance ofR-D NC Unitary ESPRIT

So far, we have only derived the explicit first-order param-
eter estimation error approximation and the MSE expression
for R-D NC Standard ESPRIT. In this subsection, however,
we show that the analytical performance ofR-D NC Unitary
ESPRIT andR-D NC Standard ESPRIT is identical in the
high effective SNR regime. To this end, we recall thatR-
D NC Unitary ESPRIT includes forward-backward-averaging
(FBA) (18) as well as the transformation into the real-valued
domain (20) as preprocessing steps. We first investigate the
effect of FBA and state the following theorem:

Theorem 3. Applying FBA toX(nc) does not improve the
signal subspace estimate.

Proof: To show this result, we simply use the FBA-
processed augmented measurement matrixX̃(nc) in (19) and
compute the Gram matrixG = X̃(nc)X̃(nc)H , which yields

G =
[

X(nc) X(nc)
ΠN

] [

X(nc) X(nc)
ΠN

]H

= 2 ·X(nc)X(nc)H . (40)

Thus, the matrixG reduces to the Gram matrix ofX(nc) and
the column space ofX(nc) is the same as the column space of
the Gram matrix ofX(nc). Consequently, FBA has no effect
on X(nc). This completes the proof.

Next, we analyze the real-valued transformation as the
second preprocessing step ofR-D NC Unitary ESPRIT and
formulate the theorem:

Theorem 4. R-D NC Unitary ESPRIT andR-D NC Stan-
dard ESPRIT with FBA preprocessing perform asymptotically
identical in the high effective SNR.

Proof: See Appendix C.
As a result of Theorem 3 and Theorem 4, we can conclude

that the asymptotic performance ofR-D NC Standard ESPRIT
andR-D NC Unitary ESPRIT is asymptotically identical in
the high effective SNR.

VI. SINGLE SOURCE CASE

So far, we have derived an MSE expression for bothR-
D NC Standard ESPRIT andR-D NC Unitary ESPRIT (31),
which is deterministic and no Monte-Carlo simulations are
required. However, this is only the first step as the derived
MSE expression is formulated in terms of the subspaces of
the unperturbed measurement matrix and hence, provides no
explicit insights into the influence of the physical parameters,
e.g., the SNR, the number of sensors, the sample size, etc.
Knowing how the performance scales with these system pa-
rameters as a second step can facilitate array design decisions
on the number of required sensors to achieve a certain per-
formance for a specific SNR. Moreover, different parameter
estimators can be objectively compared to find the best one
for particular scenarios. Establishing a general formulation
for an arbitrary number of sources is an intricate task given
the complex dependence of the subspaces on the physical
parameters. However, special cases can be considered to gain
more insights by such an analytical performance assessment.
Inspired by [15], we present results for theR-D case of
a single strictly SO non-circular source in this section. To
this end, we assume anR-D uniform sampling grid, i.e., a
ULA in each mode, and circularly symmetric white noise.
Furthermore, we obtain the same asymptotic estimation error
for R-D NC Standard ESPRIT andR-D NC Unitary ESPRIT
as proven in the previous section. We also provide results on
the single source case for the deterministicR-D NC CRB [32],
which enables the computation of the asymptotic efficiency of
R-D NC Standard ESPRIT andR-D NC Unitary ESPRIT for
arbitrary dimensionsR in closed-form. As an example, we
compute the asymptotic efficiency forR = 1.

A. R-D NC Standard ESPRIT and R-D NC Unitary ESPRIT

As the asymptotic performance of both algorithms is the
same, it is again sufficient to simplify the MSE expression in
(31) for R-D NC Standard ESPRIT. We have the following
result:

Theorem 5. For the case of anM -elementR-D uniform
sampling grid with anMr-element ULA in ther-th mode,
a single strictly non-circular source (d = 1), and circularly
symmetric white noise, the MSE ofR-D NC Standard andR-D
NC Unitary ESPRIT in ther-th mode is given by

E

{

(∆µ(r))2
}

=
1

ρ̂
· Mr

M(Mr − 1)2
+O

{

1

ρ̂2

}

, (41)

where ρ̂ represents the effective SNR̂ρ = NP̂s/σ
2
n with P̂s

being the empirical source power given byP̂s = ‖s‖22 /N and
s ∈ CN×1.

Proof: See Appendix D.
In a similar fashion, it can be shown that forR-D NC

Unitary ESPRIT, we arrive at the same MSE result as in
(41). Moreover, the expression (41) is equivalent to the ones
obtained in [15] for the non-NC counterparts. Thus, no im-
provement in terms of the estimation accuracy can be achieved
by applyingR-D NC Standard ESPRIT orR-D NC Unitary
ESPRIT for a single strictly non-circular source. This can also
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be seen from the result (42) for the deterministicR-D NC CRB
provided in the next subsection, which is also the same as in
the non-NC case [15].

B. Deterministic R-D NC Craḿer-Rao Bound

In this part, we simplify theR-D extension of the deter-
ministic 2-D NC Cramér-Rao Bound derived in [32] for the
special case of a single strictly non-circular source. The result
is shown in the next theorem:

Theorem 6. For the case of anM -elementR-D uniform
sampling grid with anMr-element ULA in ther-th mode and
a single strictly non-circular source (d = 1), the deterministic
R-D NC Craḿer-Rao Bound can be simplified to

C(nc) = diag
{

[

C(nc)(1), . . . , C(nc)(R)
]T

}

, (42)

where

C(nc)(r) =
1

ρ̂
· 6

M(M2
r − 1)

.

