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Abstract—High-resolution parameter estimation algorithms and their low complexity. However, these methods assume
designed to exploit the prior knowledge about incident sigals  arbitrary source signals and do not take prior knowledgé suc
from strictly second-order (SO) non-circular (NC) sourcesallow as the second-order (SO) non-circularity of the receivgdais

for a lower estimation error and can resolve twice as many . ¢ £ With th . larity of sub o
sources. In this paper, we derive theR-D NC Standard ESPRIT MO account. Wi e growing popularity of subspace-dase

and the R-D NC Unitary ESPRIT algorithms that provide Parameter estimation algorithms, their performance aialy
a significantly better performance compared to their original has attracted considerable attention. The two most prarhine
versions for arbitrary source signals. They are applicableto performance assessment strategies have been proposdd in [7
shift-invariant R-D antenna arrays and do not require a centro- and B] The concept in[7] and the follow-up papeIE [9]-

symmetric array structure. Moreover, we present a first-order | the ei tor distributi fth leai
asymptotic performance analysis of the proposed algorithrs, [11] analyze the eigenvector distribution of the sampleacibv

which is based on the error in the signal subspace estimate @nC€ matrix, originally proposed in[12]. However, it recps
arising from the noise perturbation. The derived expressias for ~Gaussianity assumptions on the source symbols and the noise
thellrestL_JIting p?jraan;e:r?rtif'tci:mr?ﬂtﬁg szrfg::?rz ixprlliaclitt(i)nrfgz ?z(a)'i'soe and is only asymptotic in the sample si2& In contrast, [[3]
realizations an IC | 1V | -10- | H H H e -
(SNR), i.e., the res)L/JItsp become exact for eithgr high SNRs & and Its_ eXt.enSIOHSEDS]J.:D'AL.] provide an explicit first-orde
large ‘sample size. We also provide mean squared error (MSE) @PProximation of the estimation error caused by the peetlirb
expressions, where only the assumptions of a zero mean andifi subspace estimate due to a small additive noise contributio
SO moments of the noise are required, but no assumptions abbu It directly models the leakage of the noise subspace into the
its statistics are necessary. As a main result, we analytidg prove  signal subspace. Unlik&][7], this approach is asymptotitién
that the asymptotic performance of both -D NC ESPRIT-type  gffactive signal-to-noise ratio (SNR), i.e., the resulesdme
algorithms is identical in the high effective SNR regime. Faally, a . .
case study shows that no improvement from strictly non-cirglar ~ accurate for either high SNRs or a large sample siz&hus,
sources can be achieved in the special case of a single source It IS even valid for the single snapshot case= 1 if the SNR
is sufficiently high. Furthermore, as it is explicit in theis®
realizations, no assumptions about the statistics of tipeats
or the noise are necessary. However, for the mean squared
error (MSE) expressions inl[8], a circularly symmetric mois
. INTRODUCTION distribution is assumed. IA[15] anld |16], we have derived ne
STIMATING the parameters of multidimensionak{D) MSE expressions that only require the noise to be zero-mean
signals with R > 1, e.g., their directions of arrival, with finite SO moments regardless of its statistics and een
frequencies, Doppler shifts, etc., has long been of great tbe framework of([8] to the case d@t-D parameter estimation.
search interest, given its importance in a variety of apgilbms  Further extensions of these results for the perturbatiaiyaas
such as radar, sonar, channel sounding, and wireless comefuFensor-ESPRIT-type algorithms have been presented/jn [1
nications. Among other subspace-based parameter estimagnd [18], respectively. The special case of the performance
schemes (se€l[1].][2])R-D Standard ESPRIT [3]R-D Uni- assessment for a single source was consideredlin [7] and
tary ESPRIT([4],[[5], and their tensor extensidR<D Standard the asymptotic efficiency of MUSIC and Root-MUSIC was
Tensor-ESPRIT an&-D Unitary Tensor-ESPRIT]6] are somepresented in [19] and [20], respectively. However, theselte
of the most valuable estimators due to their high resoluti@ie asymptotic in the sample siZ¢ or even in the number
of sensorsV/. The results presented here are also accurate for
Parts of this paper have been published atIEE Int. Conference on gmgall| values of\/ and asymptotic in the effective SNR.
Acoustics, Speech, and Signal Processing (ICASSP 20@Htreal, Canada, . . .
May 2004, and thdEEE Int. Conference on Acoustics, Speech, and Signal Recently, a number of improved high-resolution subspace-
Processing (ICASSP 2013Yancouver, Canada, May 2013. based parameter estimation schemes have been proposed for
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Offset-QPSK, PAM, and ASK-modulated signals. By applyingnalytically prove thatR-D NC Standard ESPRIT an&-D
a preprocessing procedure similar to the concept of widelgC Unitary ESPRIT have the same asymptotic performance
linear processind [25], the array aperture is virtually oled, in the high effective SNR regime. In contrast fo1[30], we here
which results in a significantly reduced estimation errod aralso take the real-valued transformation 8aD NC Unitary
the ability to resolve twice as many sourceés][24]. SonteSPRIT into account for the proof.
potential applications are wireless communications, @vgn Finally, we present simplified?-D MSE expressions for
radio, etc., when strictly non-circular sources are knowbé both NC ESPRIT-type algorithms in the special case of a
present, and radar, tracking, channel sounding, etc.,emher single strictly non-circular source, where a uniform sangl
signals can be designed as strictly non-circular signafee Tgrid and circularly symmetric white noise are assumed. The
performance of NC MUSIC has been derived [in][21] basesbtained closed-form expressions only depend on the pdiysic
on [7], its source resolvability has been investigated i6],[2 parameters, i.e., the array sizd and the effective SNR.
and mutual coupling has been considered if [27]. HoweverTaey facilitate design decisions ol to achieve a certain
performance analysis of NC Standard ESPRIT and NC Unitgpgrformance for specific SNRs. Furthermore, we also simplif
ESPRIT has not yet been reported in the literature. the deterministid®R-D NC Cramér-Rao bound (CRE{X[lﬁlor

In this paper, we first present tlié D NC Standard ESPRIT this case and analytically compute the asymptotic effigienc
and theR-D NC Unitary ESPRIT algorithms as an extensionf the proposed algorithms fad® = 1. Note that in [[38] and
of [23] and [24]. They exploit the strict SO non-circularity [34], we have also incorporated structured least squards an
stationary sources. The algorithms [n1[23] ahdl [24] are ongpatial smoothing into the performance analysis, respalgti
designed for the case of 1-D parameter estimation and eequir This remainder of this paper is organized as follows: The
a shift-invariant and centro-symmetric array structurerdd data model and the preprocessing for strictly non-circular
we relax this requirement to only shift-invariant-struetti sources are introduced in Sectloh Il and Sedfign Ill. In Bect
arrays and additionally consider the case ®D (R > 1) [V] the R-D NC Standard ESPRIT and&-D NC Unitary
parameter estimation. Furthermore, we show that the prepESPRIT algorithms are derived. Their performance analysis
cessing step for non-circular sources automatically ohetu is presented in Sectidn]V before the special case of a single
forward-backward averaging (FBA) [28], which is in this eassource is analyzed in Sectibn]VI. Section VIl illustratesl an
even applicable to arrays without centro-symmetry. In@gyl discusses the numerical results, and concluding remakks ar
to [4], R-D NC Unitary ESPRIT can also be efficientlydrawn in Sectiof V.
implemented in terms of only real-valued computations by Notation: We use italic letters for scalars, lower-case bold-
mapping the centro-Hermitian FBA-processed measureméaite letters for column vectors, and upper-case bold-ftters
matrix into a real-valued matriX_[29]. This substantially-r for matrices. The superscripts *, , =1, and = denote the
duces the computational complexity. Regarding the esiimat transposition, complex conjugation, conjugate trangjoosi
error, R-D NC Unitary ESPRIT performs better thattD NC  matrix inversion, and the Moore-Penrose pseudo inverse of
Standard ESPRIT at low signal-to-noise ratios (SNR), whike matrix, respectively. The Kronecker product is denoted as
simultaneously requiring a lower computational load. Both and the Hadamard product is defined@sThe operator
algorithms achieve a significantly lower estimation ertwart vec { A} stacks the columns of the matrit € CM*¥ into
their traditional (non-NC) counterparig-D Standard ESPRIT a column vector of lengtil/ N x 1 and arg{-} extracts the
and R-D Unitary ESPRIT [[5]. phase of a complex number. The operatbig{a} returns a

In our second contribution, we extend our initial results idiagonal matrix with the elements afplaced on its diagonal
[30] and derive a first-order asymptotic performance anglysandblkdiag{-} creates a block diagonal matrix. The operator
of the proposedR-D NC Standard andR-D NC Unitary ({-} denotes the highest order with respect to a parameter.
ESPRIT algorithms. Least squares (LS) is used to soliée matrixIT; is the M x M exchange matrix with ones
the resulting augmented shift invariance equations after ton its antidiagonal and zeros elsewhere. Also, the matrices
preprocessing for non-circular sources. Due to its dismlissl,, and0,, denote theM x M matrices of ones and zeros,
advantages, we resort to the framework [n [8] combina@spectively. MoreoveiRRe {-} andIm {-} extract the real and
with [16] for our presented performance analysis. We fuimaginary part of a complex number or a matrix respectively,
ther extend[[16] by incorporating the preprocessing for-noijz||, represents the 2-norm of the vectorandE {-} stands
circular sources and derive an explicit first-order expamsifor the statistical expectation.
of the estimation error in terms of the noise perturbation.
The noise is assumed to be small compared to the signals 1. DATA MODEL
but no assumptions about its statistics are required. We als . ) .
provide MSE expressions, where only the assumptions of a-€t & noise-corrupted linear superpositiondtindamped
zero mean and finite SO moments of the noise are need@dPonentials be sampled on an arbitrérgdimensional {-D)
Thus, they also give insights into the achievable perforeanSnift-invariant-structured giittof size My x...x Mg at N
in scenarios with non-Gaussian and non-circular pertighat SuPSequent time instants [S]. Thg-th time snapshot of the
that can, for instance, be caused by clutter environme@@servedi-D data sequence can be modeled as

in radar gppllcatlonsEB-l]. Al the. obtained expressions ar 1[32] only considers the 2-D case, but tReD extension is straightforward.
asyrr_lptotlc_ln the effective SNR, i.e,, they become accuratey grid needs to be decomposable into the outer produd® afne-
for either high SNRs or large sample sizes. Furthermore, \tienensional sampling grid§ 16].
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wherem, = 1,...,M,, n = 1,..., N, s,(t,) denotes the =, A v o S+ I, N* (5)
complex amplitude of thé-th undamped exponential at time (50) (5) (nc) (a0)

instantt,,, andk,, defines the sampling gtdFurthermore, =AMIS + NV = X7 + N7, (6)
1" is the spatial frequency in theth mode fori = 1,...,d  where the multiplication byiT,, is used to facilitate the real-
andr =1,..., R, andnm,,...my(tn) contains the samples ofyajued implementation of-D NC Unitary ESPRIT later in

the zero-mean additive noise component. In the array sigr@u)_ Moreover,A() ¢ C2Mxd gnd N1 ¢ C2M*N gre

processing context, each of thieD exponentials representsthe augmented array steering matrix and the augmented noise
a narrow-band planar wavefront emitted from stationary fagatrix respectively, Xé“c) € C2MxN s the unperturbed

field sources and the complex amplitudes,,) are the source 5,gmented measurement matrix, and we have used the fact
symbols. The objective is to estimate hepatial frequencies pat S, = ¥*S in (B). The extended dimensions 4™ can

1 R . .
i = [NE L ,ME )]Ta Vi, from @. we assume that is  pe interpreted as a virtual doubling of the number of sensor
known and has been estimated beforehand using model orgieinents, which also doubles the number of detectable esurc
selection techniques, e.g., [35]-[37]. and provides a lower estimation error.

In order to obtain a more compact formulation & (1), Based on the assumption that the array steering matrix
we collgjctj\}he_observed samples into a measurement MatyXis shift-invariant, we next analyze the properties of the
X € CYV with M = [[,_, M, by stacking thel? spatial augmented array steering matt&("®. The shift invariance

dimensions along the rows and aligning tNetime snapshots properties for the physical array described Ayare given by
as the columns. We can then mod€l as () (1)
JA®M =J"A, r=1,... R, 7

X=AS+N < (CMXN’ (2) ~ ~ M p g (sel)
Md _ where J\") and J{"” € RiMXM are the effectiveR-
whereA = [a(p1), ..., a(pa)] € C is the array steering ny gojaction matrices, which seleatr**" elements for the

matrix: It consi;ts of th_e array steering _vectanr@ul-) COIe- " first and the second subarray in théh mode, respectively.
sponding to the-th spatial frequency defined by They are compactly defined aE,S') _ IHT*M 2 J}E,.) 2
1=1 MV

a(p;) =a (uf-l)) ®-- ®a® (MER)) eCM () I  ,, fork =12, where J\") € RM“xM: are the
r-mode selection matrices for the first and second subarray
where a(") (HET)) e CM*1 is the array steering vector in[5]. The diagonal matrix® (") = diag{[eé” ... e |7} €
the r-th mode. Furthermore§ € C4* represents the sourceC**? contains the spatial frequencies in th¢h mode to be
symbol matrix andN e CM*N contains the samples of theestimated.
additive sensor noise. Due to the assumption of strictly SOThe first important property of the augmented steering
non-circular sources, the complex symbol amplitudes ohea@atrix A is formulated in the following theorem:

source form a rotated line in the complex plane so $i@n  Theorem 1. If the array steering matrixA is shift-invariant
be decomposed as [24] (@), then A" s also shift-invariant and satisfies

S — \I’S(), (4) jl(nc)(T)A(nC)'*I)(T) _ j2(nC)(7')A(nc), r=1,...,R, (8)

where S, € RV is a real-valued symbol matrix andyhere
U = diag{[e)?,...,e¥]T} € C?*9 contains stationary - (2e)(r) (we)(P)
complex phase shifts on its diagonal that can be different fo/}. =Ir-1p, @ Jy @Ine gy k=12, (9)

each source.
JEOW _plkdiag {Jl”, IT, e JQWHMT} € R2Mx2My

I1l. PREPROCESSING FORR-D NC ESPRIT-TYPE ne)(r) ) " 91D s
ALGORITHMS T blkdiag { I, T o T Ty, | € REVE 620,

In this section, we derive the NC model resulting from the  proof: See AppendisA. -

preprocessing for strictly non-circular sources. We shbat t  |f the physical array is centro-symmetric, i.e., it is syntme

the shift invariance equations also hold in the NC case apg with respect to its centroid, its array steering matrx
that the virtual array always possesses a centro-symmelfigisfies|[[4]

structure, even if the physical array is not gentro-symiuetr _ I, A" = A_A,, (10)

In order to take advantage of the benefits associated with dd _ .
strictly non-circular sources, we apply a preprocessimg@r WhereA. %)(C “isa Un'E?)W diagonal matffx If (Z0) holds,
dure and define the augmented measurement maifix) ¢ we haveJ, * = II, ¢.yJ; "Il and hence the augmented

3For a uniform sampling grid, we have,,, = m, — 1. An example 4In case of a physical centro-symmetric arrdy,. depends on the phase
for a non-uniform grid is provided in Fifll 3, whetg,, = 0,1,2,4,5 and center of the array. If the phase center coincides with theyar centroid, we
kmy =0,1,3,4. have A. = I,.



selection matrice "™ and J{") simplify to

JOO ol k=12 (11)

Note that this special case was assumed_in [23] [24].

The second important property oA(*®) is stated in the
following theorem:

Theorem 2. The augmented steering matrig(*®) always

exhibits centro-symmetry even & is not centro-symmetric.

Proof: Assuming thatd does not necessarily satisfy {10), algorithm, Where‘j]gnc)('r) c R%M;seww,\47 k- 1.2,
we have is defined in[(D). .
. . 3) Compute the eigenvalues;,”’, i = 1,...,d of T'("
o AN = {HO HOM} {H 1?411;11;] = [éwj*} jointly for all r = 1, ..., R. Recover the correctly pairefl
M M M spatial frequencieg!” via
A (ne) < (r

where A. becomes¥W¥, which is unitary and diagonal.

TABLE |
SUMMARY OF THE R-D NC STANDARD ESPRIT ALGORITHM

1) Estimate the augmented signal subspaée” e ¢2M x4
via the truncated SVD of the augmented observation
X(nc) c CQJ\/IXN-

2) Solve the overdetermined set of augmented shift invgri-
ance equations

jl(nc)(r) 0S(nc) F(r) ~ jQ(nC)(r) 0S(nc)

for T e ¢¥¢ r = 1,...,R, by using an LS

Therefore, A" satisfies[(I0), which shows that it is centrog, p.p NC Unitary ESPRIT Algorithm

symmetric regardless of the centro-symmetry4of |

This result shows thaf-D NC Unitary ESPRIT, derived
in the next section, can be applied to a broader variety
array geometries thaR-D Unitary ESPRIT, which requires a

centro-symmetric array. An example is provided in [Eh. 2

Section V1.

IV. PROPOSEDR-D NC ESPRIT-TYPE ALGORITHMS

As a main featureR-D Unitary ESPRIT involves forward-

backward averaging (FBA) [28] of the measurement matrix
, Which results in a centro-Hermitian matrix, i.e, matrices
€ CP*9 that satisfyII,Z*II, = Z. Therefore, it can

Pe efficiently formulated in terms of only real-valued com-

putations [[4]. This is achieved by a bijective mapping of the
set of centro-Hermitian matrices onto the set of real-vélue
matrices [[29]. To this end, let us define I&f-real matrices,

In this section, we present the NC Standard ESPRIT ah@-» matrices) € CP*¢ satisfyingIl,Q" = Q. A sparse and

the NC Unitary ESPRIT algorithms for arbitrarily formett
dimensional shift-invariant-structured array geomstrighere

centro-symmetry is not required. Furthermore, we sumreariz

some important properties at the end.

A. R-D NC Standard ESPRIT Algorithm

Based on the noisy augmented data model (6), we estim%e

nc)

the signal subspact/™ e C2Mxd py computing thed
dominant left singular vectors ok (). As A®) and U

span approximately the same column space, we can fin

non-singular matrixt’ € C?*¢ such thatA®® ~ U T.
Using this relation, the overdetermined set ®faugmented

square unitary leflI-real matrix of odd order is given by

1 In 0n><1 JIn
Q2n+1 = ﬁ : Ole \/5 Ole (15)
Hn 0n><1 7JHn

A unitary left II-real matrix of even order is obtained from

(I5) by dropping its center row and center column. More left
-real matrices can be constructed by post-multiplying & lef
-real matrix@ by an arbitrary real matrixR of appropriate
size. Using this definition, any centro-Hermitian matéx e
CP>4 can be transformed into a real-valued matrix through the

cEréfhsformationlﬂlg]

©(Z)=Q}ZQ, c R"*4. (16)

shift invariance equation§(8) can be expressed in termiseof {, ynitary ESPRIT, the centro-Hermitian matrix obtainetiaf

estimated augmented signal subspace, yielding

JrOOgEIr® & JrOWgee r=1,... R (13)

with T(") = T®"T-1, Often, the R unknown matrices
(") ¢ C?*4 are estimated using least squares (LS), i.e.,

N ~ N + - N
0O = (JO0gEa ) 0GR e el 14y

FBA is given by [4]
X =[X MyX*Iy]eCM*N, (17)

Next, we extend the concept of Unitary ESPRIT to the
augmented data model inl (6) and derive fdd NC Unitary
ESPRIT algorithm. Therefore, the FBA step as well as the
real-valued transformation have to be applied¥¢"®. Here,
FBA is performed by replacing the NC measurement matrix

Finally, after solving[[I¥) fof*") in each mode independently,X " € CQMIX(N) by tgﬁxcg\lfumnl-wise augmented measure-
the correctly paired spatial frequency estimates are goyen Ment matrixX"< € C defined by

A" = arg{A"}, i = 1,...,d. The eigenvalues\\” of

I'(") are obtained by performing a joint eigendecomposition
across allR dimensions([[38] or via the simultaneous Schur
decomposition[[5]. The?-D NC Standard ESPRIT algorithm

is summarized in Tablg I.

X () = [X @) [T, X0 TLy] (18)
X X1y
Ty XY Oy X Iy
_ [X(nc) X(nC)HN} . (19)



. = . TABLE Il
Due to the fact that equivalently t¢ (17X ) is centro- SUMMARY OF THE R-D NC UNITARY ESPRIT ALGORITHM

Hermitian, it can be transformed into a real-valued matiatt
takes the simple form

1) Estimate the augmented real-valued signal subsﬁ)ace
E" ¢ R?M*4 yja the truncated SVD of the stacked

s0(}2(116)) _ QQH]\,]X(DC)QQN (20) observation
5. [Re{X} OMXN} (21) [Re{X}7T,Im {X}T]" € RM*N,
I {X} Oarxn 2) Solve the overdetermined set of augmented shift invari-
The proof is given in AppendikIB. ance equations
In the next step, we define the transformed augmented K§nc)(r)EAs(nc)T(7') zkénc)(r)EAs(nc)
steering matrix asD(™®) = QI A Based on theR-D
shift invariance property oft("®) proven in Theorerfil1, it can for Y € R4, =1, .-+ %, by using an LS algo;
easily be verified thaD () obeys rithm, where K" ¢ oz Mrx2M 1 — 1 9 and
%(nc) (r) . . i
K’f“c)(")D(“C)Q(’”) _ KQ(“C)(")D(“C), F=1.... R (22) J are defllned |n|123)(]r])24.), anfl](9), respectively.
3) Compute the eigenvalues!”, i = 1,...,d of Y
where theR pairs of augmented selection matrices[ih (9) are jointly for all r = 1,{ ~)-,_R- Recover the correctly pairefl
transformed according t01[4] as spatial frequencieg, ’ via

ﬂgr) =2 arctan(oﬁ;gm).

KO0 9. Re {Q}éf e JeIn g, M} (23)

(no)(r) _ o H 7(nc)(r) a centro-symmetric array structure is not required as shown
K =2 Im{Qz@iM?C”JQ QQM}' (24) in Theorem[dl and Theorefd 2. Secondly, it will be shown
in Section[\-B that the performance d@t-D NC Standard
ESPRIT andR-D NC Unitary ESPRIT is asymptotically
identical. This is due to the fact that fd8-D NC Unitary
ESPRIT, applying FBA taX (") does not improve the signal

. ~(n¢) oM xd subspace estimate and the real-valued transformation dnas n
the real-valued augmented signal subspﬁffé €R by effect on the asymptotic performance. As a consequeRd2,

; ; ; v (nc)
computing thed dominant Ieft_ singular vectors_ QF(X ). NC Unitary ESPRIT cannot handle coherent sources as FBA
Note that the zero block matrices and the scaling factor of 2 i ) :
. has no decorrelation effect. However, spatial smoothidj [2

(1) can be dropped as they do not alter the signal subspace 0 )

(X®9). As D) and 509 span aporoximately the samec®” be applied to separate coherent wavefronts. Therefore,
v ' vs ~ sSpanapp y e SaMeand thirdly, R-D NC Standard ESPRIT an&-D NC Unitary
column space, we can find a non-singular maffixc C

~ (n - . .. ESPRIT can both resolve up to
such thatD®™®) ~ E&OT. Substituting this relation into P

Moreover, the real-valued set of diagonal matri€@$) =
diag{[w'”,...,w T} € R4 with ™ = tan(ul"/2)
contain the spatial frequencies in theéh mode.

Using the preprocessed noisy datalinl (21), we then estim

(22), the overdetermined set &f real-valued shift invariance min { min(2 - Mﬁsel)M/MT), N} (27)
equations in terms of the estimated augmented signal soéspa ol
is given by incoherent sources as comparedﬁ'm{mim(Mﬁbe )M/MT),

o (1OHP) et (] (80 () N} and min{min, (M "V M/M,),2 - N} for R-D Standard
Kf ! )ES( e~ KQ( ! )ES( or=1...R (25) ES}PRIT andE%-D U(nitary ES/PRIZI', resp}éctively. Thus, N is
with Y = TQ)T~1 Often, theR unknown real-valued large enough, we can detect twice as many incoherent sources
diagonal matrice& (") are estimated using least squares (LSkourth, due to the exchange matfik, in (@), the real-valued
ie., transformation inR-D NC Unitary ESPRIT can be efficiently
. ~ A + . computed by stacking the real part and the imaginary part
T = (Kfnc)(T)Es(“C)) KM EM) e R4 (26) of X on top of each other, cf. equation21). Finally, the
. . . . computational complexity of both algorithms is dominated b
Flna!ly, the cggectly paired Spa}t'fl freguency estimades the signal subspace estimate via the SVD[of (21), which is
o_btamed by/{i) = 2-arctan(®; ), i = 1,... > . The. of costO((2M)?N) [89)], and the pseudo inverse in{14) and
e!genvaluesbf of Y are computed by performing a jointzg) whose computational cost @((211)?) [39]. However,
eigendecomposition across afl dimensionsl[38] or via the {he complexity ofR-D NC Unitary ESPRIT is lower than that

simultaneous Schur decomposition [5]. If all the eigenealu o p.p NC Standard ESPRIT as these operations are real-
are real, they provide reliable estimate$ [4]. A summary Q& ed.

R-D NC Unitary ESPRIT is given in Tablelll.
V. PERFORMANCE OFR-D NC ESPRIT-TPE
C. Properties ofR-D NC ESPRIT-Type Algorithms ALGORITHMS

The proposed?-D NC Standard ESPRIT anG-D NC Uni- In this section, we present the first-order analytical perfo
tary ESPRIT algorithms have a number of important propertimance assessment éf-D NC Standard ESPRIT an®-D
that are summarized in this subsection. Firstly, both @lgms NC Unitary ESPRIT. As will be shown in Subsectibn V-B,
can be applied to estimate the parameters of stationagflgtri the performance of2-D NC Standard ESPRIT an&-D NC
SO non-circular sources via shift-invariaRtD arrays, where Unitary ESPRIT is asymptotically identical. Therefore, fivet



resort to the simpler derivation of the expressionsRed NC where A(") contains the eigenvalue/sgr) on its diagonal.
Standard ESPRIT and then show their equivalence. In cdantraben, by inserting[(28) intd (29), we can write the first-arde
to our previous results irfi [30], we here also include the-realpproximation for the estimation errorzsug") explicitly in
valued transformation il-D NC Unitary ESPRIT into the terms of the noise perturbatiaN ().

proof. In order to derive an analytical expression for the MSE
of R-D NC Standard ESPRIT, we resort tb [16], where
A. Performance of2-D NC Standard ESPRIT we have derived an MSE expression that only depends on

1Fhe SO statistics of the noise, i.e., the covariance matrix
Rd the pseudo-covariance matrix, assuming the noise to
& zero-mean. As the preprocessing [ih (6) does not vio-

error expansion in terms of the perturbatidf™®) and then late the zero-mean assumptiolL][16] is applicable once the

find a corresponding first-order expansion for the paramePe%LE?Spondmg{J i(?c)itaftg;ﬁ,rflfo;:gdéozgrei;fgée’m g?r?)?lng
= vec ’

estimation errorAy;. It is evident from [(6) that the pre—n(nc) H SMN
_ n n INx2MN i
processing does not violate the assumption of a small noen = E{ntn} € C » and its pseudo-

. . i i (nc) _ nc nc)T /
perturbation made i [8]. Hence, we can apply the concept ¢ffvarance mat”)CnnC = E{n"Inln9} e C2MNMN,
[8] to the augmented measurement matrix[h (6). The resuft® MSE for thei-th spatial frequency in the-th mode is

are asymptotic in the high effective SNR and explicit in th@iven by

nO|Se teI‘mN(nC) {(AH(T))Q} _ 1 (T<nc)(T)HW(txc)*R(nc)TW(nc)Tr(nC)(r)
Starting with the subspace error expression basedon (%), ' 2\ o ¢

we express the SVD of the noise-free observatiaii8” as  —Re {TE“C)(”TW‘“)Cﬁ'ﬁc)TW(“)Trim)(”}) +0{*,

(ne) _ [rr(ne) pr(nc) n{e) 0] (o) 1 0] where
X [Us Ui }[ 0 0 {Vb W } ’ ’I‘Enc)(r):q1'®(|:(j1(nc)(r)Us(nC))+

~ ~ T
. (JQ(DC)(T)/)\,ET) o Jl(nc)(r))] pz) c (C2JVId><1

To obtain a first-order perturbation analysis of the parame
estimates, we adopt the analytical performance framew
proposed in[[B]. Thus, we first develop a first-order subspat

(1

WhereUs(nC) € C2Mxd Ur(lnc) € C2Mx(2M—d) andVS(nC) c
CNxd span the signal subspace, the noise subspace, and
the row space respectively, aE"” € R¢*4 contains the and
non-zero singular values on its diagonal. Next, we write the (ne) (00~ ¢ ()T R Adx NN
perturbed si?nal subspace estimat&df®) from the previous W' = (25 Vs ) ® (Un Ua ) eC :
section asds™ = U™ + AU, where AUL™ denotes | the next step, we derive the covariance matrix and the

the (_astimati_on error. From [8] and its appli(_:atio_n (), WBseudo-covariance matrix of the augmented noise coniibut
obtain the first-order subspace error approximation n() required in [3L). To this end, we use the commutation
AUs(nc) _ Ulgnc)Urgnc)HN(nc)vs(nc)zgnc)*l + o2}, (28) matrix K n of size MN x M N, which is defined as the

unique permutation matrix satisfying [40]
wherev = |[N(®™°)||, and|| - || represents an arbitrary sub-

multiplicativé] norm. Equation[{28) models the leakage of the Ky n - vec{A} = vec{AT} (32)
noise subspace into the signal subspace due to the effdut offB
noise. The perturbation of the particular basis for the aign
subspacd’™ | which is taken into account ifi [L3], [L4] can n() — vec{ N} — Vec{ { N } } (33)
be ignored as the choice of this basis is irrelevantifed NC Iy N*

r arbitrary matricesA € CM*N, We first expandh (™) as

Standard ESPRIT. T vec{ N1}

For the parameter estimation error of th¢h spatial fre- =Komun vec{ (T, N*)T} (34)
quency in ther-th mode obtained by the LS solution in{14), K - vec{N}
we follow the lines of[[8] to obtain = KQTM,N [KM N i Vec{HMN*}]

- +7- ’
AU — Im { T (OO e\ [ Eow 0 ot vec{N'}
% P; ( 1 s ) { > /A (29) = Ko (2@ Kuw) | oy ney | @)
—anc)(r)] AUs(nc)qz'} +0{*}, where we have applied property132) to the equatidn$ (33)

") o _ _ and [34). By definingr = vec{ N} € CMN*1 and using the
where \;"”’ = ¢t is thei-th eigenvalue o) in the th  property vec{ AXB} = (B" ® A) - vec{X} for arbitrary
mode, g; represents theth eigenvector of"("”), i.e., theith matricesA, B, and X of appropriate sizes, we can formulate
column vector of the eigenvector mati6, andp;" is thei-th 933) as

row vector of P = Q~'. Hence, the eigendecomposition o o) _ | M
I'") in the r-th mode is given by nt =K L (36)
T T —1 ~
L =QAQ™, (80) where K = K, v - blkdiag{ Karn, Kurn (In © Ta)}

5A matrix norm is called sub-multiplicative ifA - B|| < |A|| - B for 1S Of Size 2MN x 2MN. Thus, the SO statistics at*
arbitrary matricesA and B. can be expressed by means of the covariance mafix =



E{nn'} and the pseudo-covariance mat(,, = E{nnT} VI. SINGLE SOURCE CASE

of the physical noisex. Therefore, we obtain So far, we have derived an MSE expression for béth

(ne) _ (me), )"\ _ 7o |RBon Cun| zu D NC Standard ESPRIT an&-D NC Unitary ESPRIT[(31),
Ruw” = E{n " } - K {C:;n R;‘m] K (37) which is deterministic and no Monte-Carlo simulations are
and required. However, this is only the first step as the derived
MSE expression is formulated in terms of the subspaces of

n n n - Cnn Rnn - . .
cind) = E{n( In C)T} =K {R* C* } KT. (38) the unperturbed measurement matrix and hence, provides no

) ) ) ) ) _explicit insights into the influence of the physical paraenst
In the spzeual case of circularly symmetric wh|_te noise W”Q.g., the SNR, the number of sensors, the sample size, etc.
R = 031y and Cyn = Onrwv, (1) and[(3B) simplify to 1« yowing how the performance scales with these system pa-
R =621, and C9 =2(Iy @ y). (39) rameters as a second step can facilitate array design afesisi
on the number of required sensors to achieve a certain per-
formance for a specific SNR. Moreover, different parameter
®stimators can be objectively compared to find the best one
Rr particular scenarios. Establishing a general fornartat
for an arbitrary number of sources is an intricate task given
“the complex dependence of the subspaces on the physical
arameters. However, special cases can be considerednto gai
ore insights by such an analytical performance assessment
pired by [15], we present results for thie-D case of
equal [18]. a single strictly SO non-circular source in this section. To

B. Performance of2-D NC Unitary ESPRIT this end, we assume aR-D uniform sampling grid, i.e., a
ULA in each mode, and circularly symmetric white noise.

So far, we have only derived the explicit first-order pararr?furthermore, we obtain the same asymptotic estimatiorr erro

eter estimation error approximation and the MSE expressign. ,,- i .
for R-D NC Standard ESPRIT. In this subsection, howeve{iOr [-D NC Standard ESPRIT and-D NC Unitary ESPRIT

. . as proven in the previous section. We also provide results on
we show that the analytical performance®fD NC Unitary . -
ESPRIT andiD NC Standard ESPRIT i cencal n e o 0 Slfe 05 0 e elent NC SR ()
high effective SNR regime. To this end, we recall that P ymp y

D NC Unitary ESPRIT includes forward-backward-averagi £-D NC Standard ESPRIT an-D NC Unitary ESPRIT for

L ngrbitrary dimensionsk in closed-form. As an example, we
(FBA) (18) as well as the transformation into the real-vdlue

domain [20) as preprocessing steps. We first investigate ﬁ]oempute the asymptotic efficiency fér = 1.
effect of FBA and state the following theorem:

Note that the pseudo-covariance maiif® is always non-

zero even in the case of circularly symmetric white nois
This is due to the preprocessing il (6). Furthermore, it
worth mentioning that the step of solving thie augmented
shift invariance equations fd*(") independently and then per
forming a joint eigendecomposition acrossAltimensions to
obtain A(") has no impact on the asymptotic estimation err

for high SNRs since the eigenvectors become asymptotica1

A. R-D NC Standard ESPRIT and R-D NC Unitary ESPRIT

As the asymptotic performance of both algorithms is the

same, it is again sufficient to simplify the MSE expression in

Proof: To show this result, we simply use the FBA-@3]) for R-D NC Standard ESPRIT. We have the following
processed augmented measurement marix®) in (I9) and result:

compute the Gram matri@ = X 9 X @)" 'which yields

Theorem 3. Applying FBA to X (") does not improve the
signal subspace estimate.

- Theorem 5. For the case of anM-elementR-D uniform
G=[X0) XOIy] [X®) XEITIy] sampling grid with anM,.-element ULA in ther-th mode,
— 9. xno) x o) 40) @ single strictly non-circular sourced(= 1), and circularly

_ _ symmetric white noise, the MSE®D NC Standard and?-D
Thus, the matrixG reduces to the Gram matrix & (" and  NC Unitary ESPRIT in the-th mode is given by

the column space aX ("°) is the same as the column space of
the Gram matrix ofX ("), Consequently, FBA has no effect g {(Au(”)Q} _l_ M, {i} (41)
on X () This completes the proof. n p MM, —1)° P2

Next, we analyze the real-valued transformation as tl@\?nereﬁ represents the effective SNR= NP, /02 with P,

second preprocessing step BfD NC Unitary ESPRIT and being the empirical source power given By — ||s|\§/N and
formulate the theorem: s c CNx1

Theorem 4. R-D NC Unitary ESPRIT andR-D NC Stan-
dard ESPRIT with FBA preprocessing perform asymptotically In
identical in the high effective SNR.

Proof: See AppendiXD. [ |
a similar fashion, it can be shown that fdt-D NC
Unitary ESPRIT, we arrive at the same MSE result as in
Proof: See AppendiXC. m (41). Moreover, the expression {41) is equivalent to thesone
As a result of Theoreiin] 3 and Theor&in 4, we can concludbtained in [[15] for the non-NC counterparts. Thus, no im-
that the asymptotic performance 8fD NC Standard ESPRIT provement in terms of the estimation accuracy can be aathieve
and R-D NC Unitary ESPRIT is asymptotically identical inby applying R-D NC Standard ESPRIT oR-D NC Unitary
the high effective SNR. ESPRIT for a single strictly non-circular source. This césoa



be seen from the resulf(42) for the determinigtid® NC CRB - SE emp
provided in the next subsection, which is also the same as —7 SE ana
the non-NC casé [15]. " 'P'SE emp
- - -DetCRB
B. Deterministic R-D NC Cragr-Rao Bound VST TN -S-NC SE emp
““““““““ | ~BEl=NC UE emp
In this part, we simplify theR-D extension of the deter- §10_1 ~~NC SE/UE ana
ministic 2-D NC Cramér-Rao Bound derived in[32] for th = ——DetNCCRB |
special case of a single strictly non-circular source. st 2 : :
is shown in the next theorem: S R R R A N N
o , :
Theorem 6. For the case of anM-elementR-D uniform 10
sampling grid with ani/,.-element ULA in the-th mode and
a single strictly non-circular sourcei(= 1), the deterministic
R-D NC Craner-Rao Bound can be simplified to 107 M
(n0) _ g (ne)(1) (o)) T 0 10 20 30 20 50
c dlag{ (RO "L @2 SR (B)
where Fig. 1. Analytical and empirical RMSEs versus SNR fot & 4 x 4 cubic
o)) — 1 . 6 uniform arrae/ R =3), and N = 5, d = 2 correlated sourcesp(= 0.9) at
Cp M(M2-1) P =0, 40 =01, u® =0, 4P = 0.1, u* =0, 4 = 0.1 with
rotation phaseg; = 0, p2 = /2.
Proof: See AppendixE. [ |

Using the expression§ (¥1) and{42), we can ana|ytica|q3btaine_d by_averaging over 5000 Monte Carlo trials. The
compute the asymptotic efficiency of the proposed algorithfiRMSE is defined as
for arbitrary dimensiong?. The result forR = 1 is given in
the next subsection. _ | L " _ )’
RMSE = || = E{ZZ (7 =) b @

r=11i=1

C. A totic Effici f 1-D NC Standard and 1-D NC 5. . . .
Unita?)inllzpsglg:ﬁ clency o andard an Where;zl-(’) is the estimate of-th spatial frequency in the-th

] ] _ . mode. Furthermore, we compare our resultst® Standard
Under the stated assumptions, the asymptotic efflc!engng”— (SE),R-D Unitary ESPRIT (UE) as well as the
for the 1-D case of NC Standard ESPRIT and NC Unitalyeterministic Cramér-Rao bounds for circular (Det CRB) an
ESPRIT, wherel, = M, can be explicitly computed @ strictly SO non-circular sources (Det NC CRB) [32]. In the
o C/(nc) _6(M—1) 43 _simulati_ons, we employ different array C(_)nfigurations c'nslns_
n= ﬁiﬁgo E{(AnZ] MM+ 1) (43) ing of |sqtr0p|c sensor elements with mterelemen.t spacing
) . o ) . d = A\/2 in all dimensions. The phase reference is chosen
Again, the 1-D asymptotic efficienci, (3) is equivalent te thyy pe at the centroid of the array. It is assumed for all
one derived in[[15], i.e., no gains are obtained from NoRyqgorithms that a known number of signals with unit power
circular sources. It shou_ld be noted thats only a function gpg symbolsS, (cf. Equation [#)) drawn from a real-valued
of the array geometry, i.e., the number of sensdfs The Gayssian distribution impinge on the array. Moreover, we
outcome of this result is that 1-D NC ESPRIT-type algorithmgssyme zero-mean circularly symmetric white Gaussiarosens
using LS are asymptotically efficient fae/ =2 andM =3 ppise according td(39).
for a single source. However, they become less efficient when,:ig_ 0 illustrates the RMSE versus the SNR, where we
the number of sensors grows, in fact, fof — co we have consider at x 4 x 4 uniform cubic array with\ = 5 available

n — 0. A possible explanation could be that aii-element opservations off = 2 sources with the spatial frequencies

ULA offers not only the single shift invariance with maximumu(l) -0, uél) - 0.1, MSQ) -0, ug) =01, u§3) =0,

overle.ip used in LS, but multiple invariances that are ngiilqd ugz) — 0.1, and a real-valued pair-wise correlation of
exploited by LS. p = 0.9. The rotation phases contained ¥ are given by
p1 =0 andps = 7/2. In Fig.[2, we depict the RMSE versus
VII. SIMULATION RESULTS the number of snapshotd’ for the non-centro-symmetric
In this section, we provide simulation results to evalua®D array with M = 20 given in Fig.[3, where we also
the performance of the proposétiD NC Standard ESPRIT provide the subarrays in both dimensions. The SNR is fixed
and R-D NC Unitary ESPRIT algorithms along with theat 10 dB and we havel = 3 uncorrelated sources with the
; ; i iag, (1) _ 1 _ 1 _
asymptotic behavior of the presented performance analysipatial frequencieg,; * = 0.25, uy,° = 0.5, uy’ = 0.75,
We compare the square root of the analytical MSE expressi,oi?f) = 0.25, u;2> = 0.5, and M§2) = 0.75. The rotation
(“ana”) in (31) to the root mean squared error (RMSE) gfhases are given by, = 0, p2 = 7/4, andp3 = 7/2. Note
the empirical estimation error (“emp”) akR-D NC Standard that 2-D Unitary ESPRIT cannot be applied as the array is
ESPRIT (NC SE) and?-D NC Unitary ESPRIT (NC UE) not centro-symmetric. It is apparent from Fig. 1 and . 2




10 '
:[-4-SE emp | -4 -SE emp
-7 SE ana |~V SEana
|- - -DetCRB o) -P-UE emp
-©®-NC SE emp 10 ] UE ana E
-B-NC UE emp - -Det CRB
o —-O—NC SE/UE ana ©-NC SE emp
10 R |=E1-NC UE emp
= = -~ NC SE/UE ana
S g0t ——Det NC CRB
I D Vs SR ae e L R e @
s L ORSLe  T T, =
| Xm0 Tte-al o
10" b -
10
“““““““ D
“““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““ ®G=
2 : : : -3 i1 Dol iy N Dol
10 1 1 1 10 — — —
5 10 25 50 10° 107 10" 10°
Snapshots N DOA separation (rad)

Fig. 2. Analytical and empirical RMSEs versus the snapshoter the 20- Fig. 4. Analytical and empirical RMSEs versus the sepanafisep”) of

element 2-D arrayR = 2) from Fig.[3 and SNR= 10 dB, d = 3 uncorrelated 4 — 2 uncorrelated sources Mgl) = —sep2, uél) =0, u§2) = sep’2,
sources api{") = 0.25, 5" = 05, uf" = 0.75, u{? = 025, u$ = 0.5, L@ _ sep for a5 x 6 URA (R = 2), N = 5, SNR= 30 dB, with rotation
,u,:(f) = 0.75 with rotation phases1 = 0, w2 = 7/4, p3 = 7/2. phasesp; =0, p2 =7/2 .
that in general, the NC schemes perform better than th :
non-NC counterparts. Specificallig-D NC Unitary ESPRIT
provides a lower estimation error thaR-D NC Standard
ESPRIT for low SNRs and a low sample size. Moreove
the analytical results agree well with the empirical estiora
errors for high effective SNRs, i.e., when either the SNRhert @
number of samples becomes large. This also validates tbat g
asymptotic performance @t-D NC Standard ESPRIT anl- 2 SSEana [ IR
D NC Unitary ESPRIT is identical as both coincide with th - P~ UE emp
analytical curve. Note that the performance of the propos —A-UE ana
algorithms can degrade if the signals’ non-circularity @ n :(:):Bgtgggmp
perfectly strict. -El-NC UE emp
In Fig. [, we show the RMSE as a function of the sej 10—3_ﬁggtls\"zc’%ig“a
aration (“sep”) betweenl = 2 uncorrelated sources locatec - s i
at Ngl) = —sep2, Ngl) =0, Ngz) = sep’2, ’ugz) = Ssep 0'E-I)Dhase separation (rz:ald) L

with the rotation phaseg; = 0, v2 = /2. We employ a

5x 6 uniform rectangular array (URA)V,V =5 snapshots, and Fig. 5. Analytical and empirical RMSEs versus the phase ragipa for a
the SNR is fixed aB0 dB. Fig.[B demonstrates the RMSE5§)6_U1RA ((g _ ?éNE) 5_’SINR(;3_OSZC[: 2 uncorrelated sources at
as a function of the non-circularity phase separatlop of #1 = ©#2 TUS ML = Lk =S

the d = 2 uncorrelated sources with the spatial frequencies . ) )
Mgl) - 1, uél) - 08, MSQ) — 1, and Mg2) — 0.8. The the empirical ones. But more importantly, the gain of the

remaining parameters are kept the same. Again, it can NG ESPRIT-type methods increases if the sources approach

seen from Fig[4 and Fid] 5 that the analytical results matERch other. Furthermore, as a substantial feature of Igtrict
non-circular sources, it is observed that for two uncotesla

sources with a phase separation®p = 7/2, the sources
entirely decouple as if each of them was present alone. # thi
case, the achievable gain from strictly non-circular sesrs
largest, which is verified by Fid.]5. This decoupling effect
was also shown analytically for the Det NC CRB [n][32] and
recently for NC Standard ESPRIT in[41].

In the final simulation, we consider the single source case,
which was used in Sectidn VI to express the analytical MSE
equations ofR-D NC Standard ESPRIT and-D NC Unitary
Fig. 3. 2-D shift invariance for the depicted non-centroagyetric 5 x E_SPRIT only Interms (_)f the physu;al parameters, i.e., tmar_
4 sampling grid, left: subarrays for the first (horizontalyneinsion, right: Size M and the effective SNR. Fid] 6 shows the asymptotic
subarrays for the second (vertical) dimension. efficiency [43) for the cas® = 1 versus the number of sensors
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11 ; ; = APPENDIXA
-SE emp
“ -~ UE emp | PROOF OFTHEOREM 1
-©®-NC SE emp . . -

ool -B-NCUEemp || We consider the 1-D case for simplicity and start by

' —O—NC SE/UE ana insertingJ " and J{" into (@), which yields

0.8} JIA & J2 A
w I1,  (sety JoIIp Ty A OO * T ey J1TI g T A |
@ 0.7}
2 The first M) rows are given byJ, A® = J,A, which
S osr was assumed for the theorem. The secofid@®) rows can be

o5k simplified by multiplying from the left withI,, .., and then

using the fact thall,,II1,, = I,. We obtain
0.4}
, , J AT TP = J AT T (45)
j ' As ¥ and ® are diagonal, they commute. Then, multiplying
02, : 10 15 twice by ¥ from the right-hand side cancels as¥* ¥ = I
Number of sensors M and we are left with

Fig. 6. Asymptotic efficiency versug/ of a ULA (R = 1) for a single Jo AP = J A*
strictly non-circular source with an effective SNR 46 dB (Ps = 0 dB, % P
N :)41, 0’% =10"%). ¢ JQA = J1A L) , (46)

where in the last step we have multiplied wik* from the
M of a ULA. The effective SNR is set t66 dB, whereP, = 0 right-hand side and used the fact that® = 1,8 Finally,
dB, N = 4, ando2 = 10~*. This plot validates the fact thatconjugating [(46) shows that this expression is equivalent t
1-D NC Standard ESPRIT and 1-D NC Unitary ESPRIT usindi A® = J2A, which was again assumed for the theorem.
LS become increasingly inefficient fav/ > 3. It should be This concludes the proof. u
stressed that the same curves are obtained for 1-D Standard
ESPRIT and 1-D Unitary ESPRIT. Hence, no gain is achieved
from a single strictly non-circular source.

APPENDIX B
PROOF OFEQUATION (21))

The real-valued transformation is carried out using sparse
left TI-real matrices of even order according[fol(15). Expand-

ing (20) yields

SQ(X(HC) ) = QEAIX(IlC) Qon

In this paper, we have presented tieD NC Standard _ 1 { In .HM] [X() XTIy [IN M ]
ESPRIT andR-D NC Unitary ESPRIT parameter estimation 2 [—iIn Iy Iy —jly
algorithms specifically designed for strictly SO non-clsu [ I, Il X Onrx N
sources and shift-invariant arrays that are not necegsaril” | —jI,; Iy | [Ty X* Oprxn
centro-symmetric. We have also dgrlved a first-order aitallyt [ X+X* Ouwn] Re{X} Ouxn
performance analysis of both algorithms. Our results asetba = | _:x | - x= Nmix

. . L . JX 4] O m{X} Onyxn
on a first-order expansion of the estimation error in terms of
the explicit noise perturbation, which is required to be kmavhere we have used the fact thajr +jz* = 2-Im {z} Vz €

VIII. CONCLUSION

compared to the signals but no assumptions about the ndiselhis completes the proof. O
statistics are needed. We have also derived MSE expressions

that only depend on the finite SO moments of the noise and APPENDIXC

merely assume the noise to be zero-mean. All the resulting PROOF OFTHEOREM[4]

expressions are asymptotic in the effective SNR, i.e., theyror simplicity, we only present the proof for the 1-D case,
become accurate for either high SNRs or a large sampgt the approach adopted here carries over toRHB case
size. Furthermore, we have analytically proven thab NC  strajghtforwardly. The estimated parameters after thd- rea
Standard ESPRIT anli-D NC Unitary ESPRIT have the sameygjued transformation (NC Unitary ESPRIT) are extracted
asymptotic performance in the high effective SNR regimg, 5 different manner as in the forward-backward-averaged
However, B-D NC Unitary ESPRIT should be preferred dugomplex-valued case (NC Standard ESPRIT with FBA), i.e.
to its real-valued operations and its better performandevat using the arctangent function. Hence, we develop a firstord
effective SNRs. We have also computed the 1-D asymptofigrturbation expansion for the real-valued shift invacian

efficiency for a single source and found that no gain froquations and then show the equivalence of both cases.sTo thi
non-circular sources is achieved in this case. Simulatioggq letX (") € C2M*2N pe the noise-free forward-backward

demonstrate that for more than one strictly non-circularse,
the NC gain is largest for closely-spaced sources and daotat 61his equality only holds in the assumed case of undampednexials
phase separation af/2. (cf. the model in[{ll)), where the spatial frequenc,ifg) are real.
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averaged measurement matrix defined by decompoBidg (Eﬁ)“c) is expanded in terms of the transformed noise contribu-

according to tion p(N®)) = QY , N Q,y as

X(nc) _ |:Xénc) XénC)HN:| + [N(nc) N(nc)HN] AE:’(HC) _ Er(lnc)Er(lnc)H(p(N(nc))Ws(nc)zgg,)fl, (53)

= Xénc) + N, (47) where the required subspaces are obtained from th)e SVD of
Its SVD can be expressed as the tran(fgrmed real-valued measurement ma&(LXO ) =
QN X" Qan € R*M*2N expressed as
X(()nc) _ |:0S(nc) 0(11(;)} [ng 0] {V(nc) ‘N/(nC):|H 5(#) -
o 0 P(X) = (B B [ 5 g} (Wi i
such that the complex-valued shift invariance equatiortter
forward-backward-averaged data has the form To simplify (52), it is easy to see that due t9(th)e fact that the
Jl(“c)fjs(nc)r‘ _ Jénc)ﬁs(“c), (48) matrices@,, are unitary, the subspaces @{X; ) are also

given by choosing
whereT :.Q(fba)AQ(fba)’l and A = diag {[\1,..., Ml } EM) — QU T) g9 — QU i) w(e) — 5(ne)
with \; = el#, i = 1,2,...,d. Performing the same steps as S(nc) H o ?nc)’ “(nc) H f‘(nc)’ s s

in Sectior V-A, the first-order approximation of the estiroat W = Qon V™™, Wi = Qop V™. (54)

error after the application of FBA Is given by Moreover, the transformed selection matrlcéé(nc) and
Aulm{<m“(ﬂmwwwf[3mvx K{") defined in [2B) and{24) can be reformulated as
S 1
49 llC nc nc
) K( = Qe (Jl( )+J2 ) Qam (55)

~I("] ATE ™} + 02,

_ _ » KY™ = Qe (I = ™) Qav, (56)
Where we have simply replaced the corresponding quanitities
[23) by their FBA versions. Next, we show that the estimatiofthich follows from expanding the real part and the imaginary
error expansion for the real-valued case is equivalerf®. (4part according to2 - Re{z} = z + z* and 2 Im {z} =
The 1-D real-valued shift-invariance equation —jx + jz*. The conjugated ternd) M(m)JQ“C Q3 can be
KinC)E:SnC)T — KénC)E:SnC), (50) Slmp“fled (trg)QgM(sel)Jl(nC)QQM USing the fact thaq1 )= -
Iy ends II,,, holds since the virtual array is always
where Y = VQV~! and Q@ = diag {[wi,...,wa]} With centro-symmetric as shown in Theor&in 2 and the fact that
w; = tan(w;/2), ¢ = 1,2,...,d, has the same algebralcQ is left-TI-real.
form as its complex-valued Counterpart in1(48). Therefore, |nserting [53) into[(52) and applying the identitiEs](FBHY,
the same procedure from/[8] can be applied to developy@ have
first-order perturbation expansion. In fact, following tineee ~ n
steps discussed in][8], we find that the perturbationpfn Ay = ﬁ?((Jl(“C) + J(HC))U,(“C>) (j : (Jl(nC) — J)
terms of X and the perturbation ofr in terms of the signal
subspace estimation erraxU"®) lead to the same result, wi (T 4+ gy ) AUM)g;
where 79 J{"9) U andT are consistently exchanged
by K(“C% K(“C) E(“C) and Y, respectively. Thus, only the where AT — " ¢7, N(nc)\?(nc)i(nc)*l
perturbatlon 0‘7% in terms ofw; = tan(u;/2) is to be derived. | order to further simplify [[57), we require the following
Therefore, we compute the Taylor series expansionvgf two lemmas:
which is given by

Lemma 1. The following identities are satisfied

tan?(p;/2) 1
wi + Aw ~ tan(pi/2) + Ap (72 + 5 (Jl(nC) I JQ(HC))ﬁs(nc) _ Jl(nc) 05(,16)1!‘ (58)
w? +1 (me)  y(me)\gr(ne) _ p(ne) Fr(ne)y
—wi+ A Y27 and hence (1 LU = 3, UT (59)
B wherel' = I, + T = Q™) (I, + A)Q™») ™" andI' =
Ap = Awwf nrh (51) I, 471 = Q(f‘ba) (_Id i A_l) Q(fba)’l_
Combining [G1) with the corresponding real-valued expres- Proof: These identities follow straightforwardly from
sions for the perturbations af; and Y, we obtain Jll(“C)INJs(“C)I‘ _ Jénf)ﬁb‘(m) by a_dding Jl(n.c)gs(nc) to both |
7 (n¢) g(me)\ T (ne) _ g-(nc) S|des~of the equation for the ~flrst identity, ~and subtracting
Apti = Py (K1 2 ) (K2 wi K ) 5 JUM) and substituting?("? T by J{" T T for
AE®Mg, 2 (52)  the second identity. ]
2 + 1

Lemma 2. In the noiseless case, the solutiBrio (48) and the
whereg; is thei-th column of V' and p; is thei-th row of solutionY to (50) have the same eigenvectors, i@(fra) =

V ~1. Moreover, the perturbation of the real-valued subspadé. Moreover, their eigenvalues are related @s=j - 1+§'
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Proof: Starting fromY = (Kf“C)ES(“C))JrKQ(“C)Eﬁ“C) MEY = M, — 1. Note that[[BR) is a rank-one matrix and we
and replacingE§“C) with (&4) and K™ with (&5) and [[Bb), can dlrectly determine the subspaces from the SVD as

we get nc nc

g X Us(nc) _ uénc) _ a( ) _ a( )

T = (" 4 3N 08) - () = 2 [at], ~ Van
—j P = QM (I, + A) " (I, — A) QP! nm) = o) — \/OM NP,
. —1 8* S*
— Q(fbd)QQ(fba) , (60) V(nc) ,Us(nc) HSH _ _
d 2 NP

where2 = diag {J [ }} _, and we have used Lemi& 15, the MSE expression ifi{B1), we also requiPe:,., =
in the first step. i Al A = Ly —57a9a™9", which is the projection

. . nc) nc)y (nc)
&?Xt we consider the ternj] (Jl —J ) (J T matrix onto the noise subspace. Moreover, we hB{8 =
J3")) in &1) and apply the relation; = j - 1+(/\ : ¢ and hence, the eigenvectors gig) — qfr) 1. The
Lemma[2. We can then rewrite this term fs(J;"“A\i — SO momentsR\E” and C°) of the noise are given by {B9).

JQ(HC)) 1+2/\ Moreover, the teer—Jrl in (57) can be expressed Inserting these expressions inla](31), we get

in terms of); as 2+1 - ()\24;1) . Inserting these relations into E{(Aum)2} _oa (HT(DC)<T)TW<nc) 2
D), replacmg(Jlnc) + "N UM via (B8), and substituting . : ) vy (63)
P = pz(fb a) andqz _ q(fb ) USing Lemm{lZ, yleldS —Re {T(nc)(ﬁ") W(nc)(IN ® HQ]W) (T(nc)(r) W(nc)) })
A[,L 7‘] p(fba)T <J1(nc) 0.S(HC))+ (Jl(nc))\z o JQ(HC)) W|th
2 (me) \ F t
AL 2 (At 1) P _ (j(nc)(r)a_> FE) jn®  Feam) |
AUS q; 1+ N 2N 1 \/m ( 2 / 1 )
fba nc) 77 (n + nc nc H
J p( )T (Jl( )Us( C)) (JQ( )/>\z — ']1( )) W(nC) _ <\/17A . \/S_A> ®P‘ﬁnc) c (CQJMXQMNA
2M N Ps NP
AT g (61)
(o) & ()™ Note that the termr(nc)(” W) can also be written as
where we usedp; ™ I'"' = p;>% (1 + X))~ ! from o) o) = 5T ¢ ()" where
Lemmall in the first equation. ol
As a final step, we notice thadf {61) must be real-valued as ' = ot B
we have started from the purely real-valued expangioh (5&) a MNP NP

only used equivalence transforms to arrive[af (61). However; ™ _ <J(nc><r) a® ) (j(nc)(r)/em J(nc><r)> P,
if —jz € R for z € C this implies thatRe {2} = 0 and hence ven) \7? o
—jz =Im{z}. Consequently[(81) can also be written[ad (4%hus, after straightforward calculations, the MSE [l (68) i
and is therefore equivalent to the first-order expansion/or given by

D NC Standard ESPRIT with FBA. This concludes the proof

of the theorem. O E{(A,U(T))2} <H~TH2 H ||

2
APPENDIXD (64)

—Red3T5.a" Tya™
PROOF OFTHEOREM[G oM .

We start the proof by simplifying the MSE expression for .
R-D NC Standard ESPRIT ifi.(81). In the single source cadde first term|s || of (&4) can be conveniently expressed

the noise-free NC measurement matrix can be written as as ||37||, = 2M}VP< For the second ternja (" H of
X () = ) ()57, 62) @34, we simplify a™" and expand the pseudo-inverse of

- Jr @) ysing the relationzt = zH/|z|2. As

wherea™ (p) = [a™(p), VTt ()" € C2M*1is the J(nc) ") selectsQ(M 1) out of 2M, elements in the-th

augmented array steering vector aau) = a(uV) ® mode, we have)J. (ne)(r) (nc)(T)H — M (M, —1). Then

® a () e CM*1 Moreover,U = U*I* = e~i2¢, ’

(nc)(r) n (r)
s € @le contains the source symbols, aifd = |s||; /N taklcng th((:c)smft nvariance equauoﬂ atdfer —
is the empirical source power. In what follows, we drop thell 'a(™) = 0 in the r-th mode into account, we obtain
nden (ne) on p for notational convenience. If w

dependence of ' on p for notational convenience e T _ V2M M, ()" ) F0e)r)
assume a ULA of isotropic elements in each of fhenodes, a 2M(M 1) a 1 2 /
we havea(r) = [1,eln” ... M:=Du"|T ang||a®e)]|> — e

. . =(nc)(r) =(nc)(r) > —q9)" o)) J(“C)(T)) (65)
2M. The selection matriced; and J, are then L L ‘
chosen according td}(9) with;"” = [Ln, 1,001, -1)x1] As a ULA is centro-symmetric, i.e[]L0) holds, we can write
and JQ(") = [0(ar,—1)x1, I, —1] for maximum overlap, i.e., a™) = [1,¥]T ® a. Note that the phase term depending on
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the phase center ifi{lL0) cancels throughout the derivatidn avhere R‘® = 1z ® Rg, and Rs, = S,SJ /N. The matrices
thus has been neglected. Since the veat@nd the matrices G,,, H,, n = 0,1,2, are defined as

JrIW E — 1,2, can be written am = V) @ - @ a®

and J"0 — I, o Iy, ® 0 @ Ign . allthe  Go=Re{¥7ATAL}, Hy=Im {T°ATAT} (71)

unaffected modes can be factored out[of (6§) yielding G1 =Re {(IR ® lIl*)DHAIII} , (72)
/— * H
~(7)T VAL |:"1’] ® (a(l) ®...®a(7'—1)) H, :Im{(IR®‘I’ )D A‘I’}v (73)
oM (M, —1) |V G =Re{(Ir®¥*)D"D(Ir 2 ¥)}, (74)
ST ()7 (r+1) )"
®(a” —a" o (Ve ©a®) . (66) wherep — (D). DWW e CMXR with DO) —
where [dY), ... ,dgr)] eCMxd =1, ... R.The vectorsdz(.r), i=

dgr)T _ a(r)HJl(T')HJér)/ej#(") and . d, contain the partial derivati\_/eﬁa(;ti)_/augr). In the
)T S () special casel = 1, the array steering matrid reduces to
ay’ =a" g g a(p), D = [dY,...,dP] e CM*E ¥ =¥, and ks, =
sgsy/N = Ps, wheresy, € RV*1. Dropping the dependence

Similarly to it is easy to verify that
yto [13] y b of a on p and using the fact that = a(Y) @ --- @ a®), we

an’ = {0 o—in” >7_._,eanr—z)u(”’e—j(Mrl)W} obtain
AT 2o (r ey T
dg) _ {Le_w )7 N ',e—J(]\/IT—Q)u( >70} _ dV=aVg... 24" Ved) 2a™Ve...0a®.
Consequently, we obtain )
. 02 R , For a )ULA in each (?f theR modes, we haver(”) =
[ 2= ity 2 TE o2 I a1 20000 and )~ 0040 ~ 5.
S—— (0,67 .. (M,—1) dM-=Dr" 1T Then, similarly to[[15],
_ 2M3 M 2M, ©7) the termsatla, ™" d(), andd™" a in (71)-(73) become
M(qu- - 1)2 Mr (Mr - 1)2 ’ aHa = M,

The third terms™s of (64) can be simplified ag™s =

% where we have used the equalidy= s, and the ;)" g(r2) — {%M(Mr DEM, -1) ifri=rn=r
1 .
fact thatsT sy = N P,. Moreover, using[{86), the last term of 1M (M DMy, =1) if v # 1o
(4) can be reduced @) I,y = 7% Inserting |
these results intd {64), we finally obtain for the MSER{D
NC Standard ESPRIT A = —; 1M(M 1)
o2 M ) o
(Aut)? . —, (68)
{ } NP, MM, —1)? Thus, the termd{71)=(Y4) simplify to
which is the desired result. O
Go=M Hy=G; =0 75
APPENDIX E 0 ’ 0 e 1 (75)
PROOF OFTHEOREM[@ H, = hy € R with [hy], = ——M(MT —1), (76)
We first state the expression for the deterministic NC CRB 1as @M, 1) iy =y =
C ™) derived in [32], which is given in th&-D case by (Gsl,. oM (M —1)( -1 e nREr g
52 172 }lM(M — 1) (M, — 1) if 71 # ro.
C) = 2 Re{J} ! (69) o . .
" 2N After inserting [Z5){(Z7) into[{70), we obtain
wit
= (G2 — G1G;'GT) © R™P) J=P, (G2 - %hlh?) . (78)

~ ~ -1
n [(Glaglﬂo) © R<R>} [(G0 ~ HTG;'H,) © R(R)} 5 _ _ .
It can then be verified thal is a real-valued diagonal matrix

: {(HlT —~- HJG;'GY) @R(R)} + {Hl ® R(R)} with the entriesJ],, = £ - M(M? — 1) on its diagonal.

- o R . Finally, C(*® is given by

JGoo R®] - [(HIGF'GY) 0 R + [Hi 0 RV
_ — nc _ : nc nc T

0w RO] T (67 ) © RO C0) = 35 Reld) ™' = ding{[CO00 ., O],

: o A
: (Go—HgGngo)GR(R)} -[(HOTGo—lGlT)@ R(R)] where

A ~ —1 2 6
_ (R)| . _ g1 (R) (ne)(r) — n
_{Hl O RW| . [(Go~ HI G7 Hy) © R c RS TEY (79)
. T H(R)
_Hl OR } ’ (70) which is the desired result. O
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