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Compressive Diffusion Strategies Over Distributed
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Abstract—We study the compressive diffusion strategies over
distributed networks based on the diffusion implementation and
adaptive extraction of the information from the compresseddif-
fusion data. We demonstrate that one can achieve a comparable
performance with the full information exchange configurations,
even if the diffused information is compressed into a scalaror
a single bit. To this end, we provide a complete performance
analysis for the compressive diffusion strategies. We analyze the
transient, steady-state and tracking performance of the configu-
rations in which the diffused data is compressed into a scalar or
a single-bit. We propose a new adaptive combination method
improving the convergence performance of the compressive
diffusion strategies further. In the new method, we introduce one
more freedom-of-dimension in the combination matrix and adapt
it by using the conventional mixture approach in order to enhance
the convergence performance for any possible combination rule
used for the full diffusion configuration. We demonstrate that our
theoretical analysis closely follow the ensemble averagedresults
in our simulations. We provide numerical examples showing
the improved convergence performance with the new adaptive
combination method.

Index Terms—Compressed diffusion, distributed network, per-
formance analysis.

EDICS Category: ASP-ANAL, NET-DISP

I. I NTRODUCTION

D ISTRIBUTED network of nodes provides enhanced con-
vergence performance for the applications such as source

tracking, environment monitoring, and source localization [1]–
[4]. In such a network, each node encounters possibly a dif-
ferent statistical profile, which provides broadened perspective
on the monitored phenomena. In general, we would reach
the best estimate with access to all observation data across
the whole network since the observation of each node carries
valuable information [5]. In the distributed adaptive estimation
framework, we distribute the processing over the network and
allow the information exchange among the nodes so that the
parameter estimate of each node converges to the best estimate
[4], [6].

In the distributed architectures, there are several approaches
regulating the information exchange, e.g., diffusion implemen-
tation. The diffusion implementation defines a communication
protocol in which only the nodes from a predefined neigh-
borhood could exchange information with each other [1], [6]–
[11]. In this framework, each node performs a local adaptive
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filtering algorithm and improves its parameter estimation by
fusing with the diffused parameter estimations of the neighbor-
ing nodes. The diffusion approach provides robustness against
link failures and changing network topologies [6]. However,
the diffusion of the parameter vector within the neighborhoods
results in high amount of communication load. For example,
since each node diffuses information to the neighbors, the total
average number of information exchange is given byN × n
wheren is the average size of a neighborhood in a network
of N nodes [12].

We study the compressive diffusion strategies that achieve
better trade-off in terms of the amount of cooperation and
the required communication load [12]. Unlike the full diffu-
sion configuration, the compressed diffusion approach diffuses
single-bit of information or a reduced dimensional data vector.
The diffused data is generated through certain random projec-
tion of the local parameter estimation vector. Then, the neigh-
boring nodes can adaptively construct the original parameter
estimations based on the diffused information and fuse their
individual estimates for the final estimate. This approach re-
duces the communication load in the spirit of the compressive
sensing [12], [13]. The compression is lossy since we do not
assume any sparseness or compressibility on the parameter es-
timation vector [13], [14]. However, the compressive diffusion
approach achieves comparable convergence performance with
the full diffusion configurations. Since the communicationload
increases far more in the large networks or highly connected
network of nodes, the compressive diffusion strategies play a
crucial role in achieving comparable convergence performance
with significantly reduced communication load.

There exists several other approaches that reduce the com-
munication load. In [15], within a predefined neighborhood,
the parameter estimate is quantized before the diffusion in
order to avoid unlimited bandwidth requirement. In [16],
authors transmit the sign of the innovation sequence in the
decentralized estimation framework. In [17], in a consensus
network, the relative difference between the states of the
nodes is exchanged by using a single bit of information. As
distinct from the mentioned works, the compressive diffusion
strategies substantially compress the diffused information and
extract the information from the compressed data adaptively
[12].

In this paper, we provide a complete performance analysis
for the compressive diffusion strategies, which demonstrates
comparable convergence performance of the compressed dif-
fusion to the full information exchange configuration. We
note that studying the performance of distributed networks
with compressive diffusion strategies is not straight-forward
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since adaptive extraction of information from the diffuseddata
brings in an additional adaptation level. Moreover, it is rather
challenging for the single-bit diffusion strategy due to the non-
linear compression. However, we analyze the transient, steady-
state and tracking performance of the configurations in which
the diffused data is compressed into a scalar or a single-bit. We
also propose a new adaptive combination method improving
the performance for any conventional combination rule. In the
compressive diffusion framework, we fuse the local estimates
with the adaptively extracted information from substantially
compressed diffusion data. The extracted information carries
relatively less information than the original data. Hence,we
introduce the confidence parameter concept, which adds one
more freedom-of-dimension in the combination matrix. The
confidence parameter determines how much we are confident
with the local parameter estimation. Through the adaptation of
the confidence parameter, we observe enormous enhancement
in the convergence performance of the compressive diffusion
strategies even for relatively long filter length.

Our main contributions include: 1) for Gaussian regressors,
we analyze the transient, steady-state and tracking perfor-
mance of scalar and single-bit diffusion techniques; 2) We
demonstrate that our theoretical analysis accurately models the
simulated results; 3) We propose a new adaptive combination
method for compressive diffusion strategies, which achieves
better trade-off in terms of the transient and steady state
performance; 4) We provide numerical examples showing the
enhanced convergence performance with the new adaptive
combination method in our simulations.

We organize the paper as follows. In Section II, we explain
the distributed network and diffusion implementation. In Sec-
tion III, we introduce the compressive diffusion strategy,i.e.,
reduced-dimension and single-bit diffusion. In Section IV, we
provide a global recursion model for the deviation parameters
to facilitate the performance analysis. For Gaussian regressors,
we analyze the mean-square convergence performance of the
scalar and single-bit diffusion strategies in Section V and
VI, respectively. In Section VII and VIII we analyze the
steady-state and tracking performance of the scalar and single-
bit diffusion approaches. In Section IX, we introduce the
confidence parameter and propose a new adaptive combina-
tion method, improving the convergence performance of the
compressive diffusion strategies. In Section X, we provide
numerical examples demonstrating the match of theoretical
and simulated results, and enhanced convergence performance
with the new adaptive combination technique. We conclude
the paper in Section XI with several remarks.

Notation: Bold lower (or upper) case letters denote the
column vectors (or matrices). For a vectora (or matrix A),
aT (or AT ) is its ordinary transpose.‖ · ‖ and‖ · ‖A denote
the L2 norm and the weightedL2 norm with the matrixA,
respectively (provided thatA is positive-definite). We work
with real data for notational simplicity. For a random variable
x (or vectorx), E[x] (orE[x]) represents its expectation. Here,
Tr(A) denotes the trace of the matrixA. The operatorcol{·}
creates a column vector or a matrix in which the arguments
of col{·} locate one under the other. For a matrix argument,
diag{·} operator returns the diagonal of the matrix as a vector

i th node 

Neighborhood  
i

 

Fig. 1: Distributed network of nodes and the neighborhoodNi

and for a vector argument, it creates a diagonal matrix whose
diagonal is the vector. The operator⊗ takes the Kronecker
tensor product of two matrices.

II. D ISTRIBUTED NETWORK

Consider a network ofN nodes where each nodei observes
a true parameter1 wo ∈ RM through a linear model

di,t = wo
Tui,t + vi,t,

wherevi,t denotes the temporally and spatially white noise.
We assume that the regression vectorui,t ∈ RM is spatially
and temporally uncorrelated with the other regressors and the
observation noise. If we know the whole temporal and spatial
data overall network, we can obtain the parameter of interest
wo by minimizing the following global cost with respect to
the parameter estimatew:

Jglob(w) =

N∑

i=1

E
[
(di,t −wTui,t)

2
]
. (1)

The stochastic gradient update for (1) leads to the global least-
mean square (LMS) algorithm as

wt+1 = wt + µ

N∑

i=1

ui,t

(
di,t − uT

i,twt

)
, (2)

where µ > 0 is the step size [7]. Note that (2) brings in
significant communication burden by gathering the informa-
tion overall network in a central processing unit. Additionally,
centralized approach is not robust against the link failures
and the changing network statistics [4], [6]. On the other
hand, in the diffusion implementation framework, we utilize a
protocol in which each nodei can only exchange information
with nodes from its neighborhoodNi with the convention
i ∈ Ni [6], [7]. This protocol distributes the processing to the
nodes and provides tracking ability for time-varying statistical
profiles [6].

Assuming the inner-node links are symmetric, we model the
distributed network as an undirected graph where the nodes
and the communication links correspond to its vertices and
edges, respectively (See Fig. 1). In the distributed network,
each node employs a local adaptation algorithm and benefits
from the information diffused by the neighboring nodes in the
construction of the final estimate [6]–[9]. For example, in [6],
nodes diffuse their parameter estimateto the neighboring
nodes and each nodei performs the LMS algorithm given
as

wi,t+1 = (I− µiui,tu
T
i,t)φi,t + µidi,tui,t, (3)

1Although we assume a time invariant unknown system vector, we also
provide the tracking performance analysis for certain non-stationary models
later in the paper.
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whereµi > 0 is the local step-size. The intermediate parameter
vectorφi,t is generated through

φi,t =
∑

j∈Ni

γi,jwj,t

with γi,j ’s are the combination weights such that
∑N

j=1 γi,j =
1 for all i ∈ {1, · · · , N}. For a given network topology,
the combination weights are determined according to certain
combination rules such as uniform [18], the Metropolis [19],
[20], relative-degree rules [8] or adaptive combiners [21].

We note that in (3) we could assignφi,t as the final
estimate in which we adapt the local estimate through the
local observation data and then we fuse with the diffused
estimates to generate the final estimate. In [7], authors examine
these approaches as combine-than-adapt (CTA) and adapt-
than-combine (ATC) diffusion strategies, respectively. In this
paper, we study the ATC diffusion strategy, however, the
theoretical results hold for both the ATC and CTA cases for
certain parameter changes provided later in the paper.

We emphasize that the diffusion of the parameter estimation
vector also brings in high amount of communication load.
In the next section, we introduce the compressive diffusion
strategies enabling the adaptive construction of the required
information from the reduced dimension diffusion.

III. C OMPRESSIVEDIFFUSION

We seek to estimate the parameter of interestwo through the
reduced dimension information exchangewithin the neighbor-
hoods. In the compressed diffusion approach, unlike the full
diffusion scheme, we diffuse a significantly reduced amountof
information. The diffused information is generated by certain
projection operator (a matrixCt+1 or a vectorct+1). Then, the
neighboring nodes ofj generate an estimateaj,t+1 through the
diffused information by using an adaptive estimation algorithm
as explained later in the chapter [12]. We point out that
the diffused information might have far smaller dimensions
than the parameter estimation vector, which can reduce the
communication load significantly. The constructed estimates,
i.e., aj,t+1’s are linearly combined with the local parameter
estimate through certain combination rules, similar to thefull
diffusion configuration.

Different from the full diffusion configuration, in the new
framework, nodes have access to the constructed estimates
aj,t. Hence, in the compressive diffusion implementation, we
update according to

wi,t+1 = argmin
wi






γii‖wi −wi,t‖2 +

∑

j∈Ni\i

γij‖wi − aj,t‖2

+µi

(
di,t − uT

i,twi

)2
}

(4)

such that in the update we also minimize the Euclidean
distance between the local parameter estimationwi,t and the
constructed estimatesaj,t of the neighboring nodes. In order to
simplify the optimization in (4), we can replace the loss term
(di,t − uT

i,twi)
2 with the first order Taylor series expansion

aroundaj,t, i.e.,

(di,t − uT
i,twi)

2 =ēi,t(aj,t)
2 − 2ēi,t(aj,t)u

T
i,t(wi − aj,t)

+O(‖wi‖2), (5)
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Fig. 2: CTA strategy in the compressive diffusion framework.

where we denotēei,t(aj,t)
△
= di,t−uT

i,taj,t. Similarly, the first
order Taylor series expansion aroundwi,t leads

(di,t−uT
i,twi)

2 = e2i,t−2ei,tu
T
i,t(wi−wi,t)+O(‖wi‖2), (6)

where ei,t
△
= di,t − uT

i,twi,t. Since
∑

j∈Ni
γij = 1, the

approximations (5) and (6) in (4) yields

wi,t+1 =argmin
wi






γii‖wi −wi,t‖2 +

∑

j∈Ni\i

γij‖wi − aj,t‖2

+ µiγii
[
e2i,t − 2ei,tu

T
i,t(wi −wi,t)

]

+µi

∑

j∈Ni\i

γij
[
ēi,t(aj,t)

2 − 2ēi,t(aj,t)u
T
i,t(wi − aj,t)

]






.

(7)

The minimized term in (7) is a convex function ofwi and the
Hessian matrix2IM ≻ 0 is positive definite. Hence, taking
derivative and equating zero, we get the following update

wi,t+1 = φi,t+1 + µiui,t(di,t − uT
i,tφi,t+1), (8)

where
φi,t+1 = γiiwi,t +

∑

j∈Ni\i

γijaj,t, (9)

which is similar to the distributed LMS algorithm (3). Note
that if we interchangeφi,t andwi,t, in other words, when we
assign the outcome of the combination as the final estimate
rather than the outcome of the adaptation, we have the
following algorithm:

φi,t+1 = wi,t + µiui,t(di,t − uT
i,twi,t), (10)

wi,t+1 = γiiφi,t+1 +
∑

j∈Ni\i

γijaj,t+1. (11)

We point out that (8) and (9) are the CTA diffusion strategy
while (10) and (11) are the ATC diffusion strategy. Fig. 2 and
3 summarize the compressive diffusion strategy for the CTA
and ATC strategies wherejk ∈ Ni. We next introduce different
approaches to generate the diffused information (which are
used to constructaj,t+1’s).

In the compressive diffusion approach, irrespective of the
final estimate we always diffuse the linear transformation
of the outcome of the adaptation, e.g., we diffusezt+1 =
CT
t+1wi,t in the CTA strategy andzt+1 = CT

t+1φi,t+1 in
the ATC strategy. Since we aim to use the most current
parameter estimate in the construction ofaj,t+1’s (since the
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Fig. 3: ATC strategy in the compressive diffusion framework.

most current estimate intuitively contains more information
[22]). We update according to

aj,t+1 = argmin
aj

{
‖aj − aj,t‖2 + ηj‖zt+1 − CT

t+1aj‖2
}
,

where we choose the diffused data as the desired signal and
try to minimize the mean-square of the difference between
the estimatêzt+1 = CT

t+1aj andzt+1. The first order Taylor
series approximation of the loss term‖zt+1 − ẑt+1‖2 around
aj,t yields the following update

aj,t+1 = aj,t + ηjCt+1 (zt+1 − Ct+1aj,t) (12)

whereηj > 0 is the construction step size. We note that in [12]
the reduced dimension diffusion approach constructsaj,t+1’s
through the minimum disturbance principle and resulted up-
date involves

[
CT
t+1Ct+1

]−1
as the normalization term. The

constructed estimatesaj,t+1’s are combined with the outcome
of the local adaptation algorithm through (9) or (11).

We next introduce a methods where the information ex-
change is only a single bit [12]. When we constructaj,t at
node j, assumingaj,t’s are initialized with the same value,
nodei ∈ Nj has access to the exchanged estimateaj,t. Hence,
we can perform the construction update at each neighboring
node via the diffusion of the estimation error defined as

ǫj,t+1
△
= zt+1 − ẑt+1.

2

Note that this does not influence the communication load,
however, through the access to the exchange estimateaj,t+1

we can further reduce the communication load. Using the well-
known sign algorithm [5], we can constructaj,t+1 as

aj,t+1 = aj,t + ηjct+1sign(ǫj,t+1), (13)

where ct+1 is the projection vector. Hence, we can
repeat (13) at each neighboring node via the diffusion of
zj,t+1 = sign(ǫj,t+1) only and then we combine with the
local estimate by using (9) or (11).

Remark 3.1: The compressive diffusion strategy reduces
the communication load by constructing an estimateai,t+1

corresponding to the original estimateφi,t+1 through the
diffused information, i.e., the linear transformation ofφi,t+1

with the projection operatorCt+1 or ct+1. We note that
the projection operator plays crucial role in the construction
algorithms (12) and (13). We choose randomized projection
operator that spans the whole parameter space in order to avoid

2In order to facilitate the performance analyzes, we redefineǫj,t+1 in (16).

biased convergence which degrades the performance [12]. We
point out that the randomized projection matrix (or vector)
could be generated at each node synchronously provided that
each node use the sameseedfor the pseudo-random generator
mechanism [23]. Such seed exchanges and the synchronisation
can be done periodically by using pilot signals without a
serious increase in the communication load [24].

In the next section, we introduce a global model gathering
all network operations into a single update.

IV. GLOBAL MODEL

For a vector projection operator, we write the reduced
dimension (12) and single bit (13) diffusion approaches for
the ATC diffusion strategy in a compact form as

φi,t+1 = wi,t + µiui,tei,t (14)

aj,t+1 = aj,t + ηjct+1h(ǫj,t+1) (15)

wi,t+1 = γi,iφi,t+1 +
∑

j∈Ni\i

γi,jaj,t+1

whereei,t = di,t−uT
i,twi,t andǫj,t+1 = cTt+1

(
φj,t+1 − aj,t

)
.

For reduced dimension and single bit diffusion approaches,
h(ǫj,t+1) = ǫj,t+1 andh(ǫj,t+1) = sign(ǫj,t+1), respectively.

Next, we apply the following simplifications to facilitate the
performance analyzes. First, we assume that at each node we
use a different projection vector, e.g., for node j, we usecj,t.
Second, for sufficiently smallµi, we may substituteφi,t+1

with φi,t in (15) (which is justified through simulations). With
that simplifications, we can rewrite the update as

aj,t+1 = aj,t + ηjcj,th(ǫj,t),

where we redefine the construction error as

ǫj,t
△
= cTj,t(φj,t − aj,t). (16)

Note that we changecj,t+1 with cj,t to be consistent with the
introduced simplification.

For the state-space representation that collects all network
operations into a single update, we define the following global
parameters:

φt = col{φ1,t, . . . ,φN,t}, at = col{a1,t, . . . , aN,t},
wt = col{w1,t, . . . ,wN,t}, wo = col{wo, . . . ,wo}

with MN × 1 dimensions and

et = col{e1,t, . . . , eN,t}, ǫt = col{ǫ1,t, . . . , ǫN,t},
dt = col{d1,t, . . . , dN,t}, vt = col{v1,t, . . . , vN,t}

with N × 1 dimensions. The combination matrix is given by

Γ =






γ11 · · · γ1N
...

. . .
...

γN1 · · · γNN






and we denoteG
△
= Γ ⊗ IM . Additionally, the regression

and projection vectors yields the followingMN × N global
matrices

Ut
△
=






u1,t · · · 0
...

. . .
...

0 · · · uN,t




 , Ct

△
=






c1,t · · · 0
...

. . .
...

0 · · · cN,t




 .
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Indeed, we can model the network with compressive diffusion
strategy as a larger network in which each nodei has an
imaginary counterpart which diffusesai,t to the neighbors of
i, which is similar to the full diffusion configuration. The real
nodes only get information from the imaginary nodes and do
not diffuse any information. In that case, the network can be
modelled as a directed graph with asymmetric inner node links
and the combination matrix is given by

Γ̃ =

[
ΓD ΓC

0 I

]

,

whereΓD = diag{Γ} andΓC = Γ−ΓD. Then, we can write
wt in terms ofφt andat as

wt = GDφt +GCat, (17)

whereGD

△
= ΓD ⊗ IM andGC

△
= ΓC ⊗ IM . The state-space

representation is given by

φt+1 = wt +MUtet,

at+1 = at +NCth(ǫt),

wt+1 = GDφt+1 +GCat+1,

where
M

△
= diag{[µ1, . . . , µN ]} ⊗ IM ,

N
△
= diag{[η1, . . . , ηN ]} ⊗ IM

andh(ǫt) = col{h(ǫ1,t), · · · , h(ǫN,t)}. We obtain the global
deviation vectors as

φ̃t

△
= wo − φt and ãt

△
= wo − at. (18)

SinceΓ1 = 1,
Gw

o
= w

o
(19)

then the global deviation update yields

φ̃t+1 = GDφ̃t +GCãt −MUtet, (20)

ãt+1 = ãt −NCth(ǫt). (21)

In (22), we represent the global deviation updates (20) and
(21) in a single equation or equivalently

ψ̃t+1 = Xψ̃t −DYth(et, ǫt), (23)

whereψ̃t

△
= col{φ̃t, ãt}. Based on the weighted-energy recur-

sion of (23), in the next sections, we analyze the mean-square
convergence performance of scalar and single-bit diffusion
approaches separately for Gaussian regressors.

V. SCALAR DIFFUSION WITH GAUSSIAN REGRESSORS

For the one-dimension diffusion approach, (23) yields

ψ̃t+1 = Xψ̃t −DYtet, (24)

whereet
△
= col{et, ǫt}. By (17), (18) and (19), we note that

et is given by

et = UT
t (GDφ̃t +GCãt) + vt. (25)

Similarly, we have

ǫt = CT
t (−φ̃t + ãt). (26)

Hence, through (25) and (26), we obtain the global estimation
error et as

et =

[
Ut 0

0 Ct

]T [
GD GC

−I I

]

︸ ︷︷ ︸

Z

[

φ̃t

ãt

]

+

[
vt

0

]

︸︷︷︸

nt

= YT
t Zψ̃t + nt. (27)

Through (27), we rewrite (24) as

ψ̃t+1 = Xψ̃t −DYt(Y
T
t Zψ̃t + nt)

= (X−DYtY
T
t Z)ψ̃t −DYtnt. (28)

We utilize the weighted-energy relation relating the energy
of the error and deviation quantities in the performance
analyzes through a weighting matrixΣ. Then, we obtain

ψ̃
T

t+1Σψ̃t+1 =[(X−DYtY
T
t Z)ψ̃t −DYtnt]

TΣ

× [(X−DYtY
T
t Z)ψ̃t −DYtnt]

=ψ̃
T

t (X−DYtY
T
t Z)

TΣ(X−DYtY
T
t Z)ψ̃t

− 2nT
t Y

T
t DΣ(X−DYtY

T
t Z)ψ̃t

+ nT
t Y

T
t DΣDYtnt.

Since we assume the observation noisevt is independent
from the network statistics, the weighted energy relation for
(28) is given by

E‖ψ̃t+1‖2Σ = E‖ψ̃t‖2Σ′ + E[nT
t Y

T
t DΣDYtnt] (29)

where

Σ′ △
=(X−DYtY

T
t Z)

TΣ(X−DYtY
T
t Z)

=XTΣX− ZTYtY
T
t DΣX−XTΣDYtY

T
t Z

+ ZTYtY
T
t DΣDYtY

T
t Z.

Apart form the weighting matrixΣ, Σ′ is a random due to
the data dependence. We assume the spatial and temporal
independence of the regression dataui,t andcj,t so thatYt is
independent ofψ̃t. Through that assumption we can replace
Σ′ by its mean value, i.e.,Σ′ = E[Σ′] [5], [6]. Hence, the
weighting matrix is given by

Σ′ =XTΣX− ZTE
[

YtY
T
t

]

DΣX−XTΣDE
[

YtY
T
t

]

Z

+ ZTDE
[

YtY
T
t ΣYtY

T
t

]

DZ. (30)

Note that in the last term of right hand side (RHS) of (30) we
takeD’s out of the expectation thanks to the block diagonal
structure ofD andYtY

T
t .

In order to calculate certain data moments in (29) and (30),
we assume spatially and temporally i.i.d. Gaussian regression
data such that

Λu

△
= E[UtU

T
t ] = diag{[σ2

u,1, σ
2
u,2, . . . , σ

2
u,N ]} ⊗ IM

Λc

△
= E[CtC

T
t ] = diag{[σ2

c,1, σ
2
c,2, . . . , σ

2
c,N ]} ⊗ IM .

Then, we obtain

Λ
△
= E[YtY

T
t ] =

[
Λu 0

0 Λc

]

.

In the performance analysis, convenient vectorisation nota-
tion is used to exploit the diagonal structure of matrices [5],
[25]. In (29), (30), matrices have block diagonal structures,
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ψ̃
t+1

︷ ︸︸ ︷
[

φ̃t+1

ãt+1

]

=

X
︷ ︸︸ ︷
[
GD GC

0 IMN

]

ψ̃
t

︷ ︸︸ ︷
[

φ̃t

ãt

]

−

D
︷ ︸︸ ︷
[
M 0

0 N

]

Yt
︷ ︸︸ ︷
[
Ut 0

0 Ct

]

h(et,ǫt)
︷ ︸︸ ︷
[

et
h(ǫt)

]

(22)

thus, we use the block vectorisation operatorbvec{·} [6].
Given anNM ×NM block matrix

Σ =






Σ11 . . . Σ1N

...
. . .

...
ΣN1 . . . ΣNN






where each blockΣij is a M × M block. Let σij =
vec{Σij} with standard vec{·} operator and σj =
col{σ1j ,σ2j , . . . ,σNj}, then

bvec{Σ} = σ = col{σ1,σ2, . . . ,σN}. (31)

We also use theblock Kronecker productof two block matrices
A andB, denoted byA⊙B. The ij-block is given by

[A⊙B]ij =






Aij ⊗B11 . . . Aij ⊗B1N

...
. . .

...
Aij ⊗BN1 . . . Aij ⊗BNN




 . (32)

The block vectorisation operatorbvec{·} (31) and the block
Kronecker product (32) are related by

bvec{AΣB} = (BT ⊙A)σ (33)

and

Tr{ATB} = (bvec{A})Tbvec{B}. (34)

The term in the RHS of (29) yields

E
[

nT
t Y

T
t DΣDYtnt

]

= Tr
(
ΛD2E

[
ntn

T
t

]
Σ
)

and let

E
[
ntn

T
t

]
= Rn =

[
Rv 0

0 0

]

,

whereRv

△
= diag{σ2

v,1, . . . , σ
2
v,N} ⊗ IM . Then by (34),

E
[

nT
t Y

T
t DΣDYtnt

]

= b
T
σ,

where
b

△
= bvec{RnD

2Λ}. (35)

The fourth-order moment in (30) yields

A = E
[

YtY
T
t ΣYtY

T
t

]

,

where theM ×M block is given by

[A]ij =

{
2ΛiΣiiΛi +ΛiTr (ΣiiΛi) i = j
ΛiΣijΛj i 6= j

thanks to the spatial and temporal independence of the re-
gression data [5]. We note thatΛ could be denoted as
Λ = diag{Λ1, · · · ,ΛN} where Λi for i = {1, 2, . . . , N}
is M ×M block matrix, e.g.,Λ1 = σ2

u,1IM . TheM×M ijth
block of Σ is denoted byΣij . Through (32), (34), we obtain

bvec{A} = Aσ

with A = diag{A1, . . . ,AN}, Aj = diag{A1j , . . . ,ANj}
and

Aij =

{

2Λi ⊗Λi + λiλ
T
i i = j

Λi ⊗Λj i 6= j

whereλi = vec{Λi}.
Hence, the block vectorization of the weighting matrixΣ′

(30) yields

bvec{Σ′} =
(

XT ⊙XT − (XT ⊙ ZT )(I2MN ⊙ΛD)

− (ZT ⊙XT )(ΛD⊙ I2MN )

+(ZT ⊙ ZT )(D⊙D)A
)

σ.

For notational simplicity, we change the weighted-norm nota-
tion such that‖φ̃t‖2σ refers to‖φ̃t‖2Σ whereσ = bvec{Σ}.
As a result, we obtain the weighted-energy recursion as

E‖ψ̃t+1‖2σ = E‖ψ̃t‖2Fσ + bTσ (36)

F
△
= XT ⊙XT + (ZT ⊙ ZT )(D ⊙D)A
− (XT ⊙ ZT )(I2MN ⊙ΛD)

− (ZT ⊙XT )(ΛD⊙ I2MN ). (37)

Through (36) and (37), we can analyze the learning, con-
vergence and stability behavior of the network. Iterating the
weighted-energy recursion, we obtain

E‖ψ̃t+1‖2σ = E‖ψ̃t‖2Fσ + b
T
σ

E‖ψ̃t‖2Fσ = E‖ψ̃t−1‖2F2σ
+ bTFσ

...

E‖ψ̃1‖2Ftσ
= E‖ψ̃0‖2Ft+1σ

+ bTFtσ.

Assuming the parameter estimatesφi,t andai,t are initialized

with zeros,E‖ψ̃0‖2 = ‖w
o
‖2 wherew

o

△
= col{w

o
,w

o
}.

The iterations yield

E‖ψ̃t+1‖2σ = ‖w
o
‖2
Ft+1σ

+ bT

(
t∑

k=0

Fk

)

σ. (38)

By (38), we reach the following final recursion:

E‖ψ̃t+1‖2σ = E‖ψ̃t‖2σ + bTFtσ − ‖w
o
‖2
Ft

(I−F)σ
. (39)

Remark 5.1: We note that (39) is of essence since through
the weighting matrixΣ we can extract information about the
learning and convergence behavior of the network. In Table
I, we tabulate the initial conditions (we assume the initial
parameter vectors are set to0) and the weighting matrices
corresponding to various conventional performance measures.

Remark 5.2: In this paper, (39) provides a recursion for the
weighted deviation parameter where we assignφi,t as the
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final estimate instead ofwi,t, which implies the CTA strategy,
however, the recursion also provides the performance of the
ATC strategy with appropriate combination matrixΣ and the
initial condition (See Table I).

Next, we analyze the mean-square convergence performance
of the single-bit diffusion approach for Gaussian regressors.

VI. SINGLE-BIT DIFFUSION WITH GAUSSIAN

REGRESSORS

The weighted-energy relation of (23) yields

E
[

ψ̃
T

t+1Σψ̃t+1

]

= E
[

ψ̃
T

t X
TΣXψ̃t

]

−E
[

ψ̃
T

t X
TΣDYth(et, ǫt)

]

−E
[

h
T (et, ǫt)Y

T
t DΣXψ̃t

]

+E
[

hT (et, ǫt)Y
T
t DΣDYth(et, ǫt)

]

.