Proof: See Appendix E.
Using the expressions (41) and (42), we can analytically

compute the asymptotic efficiency of the proposed algorithms
for arbitrary dimensionsR. The result forR = 1 is given in
the next subsection.

C. Asymptotic Efficiency of 1-D NC Standard and 1-D NC
Unitary ESPRIT

Under the stated assumptions, the asymptotic efficiency
for the 1-D case of NC Standard ESPRIT and NC Unitary
ESPRIT, whereMr = M , can be explicitly computed as

η = lim
ρ̂→∞

C(nc)

E{(∆µ)2} =
6(M − 1)

M(M + 1)
. (43)

Again, the 1-D asymptotic efficiency (43) is equivalent to the
one derived in [15], i.e., no gains are obtained from non-
circular sources. It should be noted thatη is only a function
of the array geometry, i.e., the number of sensorsM . The
outcome of this result is that 1-D NC ESPRIT-type algorithms
using LS are asymptotically efficient forM = 2 andM = 3
for a single source. However, they become less efficient when
the number of sensors grows, in fact, forM → ∞ we have
η → 0. A possible explanation could be that anM -element
ULA offers not only the single shift invariance with maximum
overlap used in LS, but multiple invariances that are not
exploited by LS.

VII. S IMULATION RESULTS

In this section, we provide simulation results to evaluate
the performance of the proposedR-D NC Standard ESPRIT
and R-D NC Unitary ESPRIT algorithms along with the
asymptotic behavior of the presented performance analysis.
We compare the square root of the analytical MSE expression
(“ana”) in (31) to the root mean squared error (RMSE) of
the empirical estimation error (“emp”) ofR-D NC Standard
ESPRIT (NC SE) andR-D NC Unitary ESPRIT (NC UE)

0 10 20 30 40 50
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−3
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10
−1

10
0

SNR (dB)

R
M

S
E

 (
ra

d)

 

 

SE emp
SE ana
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UE ana
Det CRB
NC SE emp
NC UE emp
NC SE/UE ana
Det NC CRB

Fig. 1. Analytical and empirical RMSEs versus SNR for a4× 4× 4 cubic
uniform array (R = 3), andN = 5, d = 2 correlated sources (ρ = 0.9) at
µ
(1)
1 = 0, µ(1)

2 = 0.1, µ(2)
1 = 0, µ(2)

2 = 0.1, µ(3)
1 = 0, µ(3)

2 = 0.1 with
rotation phasesϕ1 = 0, ϕ2 = π/2.

obtained by averaging over 5000 Monte Carlo trials. The
RMSE is defined as

RMSE =

√

√

√

√

1

Rd
E

{

R
∑

r=1

d
∑

i=1

(

µ
(r)
i − µ̂i

(r)
)2

}

, (44)

whereµ̂i
(r) is the estimate ofi-th spatial frequency in ther-th

mode. Furthermore, we compare our results toR-D Standard
ESPRIT (SE),R-D Unitary ESPRIT (UE) as well as the
deterministic Cramér-Rao bounds for circular (Det CRB) and
strictly SO non-circular sources (Det NC CRB) [32]. In the
simulations, we employ different array configurations consist-
ing of isotropic sensor elements with interelement spacing
δ = λ/2 in all dimensions. The phase reference is chosen
to be at the centroid of the array. It is assumed for all
algorithms that a known number of signals with unit power
and symbolsS0 (cf. Equation (4)) drawn from a real-valued
Gaussian distribution impinge on the array. Moreover, we
assume zero-mean circularly symmetric white Gaussian sensor
noise according to (39).

Fig. 1 illustrates the RMSE versus the SNR, where we
consider a4×4×4 uniform cubic array withN = 5 available
observations ofd = 2 sources with the spatial frequencies
µ
(1)
1 = 0, µ

(1)
2 = 0.1, µ

(2)
1 = 0, µ

(2)
2 = 0.1, µ

(3)
1 = 0,

and µ
(3)
2 = 0.1, and a real-valued pair-wise correlation of

ρ = 0.9. The rotation phases contained inΨ are given by
ϕ1 = 0 andϕ2 = π/2. In Fig. 2, we depict the RMSE versus
the number of snapshotsN for the non-centro-symmetric
2-D array with M = 20 given in Fig. 3, where we also
provide the subarrays in both dimensions. The SNR is fixed
at 10 dB and we haved = 3 uncorrelated sources with the
spatial frequenciesµ(1)

1 = 0.25, µ
(1)
2 = 0.5, µ

(1)
3 = 0.75,

µ
(2)
1 = 0.25, µ

(2)
2 = 0.5, and µ

(2)
3 = 0.75. The rotation

phases are given byϕ1 = 0, ϕ2 = π/4, andϕ3 = π/2. Note
that 2-D Unitary ESPRIT cannot be applied as the array is
not centro-symmetric. It is apparent from Fig. 1 and Fig. 2
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Fig. 2. Analytical and empirical RMSEs versus the snapshotsN for the 20-
element 2-D array (R = 2) from Fig. 3 and SNR= 10 dB,d = 3 uncorrelated
sources atµ(1)

1 = 0.25, µ(1)
2 = 0.5, µ(1)

3 = 0.75, µ(2)
1 = 0.25, µ(2)

2 = 0.5,

µ
(2)
3 = 0.75 with rotation phasesϕ1 = 0, ϕ2 = π/4, ϕ3 = π/2.

that in general, the NC schemes perform better than their
non-NC counterparts. Specifically,R-D NC Unitary ESPRIT
provides a lower estimation error thanR-D NC Standard
ESPRIT for low SNRs and a low sample size. Moreover,
the analytical results agree well with the empirical estimation
errors for high effective SNRs, i.e., when either the SNR or the
number of samples becomes large. This also validates that the
asymptotic performance ofR-D NC Standard ESPRIT andR-
D NC Unitary ESPRIT is identical as both coincide with the
analytical curve. Note that the performance of the proposed
algorithms can degrade if the signals’ non-circularity is not
perfectly strict.

In Fig. 4, we show the RMSE as a function of the sep-
aration (“sep”) betweend = 2 uncorrelated sources located
at µ(1)

1 = −sep/2, µ
(1)
2 = 0, µ

(2)
1 = sep/2, µ

(2)
2 = sep

with the rotation phasesϕ1 = 0, ϕ2 = π/2. We employ a
5×6 uniform rectangular array (URA),N = 5 snapshots, and
the SNR is fixed at30 dB. Fig. 5 demonstrates the RMSE
as a function of the non-circularity phase separation∆ϕ of
the d = 2 uncorrelated sources with the spatial frequencies
µ
(1)
1 = 1, µ

(1)
2 = 0.8, µ

(2)
1 = 1, and µ

(2)
2 = 0.8. The

remaining parameters are kept the same. Again, it can be
seen from Fig. 4 and Fig. 5 that the analytical results match

J̃
(1)
1

J̃
(1)
2

J̃
(2)
1 J̃

(2)
2

Fig. 3. 2-D shift invariance for the depicted non-centro-symmetric 5 ×
4 sampling grid, left: subarrays for the first (horizontal) dimension, right:
subarrays for the second (vertical) dimension.
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Fig. 4. Analytical and empirical RMSEs versus the separation (“sep”) of
d = 2 uncorrelated sources atµ(1)

1 = −sep/2, µ(1)
2 = 0, µ(2)

1 = sep/2,

µ
(2)
2 = sep for a5× 6 URA (R = 2), N = 5, SNR= 30 dB, with rotation

phasesϕ1 = 0, ϕ2 = π/2 .
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Fig. 5. Analytical and empirical RMSEs versus the phase separation for a
5× 6 URA (R = 2), N = 5, SNR= 30 dB, d = 2 uncorrelated sources at
µ
(1)
1 = 1, µ(1)

2 = 0.8, µ(2)
1 = 1, µ(2)

2 = 0.8.

the empirical ones. But more importantly, the gain of the
NC ESPRIT-type methods increases if the sources approach
each other. Furthermore, as a substantial feature of strictly
non-circular sources, it is observed that for two uncorrelated
sources with a phase separation of∆ϕ = π/2, the sources
entirely decouple as if each of them was present alone. In this
case, the achievable gain from strictly non-circular sources is
largest, which is verified by Fig. 5. This decoupling effect
was also shown analytically for the Det NC CRB in [32] and
recently for NC Standard ESPRIT in [41].

In the final simulation, we consider the single source case,
which was used in Section VI to express the analytical MSE
equations ofR-D NC Standard ESPRIT andR-D NC Unitary
ESPRIT only in terms of the physical parameters, i.e., the array
sizeM and the effective SNR. Fig. 6 shows the asymptotic
efficiency (43) for the caseR = 1 versus the number of sensors
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Fig. 6. Asymptotic efficiency versusM of a ULA (R = 1) for a single
strictly non-circular source with an effective SNR of46 dB (Ps = 0 dB,
N = 4, σ2

n = 10−4).

M of a ULA. The effective SNR is set to46 dB, wherePs = 0
dB, N = 4, andσ2

n = 10−4. This plot validates the fact that
1-D NC Standard ESPRIT and 1-D NC Unitary ESPRIT using
LS become increasingly inefficient forM > 3. It should be
stressed that the same curves are obtained for 1-D Standard
ESPRIT and 1-D Unitary ESPRIT. Hence, no gain is achieved
from a single strictly non-circular source.

VIII. C ONCLUSION

In this paper, we have presented theR-D NC Standard
ESPRIT andR-D NC Unitary ESPRIT parameter estimation
algorithms specifically designed for strictly SO non-circular
sources and shift-invariant arrays that are not necessarily
centro-symmetric. We have also derived a first-order analytical
performance analysis of both algorithms. Our results are based
on a first-order expansion of the estimation error in terms of
the explicit noise perturbation, which is required to be small
compared to the signals but no assumptions about the noise
statistics are needed. We have also derived MSE expressions
that only depend on the finite SO moments of the noise and
merely assume the noise to be zero-mean. All the resulting
expressions are asymptotic in the effective SNR, i.e., they
become accurate for either high SNRs or a large sample
size. Furthermore, we have analytically proven thatR-D NC
Standard ESPRIT andR-D NC Unitary ESPRIT have the same
asymptotic performance in the high effective SNR regime.
However,R-D NC Unitary ESPRIT should be preferred due
to its real-valued operations and its better performance atlow
effective SNRs. We have also computed the 1-D asymptotic
efficiency for a single source and found that no gain from
non-circular sources is achieved in this case. Simulations
demonstrate that for more than one strictly non-circular source,
the NC gain is largest for closely-spaced sources and a rotation
phase separation ofπ/2.

APPENDIX A
PROOF OFTHEOREM 1

We consider the 1-D case for simplicity and start by
insertingJ(nc)

1 andJ(nc)
2 into (8), which yields

[

J1A

Π
M(sel)J2ΠMΠMA∗

Ψ
∗
Ψ

∗

]

Φ =

[

J2A

Π
M(sel)J1ΠMΠMA∗

Ψ
∗
Ψ

∗

]

.

The first M (sel) rows are given byJ1AΦ = J2A, which
was assumed for the theorem. The secondM (sel) rows can be
simplified by multiplying from the left withΠM(sel) and then
using the fact thatΠMΠM = IM . We obtain

J2A
∗
Ψ

∗
Ψ

∗
Φ = J1A

∗
Ψ

∗
Ψ

∗. (45)

As Ψ andΦ are diagonal, they commute. Then, multiplying
twice byΨ from the right-hand side cancelsΨ asΨ∗

Ψ = Id
and we are left with

J2A
∗
Φ = J1A

∗

J2A
∗ = J1A

∗
Φ

∗, (46)

where in the last step we have multiplied withΦ∗ from the
right-hand side and used the fact thatΦ

∗
Φ = Id.6 Finally,

conjugating (46) shows that this expression is equivalent to
J1AΦ = J2A, which was again assumed for the theorem.
This concludes the proof.

APPENDIX B
PROOF OFEQUATION (21)

The real-valued transformation is carried out using sparse
left Π-real matrices of even order according to (15). Expand-
ing (20) yields

ϕ(X̃(nc)) = QH
2MX̃(nc)Q2N

=
1

2
·
[

IM ΠM

−jIM jΠM

]

[

X(nc) X(nc)
ΠN

]

[

IN jIN
ΠN −jΠN

]

=

[

IM ΠM

−jIM jΠM

] [

X 0M×N

ΠMX∗
0M×N

]

=

[

X +X∗
0M×N

−jX + jX∗
0M×N

]

= 2 ·
[

Re {X} 0M×N

Im {X} 0M×N

]

,

where we have used the fact that−jx+jx∗ = 2 ·Im {x} ∀x ∈
C. This completes the proof.

APPENDIX C
PROOF OFTHEOREM 4

For simplicity, we only present the proof for the 1-D case,
but the approach adopted here carries over to theR-D case
straightforwardly. The estimated parameters after the real-
valued transformation (NC Unitary ESPRIT) are extracted
in a different manner as in the forward-backward-averaged
complex-valued case (NC Standard ESPRIT with FBA), i.e.
using the arctangent function. Hence, we develop a first-order
perturbation expansion for the real-valued shift invariance
equations and then show the equivalence of both cases. To this
end, letX̃(nc)

0 ∈ C2M×2N be the noise-free forward-backward

6This equality only holds in the assumed case of undamped exponentials
(cf. the model in (1)), where the spatial frequenciesµ

(r)
i are real.
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averaged measurement matrix defined by decomposing (19)
according to

X̃(nc) =
[

X
(nc)
0 X

(nc)
0 ΠN

]

+
[

N (nc) N (nc)
ΠN

]

= X̃
(nc)
0 + Ñ (nc). (47)

Its SVD can be expressed as

X̃
(nc)
0 =

[

Ũ
(nc)
s Ũ

(nc)
n

]

[

Σ̃
(nc)
s 0

0 0

]

[

Ṽ
(nc)
s Ṽ

(nc)
n

]H

,

such that the complex-valued shift invariance equation forthe
forward-backward-averaged data has the form

J
(nc)
1 Ũ (nc)

s Γ = J
(nc)
2 Ũ (nc)

s , (48)

whereΓ = Q(fba)
ΛQ(fba)−1

andΛ = diag
{[

λ1, . . . , λd

]}

with λi = ejµi , i = 1, 2, . . . , d. Performing the same steps as
in Section V-A, the first-order approximation of the estimation
error after the application of FBA is given by

∆µi = Im

{

p
(fba)T

i

(

J
(nc)
1 Ũ (nc)

s

)+ [

J
(nc)
2 /λi

−J
(nc)
1

]

∆Ũ (nc)
s q

(fba)
i

}

+O{ν2},
(49)

where we have simply replaced the corresponding quantitiesin
(29) by their FBA versions. Next, we show that the estimation
error expansion for the real-valued case is equivalent to (49).

The 1-D real-valued shift-invariance equation

K
(nc)
1 E(nc)

s Υ = K
(nc)
2 E(nc)

s , (50)

where Υ = V ΩV −1 and Ω = diag
{[

ω1, . . . , ωd

]}

with
ωi = tan(µi/2), i = 1, 2, . . . , d, has the same algebraic
form as its complex-valued counterpart in (48). Therefore,
the same procedure from [8] can be applied to develop a
first-order perturbation expansion. In fact, following thethree
steps discussed in [8], we find that the perturbation ofωi in
terms ofΥ and the perturbation ofΥ in terms of the signal
subspace estimation error∆Ũ

(nc)
s lead to the same result,

whereJ(nc)
1 ,J

(nc)
2 ,U

(nc)
s , andΓ are consistently exchanged

by K
(nc)
1 ,K

(nc)
2 ,E

(nc)
s , andΥ, respectively. Thus, only the

perturbation ofµi in terms ofωi = tan(µi/2) is to be derived.
Therefore, we compute the Taylor series expansion ofωi,
which is given by

ωi +∆ω ≈ tan(µi/2) + ∆µ

(

tan2(µi/2)

2
+

1

2

)

= ωi +∆µ
ω2
i + 1

2
and hence

∆µ ≈ ∆ω
2

ω2
i + 1

. (51)

Combining (51) with the corresponding real-valued expres-
sions for the perturbations ofωi andΥ, we obtain

∆µi = p̄T
i

(

K
(nc)
1 E(nc)

s

)+ (

K
(nc)
2 − ωiK

(nc)
1

)

·∆E(nc)
s q̄i

2

ω2
i + 1

,
(52)

where q̄i is the i-th column ofV and p̄T
i is the i-th row of

V −1. Moreover, the perturbation of the real-valued subspace

E
(nc)
s is expanded in terms of the transformed noise contribu-

tion ϕ(Ñ (nc)) = QH
2MÑ (nc)Q2N as

∆E(nc)
s = E(nc)

n E(nc)H

n ϕ(Ñ (nc))W (nc)
s Σ

(ϕ)−1

s , (53)

where the required subspaces are obtained from the SVD of
the transformed real-valued measurement matrixϕ(X̃

(nc)
0 ) =

QH
2MX̃

(nc)
0 Q2N ∈ R

2M×2N expressed as

ϕ(X̃
(nc)
0 ) =

[

E
(nc)
s E

(nc)
n

]

[

Σ
(ϕ)
s 0

0 0

]

[

W
(nc)
s W

(nc)
n

]H

.

To simplify (52), it is easy to see that due to the fact that the
matricesQp are unitary, the subspaces ofϕ(X̃

(nc)
0 ) are also

given by choosing

E(nc)
s = QH

2M Ũ (nc)
s , E(nc)

n = QH
2M Ũ (nc)

n , Σ
(ϕ)
s = Σ̃

(nc)
s

W (nc)
s = QH

2N Ṽ (nc)
s , W (nc)

n = QH
2N Ṽ (nc)

n . (54)

Moreover, the transformed selection matricesK(nc)
1 and

K
(nc)
2 defined in (23) and (24) can be reformulated as

K
(nc)
1 = QH

2M(sel)

(

J
(nc)
1 + J

(nc)
2

)

Q2M (55)

K
(nc)
2 = j ·QH

2M(sel)

(

J
(nc)
1 − J

(nc)
2

)

Q2M , (56)

which follows from expanding the real part and the imaginary
part according to2 · Re {x} = x + x∗ and 2 · Im {x} =

−jx + jx∗. The conjugated termQT
2M(sel)J

(nc)
2 Q∗

2M can be

simplified toQH
2M(sel)J

(nc)
1 Q2M using the fact thatJ(nc)

1 =

Π2M(sel)J
(nc)
2 Π2M holds since the virtual array is always

centro-symmetric as shown in Theorem 2 and the fact that
Qp is left-Π-real.

Inserting (53) into (52) and applying the identities (54)-(56),
we have

∆µi = p̄T
i

(

(

J
(nc)
1 + J

(nc)
2

)

Ũ (nc)
s

)+(

j ·
(

J
(nc)
1 − J

(nc)
2

)

− ωi

(

J
(nc)
1 + J

(nc)
2

)

)

∆Ũ (nc)
s q̄i

2

ω2
i + 1

, (57)

where∆Ũ
(nc)
s = Ũ

(nc)
n Ũn

(nc)H

Ñ (nc)Ṽ
(nc)
s Σ̃

(nc)−1

s .
In order to further simplify (57), we require the following

two lemmas:

Lemma 1. The following identities are satisfied
(

J
(nc)
1 + J

(nc)
2

)

Ũ (nc)
s = J

(nc)
1 Ũ (nc)

s Γ̆ (58)
(

J
(nc)
1 − J

(nc)
2

)

Ũ (nc)
s = J

(nc)
2 Ũ (nc)

s Γ̊, (59)

where Γ̆ = Id + Γ = Q(fba) (Id +Λ)Q(fba)−1

and Γ̊ =
−Id + Γ

−1 = Q(fba)
(

−Id +Λ
−1

)

Q(fba)−1

.

Proof: These identities follow straightforwardly from
J

(nc)
1 Ũ

(nc)
s Γ = J

(nc)
2 Ũ

(nc)
s by addingJ

(nc)
1 Ũ

(nc)
s to both

sides of the equation for the first identity, and subtracting
J

(nc)
1 Ũ

(nc)
s and substitutingJ(nc)

1 Ũ
(nc)
s byJ(nc)

2 Ũ
(nc)
s Γ

−1 for
the second identity.

Lemma 2. In the noiseless case, the solutionΓ to (48)and the
solutionΥ to (50) have the same eigenvectors, i.e.,Q(fba) =
V . Moreover, their eigenvalues are related asωi = j · 1−λi

1+λi
.
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Proof: Starting fromΥ =
(

K
(nc)
1 E

(nc)
s

)+
K

(nc)
2 E

(nc)
s

and replacingE(nc)
s with (54) andK(nc)

n with (55) and (56),
we get

Υ =
(

(

J
(nc)
1 + J

(nc)
2

)

Ũ (nc)
s

)+

j ·
(

J
(nc)
1 − J

(nc)
2

)

Ũ (nc)
s

= j · Γ̆−1
ΓΓ̊ = j ·Q(fba) (Id +Λ)

−1
(Id −Λ)Q(fba)−1

= Q(fba)
ΩQ(fba)−1

, (60)

whereΩ = diag
{

j ·
[

1−λi

1+λi

]

}d

i=1
and we have used Lemma 1

in the first step.
Next, we consider the term

(

j ·
(

J
(nc)
1 −J

(nc)
2

)

−ωi

(

J
(nc)
1 +

J
(nc)
2

))

in (57) and apply the relationωi = j · 1−λi

1+λi
from

Lemma 2. We can then rewrite this term asj ·
(

J
(nc)
1 λi −

J
(nc)
2

)

2
1+λi

. Moreover, the term 2
ω2

i
+1

in (57) can be expressed

in terms ofλi as 2
ω2

i
+1

= (λi+1)2

2λi
. Inserting these relations into

(57), replacing
(

J
(nc)
1 +J

(nc)
2

)

Ũ
(nc)
s via (58), and substituting

p̄i = p
(fba)
i and q̄i = q

(fba)
i using Lemma 2, yields

∆µi = j · p(fba)T

i Γ̆
−1

(

J
(nc)
1 Ũ (nc)

s

)+ (

J
(nc)
1 λi − J

(nc)
2

)

·∆Ũ (nc)
s q

(fba)
i

2

1 + λi

· (λi + 1)2

2λi

= −j · p(fba)T

i

(

J
(nc)
1 Ũ (nc)

s

)+ (

J
(nc)
2 /λi − J

(nc)
1

)

·∆Ũ (nc)
s q

(fba)
i , (61)

where we usedp(fba)T

i Γ̆
−1 = p

(fba)T

i (1 + λi)
−1 from

Lemma 1 in the first equation.
As a final step, we notice that (61) must be real-valued as

we have started from the purely real-valued expansion (52) and
only used equivalence transforms to arrive at (61). However,
if −jz ∈ R for z ∈ C this implies thatRe {z} = 0 and hence
−jz = Im {z}. Consequently, (61) can also be written as (49)
and is therefore equivalent to the first-order expansion forR-
D NC Standard ESPRIT with FBA. This concludes the proof
of the theorem.

APPENDIX D
PROOF OFTHEOREM 5

We start the proof by simplifying the MSE expression for
R-D NC Standard ESPRIT in (31). In the single source case
the noise-free NC measurement matrix can be written as

X
(nc)
0 = a(nc)(µ)sT, (62)

wherea(nc)(µ) = [aT(µ), Ψ̃ΠMaH(µ)]T ∈ C2M×1 is the
augmented array steering vector anda(µ) = a(1)(µ(1)) ⊗
· · · ⊗ a(R)(µ(R)) ∈ CM×1. Moreover,Ψ̃ = Ψ∗Ψ∗ = e−j2ϕ,
s ∈ CN×1 contains the source symbols, and̂Ps = ‖s‖22 /N
is the empirical source power. In what follows, we drop the
dependence ofa(nc) on µ for notational convenience. If we
assume a ULA of isotropic elements in each of theR modes,
we havea(r) = [1, ejµ

(r)

, . . . , ej(Mr−1)µ(r)

]T and
∥

∥a(nc)
∥

∥

2

2
=

2M . The selection matrices̃J(nc)(r)
1 and J̃

(nc)(r)
2 are then

chosen according to (9) withJ(r)
1 = [IMr−1,0(Mr−1)×1]

and J
(r)
2 = [0(Mr−1)×1, IMr−1] for maximum overlap, i.e.,

M
(sel)
r = Mr − 1. Note that (62) is a rank-one matrix and we

can directly determine the subspaces from the SVD as

U (nc)
s = u(nc)

s =
a(nc)

∥

∥a(nc)
∥

∥

2

=
a(nc)

√
2M

Σ
(nc)
s = σ(nc)

s =

√

2MNP̂s

V (nc)
s = v(nc)

s =
s∗

‖s‖2
=

s∗
√

NP̂s

.

For the MSE expression in (31), we also requireP⊥

a
(nc) =

U
(nc)
n U

(nc)H

n = I2M− 1
2M a(nc)a(nc)H , which is the projection

matrix onto the noise subspace. Moreover, we haveΓ
(r) =

ejµ
(r)

and hence, the eigenvectors arep
(r)
i = q

(r)
i = 1. The

SO momentsR(nc)
nn andC(nc)

nn of the noise are given by (39).
Inserting these expressions into (31), we get

E

{

(∆µ(r))2
}

=
σ2
n

2

(

∥

∥

∥
r
(nc)(r)T

W
(nc)
∥

∥

∥

2

2

−Re

{

r
(nc)(r)T

W
(nc)(IN ⊗Π2M )

(

r
(nc)(r)T

W
(nc)
)T
}) (63)

with

r
(nc)(r) =

[

(

J̃
(nc)(r)
1

a(nc)

√
2M

)+
(

J̃
(nc)(r)
2 /ejµ

(r)

− J̃
(nc)(r)
1

)

]T

,

W
(nc) =

(

1
√

2MNP̂s

· sH

√

NP̂s

)

⊗ P
⊥

a
(nc) ∈ C

2M×2MN .

Note that the termr(nc)(r)TW (nc) can also be written as
r(nc)(r)TW (nc) = s̃T ⊗ ã(r)T , where

s̃
T =

1
√

2MNP̂s

· sH

√

NP̂s

,

ã
(r)T =

(

J̃
(nc)(r)
1

a(nc)

√
2M

)+
(

J̃
(nc)(r)
2 /ejµ

(r)

− J̃
(nc)(r)
1

)

P
⊥

a
(nc) .

Thus, after straightforward calculations, the MSE in (63) is
given by

E

{

(∆µ(r))2
}

=
σ2
n

2

(

∥

∥s̃T
∥

∥

2

2
·
∥

∥

∥
ã(r)T

∥

∥

∥

2

2

− Re
{

s̃Ts̃ · ã(r)T
Π2M ã(r)

}

)

.

(64)

The first term
∥

∥s̃T
∥

∥

2

2
of (64) can be conveniently expressed

as
∥

∥s̃T
∥

∥

2

2
= 1

2MNP̂s
. For the second term

∥

∥ã(r)T
∥

∥

2

2
of

(64), we simplify ã(r)T and expand the pseudo-inverse of
J̃

(nc)(r)
1 a(nc)(r) using the relationx+ = xH/ ‖x‖22. As

J̃
(nc)(r)
1 selects2(Mr − 1) out of 2Mr elements in ther-th

mode, we have
∥

∥J̃
(nc)(r)
1 a(nc)(r)

∥

∥

2

2
= M

Mr
· 2(Mr − 1). Then,

taking the shift invariance equatioñJ(nc)(r)
2 a(nc)/ejµ

(r) −
J̃

(nc)(r)
1 a(nc) = 0 in the r-th mode into account, we obtain

ã(r)T =

√
2MMr

2M(Mr − 1)

(

a(nc)H J̃
(nc)(r)H

1 J̃
(nc)(r)
2 /ejµ

(r)

−a(nc)H J̃
(nc)(r)H

1 J̃
(nc)(r)
1

)

. (65)

As a ULA is centro-symmetric, i.e., (10) holds, we can write
a(nc) = [1, Ψ̃]T ⊗ a. Note that the phase term depending on
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the phase center in (10) cancels throughout the derivation and
thus has been neglected. Since the vectora and the matrices
J̃

(nc)(r)
k , k = 1, 2, can be written asa = a(1) ⊗ · · · ⊗ a(R)

and J̃
(nc)(r)
k = I2 ⊗ I∏r−1

l=1 Ml
⊗ J

(r)
k ⊗ I∏R

l=r+1 Ml
, all the

unaffected modes can be factored out of (65), yielding

ã(r)T =

√
2MMr

2M(Mr − 1)
·
[

1

Ψ̃

]

⊗
(

a(1) ⊗ · · · ⊗ a(r−1)
)H

⊗
(

ã
(r)T

1 − ã
(r)T

2

)

⊗
(

a(r+1) ⊗ · · · ⊗ a(R)
)H

, (66)

where

ã
(r)T

1 = a(r)HJ
(r)H

1 J
(r)
2 /ejµ

(r)

and

ã
(r)T

2 = a(r)HJ
(r)H

1 J
(r)
1 .

Similarly to [15], it is easy to verify that

ã
(r)T

1 =
[

0, e−jµ(r)

, . . . , e−j(Mr−2)µ(r)

, e−j(Mr−1)µ(r)
]

ã
(r)T

2 =
[

1, e−jµ(r)

, . . . , e−j(Mr−2)µ(r)

, 0
]

.

Consequently, we obtain
∥

∥

∥
ã
(r)T

∥

∥

∥

2

2
=

M2
r

2M(Mr − 1)2
· 2 ·

r−1
∏

n=1

∥

∥

∥
a
(n)
∥

∥

∥

2

2
· 2 ·

R
∏

n=r+1

∥

∥

∥
a
(n)
∥

∥

∥

2

2

=
2M2

r

M(Mr − 1)2
· M

Mr

=
2Mr

(Mr − 1)2
. (67)

The third term s̃Ts̃ of (64) can be simplified as̃sTs̃ =
Ψ̃

2MNP̂s
, where we have used the equalitys = Ψs0 and the

fact thatsT0 s0 = NP̂s. Moreover, using (66), the last term of
(64) can be reduced tõa(r)T

Π2M ã(r) = − 2MrΨ̃
∗

(Mr−1)2 . Inserting
these results into (64), we finally obtain for the MSE ofR-D
NC Standard ESPRIT

E

{

(∆µ(r))2
}

=
σ2
n

NP̂s

· Mr

M(Mr − 1)2
, (68)

which is the desired result.
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We first state the expression for the deterministic NC CRB
C(nc) derived in [32], which is given in theR-D case by

C(nc) =
σ2
n

2N
· Re {J}−1 (69)

with

J =
(

G2 −G1G
−1
0 GT

1

)

⊙ R̂(R)

+
[

(

G1G
−1
0 H0

)

⊙ R̂(R)
][

(

G0 −HT
0 G

−1
0 H0

)

⊙ R̂(R)
]−1

·
[

(

HT
1 −HT

0 G
−1
0 GT

1

)

⊙ R̂(R)
]

+
[

H1 ⊙ R̂(R)
]

·
[

G0 ⊙ R̂(R)
]−1

·
[

(

HT
0 G

−1
0 GT

1

)

⊙ R̂(R)
]

+
[

H1 ⊙ R̂(R)
]

·
[

G0 ⊙ R̂(R)
]−1

·
[

(

HT
0 G

−1
0 H0

)

⊙ R̂(R)
]

·
[

(

G0 −HT
0 G

−1
0 H0

)

⊙ R̂(R)
]−1

·
[

(

HT
0 G

−1
0 GT

1

)

⊙ R̂(R)
]

−
[

H1 ⊙ R̂(R)
]

·
[

(

G0 −HT
0 G

−1
0 H0

)

⊙ R̂(R)
]−1

·
[

HT
1 ⊙ R̂(R)

]

, (70)

whereR̂(R) = 1R⊗ R̂S0 andR̂S0 = S0S
T
0 /N . The matrices

Gn, Hn, n = 0, 1, 2, are defined as

G0 = Re
{

Ψ
∗AHAΨ

}

, H0 = Im
{

Ψ
∗AHAΨ

}

(71)

G1 = Re
{

(IR ⊗Ψ
∗)DHAΨ

}

, (72)

H1 = Im
{

(IR ⊗Ψ
∗)DHAΨ

}

, (73)

G2 = Re
{

(IR ⊗Ψ
∗)DHD(IR ⊗Ψ)

}

, (74)

where D = [D(1), . . . ,D(R)] ∈ CM×dR with D(r) =

[d
(r)
1 , . . . ,d

(r)
d ] ∈ C

M×d, r = 1, . . . , R. The vectorsd(r)
i , i =

1, . . . , d, contain the partial derivatives∂a(µi)/∂µ
(r)
i . In the

special cased = 1, the array steering matrixA reduces to
a(µ), D = [d(1), . . . ,d(R)] ∈ C

M×R, Ψ = ejϕ, and R̂S0 =
sT0 s0/N = P̂s, wheres0 ∈ RN×1. Dropping the dependence
of a on µ and using the fact thata = a(1) ⊗ · · · ⊗ a(R), we
obtain

d(r) = a(1) ⊗ · · · ⊗ a(r−1) ⊗ d̃(r) ⊗ a(r+1) ⊗ · · · ⊗ a(R).

For a ULA in each of theR modes, we havea(r) =
[1, ejµ

(r)

, . . . , ej(Mr−1)µ(r)

]T and d̃(r) = ∂a(r)/∂µ(r) = j ·
[0, ejµ

(r)

, . . . , (Mr−1) ej(Mr−1)µ(r)

]T. Then, similarly to [15],
the termsaHa, d(r1)

H

d(r2), andd(r)Ha in (71)-(74) become
aHa = M ,

d(r1)
H

d(r2) =

{

1
6M(Mr − 1)(2Mr − 1) if r1 = r2 = r
1
4M(Mr1 − 1)(Mr2 − 1) if r1 6= r2.

and

d(r)Ha = −j · 1
2
M(Mr − 1).

Thus, the terms (71)-(74) simplify to

G0 = M, H0 = G1 = 0, (75)

H1 = h1 ∈ R
R×1 with [h1]r = −1

2
M(Mr − 1), (76)

[G2]r1,r2=

{

1
6M(Mr − 1)(2Mr − 1) if r1 = r2 = r
1
4M(Mr1 − 1)(Mr2 − 1) if r1 6= r2.

(77)

After inserting (75)-(77) into (70), we obtain

J = P̂s

(

G2 −
1

M
h1h

T
1

)

. (78)

It can then be verified thatJ is a real-valued diagonal matrix
with the entries[J ]r,r = P̂s

12 · M(M2
r − 1) on its diagonal.

Finally, C(nc) is given by

C(nc) =
σ2
n

2N
· Re {J}−1= diag

{

[

C(nc)(1), . . . , C(nc)(R)
]T

}

,

where

C(nc)(r) =
σ2
n

NP̂s

· 6

M(M2
r − 1)

(79)

which is the desired result.
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