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Improved Iterative Hard- and Soft-Reliability Based
Majority-Logic Decoding Algorithms

for Non-Binary Low-Density Parity-Check Codes
Chenrong Xiong and Zhiyuan Yan

Abstract—Non-binary low-density parity-check (LDPC) codes
have some advantages over their binary counterparts, but unfor-
tunately their decoding complexity is a significant challenge. The
iterative hard- and soft-reliability based majority-logi c decoding
algorithms are attractive for non-binary LDPC codes, since
they involve only finite field additions and multiplications as
well as integer operations and hence have significantly lower
complexity than other algorithms. In this paper, we proposetwo
improvements to the majority-logic decoding algorithms. Instead
of the accumulation of reliability information in the exist ing
majority-logic decoding algorithms, our first improvement is a
new reliability information update. The new update not only
results in better error performance and fewer iterations on
average, but also further reduces computational complexity. Since
existing majority-logic decoding algorithms tend to have ahigh
error floor for codes whose parity check matrices have low
column weights, our second improvement is a re-selection scheme,
which leads to much lower error floors, at the expense of more
finite field operations and integer operations, by identifying
periodic points, re-selecting intermediate hard decisions, and
changing reliability information.

Index Terms—Error control codes, non-binary low-density
parity-check codes, decoding, error floor, complexity

I. I NTRODUCTION

Low-density parity-check (LDPC) codes were first devel-
oped by Gallager [1] in 1963. They were forgotten until they
were rediscovered in the late 1990s by MacKay and Neal
[2]. Since then, the academic and industrial communities have
focused on binary LDPC codes, because long binary LDPC
codes can achieve performance approaching the Shannon limit
(see, for example, [3]). Hence binary LDPC codes have been
used in various applications, such as digital television [4],
Ethernet [5], home networking [6], and Wi-Fi [7]. Efficient
decoding algorithms, encoder implementations, and decoder
implementations of binary LDPC codes (see, for example, [8]–
[15]) have received significant attentions.

In 1998, the study of Davey and MacKay [16] showed
that non-binary LDPC codes over GF(q) (q > 2) perform
better than their binary counterparts for moderate code lengths.
Moreover, non-binary LDPC codes also outperform binary
LDPC codes on channels with bursty errors and high-order
modulation schemes [17]. These advantages have motivated
a steady stream of work on code designs [18]–[20], decoding
algorithms [16], [17], [21]–[27], and decoder implementations
[28]–[30] for non-binary LDPC codes. Davey and MacKay
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[16] first used belief propagation (BP) to decode non-binary
LDPC codes. By applying the fast Fourier transform (FFT) of
probabilities to the BP algorithm, they also proposed a fast
Fourier transform (FFT) basedq-ary sum-product algorithm
(SPA), called FFT-QSPA [22]. The FFT-QSPA was further
improved by Barnault and Declercq [23]. Song and Cruz
proposed a logarithm domain FFT-BP algorithm [17]. The
Min-Sum algorithm was applied to non-binary LDPC codes
by Wymeerschet al. [24]. Then Declercq and Fossorier [25]
proposed the Extended Min-Sum (EMS) algorithm by using
only a limited number of probabilities in the messages at inputs
of check nodes. Savin [26] proposed the Min-Max algorithm.

Advantages of non-binary LDPC codes come at the ex-
pense of significantly higher decoding complexity than their
binary counterparts. Since complexity of decoding non-binary
LDPC codes is a key challenge, the iterative hard- and soft-
reliability based majority-logic decoding, referred to asIHRB-
MLGD and ISRB-MLGD1, respectively, algorithms [27] are
particularly attractive. Based on the one-step majority logic
decoding, these majority-logic decoding algorithms represent
reliability information with finite field elements and integers,
and hence involve only finite field additions (FAs) and finite
field multiplications (FMs) as well as integer additions (IAs),
integer comparisons (ICs), integer multiplications (IMs)and
integer divisions (IDs). As a result, they require much lower
computational complexities at the expense of moderate error
performance degradation. For instance, while the error per-
formance of the ISRB algorithm is within 1 dB of that of
FFT-QSPA [23], its complexity is only a small fraction of that
of the latter [27]. With a performance loss of 1 dB, the IHRB
algorithm has even lower complexity than the ISRB algorithm
[27]. Based on the IHRB algorithm, Zhanget al. [30] proposed
an enhanced IHRB-MLGD (EIHRB) algorithm by introducing
the soft-reliability initialization and re-computing theextrinsic
information. The EIHRB algorithm has a similar complexity
to that of the IHRB algorithm, but its error performance
approaches that of the ISRB algorithm. The majority-logic
decoding algorithms are particularly effective for LDPC codes
constructed based on finite geometries and finite fields [19],
[20].