(40)

We evaluate RHS of (40) term by term in order to find the
variance relation. Firstly, we partition the weighting matrix as
follows:

Σ =

[
Σ1 Σ2

Σ3 Σ4

]

. (41)

Through the partitioning (41), we obtain

E
[

ψ̃
T

t X
TΣDYth(et, ǫt)

]

= E
[

ψ̃
T

t Xu
TΣ1MUtU

T
t Zuψ̃t

]

+ E
[

ψ̃
T

t Xu
TΣ2NCtsign

(

CT
t Zdψ̃t

)]

+ E
[

ψ̃
T

t Xd
TΣ3MUtU

T
t Zuψ̃t

]

+ E
[

ψ̃
T

t Xd
TΣ4NCtsign

(

CT
t Zdψ̃t

)]

, (42)

where we partitionX such thatX = col{Xu,Xd}. We note
that the second and fourth terms in the RHS of (42) include
the nonlinearsign(·) function. It is not straight forward to
evaluate the expectations with nonlinearity, thus, we introduce
the following lemma.

Lemma 1: Under the assumption that step-sizes are suffi-
ciently small and the filter is sufficiently long [5], the Price’s
theorem leads to

E
[

ψ̃
T

t Xu
TΣ2NCtsign

(

CT
t Zdψ̃t

)]

= E
[

ψ̃
T

t Xu
TΣ2NΩtCtC

T
t Zdψ̃t

]

, (43)

E
[

ψ̃
T

t Xd
TΣ4NCtsign

(

CT
t Zdψ̃t

)]

= E
[

ψ̃
T

t Xd
TΣ4NΩtCtC

T
t Zdψ̃t

]

, (44)

whereΩt is defined as

Ωt
△
=








E|ǫ1,t|
E[ǫ2

1,t]
IM · · · 0M

...
. . .

...

0M · · · E|ǫN,t|
E[ǫ2

N,t
]
IM








Proof: The proof is given in Appendix A. �

By (42), (43), (44), the second term on the RHS of (40) is
given by

E
[

ψ̃
T

t X
TΣDYth(et, ǫt)

]

= E
[

ψ̃
T

t X
TΣDΩtYtY

T
t Zψ̃t

]

, (45)

whereΩt denotes

Ωt

△
=

[
IMN 0

0 Ωt

]

.

Similarly, the third term on the RHS of (40) is evaluated as

E
[

hT (et, ǫt)Y
T
t DΣXψ̃t

]

= E
[

ψ̃
T

t Z
TYtY

T
t ΩtDΣXψ̃t

]

. (46)

Through partitioning, the last term on the RHS of (40) leads
to

E
[

hT (et, ǫt)Y
T
t DΣDYth(et, ǫt)

]

= E
[

eTt U
T
t MΣ1MUtet

]

+ E
[

eTt U
T
t MΣ2NCtsign(ǫt)

]

+ E
[

sign(ǫt)
TCT

t NΣ3MUtet

]

+ E
[

sign(ǫt)
TCT

t NΣ4NCtsign(ǫt)
]

.

Corollary 1: SinceUt and Ct are independent from each
other, similar to the Lemma 1, we obtain

E
[

hT (et, ǫt)Y
T
t DΣDYth(et, ǫt)

]

= E
[

eTt U
T
t MΣ1MUtet

]

+ E
[

eTt U
T
t MΣ2NΩtCtǫt

]

+ E
[

ǫTt C
T
t ΩtNΣ3MUtet

]

+ E
[

sign(ǫt)
TCT

t NΣ4NCtsign(ǫt)
]

.

(47)

Because of the independence of the observation noise from
the regression data, the first term on the RHS of (47) yields

E
[

eTt U
T
t MΣ1MUtet

]

= E
[

vT
t U

T
t MΣ1MUtvt

]

+ E
[

ψ̃
T

t Zu
TUtU

T
t MΣ1MUtU

T
t Zuψ̃t

]

. (48)

For the last term on the RHS of (47), we introduce the
following lemma.

Lemma 2: Through the Price’s theorem, we obtain

E
[

sign(ǫt)
TCT

t NΣ4NCtsign(ǫt)
]

= E
[

ψ̃
T

t Zd
TCtC

T
t NΩtΣ

C

4
ΩtNCtC

T
t Zdψ̃t

]

+ E
[

1TCT
t NΣD

4
NCt1

]

, (49)
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TABLE I: Initial conditions and weighting matrices for different configurations.

Framework E‖ψ̃t‖
2

Σ
E‖ψ̃0‖

2

Σ
Σ E‖ψ̃t‖

2

Σ
E‖ψ̃0‖

2

Σ
Σ

CTA 1

N
E‖φ̃t‖

2 1

N
‖w

o
‖2 1

N







IMN 0

0 0







1

N
E‖φ̃t‖

2

Λu

1

N
‖w

o
‖2
Λu

1

N







Λu 0

0 0







ATC 1

N
E‖w̃t‖2

1

N
‖w

o
‖2 1

N







GD
T
GD GD

T
GC

GC
T
GD GC

T
GC







1

N
E‖w̃t‖2

Λu

1

N
‖w

o
‖2
Λu

1

N







GD
T
ΛuGD GD

T
ΛuGC

GC
T
ΛuGD GC

T
ΛuGC







whereΣD

4
is the block diagonal matrix ofΣ4 such that

ΣD

4
=






Θ11 · · · 0M

...
. . .

...
0M · · · ΘNN






withΘii is theii’th M×M block ofΣ4 andΣC

4
= Σ4−ΣD

4
.

Proof: The proof is given in Appendix B. �

As a result, by (45), (46), (47), (48) and (49); (40) leads to

E‖ψ̃t+1‖2Σ =E‖ψ̃t‖2Σ′ + E
[

vT
t U

T
t MΣ1MUtvt

]

+ E
[

1TCT
t NΣD

4
NCt1

]

(50)

and

Σ′ =XTΣX−XTΣDΩtYtY
T
t Z− ZTYtY

T
t ΩtDΣX

+ ZTDΩtYtY
T
t Σ̃YtY

T
t ΩtDZ,

whereΣ̃ denotes

Σ̃ =

[
Σ1 Σ2

Σ3 ΣC

4

]

.

We again note that under the assumption that the regression
data is spatially and temporally independent, we getΣ′ =
E[Σ′] which results

Σ′ =XTΣX−XTΣDΩtΛZ− ZTΛΩtDΣX

+ ZTDΩtE
[

YtY
T
t Σ̃YtY

T
t

]

ΩtDZ (51)

and denoteB
△
= E

[

YtY
T
t Σ̃YtY

T
t

]

. Now, we resort to the

vector notation, i.e., the block vectorisation operatorbvec{·}
and the block Kronecker product. Hence, the block vectoriza-
tion of the weighting matrixΣ′ (51) yields

bvec{Σ′} =
(

XT ⊙XT − (XT ⊙ ZT )(I2MN ⊙ΛDΩt)

−(ZT ⊙XT )(ΛDΩt ⊙ I2MN )
)

σ

+ (ZT ⊙ ZT )(D⊙D)(Ωt ⊙Ωt)bvec{B}. (52)

Block vectorisation of the matrixB is given by

bvec{B} = Abvec{Σ̃}.
In order to denotebvec{Σ̃} in terms ofσ, we introduce the
following matrices:

K1
△
= col{0MN , IMN},

K2
△
= col{IMN ,0MN},

Tk

△
= diag{0(k−1)M , IM ,0(N−k)M}.

We getΣD

4
andΣ̃ as

ΣD

4
=

N∑

k=1

TkK
T
2 ΣK2Tk, (53)

Σ̃ = Σ−K2Σ
D

4
KT

2 . (54)

By (53) and (54), we obtain

bvec{Σ̃} =

(

I− (K2 ⊙K2)
N∑

k=1

(Tk ⊙Tk)(K2
T ⊙KT

2 )

)

︸ ︷︷ ︸

K

σ

= Kσ. (55)

The ψ̃-free terms in (50) are evaluated as

E
[

vT
t U

T
t MΣ1MUtvt

]

= bT
1 (K

T
1 ⊙KT

1 )σ, (56)

E
[

1TCT
t NΣD

4
NCt1

]

= bT
2 (K

T
2 ⊙KT

2 )σ, (57)

whereb1
△
= bvec{RvM

2Λu} andb2
△
= bvec{11TN2Λc}.

As a result, by (52), (55), (56) and (57), the weighted-energy
relation is given by

E‖ψ̃t+1‖2σ =E‖ψ̃t‖2Ftσ
+ bTσ (58)

Ft =XT ⊙XT − (XT ⊙ ZT )(I2MN ⊙ΛDΩt)

− (ZT ⊙XT )(ΛDΩt ⊙ I2MN )

+ (ZT ⊙ ZT )(D⊙D)(Ωt ⊙Ωt)AK (59)

b =(KT
1 ⊙KT

1 )
Tb1 + (KT

2 ⊙KT
2 )

Tb2. (60)

Iterating the weighted-energy recursion (58), (59) and (60),
we obtain

E‖ψ̃t+1‖2σ = E‖ψ̃t‖2Ftσ
+ bTσ

E‖ψ̃t‖2Ftσ
= E‖ψ̃t−1‖2Ft−1Ftσ

+ bTFtσ

...

E‖ψ̃1‖2F1...Ftσ
= E‖ψ̃0‖2F0...Ftσ

+ bTF1 . . .Ftσ.

In this part of the analyzes, we do not assume that the
parameter vectors are initialized with zeros since such an
assumption results in infinite terms in theΩt matrix. Hence,
we initializeat with ζ 1MN×1 whereζ has a small value (See
Table II).

The iterations yield

E‖ψ̃t+1‖2σ = ‖ψ̃0‖2Πtσ
+ bT∆tσ, (61)

E‖ψ̃t‖2σ = ‖ψ̃0‖2Πt−1σ
+ bT∆t−1σ, (62)
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TABLE II: Initial conditions and weighting matrices for the
performance measure of the construction update for the single-
bit diffusion approach (for the scalar diffusion approach,set
ζ = 0) and the global MSD of the ATC diffusion strategy
for the single-bit diffusion approach (for the scalar diffusion
approach, see Table I).

E‖ψ̃t‖
2

Σ
E‖ψ̃0‖

2

Σ
Σ

1

N
E‖ãt‖2

1

N
‖w

o
− ζ1‖2







0 0

0
1

N
IMN







σ2
ǫt = E[ǫTt ǫt] ζ1TΛc1







Λc −Λc

−Λc Λc







1

N
E‖w̃t‖2

1

N
‖w

o
− ζGC1‖2 1

N







GD
T
GD GD

T
GC

GC
T
GD GC

T
GC







whereΠt
△
=
∏t

i=0 Fi and∆t
△
= I + Ft + Ft−1Ft + · · · +

F1 . . .Ft. We note thatΠt = Πt−1Ft and∆t = ∆t−1Ft+I.
By (61) and (62), we have the following recursion

E‖ψ̃t+1‖2σ =E‖ψ̃t‖2σ − ‖ψ̃0‖2Πt−1(I−Ft)σ

+ bT (I−∆t−1(I− Ft))σ. (63)

We point out thatΠ−1 = I(2MN)2 and∆−1 = 0(2MN)2 .

Remark 6.1: The iterations of (63) requires the recalculation
of Ft for each time instants sinceFt changes with time
because ofΩt (59). Evaluating the expectations,Ωt yields

Ωt =

√

2

π







1
σǫ1

· · · 0

...
. . .

...
0 · · · 1

σǫN






⊗ IM , (64)

whereσ2
ǫi = E[ǫ2i ]. For analytical reasons, we approximate

(64) as

Ωt ≈
√

2

π

1

(1/
√
N)σǫt

IMN (65)

with σ2
ǫt = E

[
ǫTt ǫt

]
= E‖ψ̃t‖2ξ and

ξ
△
= bvec

{[
Λc −Λc

−Λc Λc

]}

.

Hence, we can calculateFt by iterating the following

E‖ψ̃t+1‖2ξ =E‖ψ̃t‖2ξ − ‖ψ̃0‖2Πt−1(I−Ft)ξ

+ bT (I−∆t−1(I− Ft)) ξ, (66)

whereE‖ψ̃0‖2ξ = ζ1TΛc1. In Table II, we tabulate the initial
condition and the weighting matrix necessary for the recursion
iterations (66) ofσ2

ǫt = E[ǫTt ǫt].

VII. STEADY-STATE ANALYSIS

At steady-state, (36) yields

E‖ψ̃∞‖2
(I−F)σ

= bTσ.

In order to calculate the steady-state performance measure
E‖ψ̃∞‖2σ′ we choose the weighting matrix such that

σ′ = (I− F)σ

then the steady-state performance measure is given by

E‖ψ̃∞‖2σ′ = b
T (I− F)−1σ′. (67)

Similar to (67), the steady state mean square errorE[ǫTt ǫt]
for the single bit diffusion strategy is given by

E‖ψ̃∞‖2ξ = bT (I− F∞)
−1
ξ. (68)

We point out thatF∞ depends onE‖ψ̃∞‖2
ξ

. Once we calcu-
lateF∞ numerically by (68) or through rough approximations,
we can obtain any steady state performance by (67).

VIII. T RACKING PERFORMANCE

The diffusion implementation improves the ability of the
network to track variations in the underlying statistical profiles
[6]. In this section, we analyze the tracking performance
of the compressive diffusion strategies in a non-stationary
environment. We assume a first-order random walk model,
which is commonly used in the literature [5], forwo(t) such
that

wo(t+ 1) = wo(t) + qt,

whereqt ∈ RM denotes a zero-mean vector process inde-
pendent of the regression data and observation noise with co-
variance matrixE[qtq

T
t ] = Q. We introduce the global time-

variant parameter vectors asw
o
(t) = col{wo(t), · · · ,wo(t)}

and we have the global deviation vectors asφ̃t = w
o
(t)−φt

and ãt = w
o
(t)− at. Then, by (23), we obtain

ψ̃t+1 = Xψ̃t −DYth(et, ǫt) + qt, (69)

whereqt

△
= col{qt, · · · ,qt} with 2MN×1 dimensions. Since

we assume thatqt is independent from the regression dataui,t,
ci,t and the observation noisevi,t for all i ∈ {1, · · · , N}, (69)
yields the following weighted-energy relation

E
[

ψ̃
T

t+1Σψ̃t+1

]

= E
[

ψ̃
T

t X
TΣXψ̃t

]

−E
[

ψ̃
T

t X
TΣDYth(et, ǫt)

]

−E
[

hT (et, ǫt)Y
T
t DΣXψ̃t

]

+E
[

hT (et, ǫt)Y
T
t DΣDYth(et, ǫt)

]

+E
[

qt
TΣqt

]

. (70)

We note that (70) is similar to (40) except for the last term
E
[

qt
TΣqt

]

. We denote2N × 2N matrix whose terms are1

as1
2N

△
= [1, · · · ,1]. Then, the last term in (70) is given by

ρTσ whereρ = bvec{1
2N

⊗Q}. Through (70), we get

E‖ψ̃t+1‖2σ = E‖ψ̃t‖2Ftσ
+ bTσ + ρTσ. (71)

We define Ft in (37) and (59) for scalar and single-bit
diffusion strategies, respectively. Similarly,b is introduced
in (35) and (60) for the scalar (time-invariant) and single-bit
diffusion strategies. We point out that (71) is different from
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(36) and (58) only for the termρTσ. As a result, at steady
state, (67) and (71) leads

E‖ψ̃∞‖2σ = (b+ ρ)T (I− F∞)−1σ. (72)

Through (72) and Table I, we can obtain the tracking per-
formance of the network for the conventional performance
measures. We point out that in the full diffusion configuration,
ρ = bvec{1

N
⊗Q}.

