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Abstract

Compressive Sensing (CS) has been widely investigated in the Cognitive Radio (CR) literature in order to

reduce the hardware cost of sensing wideband signals assuming prior knowledge of the sparsity pattern. However,

the sparsity order of the channel occupancy is time-varying and the sampling rate of the CS receiver needs to

be adjusted based on its value in order to fully exploit the potential of CS-based techniques. In this context,

investigating blind Sparsity Order Estimation (SOE) techniques is an open research issue. To address this, we

study an eigenvalue-based compressive SOE technique using asymptotic Random Matrix Theory. We carry

out detailed theoretical analysis for the signal plus noise case to derive the asymptotic eigenvalue probability

distribution function (aepdf) of the measured signal’s covariance matrix for sparse signals. Subsequently, based

on the derived aepdf expressions, we propose a technique to estimate the sparsity order of the wideband spectrum

with compressive measurements using the maximum eigenvalue of the measured signal’s covariance matrix. The

performance of the proposed technique is evaluated in terms of normalized SOE Error (SOEE). It is shown that

the sparsity order of the wideband spectrum can be reliably estimated using the proposed technique for a variety

of scenarios.
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I. INTRODUCTION

Cognitive Radio (CR) communications is considered a promising solution in order to enhance the

spectral efficiency of future wireless systems [1]. Among several CR techniques proposed in the literature,

Spectrum Sensing (SS) is an important mechanism in order to acquire the spectrum awareness required by

the CRs. Existing SS techniques mostly focus on the detection of narrowband signals considering a single

radio channel [2–5]. However, in practical scenarios, the CRs need to detect and acquire information

about a wide spectrum band in order to utilize the spectrum efficiently. Further, CRs do not have

prior knowledge about the PU’s signal and channel. In this aspect, investigating efficient blind spectrum

awareness techniques is an important and relevant research challenge.

The key challenge of SS is the detection of weak wideband signals hidden in thermal noise with a

sufficiently large probability of detection. The sensing Radio Frequency (RF) chain of a CR receiver

should be able to receive a wideband signal, sample it using a high speed Analog to Digital Converter

(ADC) and perform measurements for the detection of PU signals. The wideband RF signal received by

the antenna of an RF front-end includes signals from adjacent and spatially separated transmitters, and

from transmitters operating at a wide range of power levels and channel bandwidths. In this context, one

of the main challenges in implementing a wideband CR is the design of the RF front-end [6, 7]. Further,

the main limitation in an RF front-end’s ability to detect weak signals is its Dynamic Range (DR). For

this purpose, the wideband sensing requires multi-GHz speed ADCs, which together with high resolution

(of 12 or more bits) might be infeasible with current technology [8, 9].

In the above context, Compressive Sensing (CS) has emerged as an important technique which can

significantly reduce the acquisition cost at the CR node [10, 11]. According to CS theory, certain signals

can be recovered from far fewer samples or measurements than those required by conventional methods

[12–14]. Most of the CS literature has focused on improving the speed and accuracy of recovering

the original sparse signal from compressive measurements [15–17]. In the context of CR networks, CS

techniques are suitable for acquiring the spectrum usage information in a wide spectrum band as in many

cases the spectrum occupancy is sparse in the frequency and time domains [18].

A. Motivation and Contributions

In most of the existing CR-related CS contributions, the original sparse signal is reconstructed generating

Nyquist rate samples from the compressed samples and subsequently, SS is carried out [10, 19]. However,
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the reconstruction process in a CS-based CR requires significant computational complexity [20] and from

the SS point of view, it’s not necessary to reconstruct the entire sparse signal. In this direction, CS has

been applied in [21] and [22] for signal detection purpose using compressed measurements rather than

reconstructing the original signal. In contrast to [21] and [22], we are interested in estimating the sparsity

order of the wideband spectrum which can be subsequently used for implementing adaptive CS-based CR

receivers.

Furthermore, in most of the CS-related contributions, it is assumed that the wideband signal is sparse

in some domain and the number of measurements is kept fixed based on the assumed sparsity order.

However, in compressive wideband systems, the required number of measurements to achieve a successful

recovery rate proportionally varies with the sparsity order of wideband signals [11, 23]. In this context,

Sparsity Order Estimation (SOE) is crucial in order to choose the appropriate number of measurements.

In addition, in most of the contributions, it is assumed that the sparsity order of the signal is known

beforehand. However, in the context of CR networks, this prior information is not available at the CR

sensor and has to be estimated. In the above context, a two-step CS algorithm has been proposed recently

in [23], in which the sparsity order is estimated in the first step and the total number of collected samples

is adjusted in the second step based on the estimated sparsity order. However, the considered estimation

approach is based on Monte Carlo simulations and no analytical method has been presented for estimating

the sparsity order of the wideband signals. Further, the proposed experimental method for SOE in [23]

requires the reconstruction of the original sparse signal.

To address the above issues, we provide the following contributions in this paper.

1) We propose a Multiple Measurement Vector (MMV) model to study the SOE problem. To estimate

the sparsity order, we consider an eigenvalue-based approach using the eigenvalues of the CS

measurement vector since it requires no prior information about the PU signals neither the knowledge

of channel nor the noise covariance [24]. Our theoretical analysis differs from [25] since our analysis

is based on the MMV model instead of the Single Measurement Vector (SMV) model considered

in [25].

2) We derive theoretical expressions for asymptotic eigenvalue probability distribution function (aepdf)

of the measured signal’s covariance matrix for three different scenarios using asymptotic Random

Matrix Theory (RMT). In the first case, we consider a simple case of constant received power across
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all active carriers in the considered wideband spectrum. However, in practice, the transmitted power

is different across multiple carriers due to spatial separation of PUs and frequency selective channels.

To address this scenario, we also study the case where the received power levels across the carriers

are different but follow a specific distribution. Further, the non-zero entries across the multiple

measurement vectors may be correlated in practice due to channel correlation or imperfections

in frequency selective filters present at the CR node. To address this specific issue, we consider

the correlated MMV scenario where the non-zero entries across multiple measurement vectors are

correlated.

3) Based on the derived aepdf expressions, we propose a technique in order to estimate the sparsity

order of the channel occupancy within the considered wideband spectrum. In this context, we

consider multiple subbands within the considered wideband spectrum and represent each subband

with a center carrier frequency.

4) We study a tradeoff between estimation performance (expressed in terms of SOE Error (SOEE))

and the hardware cost (number of measurements).

B. Related Work

1) CS-based Signal Acquisition: Various sub-Nyquist wideband sensing techniques have been proposed

in the literature assuming sparse spectrum occupancy over a wideband spectrum [10, 26–28]. In [10],

CS theory has been applied to the CRs for acquiring wideband signals using sub-Nyquist sampling rates

considering the sparseness of the signal spectrum in open-access network. The contribution in [26] proposes

several methods for low-rate sampling of continuous-time sparse signals in shift-invariant spaces. A multi-

rate sub-Nyquist sampling system has been proposed in [27] to perform wideband SS considering several

sub-Nyquist sampling branches in each sensing node. The authors in [28] study the blind sub-Nyquist

sampling of multiband signals, whose unknown frequency support occupies only a small portion of a

wide spectrum. In [29], a sequential CS approach has been proposed where observations are available in

a sequence and can be stopped as soon as there is reasonable certainty of correct reconstruction.

2) Signal Recovery Algorithms and Hardware Architectures: The basic CS theory starts with the SMV

problem and is extensively applied in magnetic resonance imaging, underwater acoustic channel estimation

and direction of arrival (DoA) estimation [30, 31]. Several algorithms have been developed for solving the

SMV problem including Orthogonal Matching Pursuit (OMP) [15] and its variants, sparse reconstruction



IEEE TRANSACTIONS ON SIGNAL PROCESSING (ACCEPTED FOR PUBLICATION) 4

by separable approximation (SpaRSA) algorithm [32], l1 regularized least squares (l1-LS) [33], focal

undetermined system solve (FOCUSS) class of algorithms [34], and least square absolute shrinkage and

selection operator (LASSO) algorithm [35]. In comparison to the SMV case, the support recovery rate can

be significantly enhanced using the MMV method [37]. Several MMV algorithms have been proposed in

the literature including M-OMP [36], M-FOCUSS, l1/l2 minimization [37], and Multiple Sparse Baysian

Learning (M-SBL) [38]. Further, several hardware architectures have been proposed and implemented in

the literature enabling the acquisition of compressive samples in practical settings [28, 39, 40].

3) Support Recovery Techniques: Several contributions focus on the support recovery problem instead

of recovering the original sparse signal [25, 41–45]. The contributions [43] and [44] focus on necessary

and sufficient conditions for exact recovery of the sparsity pattern. In [42], the support recovery problem

is studied in the context of the MMV model and it is shown that the structure of the matrix formed by the

nonzero entries has a significant role in the performance limits of the support recovery. The contribution in

[41] investigates a tradeoff between sampling rate and the detection error focusing on the high-dimensional

setting. In addition, [45] provides sufficient conditions for stable recovery assuming the prior knowledge of

the partial support information. Moreover, the recent contribution in [25] studies a sparse support recovery

problem using an asymptotic RMT approach.

C. Structure and Notation

This paper is structured as follows: Section II describes the signal model and describes three different

study cases. Section III presents theoretical analysis for constant power case using RMT. Similarly, Section

IV provides theoretical analysis for varying power case and Section V includes the analysis for correlated

MMV case. Section VI presents the proposed eigenvalue-based SOE technique based on the derived aepdf

expressions. Section VII evaluates the performance of the proposed SOE technique for the considered

scenarios with numerical simulations. Section VIII presents conclusions and proposes future work in

this domain. The appendix includes some preliminaries on random matrix transforms and proofs of the

theorems.

Throughout this paper, boldface upper and lower case letters are used to denote matrices and vectors

respectively, EX[·] denotes expectation over X, C denotes complex numbers, (·)T and (·)† denote the

transpose and the conjugate transpose respectively, (·)∗ represents the complex conjugate, (z)+ denotes

max(0, z), P [·] denotes the probability, Xi,j denotes the (i, j)th element of X, fX(·) denotes the eigenvalue
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distribution function of X, RX represents the covariance matrix of X, R̂X represents the sample covariance

of X, SX represents the Stieltjes transform of X, RX represents the R transform1, ΣX represents the Σ

transform and ηX represents the η transform [46].

II. SYSTEM AND SIGNAL MODEL

Let us consider a total bandwidth of W Hz with N number of carriers each having W/N channel

bandwidth. Since all the carriers may not be occupied all the time [18], we assume sparse channel

occupancy in the considered wideband spectrum. We define sparsity order, let us denote by σ, as the

ratio of the number of the occupied carriers to the total number of carriers over the considered wideband

spectrum. Further, we define another parameter ρ as the compression ratio, which depends on the number

of measurements as discussed later. The signal model used in this paper has been inspired from the model

used in [25] which focuses on the input-output mutual information and the support recovery rate in the

asymptotic limit. For our analysis in this paper, we extend the SMV model of [25] into the MMV model

as described below.

Let us consider the following complex valued observation model for the SMV problem as considered

in [25]

y = AUXb + z, (1)

where A is an N × N diagonal matrix with independent and identically distributed (i.i.d.) diagonal

Bernoulli distributed elements i.e., P [Ai,i = 1] = ρ = 1 − P [Ai,i = 0], where ρ = 1
N
EA[M ] = 1

N
M̄

denotes the average fraction of non-zero diagonal elements of A to the total number of diagonal elements

and is equivalent to the ratio of the dimensions of the measurement matrix considered in [20], U is an

N ×N random matrix having i.i.d. elements with zero mean and variance 1/N , and an N ×N combined

matrix AU denotes the compressed sensing matrix. Further, X = diag(x), with x being an 1×N complex

Gaussian vector having i.i.d. elements with zero mean and variance 1/N , b is an N × 1 vector with i.i.d.

complex components bi distributed with Bernoulli distribution i.e., P [bi = 1] = σ = 1 − P [bi = 0] with

its non-zero elements defining the support of Bernoulli-Gaussian vector Xb, whose sparsity (average

fraction of non-zero elements) is equal to σ = 1
N
Eb[M ], and z is an i.i.d. complex Gaussian N ×1 vector

with components zi ∼ CN (0, 1). It should be noted that Xb denotes the sparse vector considered for

1Readers should not confuse the R transform notation R with the covariance matrix notation R.
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the standard CS formulation in the literature [20]. In model (1), the non-zero diagonal elements of A

define the components of the product UXb for which a noisy measurement is acquired and the parameter

ρ indicates the sampling rate i.e., average fraction of the observed components. Further, as in [25], we

consider the covariance U†A†AU to be free from any deterministic Hermitian matrix [46].

In contrast to the above SMV problem, we are interested in analyzing the MMV scenario, where the

combination of concatenated multiple measurement vectors has been represented in the form of a matrix

Y. We consider N × N sensing matrix AU consisting of M̄ = ρN number of non-zero rows. This

is equivalent to the scenario with a CR node equipped with M̄ number of frequency selective filters

considered in [47], where M̄ filters are used to measure M̄ different linear combinations of the received

signals of all N carriers. In practice, the frequency selective surfaces can be used to realize frequency

filtering by designing a planar periodic structure with a unit element size around half wavelength of the

frequency of interest. Further, the bandwidth of a subband can be dealt by finding a suitable shape of

the unit elements through the initial test procedure [47]. Let N also be the number of samples collected

by a sensor during the measurement process and therefore each measurement vector of Y contains N

number of samples. We assume that the channel occupancy status remains unchanged during the period

of measurement. In this context, we extend the SMV problem (1) into the following MMV model

Y = AUP1/2Θ1/2BX + Z = AUP1/2Θ1/2S + Z, (2)

where B = diag(b) is an N × N diagonal matrix with the diagonal having i.i.d. Bernoulli distributed

elements i.e., P [Bi,i = 1] = σ = 1−P [Bi,i = 0], X is an N ×N random matrix having i.i.d. entries with

zero mean and variance 1/N . The definitions of matrices A and U are same as the ones defined earlier

in the SMV model. Further, P is an N × N diagonal matrix and its diagonal entries correspond to the

varying power levels received across different carriers within the considered spectrum, and Θ1/2 is the

square root of the correlation matrix Θ and its elements are drawn from an exponential correlation model

as defined later in Section V. The N ×N matrix S = BX is a sparse signal matrix with uniform sparsity

(sparsity order σ) across all the columns. It can be noted that Y contains M̄ = ρN number of non-zero

rows and each non-zero row contains N number of samples. We assume that the matrices A, U, B, X

and Z are mutually independent. The sensing matrix AU is assumed to be known by the receiver.

Assuming that the source signal is independent from the noise, the covariance matrix of the measured
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signal, denoted by RY, can be calculated as [3]:

RY = E[YY†] = E
[
(AUP1/2Θ1/2BX)(AUP1/2Θ1/2BX)†

]
+ E[ZZ†]. (3)

In this paper, we are interested in finding out the eigenvalue distribution f(λ) of RY. Since all the matrices

A,U,B,X and Z are square, fRY
(λ) = fR̄Y

(λ), where R̄Y = PΘE
[
U†A†AUBXX†B†

]
+ E[ZZ†] =

PΘRR1 + RZ with R = E
[
U†A†AU

]
, R1 = E

[
BXX†B†

]
and RZ = E[ZZ†]. In practice, the

covariance matrix RY is not available and we have to rely on the sample covariance matrix. Let us

define the sample covariance matrices of the measured signal and noise as: R̂Y(N) = 1
N

YY† and

R̂Z(N) = 1
N

ZZ†. Similarly, let R̂ and R̂1 be the sample covariance matrices corresponding to the

covariance matrices R and R1 respectively. It can be noted that R̂ and R̂1 are asymptotically free from

any deterministic matrix for the considered X and U [25]. As mentioned in Section I, we are interested

in studying the following three specific cases.

Case 1: Constant Power: We consider equal received power across all the carriers and uncorrelated

non-zero entries across the multiple measurement vectors of Y. In this case, the observation model (2)

reduces to the following

Y = AU
√
pBX + Z, (4)

where p denotes the constant power across all the carriers. Since we assume normalized noise variance,

SNR ≡ p. The value of SNR is assumed to be known and it can be acquired through SNR estimation

techniques like in [48, 49]. The detailed analysis of this case is presented in Section III.

Case 2: Varying Power: The received power levels across all the carriers vary but are assumed to follow

a known distribution. Further, we consider uncorrelated non-zero entries across the multiple measurement

vectors of Y. In this case, the observation model (2) reduces to the following

Y = AUP1/2BX + Z, (5)

where P is an N × N diagonal matrix with its diagonal entries corresponding to the varying power

levels received across different carriers as defined earlier. The detailed analysis of this case is presented

in Section IV.

Case 3: Correlated MMV: We consider the correlated scenario in which the non-zero entries across the

multiple measurement vectors are correlated and assume that the received power across each carrier is
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constant. In this case, the observation model (2) reduces to the following

Y = AUΘ1/2√pBX + Z, (6)

where Θ1/2 is represents the square root of the correlation matrix Θ and the its elements are drawn from

an exponential correlation model. The detailed analysis of this case is presented in Section V.

Remark 2.1: It can be noted that (4), (5), and (6) are special cases of (2) and the solutions of these

cases can be derived from the solution of (2). However, it is complex to obtain the closed form expression

of the Stieltjes transform of (2) due to the involvement of several matrices in the first term. Due to this

reason, we solve three specific cases in this paper. Further, in the following sections, we have provided

coefficients for the ploymonials of Stieltjes transforms of cases 1 and 3, while the closed form polymonial

for the Stieltjes transform of case 2 involves several higher order coefficients and is not presented in this

paper for the sake of conciseness.

III. ANALYSIS FOR CONSTANT POWER CASE

Assuming that signal and noise are uncorrelated with each other, for large values of N , the measured

signal’s sample covariance matrix can be written using the following asymptotic approximation [3]:

lim
N→∞

R̂Y(N) ≈ pR̂R̂1 + R̂Z. (7)

For the considered constant received power case, the aepdf of the measured signal’s sample covariance

matrix given by (7) can be used to estimate the sparsity order over the considered wideband spectrum

as illustrated later in Section VI. In this context, our aim is to find the aepdf of R̂Y(N). However, due

to noncommutative nature of random matrices (Example 2.33, [46]), it’s not straightforward to calculate

the eigenvalue distribution of R̂Y(N) by knowing the individual eigenvalue distributions of R̂, R̂1 and

R̂Z. Using free probability analysis, the asymptotic spectrum of the sum or product can be obtained

from the individual asymptotic spectra without involving the structure of the eigenvectors of the matrices

(Section 2.4, [46]). According to free probability theory of random matrices, Σ transform follows the

multiplicative free convolution property [53] while the R transform follows the additive free convolution

property [54] (For the definitions of R and Σ transforms, please see Appendix A). In this context, the

free convolution properties of Σ and R transforms can be used to find out the eigenvalue distribution of

R̂Y(N) as illustrated later in the Appendix (See Appendixes B, C and D). By applying these properties in

(7) and with the help of Theorems 28, 29 and 33 (in Appendix A), the Stieltjes transform of asymptotic
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density function of R̂Y(N) can be obtained. Subsequently, the derived Stieltjes transform is used to find

the aepdf of R̂Y(N) using Theorem 8.9 (in Appendix A), which is then subsequently used to estimate

the sparsity order in our considered problem.

From [46, Theorem 2.39], the η transform of R̂ satisfies the following relation

1 =
1− ηR̂(z)

1− ηF(zηR̂(z))
(8)

with F = A†A. Since A is diagonal with Bernoulli i.i.d. diagonal elements, its η transform can be written

as [25]

ηF(z) = ηA(z) = 1− ρ+
ρ

1 + z
. (9)

Using (9) in (8), the η transform of R̂ is given by the positive solution of the following polymonial

zη2
R̂

(z)− ((1− ρ)z − 1)ηR̂(z)− 1 = 0. (10)

Using the similar procedure, the η transform of R̂1 is given by the positive solution of the following

polymonial

zη2
R̂1

(z)− ((1− σ)z − 1)ηR̂1
(z)− 1 = 0. (11)

Equation (10) corresponds to the η transform of the HH† with N × ρN random matrix H with i.i.d.

elements having zero mean and variance 1/N . Similarly, (11) corresponds to the η transform of the HH†

with H of dimension N×σN . Since the HH† follows the Marchenko-Pastur (MP) law given by Theorem

8.10 in Appendix A, the Σ transforms of R̂ and R̂1 can be written as [46]

ΣR̂(z) =
1

ρ+ z
,ΣR̂1

(z) =
1

σ + z
. (12)

Based on the detailed analysis presented in Appendix B, we derive the following theorem for the

Stieltjes transform of the R̂Y(N).

Theorem 3.1: The Stieltjes transform SR̂Y
(z) of the asymptotic distribution of eigenvalues of 1

N
YYH ,

where Y = AUp1/2BX+Z for arbitrary value of p can be obtained for any z ∈ C by solving a polymonial
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with the following coefficients

c0 = −p2,

c2 = p2(ρσ − 1− z)− p3(ρ+ σ) + p4,

c3 = −p3(ρ+ σ)(z + 1) + 2p2(ρσ − z + zp2),

c4 = zp4(2− z)− 2zp3(ρ+ σ)− p2(z − ρσ),

c5 = 2z2p4 − zp3(ρ+ σ),

c6 = p4z2, (13)

where cn is the nth order coefficient of the polymonial, ρ and σ denote the compression ratio and sparsity

order respectively, and p is the common receive SNR of all the PU signals.

Proof: By applying multiplicative and additive free convolution properties of Σ and R transforms

and then using the relation (29), the polymonial in (13) is obtained. For detailed proof, see Appendix B.

The aepdf of R̂Y can be obtained using Stieltjes inversion formula (35).

IV. ANALYSIS FOR VARYING POWER CASE

Using the similar arguments as in Section III, the measured signal’s sample covariance matrix for large

values of N can be written using the following asymptotic approximation:

lim
N→∞

R̂Y(N) ≈ R̂P1/2R̂1P
1/2 + R̂Z. (14)

To model the received power, uniform distribution over a certain power range would be the most

suitable choice but it is analytically intractable because its transforms include logarithmic functions. To

overcome this, we use modified semicircular distribution since it is symmetric around a non-zero mean

and analytically tractable. The standard semicircular law is given by [46]

fS(z) =
1

2π

√
4− z2, −2 < z < 2. (15)

We extend (15) in the following form to allow for non-zero power mean and scalable DR of the power

profile.

fMS(z) =
g

2π

√
4− g2(z − p̄)2, p̄− 2

g
< z < p̄+

2

g
. (16)
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where p̄ denotes the mean of the considered distribution and g denotes the scaling factor of the DR with

g ≥ 2/p̄. Let [a, b] denote the support of the considered distribution, then the parameters p̄ and g can be

expressed as: p̄ = a+b
2

and g = 4
b−a . The DR of power variation across the carriers can be defined as:

DR = 10log b
a
.

Lemma 4.1: The Stieltjes transform of the modified semicircular law (16) is given by

SP(z) =
1

2
g[−g(z − p̄) +

√
g2(z − p̄)2 − 4]. (17)

Proof: By definition of the transform and integration over (16).

Lemma 4.2: The Σ transform of the modified semicircular law (16) is given by

ΣP(z) =
1

2

g(gc+
√
g2p̄2 − 8− 4z)

z
. (18)

Proof: By definition of the transform and (17).

Lemma 4.3: The Stieltjes transform of the asymptotic distribution of eigenvalues of R̂P1/2R̂1P
1/2, let

us denote by W, can be obtained for any z ∈ C by finding roots of the equation

SW(z)(ρ− zSW(z)− 1)(σ − zSW(z)− 1) +
1

2
g2p̄+

1

2
g
√
g2p̄2 + 4zSW(z)− 4 = 0. (19)

Proof: By applying the multiplicative free convolution property of Σ transform and using the

definitions of the transforms.

Theorem 4.1: The Stieltjes transform SR̂Y
(z) of the asymptotic distribution of eigenvalues of 1

N
YYH ,

where Y = AUP1/2BX + Z can be obtained for any z ∈ C by finding roots of the equation

S−1

R̂Y
(z) = z(ρ− zSW(z)− 1)(σ − zSW(z)− 1)

+
1

2
g2p̄+

1

2
g
√
g2p̄2 + 4zSW(z)− 4 +

1

1− z
, (20)

where g is the scaling factor of the DR, ρ and σ denote the compression ratio and sparsity order

respectively, and p̄ is the mean SNR of the considered distribution.

Proof: By applying multiplicative and additive free convolution properties of Σ and R transforms

and then using the definitions of the transforms. For detailed proof, see Appendix C.

Remark 4.1: The closed form of (20) is not specifically provided in this paper because it includes many

terms which provide no further insight. In practice, we can just solve this equation with a mathematical

software in order to find the Stieltjes transform and subsequently the aepdf.
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V. ANALYSIS UNDER CORRELATED SCENARIO

In this case, we consider correlation across the non-zero entries of the multiple measurement vectors.

To model this scenario, we consider the one-sided noise correlation model as in [24, 55]. We model the

correlated sparse signal matrix as: Ŝ = Θ1/2S, where Θ1/2Θ1/2 = Θ = E[ŜŜH ]. To ensure that Θ does

not affect the received signal power, the normalization (1/N)trace{Θ} = 1 is considered. We model the

components of the covariance matrix Θ using an exponential correlation model given by [50];

θij ∼

{
ς(j−i), i ≤ j(
ς(i−j))∗ , i > j

(21)

where θij is the (i, j)th element of Θ and ς ∈ C is the correlation coefficient with |ς| ≤ 1. A similar

correlation model has been applied in [56] for sparse support recovery in the presence of correlated

multiple measurements. Using the correlation model in (21), the observation model is given by (6).

For correlation analysis in this paper, we consider that the correlation matrix Θ follows the tilted

semicircular law2 as in [51], which is given by

fΘ(z) =
1

2πµz2

√(
z

δ1

− 1

)(
1− z

δ2

)
, (22)

where [δ1, δ2] defines the support of the distribution and µ = (
√
δ2−
√
δ1)

4δ1δ2
with µ > 0. The parameter µ

controls the degree of correlation and varies the support of the distribution. The Signal Condition Number

(SCN) of the N ×N correlation matrix Θ is related to µ as: µ = SCN−1
SCN+1

. As stated in [51], the parameter

µ is related to ς as: µ = ς2

1−ς2 . In this work, we are interested in carrying out SOE for different levels

of correlation across the non-zero entries of the MMV model. For this purpose, we need the aepdf of

R̂Y(N) under the correlated scenario. Using the similar arguments as in earlier sections, the measured

signal’s sample covariance matrix for large values of N can be written using the following asymptotic

approximation

lim
N→∞

R̂Y(N) ≈ pR̂Θ1/2R̂1Θ
1/2 + R̂Z. (23)

Theorem 5.1: The Stieltjes transform SR̂Y
(z) of the asymptotic distribution of eigenvalues of 1

N
YYH

where Y = AUΘ1/2√pBX + Z can be obtained for any z ∈ C by solving a polymonial with the

2It can be noted that this law closely approximates the exponential correlation model given by (21).
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following coefficients

c0 = pµ(1 + pµ),

c1 = 2pµ(zpµ− p2) + p2(µ(ρ+ σ)− 1) + pµ(z − ρσ + 1),

c2 = (ρ+ σ)(p2µ+ zp2µ− p3) + pρσ(p− 2µ) + 2zpµ(pµ+ 1− 2p2)− p2(1 + z − z2µ2),

c3 = 2zp2(µ(ρ+ σ)− zµ(p− µ) + p2 − 2pµ− 1)− p3(z + 1)(ρ+ σ) + p(ρσ(2p− µ) + zµ),

c4 = zp2µ(ρ+ σ)− 2zp3(ρ+ 1) + p2(z2(µ2 − 4pµ+ p2) + ρσ − z + 2zp2),

c5 = 2z2p3(p− µ)− zp3(ρ+ σ),

c6 = z2p4, (24)

where cn is the nth order coefficient of the polymonial, ρ and σ denote the compression ratio and sparsity

order respectively, µ defines the correlation degree of Θ, and p is the common receive SNR of all the

PU signals.

Proof: By definitions of the transforms and using multiplicative and additive free convolution

properties of Σ and R transforms respectively. For detailed proof, see Appendix D.

VI. PROPOSED COMPRESSIVE SPARSITY ORDER ESTIMATION METHOD

The SOE is the process of identifying the number of nonzero elements of a sparse vector and does not

need to have the exact knowledge of their amplitudes or positions. The proposed compressive sparsity

order estimation can be applicable in general settings. In this paper, this problem is mainly motivated by

wideband CR scenarios where compressive SOE is the main issue for determining the suitable sampling

rate at the receiver. To determine the suitable sampling rate at the CR receiver, most existing CS literature

implicitly assumes that the sparsity order of the considered wideband spectrum is known beforehand.

However, in practical CR applications, the actual sparsity order corresponds to the instantaneous spectrum

occupancy of wireless users and it varies dynamically as the spectrum occupancy changes. Hence, the

sparsity order is often unknown and only its upper bound can be measured based on the maximum spectrum

utilization observed statistically over a time period. In practice, the determination of the sampling rate

based on the upper bound can cause unnecessarily high sensing cost since the sampling rate depends on

the sparsity order [23]. From the above discussion, it can be noted that it is crucial to adapt the sampling

rate in accordance to the sparsity variation of the spectrum occupancy and thus tracking the instantaneous
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sparsity order is an important issue. In this context, we propose an eigenvalue-based blind SOE method

which is based on the maximum eigenvalue of the measured signal’s sample covariance matrix.

Based on the polymonials of the Stieltjes transforms specified in the above sections, the support range

of the corresponding aepdf is obtained using (35)3. For convenience, a lookup table (Table I) is provided

in order to illustrate the SOE method in the considered scenarios (see Section VII). In the lookup table, we

present the maximum eigenvalues of R̂Y for the considered three different cases and the corresponding

values of σ. For sparsity order estimation purpose, we select K number of sampling slots and calculate

λ̄max = EK [λmax(R̂Y(N))] over these slots. Subsequently, λ̄max is compared with the values of λmax

stored in the lookup table and the corresponding value of σ is obtained. Further, for any intermediate

values of λ̄max, a suitable interpolation method can be applied for estimating the corresponding value

of σ. To clarify the above process, we include procedures for lookup table formation and sparsity order

estimation considering the constant power scenario (Section III) below.

In all the considered cases, the parameter ρ is assumed as an operating parameter of the CR sensing

module and its value depends on how much compressed measurements we want to carry out in order to

reduce the hardware costs at the expense of some estimation error. The Stieltjes transform of R̂Y for the

constant power case is calculated using polymonial (13). In this case, the value of p is assumed to be

known and in practice, its value can be obtained by using SNR estimation techniques like in [24]. Since

we know the value of ρ and p in (13), we can estimate the value of σ by sensing the λ̄max of R̂Y, where

Y = AUp1/2BX + Z, obtained using (13) and (35).

Similarly, the Stieltjes transform for the varying power case is obtained using equation (20). In this

case, the support of the considered power distribution i.e., [a, b] is assumed to be known and based

on this support, the values of g and p̄ can be calculated as mentioned in Section IV. As we know the

value of g, p̄ and ρ in (20), we can estimate the sparsity order i.e, σ by evaluating λ̄max of R̂Y, where

Y = AUP1/2BX + Z, obtained using (20) and (35).

In the similar way, the Stieltjes transform for the correlated case is obtained using the polymonial (24).

In this case, the value of ς is assumed to be known and in practice, its value can be found using different

noise correlation models such as in [24, 56] or measurement methods. Based on the value of ς , the value

of µ can be calculated as mentioned in Section V. Since we know the value of p, ρ and µ in (24), we can

3We select the imaginary root which complies with the definition and properties of Stieltjes transform (See Appendix A).
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estimate the value of σ by calculating the maximum eigenvalue of R̂Y, where Y = AUΘ1/2√pBX + Z,

obtained using (24) and (35).

For example, for Scenario I, if the value of λ̄max of the R̂Y is 6.67 under compressive measurement

scenario with ρ = 0.8, it can be estimated that the sparsity order of the considered wideband spectrum

is 0.5. Based on this estimated sparsity order, we could potentially fix the optimum sampling rate of

the CS acquisition system in order to reduce the sensing hardware cost. In Section VII, we provide the

normalized SOEE versus sparsity order plots to evaluate the performance of this estimation technique.

Procedure for lookup table formation

1) Select the operating parameter ρ.

2) Select the value of p based on SNR estimation techniques like in [24].

3) Evaluate SR̂Y
(z) using (13).

4) Find λmax(R̂Y) using (35).

5) For each value of σ in (0, 1), repeat steps 3 and 4.

6) Store all λmax(R̂Y) and corresponding σ e.g., Table I (Scenario I).

Procedure for sparsity order estimation

1) Select the number of sampling slots K.

2) Calculate instantaneous R̂Y(N) = 1
N

YYH in each sampling slot.

3) Calculate λ̄max = EK [λmax(R̂Y(N))] over K number of sampling slots.

4) Find σ corresponding to λ̄max from the lookup table.

5) Use suitable interpolation for any intermediate value of λ̄max.

VII. NUMERICAL RESULTS

To evaluate the performance of the proposed SOE method for the considered scenarios, the metric

normalized SOE Error (SOEE) is used, which is expressed in terms of root mean square error normalized

to the true sparsity order and defined by

SOEE =

√
E[(σ̂ − σ)2]

σ
, (25)

where σ̂ is the estimated sparsity order with the proposed method and σ is the actual sparsity order.

In our numerical results, we run 103 number of Mote Carlo realizations in order to obtain the value of



IEEE TRANSACTIONS ON SIGNAL PROCESSING (ACCEPTED FOR PUBLICATION) 16

normalized SOEE in (25) and each Monte Carlo realization includes steps (2) and (3) from the sparsity

order estimation procedure specified in Section VI.

The total error in our estimation process results from the two sources. The first error comes from the

randomness of the maximum eigenvalue which is used as an input parameter for the estimator and the

second error is the residual error resulting from the interpolation process. In practice, the second error

can be minimized by having a dense look up table and the first error can be minimized by increasing the

number of sensing slots over which the mean eigenvalue i.e., λ̄max is calculated. However, in practice, the

number of sampling slots are limited due to the limited sampling time required to capture the dynamicity

of the time varying sparsity order. If the spectrum occupancy changes too rapidly i.e., the sparsity order

varies at a faster rate, the number of sampling slots should be small. To take this fact into account, we

use only K = 30 number of sampling slots in our results.

In the following subsections, we present numerical results for SOE for the considered three different

scenarios. In the numerical results, we compare the performance of the proposed SOEE technique in

compressive and full measurement cases. The compressive measurement case corresponds to the signal

model given by (2) while the full measurement case for the constant power scenario corresponds to the

following signal model Y =
√
pBX+Z and the following sample covariance matrix R̂Y = pR̂1 + R̂Z. It

should be noted that the theoretical analysis for the full measurement case has already been carried out in

[24]. From practical perspectives, the difference between full measurement and compressive measurement

cases is that the former considers all the measurements across the carriers whereas the later case considers

the sparse linear combinations of carrier measurements.

A. Constant Power Scenario

To validate our theoretical analysis presented in Section III, we plot the theoretical and simulated

eigenvalue distributions of R̂Y(N) in Fig. 1 with parameters ρ = 0.8, σ = 0.6, N = 100, SNR = 0dB.

The theoretical aepdf in this case was obtained by solving the polymonial given by (13) and using the

Stieltjes inversion formula in (35). From the figure (Fig. 1), it can be noted that the theoretical curve

perfectly matches with the simulated one.

For sparsity order estimation purpose, we provide a lookup table (Table I, Scenario I), where the

maximum eigenvalues of pR̂R̂1 + R̂Z are provided for different values of σ for compressive and full

measurement cases. The value of σ can be estimated using this table based on the SOE method described
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Fig. 1: Theoretical and simulated eigenvalue distribution of R̂Y(N), where Y = AU
√
pBX + Z

(ρ = 0.8, σ = 0.6, N = 100, SNR = 0dB)
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Fig. 2: Normalized SOEE versus sparsity order with compressive and full measurements for constant received power scenario
(SNR = 2dB,N = 100)

in Section VI. For example, if the value of λ̄max is 6.05 for the compressive measurement case, it can be

estimated that the sparsity order of the occupancy of the considered wideband spectrum is 40 %.

Figure 2 presents the normalized SOEE versus sparsity order for compressive and full measurement

cases for SNR = 2 dB. From this figure, it can be noted that the normalized SOEE is higher for the

compressive case than for the full measurement case. For SNR = 2 dB as shown in Fig. 2, the normalized

SOEE for the compressive case is slightly less than 2.9 % and for the full measurement case is nearly about

2.4 % at the sparsity order of 0.5. On the other hand, the advantage is that we have used the compression

of 80 % i.e., 20 % saving can be achieved in terms of hardware resources, which is a considerable gain.

Furthermore, Fig. 3 presents the normalized SOEE versus SNR considering a fixed sparsity order of 0.6.
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Our simulation results show that at lower values of SNR, the compressive case performs better than the

full measurement case in terms of the normalized SOEE (below the SNR value of −0.5 dB in Fig. 3).

An intuitive explanation is that in the full measurement case, the contribution of the noise in the aepdf

becomes dominant with a faster rate compared to the compressed measurement case.

Figure 4 presents the estimation error in terms of the normalized SOEE versus compression ratio ρ for

the SNR value of 2 dB. In this simulation settings, the value of σ was considered as 0.6 and the estimation

error for each ρ was calculated by interpolating the value of λ̄max with the provided set of the values of σ

and λmax for the considered value of ρ. It can be noted that ρ = 1 corresponds to no-compression and the

estimation error in terms of normalized SOEE increases as ρ decreases (Fig. 4) i.e., with the increase in

the compression. It can be depicted that by using the smaller value of compression ratio ρ, we are saving

sampling resources in one hand but on the other hand, we have to sacrifice some estimation performance.

Therefore, in practice, there exists a tradeoff between the number of measurements (hardware cost) and

the estimation performance.

−2 −1 0 1 2
0.02

0.025

0.03

0.035

0.04

SNR, dB

N
o
rm

a
li
ze
d
S
O
E
E

 

 
With compressive measurements ρ = 0.8
With full measurements

Fig. 3: Normalized SOEE versus SNR with compressive and full measurements for constant received power scenario (σ = 0.6, N = 100)

B. Varying Power Scenario

Under this scenario, received power levels across the carriers within the considered wideband spectrum

vary but they are assumed to follow a known distribution as mentioned in Section IV. The main advantage

of the applied approach is that we do not need to have information of all the individual channel powers

in order to estimate the sparsity order. In order to validate the theoretical analysis presented in Section

IV, we provide the theoretical and simulated distributions of R̂Y(N) in Fig. 5. The theoretical curve was



IEEE TRANSACTIONS ON SIGNAL PROCESSING (ACCEPTED FOR PUBLICATION) 19

0.4 0.5 0.6 0.7 0.8 0.9 1

0.022

0.024

0.026

0.028

0.03

0.032

0.034

Compression Ratio ρ
N
o
rm

a
li
ze
d
S
O
E
E

Fig. 4: Normalized SOEE versus compression ratio ρ (SNR = 2 dB, σ = 0.6, N = 100)

obtained by evaluating equation (20) and using the Stieltjes inversion formula in (35). It can be noted

that the theoretical and simulated results match perfectly.
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Fig. 5: Theoretical and simulated eigenvalue distribution of R̂Y(N), where Y = AUP1/2BX + Z
(DR = 6.02dB,N = 100, p̄ = 7.78 dB)

TABLE I: Lookup table for sparsity order estimation for the considered scenarios (ρ = 0.8)
Scenarios I I II II III III

SNR=2 dB SNR=2 dB DR=6.02 dB DR=6.02 dB SCN=4 SNR=0 dB SCN=4 SNR=0 dB
Sparsity Level Compressive Full Compressive Full Compressive Full

1 9.63 7.44 12.80 10.19 6.93 5.86
0.9 9.03 7.14 11.80 9.58 6.53 5.65
0.8 8.41 6.83 11.03 9.08 6.17 5.44
0.7 7.85 6.53 10.22 8.60 5.80 5.24
0.6 7.26 6.21 9.36 8.08 5.43 5.02
0.5 6.67 5.88 8.42 7.44 5.08 4.81
0.4 6.05 5.52 7.51 6.84 4.74 4.60
0.3 5.44 5.15 6.63 6.24 4.43 4.40
0.2 4.85 4.76 5.66 5.57 4.17 4.20
0.1 4.25 4.31 4.69 4.80 3.96 4.00
0 3.79 3.79 3.79 3.79 3.79 3.79
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Fig. 6: Normalized SOEE versus sparsity order with compressive and full measurements for varying power scenario
(DR = 6.02dB,N = 100, p̄ = 7.78 dB)

In order to estimate the sparsity order under this scenario, the lookup table (Table I, Scenario II) can

be used, where the maximum eigenvalues of R̂PR̂1 + R̂Z are provided for different values of σ for

compressive and full measurement cases. For example, if the value of λ̄max is 9.36 for the compressive

case, it can be estimated that the sparsity order of the occupancy of the considered wideband spectrum

is 60 %.

Figure 6 presents the comparison of the normalized SOEE versus sparsity order for full and compressive

measurement cases with parameters (DR = 6.02 dB, N = 100, p̄ = 7.78 dB). From the figure, it can

be noted that sparsity order up to 0.5 can be estimated with less than 2.9 % estimation error for the

compressive case and with less than 2.5 % estimation error for the full measurement case. Furthermore,

it can be noted that we have to tolerate a small amount of additional error while using compressive

measurements. On the other hand, we are saving 20 % hardware resources using 20 % less measurements.

C. Correlated MMV Scenario

Under this scenario, we consider correlated multiple measurement vectors as mentioned in Section V. To

validate the theoretical analysis presented in Section V, we present the theoretical and simulated eigenvalue

distributions of the measured signal’s covariance matrix given by (23) in Fig. (7) with parameters (ρ =

0.8, σ = 0.6, N = 100, SCN = 4). The theoretical plot was obtained by solving the polymonial (24) and

using the Stieltjes inversion formula in (35). From the figure, it can be noted that the theoretical and

simulated results match perfectly. In order to estimate the sparsity order, we can use the λmax of the aepdf

obtained from the Stieltjes transform given by polymonial (24). Since we assume the value of ρ, µ to
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be known in (24), the value of σ can be estimated based on the procedure described in Section VI. For

convenience, we provide lookup table (Table I, Scenario III).
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Fig. 7: Theoretical and simulated eigenvalue distribution of R̂Y(N), where Y = AUΘ1/2√pBX + Z
(ρ = 0.8, σ = 0.6, N = 100, SCN = 4, SNR = 0 dB)
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Fig. 8: Normalized SOEE versus sparsity order with compressive and full measurements for correlated and uncorrelated scenarios
(SCN = 4, N = 100,SNR = 0 dB)

Figure 8 shows the normalized SOEE versus sparsity order comparison for compressive and full

measurement cases for the correlated MMV scenario with parameters (SCN = 4, N = 100, SNR = 0

dB). From the figure, It can be noted that the full measurement case performs better than the compressive

measurement case with ρ = 0.8. The sparsity order can be estimated with less than 3 % for the compressive

measurement case and with less than 2.8 % for the full measurement case up to the sparsity order of

0.5 (as depicted in Fig. 8). As in previous scenarios, it can be concluded that we need to sacrifice some

amount of performance in terms of estimation error in order to save the sensing hardware resources.
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VIII. CONCLUSION

In this paper, a novel technique has been proposed for estimating the sparsity order of spectrum

occupancy within a wideband spectrum in the context of a wideband CR. First, the theoretical expressions

for aepdf of the measured signal’s covariance matrix have been derived for three different scenarios

using RMT-based methods. More specifically, the following different scenarios have been considered:

(i) constant received power scenario, (ii) varying received power scenario, and (iii) correlated scenario

with the correlated multiple measurement vectors. Then the performance of the proposed method was

evaluated in terms of the normalized SOEE for the considered scenarios. It can be concluded that the

proposed technique can reliably estimate the sparsity order for a range of scenarios even with compressive

measurements. Further, it has been noted that there exists a tradeoff between the hardware sensing cost

and the estimation error while using compressive measurements. In our future work, we plan to apply the

proposed compressive SOE technique for adaptive CS at the CR receiver and to further explore blind signal

processing techniques for estimating the positions of vacant carriers using compressive measurements.

APPENDIX A

Random Matrix Theory Preliminaries

Let FX(x) be the eigenvalue probability density function of a matrix X.

Theorem 8.1: The Stieltjes transform SX(z) of a positive semidefinite matrix X is defined by [46]

SX(z) = E
[

1

X− z

]
=

∫ ∞
−∞

1

λ− z
dFX(λ). (26)

Theorem 8.2: The η transform of a positive semidefinite matrix X can be defined as [46]

ηX(γ) = E
[

1

1 + γX

]
, (27)

where γ is a nonnegative real number and thus 0 ≤ ηX(γ) ≤ 1.

Theorem 8.3: The Σ transform of the density of eigenvalues of X can be defined using η transform in

the following way [46]

ΣX(z) = −1 + z

z
η−1

X (1 + z). (28)

Theorem 8.4: The R transform is related to the inverse of Stieltjes transform as [46]

RX(z) = S−1
X (−z)− 1

z
. (29)
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Theorem 8.5: For a Wishart random matrix X, the R transform of the density of eigenvalues of X is

defined as [46]

RX(z) =
β

1− z
. (30)

For any a > 0,

RaX(z) = aRX(az). (31)

Theorem 8.6: For a Wishart random matrix X, the Σ transform of the density of eigenvalues of X is

defined as [46]

ΣX(z) =
1

z + β
. (32)

Theorem 8.7: The η transform of the density of eigenvalues of X is related to the Stieltjes transform

by the following relation [46]

ηX(z) =
SX(−1

z
)

z
. (33)

Theorem 8.8: The Stieltjes transform of the semicircular law (15) is given by [52]

S(z) =
1

2
[−z +

√
z2 − 4] (34)

Theorem 8.9: The aepdf of X is obtained by determining the imaginary part of the Stieltjes transform

SX for real arguments in the following way.

fX(x) = lim
y→0+

1

π
Im{SX(x+ jy)}. (35)

Theorem 8.10: [46] Consider an M ×N matrix F whose entries are independent zero-mean complex

(or real) random variables with variance 1
N

and fourth moments of order O
(

1
N2

)
. As M,N → ∞ with

N
M
→ β, the empirical distribution of the eigenvalues of 1

N
FFH converges almost surely to a non-random

limiting distribution with density given by

fβ(λ) = (1− β)+ δ(λ) +

√
(λ− a)+(b− λ)+

2πβλ
, (36)

where a = (1 −
√
β)2, b = (1 +

√
β)2, δ(.) is a Dirac delta function and (1− β)+ δ(λ) represents the

cardinality of zero eigenvalues which can occur if M > N . The parameters a and b define the support

of the distribution and correspond to λmin and λmax respectively and the ratio b/a defines the SCN of

1
N

FFH . The above limiting distribution is the MP law with ratio index β.

APPENDIX B
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Proof of Theorem 3.1

Since R̂ and R̂1 are independent Wishart matrices, they are asymptotically free [46]. As a result, the

combined aepdf of the term R̂R̂1 in (7) can be obtained by applying multiplicative free convolution

property of Σ transform in the following way [53]

ΣR̂R̂1
(z) = ΣR̂(z) · ΣR̂1

(z). (37)

The η transform corresponding to ΣR̂R̂1
(z) in (37) can be obtained using (28) and its polymonial can be

written as

z(η(z) + 1)(η(z) + ρ)(η(z) + σ)− η(z). (38)

Then using the relation between η and Stieltjes transform given by (33), the polymonial for Stieltjes

transform of the asymptotic distribution of the eigenvalues of the product of R̂ and R̂1 can be written as

z2S3(z) + z(2− ρ− σ)S2(z) + (−z + (ρ− 1)(σ − 1))S(z)− 1 = 0. (39)

Let RR̂c
be the R transform of the product term R̂R̂1 and is calculated using (39) and (29), which is

given by

RR̂c
(z) =

−(1/2)(zρ+ zσ − 1 +
√

(z2ρ2 − 2z2ρσ − 2zρ+ z2σ2 − 2zσ + 1))

z2
. (40)

Subsequently, the R transform of pR̂R̂1 in the second term of (7) becomes pRR̂c
(pz). Since the term R̂Z

in (7) follows the MP distribution, the R transform of R̂Y using additive free convolution property can

be written as

RR̂Y
(z) = pRR̂c

(pz) +RR̂Z
(z). (41)

Finally, the polymonial for the Stieltjes transform of the density of R̂Y in (13) is obtained using (29).

APPENDIX C

Proof of Theorem 4.1

Since P is a square matrix, P1/2R̂1P
1/2 and PR̂1 have identical eigenvalues [46]. Therefore, the Σ

transform of the term R̂P1/2R̂1P
1/2 in (14) can be written as

ΣR̂PR̂1
(z) = ΣR̂(z) · ΣP(z) · ΣR̂1

(z). (42)
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Since R̂ and R̂1 follow the MP distribution, their Σ transforms are given by (12) and the Σ transform of

P is given by (18). Subsequently, using (42), the following expression can be written.

ΣR̂PR̂1
(z) =

1

ρ+ z
· 1

σ + z
· 1

2

g(gp̄+
√
g2p̄2 − 8− 4z)

z
. (43)

Then using (43), (33) and (28), the Stieltjes transform of the asymptotic distribution of eigenvalues of

R̂P1/2R̂1P
1/2 in (19) is obtained. Using free probability theory, the R transform of the density of the

eigenvalues of R̂Y, given by (14), can be written as [46]

RR̂Y
(z) = RW(z) +RR̂Z

(z). (44)

Finally, the expression for the Stieltjes transform in (20) is obtained using the definitions of transforms

in the Appendix A and (19).

APPENDIX D

Proof of Theorem 5.1

We use R transform and Σ transform to derive the aepdf of R̂Y using free probability theory. Since R̂

and R̂1 follow the MP law, their Σ transforms can be calculated using (12). The Σ transform of Θ, which

follows the tilted semicircular law (22) is given by [51];

ΣΘ(z) = 1− µz. (45)

It can be noted that since Θ and R̂1 are square matrices, the terms Θ1/2R̂1Θ
1/2 and ΘR̂1 have identical

eigenvalues [46]. Then the Σ transform of the product of R̂, Θ and R̂1 can be written as

ΣR̂ΘR̂1
(z) =

1

ρ+ z
· (1− µz) · 1

σ + z
. (46)

Subsequently, the polymonial for the corresponding η transform is obtained using (28) and (46), which

is given by

η(ρ+ η − 1)(η + σ − 1)z + (η − 1)(1− µ(η − 1)) = 0. (47)

The Stieltjes transform of the density of the eigenvalues of the product of R̂ and ΘR̂1 can be obtained

using (47) and (33) and is given by

z2S3(z) + (−µz2 − σz + 2z − ρz)S2

+(−ρ+ 1 + ρσ − 2µz − σ − z)S(z)− 1− µ. (48)
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The R transform of the density of the eigenvalues of the product of R̂ and ΘR̂1 is calculated using (29)

and (48) and is given by

RR̂ΘR̂1
(z) = −1

2

(−1 + zσ + zρ+
√

1− 2zσ − 2zρ+ z2σ2 − 2z2ρσ + z2ρ2 − 4ρσzµ)

(z(z + µ))
. (49)

Since the term R̂Z in (23) follows the MP distribution, the R transform of R̂Y using additive free

convolution property can be written as

RR̂Y
(z) = pRR̂ΘR̂1

(pz) +RR̂Z
(z). (50)

Finally, the Stieltjes transform of the density of R̂Y can be calculated using (50) and (29).
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Information Systems Laboratory, Stanford University, the Katholieke Universiteit Leuven, Leuven, and the University
of Luxembourg. During 96/97, he was Director of Research at ArrayComm Inc, a start-up in San Jose, California
based on Ottersten’ s patented technology. He has co-authored journal papers that received the IEEE Signal Processing
Society Best Paper Award in 1993, 2001, 2006, and 2013 and 3 IEEE conference papers receiving Best Paper Awards.
In 1991, he was appointed Professor of Signal Processing at the Royal Institute of Technology (KTH), Stockholm.

From 1992 to 2004, he was head of the department for Signals, Sensors, and Systems at KTH and from 2004 to 2008, he was dean of the
School of Electrical Engineering at KTH. Currently, he is Director for the Interdisciplinary Centre for Security, Reliability and Trust at the
University of Luxembourg. As Digital Champion of Luxembourg, he acts as an adviser to European Commissioner Neelie Kroes.
Dr. Ottersten has served as Associate Editor for the IEEE TRANSACTIONS ON SIGNAL PROCESSING and on the editorial board of
IEEE Signal Processing Magazine. He is currently editor in chief of EURASIP Signal Processing Journal and a member of the editorial
boards of EURASIP Journal of Applied Signal Processing and Foundations and Trends in Signal Processing. He is a Fellow of the IEEE
and EURASIP and a member of the IEEE Signal Processing Society Board of Governors. In 2011, he received the IEEE Signal Processing
Society Technical Achievement Award. He is a first recipient of the European Research Council advanced research grant. His research
interests include security and trust, reliable wireless communications, and statistical signal processing.