The main contributions of this paper are two improvements
to the majority-logic decoding algorithms.

• The first improvement is a new reliability information

1When there is no ambiguity, MLGD is omitted when referring tomajority-
logic decoding algorithms for brevity.
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update, instead of the accumulation of reliability informa-
tion used in existing majority-logic decoding algorithms.

• Since existing majority-logic decoding algorithms tend
to have a high error floor for codes whose parity check
matrices have small column weights, our second im-
provement is a re-selection scheme, which lowers error
floors at the expense of more finite field operations
and integer operations by identifying periodic points,
re-selecting intermediate hard decisions, and changing
reliability information.

In the ISRB and IHRB algorithm, the reliability information
includes all check-to-variable (c-to-v) messages of previous
iterations. The new reliability information update proposed in
this paper excludes the c-to-v messages of previous iterations.
It not only results in better error performance andfewer
iterations on average, but also greatly reduces computational
complexities of all existing majority-logic decoding algo-
rithms. For instance, when applied to the ISRB majority-logic
decoding algorithm, the new reliability information update
results in a0.15 dB coding gain andreduces required number
of iterationsby 10% at 4.7 dB for a(16, 16)-regular(255, 175)
cyclic LDPC code over GF(28) constructed with the method
as describe in [19, Example 4]. Also, at a block error rate
(BLER) of 10−4, the coding gain over the EIHRB algorithm
is about0.07 dB. At the SNR of 4.7 dB,the average number of
iterations is reduced byabout 25%. Furthermore, with the new
reliability information update, the improved algorithms require
significantly fewer IAs and ICs than the ISRB and EIHRB
algorithms. Finally, the existing majority-logic decoding algo-
rithms are based on the accumulation of reliability information,
and hence the numerical range of the reliability information
increases with iterations. In contrast, the proposed reliability
information update results in a fixed numerical range and
thus simplifies hardware implementations.Our new reliability
update has been presented in part in [31]. By applying both
the layered scheduling and our first improvement to the IHRB
algorithm, we proposed a layered improved IHRB decoder
with a high throughput in [32]. Because the architecture design
of non-binary LDPC decoders is beyond the scope of this
paper, we will not discuss the layered improved IHRB decoder
henceforth.

In the literature, to analyze the error floor of binary LDPC
codes, some notions based on graphical structures have been
introduced, such as stopping sets [33], trapping sets [34] and
absorbing sets [35]. Unfortunately, trying to lower the error
floor based on graphical structures usually incurs very high
complexity. Also, some approaches for binary LDPC codes
cannot be readily adapted to non-binary ones. For instance,
a selective biasing postprocessing algorithm is proposed in
[35] to lower the error floors of binary LDPC codes based on
the relaxed graphical structure of absorbing sets. However,
for non-binary LDPC codes, trapping sets are difficult to
identify because they involve not only the graph topology but
also values of non-zero entries of parity-check matrices [36].
Moreover, the biasing rule between two elements for binary
LDPC codes cannot be applied to non-binary codes directly,
because there are more than two elements in a non-binary

finite field.
In this paper, for the majority-logic decoding algorithms,

we propose a re-selection scheme based on periodic points
to lower the error floors. The re-selection scheme is not a
postprocessing algorithm and can be integrated into the regular
iteration procedure easily. For instance, for an (837, 726)
non-binary quasi-cyclic LDPC code over GF(25) constructed
with the method in [20] with a column weight of four, the
EIHRB algorithm has a BLER floor around10−3, while
the hard-reliability based algorithm with the new reliability
information update and the re-selection scheme achieves a
BLER floor below 10−5. Although this re-selection scheme
requires additional computation, it is used only when existing
majority-logic decoding algorithms have a high error floor.

The rest of our paper is organized as follows. Section II
reviews existing majority decoding algorithms. Section III
proposes the two improvements. In Section IV-A, the two
improvements are applied to existing majority decoding al-
gorithms to illustrate their advantages in error performance
andaverage numbers of iterations. