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Abstract—We study the compressive diffusion strategies over filtering algorithm and improves its parameter estimatign b
distributed networks based on the diffusion implementatian and fusing with the diffused parameter estimations of the nleigh
ade_lptive extraction of the information from the_compresseddif— ing nodes. The diffusion approach provides robustnessiagai
fusion data. W(=T demonstrgte that one can achieve a.comparabl link failures and changing network topologi€s [6]. However
performance with the full information exchange configurations, ¢ . e = E
even if the diffused information is compressed into a scalaor the diffusion of the parameter vector within the neighbarti®
a single bit. To this end, we provide a complete performance results in high amount of communication load. For example,
analysis for the compressive diffusion strategies. We anate the  since each node diffuses information to the neighbors dta t
transient, steady-state and tracking performance of the cafigu- average number of information exchange is given¥y 7

rations in which the diffused data is compressed into a scafeor herem is th . f iahborhood i twork
a single-bit. We propose a new adaptive combination method wheren 1S he average size of a neignborhood In a networ

improving the convergence performance of the compressive Of IV nodes[[12].
diffusion strategies further. In the new method, we introdice one We study the compressive diffusion strategies that achieve
more freedom-of-dimension in the combination matrix and adipt  petter trade-off in terms of the amount of cooperation and
it by using the conventional mixture approach in order to enfance e required communication load 12]. Unlike the full diffu
the convergence performance for any possible combinationute . . : S . .
used for the full diffusion configuration. We demonstrate trat our ~ >'O" con_flgu_ratlon, th_e compressed d|ﬁgS|on f’;\pproacfmshisé
theoretical analysis closely follow the ensemble averagewsults —Single-bit of information or a reduced dimensional datateec
in our simulations. We provide numerical examples showing The diffused data is generated through certain random @roje
the improved convergence performance with the new adaptive tion of the local parameter estimation vector. Then, thgmei
combination method. boring nodes can adaptively construct the original paramet
Index Terms—Compressed diffusion, distributed network, per- estimations based on the diffused information and fuse thei
formance analysis. individual estimates for the final estimate. This approash r
EDICS Category: ASP-ANAL, NET-DISP duce§ the communication load in _the .spirit of the compressiv
sensingl[1R],[[13]. The compression is lossy since we do not
assume any sparseness or compressibility on the parameter e

) timation vector[[13],[[14]. However, the compressive diffan
D ISTRIBUTED network of nodes provides enhanced congpnroach achieves comparable convergence performarte wit

vergence performance for the applications such as souggg fy| diffusion configurations. Since the communicatioad
tracking, environment monitoring, and source localizaf}— jncreases far more in the large networks or highly connected

[4]. In such a network, each node encounters possibly a difatwork of nodes, the compressive diffusion strategieg ala
ferent statistical profile, which provides broadened pectpe - cial role in achieving comparable convergence perfoaa

on the monitored phenomena. In general, we would reaghn significantly reduced communication load.
the best estimate with access to all observation data acros$nhere exists several other approaches that reduce the com-
the whole network since the observation of each node carriggnication load. In[[T5], within a predefined neighborhood,
valuable information [S]. In the distributed adaptive BEition  the parameter estimate is quantized before the diffusion in
framework, we distribute the processing over the network a@ger to avoid unlimited bandwidth requirement. In1[16],
allow the information exchange among the nodes so that hgihors transmit the sign of the innovation sequence in the
parameter estimate of each node converges to the best &stigacentralized estimation framework. I [17], in a consensu
4. el . network, the relative difference between the states of the
In the distributed architectures, there are several apER qges is exchanged by using a single bit of information. As
regulating the information exchange, e.g., diffusion iemen- gistinct from the mentioned works, the compressive ditisi
tation. The diffusion implementation defines a commun@ati girategies substantially compress the diffused inforonaind
protocol in which only the nodes from a predefined neighsyiract the information from the compressed data adagtivel
borhood could exchange information with each othér L1],—[6][12]_
[11]. In this framework, each node performs a local adaptive | tis paper, we provide a complete performance analysis
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Neighborhood Ny

since adaptive extraction of information from the diffuskda

brings in an additional adaptation level. Moreover, it ithea ;_O p
challenging for the single-bit diffusion strategy due te tion- O
linear compression. However, we analyze the transieragdgte “ O/zth node Q
state and tracking performance of the configurations in kvhic O PTN A
the diffused data is compressed into a scalar or a singl&\eit Y Oy
also propose a new adaptive combination method improving '©

the performance for any conventional combination rulehim t
compressive diffusion framework, we fuse the local estanat
with the adaptively extracted information from substaiftia 5, for 4 vector argument, it creates a diagonal matrix whose
compressed d|_ffu5|on Qata. The extra_ctgd mformauomexarrdiagonal is the vector. The operater takes the Kronecker
_relat|vely less mformatlon than the original data._Herme, tensor product of two matrices.

introduce the confidence parameter concept, which adds one

more freedom-of-dimension in the combination matrix. The Il. DISTRIBUTED NETWORK

confidence parameter determines how much we are confidentonsider a network oV nodes where each nodebserves
with the local parameter estimation. Through the adaptaifo a true paramelgrwo € RM through a linear model

the confidence parameter, we observe enormous enhancement

in the convergence performance of the compressive diffusio ) ) )
strategies even for relatively long filter length. wherev; ; denotes the temporally and spatially white noise.

Our main contributions include: 1) for Gaussian regressoiye assume that the regression veaigy € R is spatially
we analyze the transient, steady-state and tracking perféfd temporally_uncorrelated with the other regressors Iaed_t
mance of scalar and single-bit diffusion techniques; 2) vebservation noise. If we know the yvhole temporal and_spatlal
demonstrate that our theoretical analysis accurately fagde data overall network, we can obtain the parameter of interes
simulated results; 3) We propose a new adaptive combinati®ie PY minimizing the following global cost with respect to
method for compressive diffusion strategies, which assevth® parameter estimate:

Fig. 1: Distributed network of nodes and the neighborh&6d

T
dit = Wo' Ut + Vi,

better trade-off in terms of the transient and steady state N

performance; 4) We provide numerical examples showing the Tgion(W) = > B [(diy — w'us)?] . 1)

enhanced convergence performance with the new adaptive i=1

combination method in our simulations. The stochastic gradient update fior (1) leads to the glolatie
We organize the paper as follows. In Section II, we explaiit€an square (LMS) algorithm as

the distributed network and diffusion implementation. kecS N

tion 1ll, we introduce the compressive diffusion strateiy,, Wil = Wi+ qui,t (diy —ul,wy), (2

reduced-dimension and single-bit diffusion. In Sectionwé i=1

provide a global recursion model for the deviation paramsetevhere u > 0 is the step size[[7]. Note thall(2) brings in
to facilitate the performance analysis. For Gaussian ssgrs, Significant communication burden by gathering the informa-
we analyze the mean-square convergence performance ofti@ overall network in a central processing unit. Additdiy,
scalar and single-bit diffusion strategies in Section V argentralized approach is not robust against the link fadure
VI, respectively. In Section VII and VIII we analyze theand the changing network statisticsl [4]] [6]. On the other
steady-state and tracking performance of the scalar agtesin hand, in the diffusion implementation framework, we uélia
bit diffusion approaches. In Section IX, we introduce thgrotocol in which each nodecan only exchange information
confidence parameter and propose a new adaptive combiih nodes from its neighborhood/; with the convention
tion method, improving the convergence performance of the N; [6], [Z]. This protocol distributes the processing to the
compressive diffusion strategies. In Section X, we providedes and provides tracking ability for time-varying sthtial
numerical examples demonstrating the match of theoretigabfiles [6].
and simulated results, and enhanced convergence perfoeman Assuming the inner-node links are symmetric, we model the
with the new adaptive combination technique. We concludkstributed network as an undirected graph where the nodes
the paper in Section XI with several remarks. and the communication links correspond to its vertices and

Notation: Bold lower (or upper) case letters denote thedges, respectively (See FIg. 1). In the distributed networ
column vectors (or matrices). For a vector(or matrix A), €ach node employs a local adaptation algorithm and benefits
a” (or AT) is its ordinary transposé!.- || and|| - | o denote from the information diffused by the neighboring nodes ie th
the L, norm and the weighted, norm with the matrixA, construction of the final estimatel[6]-[9]. For example, 6, [
respectively (provided thaA is positive-definite). We work nodesdiffuse their parameter estimat® the neighboring
with real data for notational simplicity. For a random vates nodes and each nodeperforms the LMS algorithm given
x (or vectorx), F[x] (or E[x]) represents its expectation. Here@s -
Tr(A) denotes the trace of the mattik. The operatorol{-} Wil = (L= piviea; ), + pids e, 3)
creates a column vector or a matrix in which the arguments R

Although we assume a time invariant unknown system vecter,algo

of COl{'} locate one under th? other. For a matrix arQ:]umerbtr\ovide the tracking performance analysis for certain sionary models
diag{-} operator returns the diagonal of the matrix as a vectiater in the paper.



wherep; > 0 is the local step-size. The intermediate parameter
vector ¢, , is generated through

T

CaWiia

¢i,t = Z Yi,i Wit - Con=l Qs [ Qs
JEN; a:[ ¢lvt+1 : Construction
with ; ;'s are the combination weights such t@é.vzl Yij = Y p
1 for al i € {1,---,N}. For a given network topology, Combination
the combination weights are determined according to aertai ”'-’W“*'
combination rules such as uniforin [18], the Metropdlis| [19] N Adaptation

[20], relative-degree rule$[8] or adaptive combinérs [21] Reduced Dimension Diffusion

We note that in [[8) we could assigp,, as the final ) ) -
estimate in which we adapt the local estimate through tfiéd- 2: CTA strategy in the compressive diffusion framework
local observation data and then we fuse with the diffused - A - o )
estimates to generate the final estimatelIn [7], authommiea Where we denote; ;(a; ;) = di,s —u; ,a;,. Similarly, the first
these approaches as combine-than-adapt (CTA) and ad&Qptier Taylor series expansion arouwd; leads
than-combine (ATC) diffusion.stra_tegies, respectivety this (di,t—UZtWi)Q - e?,t_zei,tuz:t(wi_wi,t)+O(HW1'H2), (6)
paper, we study the ATC diffusion strategy, however, the
theoretical results hold for both the ATC and CTA cases favhere e; ; = dit — u;{tww Since Y. vij = 1, the
certain parameter changes provided later in the paper. approximations[{5) and16) if](4) yields

We emphasize that the diffusion of the parameter estimation
vector also brings in high amount of communication load. . 2 2
In the next section, we introduce the compressive diffusion” ™! — *"& g Vil Wi = wil|” + Z Yig Wi — gl

strategies enabling the adaptive construction of the redui JENiNE
information from the reduced dimension diffusion. + i%Yii [ef,t - 2€i,tuz:t(wi - Wi,t)}
1. COMPRESSIVEDIFFUSION
We seek to estimate the parameter of intevesthrough the i Y v [Ea(ae)? — 26y )ul (wi — a;,)]
reduced dimension information exchangithin the neighbor- JENiNG
hoods. In the compressed diffusion approach, unlike thie ful )

diffusion scheme, we diffuse a significantly reduced amaiint The minimized term in[{7) is a convex function of; and the
information. The diffused information is generated by &rt Hessian matrix2I,; > 0 is positive definite. Hence, taking

projection operator (a matri; 1 or a vectorc;+1). Then, the derivative and equating zero, we get the following update
neighboring nodes of generate an estimadg ;1 through the

diffused information by using an adaptive estimation aikton Wit = @ ppn + piltie(die — WG ¢ 11), (8)
as explained later in the chapter [12]. We point out thgjhere

the diffused information_ might have far smaller dimensions Bipr = ViiWi + Z Yijaji, (9)
than the parameter estimation vector, which can reduce the JENNG

communication load significantly. The constructed estesat . . . . L .

i.e., a;+11's are linearly combined with the local parameteﬁ']h'f.? IS §|nt1llarhto the dstr(;buted_LM; algorl':jhrﬁl(ﬁ). Note

estimate through certain combination rules, similar toftile 12+ ' W€ Interc ange;,, andwi,, in other words, when we
assign the outcome of the combination as the final estimate

diffusion configuration. ther than th ¢ f the adaptafi h th
Different from the full diffusion configuration, in the new adner than ne outcome of the adaptation, we have the
Igwmg algorithm:

framework, nodes have access to the constructed estima(?é

a; ;. Hence, in the compressive diffusion implementation, we Givp1 = Wip + i e (die —ul,wiy), (10)
update according to ’ ’
Witt1 = YiiPi 1 + Z Vij A, t41- (11)
. jEN;\i
Wi 1 = argmin ¢ %ii[[wi — wi* + > vigllwi —a.)? . ! i
i PEvay We point out that[(8) and 19) are_the_CTA diffusion strategy
r 5 while (I0) and[(Il) are the ATC diffusion strategy. Hiyj. 2 and
+hi (di,t - ui,twi) } (4) @ summarize the compressive diffusion strategy for the CTA

such that in the update we also minimize the Euclide@fd ATC strategies whepg € ;. We next introduce different
distance between the local parameter estimatigp and the approaches to generate the diffused information (which are
constructed estimates ; of the neighboring nodes. In order toused to construat;,¢;1's).

simplify the optimization in[(4), we can replace the lossrter In the compressive diffusion approach, irrespective of the
(diy — ul,w;)? with the first order Taylor series expansiorfinal estimate we always diffuse the linear transformation
aroundaj_:t, ie., of the outcome of the adaptation, e.g., we diffuse; =
Ciiywiy in the CTA strategy andy 1 = Cf 1,4 In

) the ATC strategy. Since we aim to use the most current
+ O(lwl%), () parameter estimate in the constructionagf,;1’s (since the

(diy —ul,wi)® =€ 4(a4)” — 26;4(aj )] (w; —aj4)



-------------------------------- N biased convergence which degrades the performance [12]. We
b point out that the randomized projection matrix (or vector)

et \ > G could be generated at each node synchronously provided that
d, ; ot Construction each node use the sarseedfor the pseudo-random generator

u, b C - mechanism [23]. S_uch seed exchqnges_ and Fhe synchronisatio
: L can be done periodically by using pilot signals without a

Adaptation

i’-”‘ \ Wy serious increase in the communication load [24].
Jpttl

~ In the next section, we introduce a global model gathering
e T all network operations into a single update.
Reduced Dimension Diffusion Combination IV. GLOBAL MODEL

Fig. 3: ATC strategy in the compressive diffusion framework FOr @ vector projection operator, we write the reduced
dimension [(IR) and single bif{IL3) diffusion approaches for

most current estimate intuitively contains more informati the ATC diffusion strategy in a compact form as
[22]). We update according to

Qi1 = Wit + il € (14)
a1 = argmin {||la; — a;+[|* + ;|21 — Clra5)?} 1l = ay Coy1h(e; 15
Jyt+ a, J 75 J + 414 ) Q141 =@t + 1;Cit1 (5.7,t+1) ( )
where we choose the diffused data as the desired signal and Wil = Yi,i®Pip1 T Z Vi, Ay, t+1
try to minimize the mean-square of the difference between JENi\

the estimatez;, 1 = CtT+1aj andz;, 1. The first order Taylor
series approximation of the loss tedfw; ;1 — 2;11]|?
a; . yields the following update

Whereeiyt = di,t —u;-I_thiyt and€j7t+1 = Cg:ﬁ-l (¢j,t+1 — ajyt).

around  For reduced dimension and single bit diffusion approaches,
h(€jt+1) = €141 andh(e;41) = sign(e; 41), respectively.

aj 111 =a;t +njCei1 (ze41 — Cry1a54) (12) Next, we apply the following simplifications to facilitated

erformance analyzes. First, we assume that at each node we

se a different projection vector, e.g., for node j, we usg

Second, for sufficiently small;, we may substitutep, ;. ,

Rith ¢, in (15) (which is justified through simulations). With

that simplifications, we can rewrite the update as

wheren; > 0 is the construction step size. We note thatin [1éj

the reduced dimension diffusion approach constragts.’s

through the minimum dis}urbance principle and resulted u

date invoIves[CtTHCtH]_ as the normalization term. The

constructed estimates; ;11's are combined with the outcome

of the local adaptation algorithm throudH (9) bri(11). aj i1 = aj¢ +1;¢5:h(e)t),

We next introduce a methods where the information e¥;here we redefine the construction error as

change is only a single bit [12]. When we constragt; at A 7

node j, assuminga, ;’s are initialized with the same value, €t = Cjt(Pjr — @) (16)

nodei € N has access to the exchanged estimate Hence, Note that we change;,; with ¢, to be consistent with the

we can perform the construction update at each neighboriggoduced simplification.

node via the diffusion of the estimation error defined as For the state-space representation that collects all mktwo
€141 R - operations into a single update, we define the following glob

. . o arameters:
Note that this does not influence the communication Ioa%,
however, through the access to the exchange estimate, ¢, =col{@y 4, ..., dn,}, ar =col{ary,...,an},
we can further reduce the communication load. Using thewell v, = col{w, ,, ..., Wy}, Wy = col{wa, ..., Wo}

known sign algorithm[[5], we can construe}f,: as _ ) )
' with M N x 1 dimensions and

aj 11 = &t +njCr18ign (€ i11), (13)
where c;41 Iis the projection vector. Hence, we can
repeat [(IB) at each neighboring node via the diffusion of
zj1+1 = sign(e;j41) only and then we combine with thewith N x 1 dimensions. The combination matrix is given by
local estimate by usindg{9) ok _(1L1).

e = COl{elyt, e ,eNyt}, € = COl{El_’t, ey GNyt},

dt = COl{dl,t, P ,dNﬂg}, V¢ = COl{’ULt, P 7UN,t}

Y1 o YIN

Remark 3.1: The compressive diffusion strategy reduces I=1": :
the communication load by constructing an estimaje., YN1 ‘' INN

corresponding to the original estimatg, ,,; through the A . .
diffused information, i.e., the linear transformation ¢f, , , and we denoteG = I' ® I);. Additionally, the regression

with the projection operato€;,; or c,;1. We note that and projection vectors yields the followingf N x N global
the projection operator plays crucial role in the constanct Matrices

algorithms [I2) and[{13). We choose randomized projection L SIRR 0 Cit - 0
operator that spans the whole parameter space in orderith avo U, 20 D, Cy : . :

2|n order to facilitate the performance analyzes, we redefing.; in (I6).



Indeed, we can model the network with compressive diffusidtience, through(25) anf_(26), we obtain the global estimatio
strategy as a larger network in which each nadkas an errore, as

imaginary counterpart which diffuses ; to the neighbors of u, o017 len G ~
i, which is similar to the full diffusion configuration. Theaie e, = { i ] [ D C} {?t} + [Vﬂ

nodes only get information from the imaginary nodes and do 0 G R at 0
not diffuse any information. In that case, the network can be Z n,
modelled as a directed graph with asymmetric inner nodeslink = Y774, +n,. (27)
and the combination matrix is given b
g y Through [27), we rewritd (24) as
= r r ~ -~ -
I= { 0 ﬂ, Bri1 = Xep, = DY (Y Zp, + ny)
. = (X -DYY/{Z)}, - DY n,. 28
wherel'p = diag{I'} andT'c = I'-T'p. Then, we can write N ( _ Yo 2y e (28)
w; in terms of¢, anda, as We utilize the we|ght_ed_—energy rgl_at|or_1 relating the egerg
of the error and deviation quantities in the performance
w; = Gp¢, + Geay, (17) analyzes through a weighting matr®. Then, we obtain
whereGp = I'p®Iy andGg = T'c ®1,. The state-space 1ZtT+121/7t+1 =[(X -DY, Y Z)¢, - DY n,)'S
representation is given by x [(X — DYtYfz)t/;t — DY,n,]
— ~T ~
Gry1 = Wi+ MUzey, =, (X -DY,Y!/Z2)"S(X - DY,Y!Z),
ar+1 = ar + NCih(er), —oa’YTDS(X - DY, Y?Z)9,
Wit1 = GD¢t+1 T GCat_H’ + anfDEDYtnt.
where A Since we assume the observation noiseis independent
M = diag{[p1, . . ., un]} ® In, from the network statistics, the weighted energy relation f

(28) is given by
E||1/;t+1|‘22 = EHJ’tHQE/ + E[ntTY;[DZDYtnt] (29)
where
> 2(X - DY, Y Z2)TE(X - DY, Y!Z)
=X"2X -72"Y, Y'DEX - X"EDY,Y!Z
+z"Y,Y/DZDY, Y] Z.

Apart form the weighting matrixZ, ¥’ is a random due to

the data dependence. We assume the spatial and temporal

<Z~5t+1 = Gpo, + Gcay — MUe, (20) independence of the regression dafa andc;,; so thatY, is

dip1 — & — NCih(e)) 21) independent of),. Through that assumption we can replace
R PR >’ by its mean value, i.e¥’ = E[X'] [B], [6]. Hence, the

In (22), we represent the global deviation updafie$ (20) amaighting matrix is given by

(21) in a single equation or equivalently s _XTsX —7TE {YthT} DX — XTSDE {YtYﬂ 7
"/’t+1 = X"/’t - DYth(eta €t)7 (23)

VAN
N = diag{[n1,..., 8]} @ In
andh(e;) = col{h(e1,.), -+ ,h(en,)}. We obtain the global
deviation vectors as
~ A ~ A
¢y =w, — ¢, anda; = w, — a;. (18)
SinceI'l =1,
Gw, =w, (19)

then the global deviation update yields

+Z'DE {YtY;fZYtYﬂ DZ. (30)

~ A ~ . .
whereq, = col{¢,, 4, }. Based on the weighted-energy reCurygte that in the last term of right hand side (RHS)[Gf|(30) we

sion of (23), in the next sections, we analyze the mean-8qugie p's out of the expectation thanks to the block diagonal
convergence performance of scalar and single-bit diffusiQycture ofD andYthT.

approaches separately for Gaussian regressors. In order to calculate certain data momentsin (29) (30),
V. SCALAR DIFFUSION WITH GAUSSIAN REGRESSORS  we assume spatially and temporally i.i.d. Gaussian reigness
data such that

A .
Auw = E[UtUtT] = dlag{[ai,lv 05,27 ceey Ui,N]} @ Im
A .
Ao = E[C,C{] = diag{[02,025,. .., o0n]} ® Ins.
Then, we obtain

For the one-dimension diffusion approadh.](23) yields
'¢/~’t+1 = X'J’t - DYtQta (24)

wheree, 2 col{es, €;}. By (4), [I18) and[(19), we note that
e; is given by

~ JAN T Ay 0
e, = Ul (Gpo, + Gcay) + vy (25) A=E[Y,Y;]= { 0 AJ -
Similarly, we have In the performance analysis, convenient vectorisatiom-not

o tion is used to exploit the diagonal structure of matricels [5
€ =C;(—¢, +a). (26) [25]. In (29), [30), matrices have block diagonal strucsire



¢t+l

—
|:¢t+1:| _ {GD
ar+1 0

X P,

Gc

—_——
} M _
Iun| &

D Y.

—_———
RN

hee. e

(22)

thus, we use the block vectorisation operateec{-} [6].
Given anNM x N M block matrix
3n 3N
= : :
3N
where each blocky;; is a M x M block. Let o;; =
vec{3;;} with standard vec{-} operator ando;
COl{O’lj, 025, ,O'Nj}, then

XNN

bvec{X} = o = col{o1,09,...,0N}. (31)

We also use thblock Kronecker produaif two block matrices

A andB, denoted byA ® B. Theij-block is given by

A;; @By A;; @ Bin

[A® B]ij = (32)
Ai; @ By A;; ®Byn

The block vectorisation operatdwec{-} (31) and the block

Kronecker producf(32) are related by

bvec{ AXB} = (BT © A)o (33)
and
Tr{ATB} = (bvec{A})Tbvec{B}. (34)
The term in the RHS of(29) yields
E [n/ Y[ DEDY,n,| = Tr (AD*E [n,n] %)
and let
E [ntnﬂ =R, = [I({)V g} ,
whereR, 2 diag{o? ;,...,05 v} ® Ins. Then by [34),
E [ntTYszDYtnt} —b7o,
where A
b = bvec{R,D?A}. (35)

The fourth-order moment if_(B0) yields
A=E {YtY;fZYtYﬂ :
where theM x M block is given by

[A];; = 2NN + AT (245A))
YL A Ay

i=j
i#J

with A = diag{Ay,..

and
Aij = {

where\; = vec{A;}.
Hence, the block vectorization of the weighting matx
(30) yields

bvec{S'} = (XT ©XT — (XT ® Z7)(Lyy © AD)
— (2" 0 XT)(AD © Iyyw)
+zZ" 0 Z") (Do D)A) o.

For notational simplicity, we change the weighted-normanot
tion such that|¢, || refers to||¢, [|5; whereo = bvec{X}.
As a result, we obtain the weighted-energy recursion as

.,.AN}, .Aj = diag{Alj,...,ANj}

2Ai®Ai+/\i)\1T 1=7
A ®A; i# ]

E||1/~’t+1|‘¢27' = EH"LHQFO— +b'o (36)
FE2XToXT +(ZT 0 Z")(DoD)A
— (X" ® 2" (I3 n © AD)
— (27 o XT)(AD ® Ioyn). (37)

Through [36) and[(37), we can analyze the learning, con-
vergence and stability behavior of the network. Iteratihg t
weighted-energy recursion, we obtain

E”IZ}tJrlHtQT = EH’l;t”QFO. +ble
Ellpi |y = El$i 12y + b Fo

E”I»ElHQFfO- = EH’I;OHQFHIO' + b Flo.
Assuming the parameter estimatgs, anda; ; are initialized

. ~ A
with .zero_s,EHz/:.OHz = |lw_|I* wherew_ = col{w,,w,}.
The iterations yield

t
E|$1lle = 2 Ifoes, + b7 <Z F’“) o (39

k=0
By (38), we reach the following final recursion:

7 2 _ 72 Tt 2
E||1/’t+1|‘0' = EH¢t||0' +b Fo— HgoHFt(I—F)a' (39)

Remark 5.1: We note that[(39) is of essence since through
the weighting matrix® we can extract information about the

thanks to the spatial and temporal independence of the i@arning and convergence behavior of the network. In Table
gression data LS] We note thah could be denoted asm we tabulate the initial conditions (We assume the initial

A = diag{A4,--- ,An} where A; for i = {1,2,...,N}
is M x M block matrix, e.9.Ay = o2 ;1. The M x M ijth

block of X is denoted byx;;. Through [[3R),[(34), we obtain

bvec{A} = Ao

parameter vectors are set @ and the weighting matrices
corresponding to various conventional performance measur

Remark 5.2: In this paper,[{39) provides a recursion for the
weighted deviation parameter where we assigyy as the



final estimate instead of; ;, which implies the CTA strategy, By (42), (43), [44), the second term on the RHS[ofl (40) is
however, the recursion also provides the performance of theen by
ATC strategy with appropriate combination matdkxand the T o
initial condition (See Tablg I). By, X EDYth(et,et)}
Next, we analyze the mean-square convergence performance B ~T 1 Tr =
of the single-bit diffusion approach for Gaussian regresso =k W‘f X EDQY, Y, Ze, |, (45)

VI. SINGLE-BIT DIFFUSION WITH GAUSSIAN where{2, denotes

REGRESSORS q & [IMN 0}
The weighted-energy relation df (23) yields - 0 2

~T ~ ~T - Similarly, the third term on the RHS 0) is evaluated as
B[/ 20| = B[4, XX, Y oL0)

~ T T 7
—F {’lprTZDYth(et, et)} E h (etaet)Yt DEX'lnbt]

- _ ToT T -
_E {hT(et, )YTDEX M —E {wt VAR'S Qtszwt] . (46)
\E {QT(% et)YtTDEDYth(et, e)] . Through partitioning, the last term on the RHS[0f](40) leads

to
(40)
T T

We evaluate RHS of{30) term by term in order to find the £ R (er, €)Y, DEDYth(etaet)}
variance relation. Firstly, we partition the weighting mvatis —E {e;‘FU;‘FMElMUtet}
follows:

s _ [ =] 1) +E [etT U?MEQthsign(et)]

33 Xy

+ E |sign(e;) ' CINZ3MU e
Through the partitioning (41), we obtain { gn(er)” G 3 t t}

_ - - E |si TCIN®,NC;si .
E [w?XTEDYth(et, 61&)} —F |:¢Z—'XuT21MUtUZ-‘Zu¢t:| + |:Slgn(6t) t 4 tSlgn(Gt)]
~T . ~
v E [zpt X7 S,NC;sign (cthdqpt)}
=T, T Tr = Corollary 1: SinceU, and C, are independent from each
+E Wt Xa® 2sMU U, Z“%} other, similar to the Lemma 1, we obtain
~T . ~
+ F |:’l[)t XdTE4NCtslgn (C?Zd’l[)t)} ) (42) E |:hT(et, Et)YfDEDYth(et, 6t):|
where we partitionX such thatX = col{X,, Xa4}. We note

— Tr7T
that the second and fourth terms in the RHS[of (42) include =E [et U MEIMUtet}

the nonlinearsign(-) function. It is not straight forward to +E {erfMZQNQtCtet}

evaluate the expectations with nonlinearity, thus, weoithiice

the following lemma. +E {etTCthNngUtet}

Lemma 1: Under the assumption that step-sizes are suffi- +E [Sign(ﬁt)TCtTN24NCtSigD(€t)] -
ciently small and the filter is sufficiently long! [5], the Peis 47)

theorem leads to

~T T . Te = Because of the independence of the observation noise from
E [% Xy ZoNCysign (Ct Zd¢t)] the regression data, the first term on the RHS of (47) yields
_ T T T 7

= B | XuTZNQCC Zad |, (49 [T UIME MU e, | = B [V UIME;MU,v/|

E [@fxde4thsign (cfzdz/?t)} T [ ,&ZZuTUtUz’MEIMUthZu,J;t} 48

_ T T T 7
=F [1/% Xa' 24N, C,C qubt}’ (49 For the last term on the RHS of{47), we introduce the

where(, is defined as following lemma.
E\EMII L 0 . .
El€ ™M M Lemma 2: Through the Price’s theorem, we obtain
JAN .
= o E sign(et)TCfNE4NCtsign(et)}
On o El[év’t]'IM T T ~T Ty 7
N —E [zpt Z4" C,CTNQ, 5 Q,NC,C! zdz/;t}
Proof: The proof is given in Appendix A. O

L E [1TC$szth1} , (49)



TABLE 1I: Initial conditions and weighting matrices for défent configurations.

Framework | Elsb,|% | Elldoll b By | Elldoliy )
- Iyny O - A, O
CTA LB | & llw,ll? L [ } ~EIGR, | wlwoly, ~ [
0 0 0 0

ATC FEIF? | Flwel? | & ~EIW R, | wliweld, | %

whereX 2 is the block diagonal matrix oE4 such that We get=P and¥ as
@11 s 01\,{ N .
so_ | - : P = T K] ZK, T, (53)
) ’ ) k=1
Op - Onw S =% K,mPKTI. (54)

with ®,; is theii'th M x M block of$, andx¢ = ¥, —%P. }
Proof: The proof is given in Appendix B. O By (53) and[(5#), we obtain

N

As a result, by[(25)[136)[(37).148) ard1491(40) leads tBvec{E} = (I — (K2 ©Ka2) ) (T © Tie) (K2" @KT)> o
k=1

Bl =13y + B [V UF ME MU,

K
VE [1TctTszth1} (50) =Ko. (55)

and The +-free terms in[{B0) are evaluated as
¥ =X"2X - X"¥DQ,Y,Y/Z - Z2"Y, Y Q,DEX E [vf u’r leMUtvt} =b] (K] o K])e, (56)

T T 5 T
+Z DRY,Y, XYY, ,DZ, B [1TCINEPNG,1| =bf (KE o Kl)o,  (57)

whereX. denotes

N N whereb; £ bvec{RyM2A,} andb, 2 bvec{117N?A,}.
%= [23 EC} : As a result, by[(52)[(35)[{$6) and (57), the weighted-eperg
We again note that under the assumption that the regress%lr?tlon is given by
data is spatially and temporally independent, we Bét= E|Y1l% _E|\z/;t||2F o +blo (58)

il
E[X'] which results F,=xT o xT _ (XT o ZT)(IzMN © ADR,)
¥ =X"2X - X"ZDQ,AZ - Z"AQ, DX — (2" & XT)(ADQ, © Toary)
25t

+Z"DQE [YthTthYﬂ Q,DZ (51) +(Z"0Z")(DeD)(Q, ©Q,)AK (59)

~ _ T T\T T T\T
and denotB £ E Y. Y/XY,Y]|. Now, we resort to the b=(K; ©K;) b1+ (K, ©Ky) bo.  (60)
vector notation, i.e., the block vectorisation operatoec{-} Iterating the weighted-energy recursidn(58).1(59) &nd),(60
and the block Kronecker product. Hence, the block vecteriz&€ obtain
. e 2 ; _ _
tion of the weighting matrixx2’ (51) yields Bl 1% = E”’l'th2F,0' ble

no_ T T _ ~T T - -
brec{ ) = (X" © X"~ (X7 0 21) (T © ADR,) Bl },6 = Eld 1, 7,0+ P Fio
— (2"  X7)(ADQ, & IQMN)) o

T T - ' -
+(Z" ©Z")(D®D)(Q; © 2,)bvec{B}. (52) Ell$il}. p.o=Eldolp, .o+ Fi.. Fio

Block vectorisation of the matriB is given by In this part of the analyzes, we do not assume that the

bvec{B} = Abvec{Z}. parameter vectors are initialized with zeros since such an
assumption results in infinite terms in tii® matrix. Hence,

we initialize a; with ( 1,51 Where( has a small value (See
Table[).

K; = col{Oum N, Inn}, The iterations yield

K, = col{Iyn,0mn}, Bl e = ||1/~’0||i]t0 +b" A0, (61)
Tk é diag{O(k,l)M, IM, O(ka)M}- E||¢t”t27' = ||¢0||i__[t710' + bTAt,lo', (62)

In order to denotévec{X} in terms ofo, we introduce the
following matrices:



TABLE II: Initial conditions and weighting matrices for the

Eﬁrg?;frsggﬁearggf‘;iﬁ (()]fotpfh?2?2:;?3;322?2;%:33;nqn q_rder to calculate the steady-state performance measure
e E 2, h th ighti tri h that
¢ = 0) and the global MSD of the ATC diffusion strategy 1¥ccllg- we choose the weighting matrix such tha

for the single-bit diffusion approach (for the scalar dsffon oc'=1-F)o

approach, see Table I). then the steady-state performance measure is given by

. . E|Y |3 =b (I-F) o' 67
Bl B3 = Yool 1-F) ©7)
Similar to [67), the steady state mean square effifef ;]
L B|ja,||? 1w, — ¢1]2 0 0 for the single bit diffusion strategy is given by
© whix Blho[if =b" 1-Fa) '€, (68)
Ae  —Ac . ~
02, = Ele] ] 1T A1 [ } We point out thafF',, depends orE||v__||%. Once we calcu-
A Ac late F' . numerically by[(68) or through rough approximations,
GpTGp GpTGe we can obtain any steady state performancdby (67).
~ Bl 2 ~vlw, —¢Gel|? | ¥ . .
Gc Gp Go Ge VIII. T RACKING PERFORMANCE

The diffusion implementation improves the ability of the

Ay A network to track variations in the underlying statisticedfiles
whereIl; = [[,_ F; andA; = I+ F; +F; 1F;+---4+ [6]. In this section, we analyze the tracking performance
F,...F;. We note thall; = IT; _F; andA; = A; 1F;+1. of the compressive diffusion strategies in a non-statipnar

By (61) and [(6R), we have the following recursion environment. We assume a first-order random walk model,
7 2 a2 T2 which is commonly used in the literature [5], fer,(¢) such
Blbe il =ElblE ~ 1$ollfr, 1 7.0 A ol
+b"(I- A, 1 (I-Fy))o. (63) Wo(t +1) = wo(t) + qy,
We point out thall_; = Iop/n)2 and Ay = O¢aprn)2- whereq, € R™ denotes a zero-mean vector process inde-

pendent of the regression data and observation noise with co
Remark 6.1: The iterations of[{63) requires the recalculatiowariance matrixe[q,q; | = Q. We introduce the global time-
of F; for each time instants sincE; changes with time variant parameter vectors &s,(t) = col{w(t), -+, Wo(t)}
because of2, (59). Evaluating the expectatior@, yields  and we have the global deviation vectorsgas= w,(t) — ¢,
anda; = w,(t) — a;. Then, by [[2B), we obtain

1
1 . 0
o€, ~ ~
2 =Xy, —DY:h 69
Qt — ; .. . ® Il\ly (64) ".bt+1 ,libt t_(eta et) + 27 ( )
0o - % whereq, = col{q,, - ,q;} with 2M N x 1 dimensions. Since

. . we assume tha, is independent from the regression data
wheres? = E[e?]. For analytical reasons, we approximate t . . . Ly
%€ [e7] Y PP ¢;+ and the observation noisg ; forall i € {1,--- , N}, (€9)

©9) as yields the following weighted-energy relation
2 1 ~T ~ ~T -
T O B[dinFi] = B[ XX
- ' [T T
with o2, = F [ef ;| = EH’(/)tH% and -E _1/’t X' EDY:h(e, Et)}
N A A —E hT(et,et)YtTszq/Zt}
g—bvec{{Ac Ac}}. -
e Ae +E [h7(e;, )Y DEDY, k(e et)}
Hence, we can calculatg; by iterating the following o
+E |q, zg . (70)

Bl llz =Ell.lg — 4ol _
€ £ IL . (d-Fog We note that[{70) is similar td_(%0) except for the last term
+bT(I-A 1 (I-F))¢ (66) :
=1 8% E @TZQ. We denote2 N x 2N matrix whose terms arée

T2 — 7T i
whereE||1p0H€ = (17 Acl. In Table[l, we tabulate the initial _ 1 £1,..- 1]. Then, the last term irl{70) is given by

condition and the weighting matrix necessary for the rdéoars 7~ wherep = b 1

) . = ® Q}. Through [7D), we get

iterations [(66) ofo2, = Elef e]. pa Fi veeldyy ) Q) g ) g
E||¢t+1”t27' :EH"pt”Qth"'bTU“‘PTU- (71)

VII. STEADY-STATE ANALYSIS We define F, in (37) and [5P) for scalar and single-bit
At steady-state[{36) yields diffusion strategies, respectively. Similarl, is introduced
. - in (38) and [6D) for the scalar (time-invariant) and singie-
E||¢oo||(I—F)a =b’o. diffusion strategies. We point out that {71) is differendrfr
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(38) and [[5B) only for the termp” . As a result, at steady We note that[(75) is a convex combination of the parameter
state, [(6F7) and{71) leads vectorsg; and ®;,41- Hence, we can a_dapt the convex
Eld_ I1Z = (b TI_F. ) e, 79 combination We|ght5 using a stochastic gradient update|[26]—

Through [72) and Tablg I, we can obtain the tracking per- _ _s L — 5 - 26
formance of the network for the conventional performance Wittt = 019141 + (1= i) iy (76)
measures. We point out that in the full diffusion configurati In [27], authors update the combination weight indirectly
p= bvec{;N ® Q}. through a sigmoidal function. Similarly, we re-parameteri

In the next section, we introduce the confidence parametbe confidence paramet&r; using the sigmoidal function [30]
and the adaptive combination method, which provides bet@nd an unconstrained variable ; such that

trade-off in terms of transient and steady-state perfomaan 5 1 7
Wt T o
IX. CONFIDENCEPARAMETER AND ADAPTIVE ) ) 1 +‘? oo ) )
COMBINATION We train the unconstrained weight ; using a stochastic gra-
. Lo (g p 2
The cooperation among the nodes is not beneficial in gene‘i‘iéﬁnt update minimizing;, = (dz’t uivtwl’t) as follows
unless the cooperation rule is chosen properly [1]. For exam 1 Beit
ple, uniform [18], the Metropoli€[19], relative-degreeesi (€] Qit+1 = it = 5 Hevx Do
and adaptive combiners [21] provide improved convergence -

T
performance relative to the no-cooperation configuration i = it + pevx€itW (D5 — @i )00t (1 —0i). (78)
which nodes aim to estimate the parameter of intevest As a result, we combine the local and constructed estimates
without information exchange. However, the compressive dvia (Z6), [ZT) and[(78).
fusion strategies have a different diffusion protocol tihe  In the next section, we provide numerical examples showing
full diffusion configuration. At each nodg we combine the the match of the theoretical and simulated results, andnthe i
local estimatesp, , with the constructed estimates;; that proved convergence performance with the adaptive confedenc
track the local estimateg, , of the neighboring nodes, i.e.,parameter.
j € N;\i. Especially at the early stages of the adaptation, the X. NUMERICAL EXAMPLES
constructed estimates carry far less information thandhall  In this section, we examine two distinct network scenarios
estimates since they are not sufficiently close to the agiginvhere we demonstrate that the theoretical analysis aetyrat
estimates in the mean square sense. We point out that thedel the simulated results and confidence parameter @®vid
global deviation equation ab, could be written as significantly improved convergence performance. In the firs
~ T\ 7 example, we have a network df nodes where at each
D1 = (I - MU, U; ) Gé, — MUpvi+ node i, we observe a stationary dath, = u;ftwo + vt
(I_MUtUZ") GoAay, (73) for i € {1,2,--- ZN}' The regression data;; is zero-
mean Gaussian with randomly chosen standard deviation
whereAa; £ ¢, — a;. In (73), we observe that the compresl€ Tu; = 0.1(v10 — 1)4[0,1] + 0.1. The variance of the
sive diffusion update includes one additional term, i.ag t OPServation noise is7, = 10> In other words, the signal-
last term on RHS of[{73), different from the full diffusiont0-NCise ratio over the network varies aroutiilto 100. The
configuration. We can weaken the weight of the last term t5jandard deviation of the projection operatowis = 1. The
arranging the combination matrix accordingly. Hence, we adarameter of interest, < R* is randomly chosen. Note
one more freedom of dimension to the update by introduc:injt‘:f’j‘t we examine a relatively small network with short filter
confidence parametér The confidence parameter determing€§n9th since the computational complexity of the theoestic
the weight of the local estimates relative to the constdict@erformance relations (B9) anf [63) increases exponbntial

estimates such that the new combination mafixis given With the filter lengthA/ and the network sizev. _
by In the no-cooperation configuration, the combination mxatri

I’ =6y + (1 —6)r (74) is given byI'o = I. We use the Metropolis combination rule

h <5 <1 W hat — 1. in which [19] for the full diffusion configuration where the adjacgnc
where0 < § < 1. We note thaty = 1, in which case we are o atrix of the network is given by

confident with the local estimates, yields the no-coopenati

scheme and = 0 is the full diffusion configuration where we 11000
thrust the diffused information totally. 11101

For the new combination matrix{I74), the combination of 0 1110
the local estimate and the constructed estimafés (11)syield 8 (1) é é (1)

In the Metropolis rule [[20], the combination weights are
W =(1 -4 . b + Ca ) 2 ’
vt == 0) | Yiibig T D Yegae chosen according to

JEN\i ]
In max{flzi.nj} if -7 € M \ iv

Prass Nj =4 0 it ¢ N
+00; 141 (75) 1= enidig ifi=],




Time evolution of the global MSD
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Fig. 4: Comparison of global MSD curves/NE||¢,||? of
the single-bit and scalar diffusion approaches do& 0 and

11

Time evolution of the global EMSE
T T

Fig. 6: Comparison of the global EMSE curves of the no-
cooperation, single-bit, scalar and full diffusion configions

0=0.9. in the CTA diffusion strategy.
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Fig. 5. Comparison of the global MSD curves of the nofig- 7: Comparison of the global MSD curves of the no-
cooperation, single-bit, scalar and full diffusion configtions Cooperation, single-bit, scalar and full diffusion configiions
in the CTA diffusion strategy. in the ATC diffusion strategy.

Time evolution of the global MSD for the constructed estimates
T T T

oy T
wheren; andn; denote the number of neighboring nodes for A o e a el
i andj. For single-bit and one-dimension diffusion strategies o W T = Sealr Then)
we examine the convergence performance for the confidence ol )
parameted = 0 andd = 0.9 in Fig.[4. We choose the step ol ‘m‘
sizes the same for the distributed LMS upddiel (14) of all %_zs \!
configurations at all nodes, i.q:; = 0.042. At each node, the 2 )
step sizes for the construction upddie] (15) are= 0.0015 e \

(for single-bit approach) ang; = 0.25 (for one-dimension il %

diffusion approach). For the single-bit diffusion approawe o ‘h\

set¢ = 0.001 to initialize a; ;. e B8008-8 OO a0 B %
In Fig.[d, we show the global MSD curves, i.&), |2, of - 200 400 00 w00 10000

t

the single-bit and scalar diffusion approaches and contpare

performance for differend values. The confidence parameteFig. 8: The MSD curves of the construction estimate
§ = 0.9 implies that we give ten times more weight to thd /N E| a;||* of the single-bit and scalar diffusion approaches.
local estimateg, , than the constructed estimatag; where

j € N;\ i. The Fig.[4 demonstrates that the confidencnd EMSE curves in the CTA diffusion strategy while the Fig.
parametes = 0.9 improves the convergence performance & displays the time-evolution of the MSD curves in the ATC
the compressive diffusion strategies. For the same exampuléfusion strategy in which the theoretical curves|(39) 468)
Fig. [, Fig.[6 and Fig[]7 compare the convergence perfare iterated according to the Talfle | dnd II. We note that we
mance of single-bit and scalar diffusion strategies with trobtain similar MSD curves in the CTA and ATC strategies.
no-cooperation and full diffusion configurations fér= 0.9, Since we sety = 0.9 and the outcomes of the adaptation
which shows the match of the theoretical and ensemble avand combination operations contain relatively close arhoun
aged (we perform 200 independent trials) performancetesubf information.

The Fig.[® and Fig[]6 show the time-evolution of the MSD The Fig.[8 demonstrates the convergence of the constructed
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step sizes for the construction updatel (15)mare- 0.0042 (for
single-bit approach) angl = 0.1 (for one-dimension diffusion
approach). We set.,x = 10 in (78). The Fig[IlL shows the
global MSD curves of the no-cooperation, single-bit, scala
and full diffusion strategies. We observe that the adaptive
confidence parameter improves the convergence performance

Fig. 9: Network top0|ogR¥gr\els\,lslr>trEt1Xsli; 20 for the Example 2. of the compressive diffusion strategies far more such tay t
1 D T achieve comparable performance while the reduction of the
@ a communication load is tremendous.
oF 0 T LA =%y XI. CONCLUSION
oer  ° o : ° In the diffusion based distributed estimation strategiles,
o0al B | communication load increases far more in the large networks
e or highly connected network of nodes. Hence, the compres-
O, 4 6 8 10 12 14 16 18 20 sive diffusion approach plays an essential role in achgvin
Nodes comparable convergence performance with the full diffasio
Fig. 10: Network statistical profileos,, = 0.1). configurations while reducing the communication load sig-
10 _ Time evolution of the global MSD nificantly. We provide a complete performance analysis for
St the compressive diffusion strategies. We analyze the mean-
-5 Soalar square convergence, steady-state behavior and the tgackin
performance of the scalar and single-bit diffusion appheac
20 The numerical examples show the theoretical analysis model
%_Zs the simulated results accurately. Additionally, we introd the
2 confidence parameter concept, which adds one more freedom
_aol! - of dimension to the combination rule in order to improve the
convergence performance. When we adapt the confidence pa-
-3} ] rameter using the well-known mixture algorithms, we observ
enormous enhancement in the convergence performance of the
% 2000 2000 6000 8000 10000 compressive diffusion strategies even for the relativelygl
' filter lengths.
Fig. 11: The global EMSE curves in relatively large network APPENDIX A
size and long filter length and the confidence parameter is PROOE FORLEMMA 1

adaptively chosen for single-bit and scalar diffusiontstjées.
We first show the equality of (43) for the two-node case.

estimatesa; ;’s to the parameter of interest, in the mean- Then the extension for a larger network is straight forward.
square sense. We point out that the recursigns (39) aWwe can rewrite the term on the left hand side (LHS)[ofl (43)
(63) also provide the global mean-square deviation of tlas

constructed estimates for the certain combination welght =T T ,

in Table[] and the theoretical recursion matches with the” ¥t Xu Z2NCisign(e:)]

simulated results.

In the second example, we examine the convergence perfor- -7 o <
mance of the adaptive confidence parameter in relativetyelar =FE |4, Xu" [ ! 2] NC;sign(es) | . (79)
network N = 20 with long filter lengthM = 10 (See Fig[D). s
We again observe a stationary dalg = utho + v; for 3>,
i€{1,2,---,N}. The regressor data; ; is zero-mean i.i.d.

After some algebra[(T9) yields
Gaussian whose standard deviation varies over the network 9 LT9) y

as in Fig.[ID. The observation noisg; is zero-mean i.i.d. E[&?Xungthsign(et)]
Gaussian whose variance és,, = 10~2. We note that the T r
signal-to-noise ratio varies from0 to 100 over the network = E[(v1161,; + 71285 ;)s1mic1 tsign(en, )]
similar to the examplel. The standard deviation of the
projection operatoc; ; is 0., = 1 and the parameter of interest e
wo € R0 is randomly chosen. + E[(v226h54 + V2181 ,)s3nic1,sign(er 1))

We again use the Metropolis rule as the combination rule, 7T =T .
however, in this example, we adapt the confidence parameter + El(y22¢2,: + 72131,t)€4772C2,t51gn(62,t)](-80)
through [Z¥) and(78) where we resort to the convex mixture of
the adaptive filtering algorithms [26]-[29]. We also chotise In order to evaluate the expectations on the RHS[of (80),
step sizes the same for the distributed LMS updatk (14) of ale assume that the step sizes are sufficiently small andifilter
configurations at all nodes, i.q:; = 0.042. In example 2, the sufficiently long so that the deviation terms changes néalig

~T - .
+ E[(1110, ; + 71283 ,)s272€2 15ign(ez 1]



slow with respect to the regressor data. Then, according
to the Price’s result [31]][32], we obtain

~T X
E[, X, 2yNC;sign(e;)]

(4

(5]

Elers| [6]

E[G%,t]
E|62,t|
E[E%,t]
E|61,t|
E[E%,t]
E|62,t|
E[E%t]
Rearranging [(81) into a matrix product form leads] (435.11]
Following the same way, we can also defl(44) and the progh
is concluded.

~T .
= E[(y11¢1, + 71Qa£t)§177101,t51,t]
[7]

-T 5
+ E[(v10y, + 71285 ,)S272€2, 1€2,¢] "

~T 5
+ E[(y226h54 + V2181 ,)Sam1C1,e€1.¢] [9]

[10]

~-T 5
+ E[(yo2s + V2181 ;)Sam2Co s€2,¢] (81)

APPENDIXB [13]
PROOF FORLEMMA 2 [14]

We derive the RHS of[{49) for the two-node case for

simplicity, however, it also satisfies any order of netwdflr [15]
two-node case, the LHS df (49) yields (6]
E [sign(et)TC;‘FNE4NCtsign(et)
=F [sign(elﬂt)cftmglmclytsign(elyt)} [17]
+ E [sign(e1,1)ct ;i 6am€2,rsign ez r) ] (18]
+ F [sign(ezyt)cg_’tngcgmclﬂtsign(elﬂt)]
+ B [Sign(ﬁzt)C%:t7']2§4772C27tSigH(€27t):| . [19]
We re-emphasize that the regressgy is spatially and tem- [20]
porarily independent. Hence, we obtain
[21]
E {sign(et)TCtTNE4NCtsign(et)}
=F [C{ﬂhﬂmcu} +FE [C;tn2§4n2027t} [22]
+ E [cysign(er )] micane B [ca sign(ez,)] 23]
+ E[casign(es)]” nasam E [c1ssign(er )] .
(82)
[24]

Using Price’s result, we can evaluate the last two terms en th

RHS of [82) as follows [25]
. Fle
E[cysign(er¢)] = EL;’t]lE[Cl,tEl,t] [26]
1t
and
. FEle 27
E [casign(eas)] = E|[E§’t]|E[C2,t62,t]- (2]
2.t

: _ . . . 8
We point out that the terms involving the diagonal entries &% ]
the weighting matrix, in (82) does not include the deviationpyg
terms. As a result, rearranging{82) into a compact formltesu

in (@9). This concludes the proof. 0]
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