In the next section, we introduce the confidence parameter
and the adaptive combination method, which provides better
trade-off in terms of transient and steady-state performance.

IX. CONFIDENCE PARAMETER AND ADAPTIVE

COMBINATION

The cooperation among the nodes is not beneficial in general
unless the cooperation rule is chosen properly [1]. For exam-
ple, uniform [18], the Metropolis [19], relative-degree rules [8]
and adaptive combiners [21] provide improved convergence
performance relative to the no-cooperation configuration in
which nodes aim to estimate the parameter of interestwo

without information exchange. However, the compressive dif-
fusion strategies have a different diffusion protocol thanthe
full diffusion configuration. At each nodei, we combine the
local estimatesφi,t with the constructed estimatesaj,t that
track the local estimatesφj,t of the neighboring nodes, i.e.,
j ∈ Ni \ i. Especially at the early stages of the adaptation, the
constructed estimates carry far less information than the local
estimates since they are not sufficiently close to the original
estimates in the mean square sense. We point out that the
global deviation equation ofφt could be written as

φ̃t+1 =
(

I−MUtU
T
t

)

Gφ̃t −MUtvt+
(

I−MUtU
T
t

)

GC∆at, (73)

where∆at
△
= φt − at. In (73), we observe that the compres-

sive diffusion update includes one additional term, i.e., the
last term on RHS of (73), different from the full diffusion
configuration. We can weaken the weight of the last term by
arranging the combination matrix accordingly. Hence, we add
one more freedom of dimension to the update by introducing a
confidence parameterδ. The confidence parameter determines
the weight of the local estimates relative to the constructed
estimates such that the new combination matrixΓ′ is given
by

Γ′ = δIN + (1− δ)Γ (74)

where0 ≤ δ ≤ 1. We note thatδ = 1, in which case we are
confident with the local estimates, yields the no-cooperation
scheme andδ = 0 is the full diffusion configuration where we
thrust the diffused information totally.

For the new combination matrix (74), the combination of
the local estimate and the constructed estimates (11) yields

wi,t+1 =(1− δ)



γi,iφi,t+1 +
∑

j∈Ni\i

γi,jaj,t+1





︸ ︷︷ ︸

φ̂
i,t+1

+ δφi,t+1 (75)

We note that (75) is a convex combination of the parameter
vectorsφ̂i,t+1 andφi,t+1. Hence, we can adapt the convex
combination weightδ using a stochastic gradient update [26]–
[29]. Then, (75) yields

wi,t+1 = δi,t+1φi,t+1 + (1− δi,t+1)φ̂i,t+1. (76)

In [27], authors update the combination weight indirectly
through a sigmoidal function. Similarly, we re-parameterize
the confidence parameterδi,t using the sigmoidal function [30]
and an unconstrained variableαi,t such that

δi,t =
1

1 + e−αi,t
. (77)

We train the unconstrained weightαi,t using a stochastic gra-
dient update minimizinge2i,t =

(
di,t − uT

i,twi,t

)2
as follows

αi,t+1 = αi,t −
1

2
µcvx

∂e2i,t
∂αi,t

= αi,t + µcvxei,tu
T
i,t(φi,t − φ̂i,t)δi,t(1− δi,t). (78)

As a result, we combine the local and constructed estimates
via (76), (77) and (78).

In the next section, we provide numerical examples showing
the match of the theoretical and simulated results, and the im-
proved convergence performance with the adaptive confidence
parameter.

X. NUMERICAL EXAMPLES

In this section, we examine two distinct network scenarios
where we demonstrate that the theoretical analysis accurately
model the simulated results and confidence parameter provides
significantly improved convergence performance. In the first
example, we have a network of5 nodes where at each
node i, we observe a stationary datadi,t = uT

i,two + vi,t
for i ∈ {1, 2, · · · , N}. The regression dataui,t is zero-
mean Gaussian with randomly chosen standard deviationσui

,
i.e., σui

= 0.1(
√
10 − 1)U [0, 1] + 0.1. The variance of the

observation noise isσ2
ni

= 10−3. In other words, the signal-
to-noise ratio over the network varies around10 to 100. The
standard deviation of the projection operator isσci = 1. The
parameter of interestwo ∈ R

4 is randomly chosen. Note
that we examine a relatively small network with short filter
length since the computational complexity of the theoretical
performance relations (39) and (63) increases exponentially
with the filter lengthM and the network sizeN .

In the no-cooperation configuration, the combination matrix
is given byΓ0 = IN . We use the Metropolis combination rule
[19] for the full diffusion configuration where the adjacency
matrix of the network is given by









1 1 0 0 0
1 1 1 0 1
0 1 1 1 0
0 0 1 1 0
0 1 0 0 1









.

In the Metropolis rule [20], the combination weights are
chosen according to

λi,j =







1
max{ni,nj}

if j ∈ Ni \ i,
0 if j /∈ Ni,
1−∑j∈Ni\i

λi,j if i = j ,
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Fig. 4: Comparison of global MSD curves1/NE‖φ̃t‖2 of
the single-bit and scalar diffusion approaches forδ = 0 and
δ = 0.9.
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Fig. 5: Comparison of the global MSD curves of the no-
cooperation, single-bit, scalar and full diffusion configurations
in the CTA diffusion strategy.

whereni andnj denote the number of neighboring nodes for
i andj. For single-bit and one-dimension diffusion strategies
we examine the convergence performance for the confidence
parameterδ = 0 and δ = 0.9 in Fig. 4. We choose the step
sizes the same for the distributed LMS update (14) of all
configurations at all nodes, i.e.,µi = 0.042. At each node, the
step sizes for the construction update (15) areηi = 0.0015
(for single-bit approach) andηi = 0.25 (for one-dimension
diffusion approach). For the single-bit diffusion approach, we
setζ = 0.001 to initialize aj,t.

In Fig. 4, we show the global MSD curves, i.e.,E‖φ̃t‖2, of
the single-bit and scalar diffusion approaches and comparethe
performance for differentδ values. The confidence parameter
δ = 0.9 implies that we give ten times more weight to the
local estimateφi,t than the constructed estimatesaj,t where
j ∈ Ni \ i. The Fig. 4 demonstrates that the confidence
parameterδ = 0.9 improves the convergence performance of
the compressive diffusion strategies. For the same example,
Fig. 5, Fig. 6 and Fig. 7 compare the convergence perfor-
mance of single-bit and scalar diffusion strategies with the
no-cooperation and full diffusion configurations forδ = 0.9,
which shows the match of the theoretical and ensemble aver-
aged (we perform 200 independent trials) performance results.
The Fig. 5 and Fig. 6 show the time-evolution of the MSD
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Fig. 6: Comparison of the global EMSE curves of the no-
cooperation, single-bit, scalar and full diffusion configurations
in the CTA diffusion strategy.
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Fig. 7: Comparison of the global MSD curves of the no-
cooperation, single-bit, scalar and full diffusion configurations
in the ATC diffusion strategy.
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Fig. 8: The MSD curves of the construction estimate
1/NE‖ãt‖2 of the single-bit and scalar diffusion approaches.

and EMSE curves in the CTA diffusion strategy while the Fig.
7 displays the time-evolution of the MSD curves in the ATC
diffusion strategy in which the theoretical curves (39) and(63)
are iterated according to the Table I and II. We note that we
obtain similar MSD curves in the CTA and ATC strategies.
Since we setδ = 0.9 and the outcomes of the adaptation
and combination operations contain relatively close amount
of information.

The Fig. 8 demonstrates the convergence of the constructed
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Fig. 9: Network topology withN = 20 for the Example 2.
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Fig. 11: The global EMSE curves in relatively large network
size and long filter length and the confidence parameter is
adaptively chosen for single-bit and scalar diffusion strategies.

estimatesaj,t’s to the parameter of interestwo in the mean-
square sense. We point out that the recursions (39) and
(63) also provide the global mean-square deviation of the
constructed estimates for the certain combination weightΣ

in Table I and the theoretical recursion matches with the
simulated results.

In the second example, we examine the convergence perfor-
mance of the adaptive confidence parameter in relatively large
networkN = 20 with long filter lengthM = 10 (See Fig. 9).
We again observe a stationary datadi,t = uT

i,two + vi,t for
i ∈ {1, 2, · · · , N}. The regressor dataui,t is zero-mean i.i.d.
Gaussian whose standard deviation varies over the network
as in Fig. 10. The observation noisevi,t is zero-mean i.i.d.
Gaussian whose variance isσni

= 10−2. We note that the
signal-to-noise ratio varies from10 to 100 over the network
similar to the example1. The standard deviation of the
projection operatorci,t is σci = 1 and the parameter of interest
wo ∈ R10 is randomly chosen.

We again use the Metropolis rule as the combination rule,
however, in this example, we adapt the confidence parameter
through (77) and (78) where we resort to the convex mixture of
the adaptive filtering algorithms [26]–[29]. We also choosethe
step sizes the same for the distributed LMS update (14) of all
configurations at all nodes, i.e.,µi = 0.042. In example 2, the

step sizes for the construction update (15) areηi = 0.0042 (for
single-bit approach) andηi = 0.1 (for one-dimension diffusion
approach). We setµcvx = 10 in (78). The Fig. 11 shows the
global MSD curves of the no-cooperation, single-bit, scalar
and full diffusion strategies. We observe that the adaptive
confidence parameter improves the convergence performance
of the compressive diffusion strategies far more such that they
achieve comparable performance while the reduction of the
communication load is tremendous.

XI. CONCLUSION

In the diffusion based distributed estimation strategies,the
communication load increases far more in the large networks
or highly connected network of nodes. Hence, the compres-
sive diffusion approach plays an essential role in achieving
comparable convergence performance with the full diffusion
configurations while reducing the communication load sig-
nificantly. We provide a complete performance analysis for
the compressive diffusion strategies. We analyze the mean-
square convergence, steady-state behavior and the tracking
performance of the scalar and single-bit diffusion approaches.
The numerical examples show the theoretical analysis model
the simulated results accurately. Additionally, we introduce the
confidence parameter concept, which adds one more freedom
of dimension to the combination rule in order to improve the
convergence performance. When we adapt the confidence pa-
rameter using the well-known mixture algorithms, we observe
enormous enhancement in the convergence performance of the
compressive diffusion strategies even for the relatively long
filter lengths.

APPENDIX A
PROOF FORLEMMA 1

We first show the equality of (43) for the two-node case.
Then the extension for a larger network is straight forward.
We can rewrite the term on the left hand side (LHS) of (43)
as

E[ψ̃
T

t Xu
TΣ2NCtsign(ǫt)]

= E









ψ̃
T

t Xu
T

[
ς1 ς2
ς3 ς4

]

︸ ︷︷ ︸

Σ2

NCtsign(ǫt)









. (79)

After some algebra, (79) yields

E[ψ̃
T

t Xu
TΣ2NCtsign(ǫt)]

= E[(γ11φ̃
T

1,t + γ12ã
T
2,t)ς1η1c1,tsign(ǫ1,t)]

+ E[(γ11φ̃
T

1,t + γ12ã
T
2,t)ς2η2c2,tsign(ǫ2,t)]

+ E[(γ22φ̃
T

2,t + γ21ã
T
1,t)ς3η1c1,tsign(ǫ1,t)]

+ E[(γ22φ̃
T

2,t + γ21ã
T
1,t)ς4η2c2,tsign(ǫ2,t)].

(80)

In order to evaluate the expectations on the RHS of (80),
we assume that the step sizes are sufficiently small and filteris
sufficiently long so that the deviation terms changes negligibly
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slow with respect to the regressor dataci,t. Then, according
to the Price’s result [31], [32], we obtain

E[ψ̃
T

t Xu
TΣ2NCtsign(ǫt)]

= E[(γ11φ̃
T

1,t + γ12ã
T
2,t)ς1η1c1,tǫ1,t]

E|ǫ1,t|
E[ǫ21,t]

+ E[(γ11φ̃
T

1,t + γ12ã
T
2,t)ς2η2c2,tǫ2,t]

E|ǫ2,t|
E[ǫ22,t]

+ E[(γ22φ̃
T

2,t + γ21ã
T
1,t)ς3η1c1,tǫ1,t]

E|ǫ1,t|
E[ǫ21,t]

+ E[(γ22φ̃
T

2,t + γ21ã
T
1,t)ς4η2c2,tǫ2,t]

E|ǫ2,t|
E[ǫ22,t]

. (81)

Rearranging (81) into a matrix product form leads (43).
Following the same way, we can also get (44) and the proof
is concluded.

APPENDIX B
PROOF FORLEMMA 2

We derive the RHS of (49) for the two-node case for
simplicity, however, it also satisfies any order of network.For
two-node case, the LHS of (49) yields

E
[

sign(ǫt)
TCT

t NΣ4NCtsign(ǫt)
]

= E
[
sign(ǫ1,t)c

T
1,tη1ς1η1c1,tsign(ǫ1,t)

]

+ E
[
sign(ǫ1,t)c

T
1,tη1ς2η2c2,tsign(ǫ2,t)

]

+ E
[
sign(ǫ2,t)c

T
2,tη2ς3η1c1,tsign(ǫ1,t)

]

+ E
[
sign(ǫ2,t)c

T
2,tη2ς4η2c2,tsign(ǫ2,t)

]
.

We re-emphasize that the regressorci,t is spatially and tem-
porarily independent. Hence, we obtain

E
[

sign(ǫt)
TCT

t NΣ4NCtsign(ǫt)
]

= E
[
cT1,tη1ς1η1c1,t

]
+ E

[
cT2,tη2ς4η2c2,t

]

+ E [c1,tsign(ǫ1,t)]
T
η1ς2η2E [c2,tsign(ǫ2,t)]

+ E [c2,tsign(ǫ2,t)]
T
η2ς3η1E [c1,tsign(ǫ1,t)] .

(82)

Using Price’s result, we can evaluate the last two terms on the
RHS of (82) as follows

E [c1,tsign(ǫ1,t)] =
E|ǫ1,t|
E[ǫ21,t]

E [c1,tǫ1,t]

and
E [c2,tsign(ǫ2,t)] =

E|ǫ2,t|
E[ǫ22,t]

E [c2,tǫ2,t] .

We point out that the terms involving the diagonal entries of
the weighting matrixΣ4 in (82) does not include the deviation
terms. As a result, rearranging (82) into a compact form results
in (49). This concludes the proof.
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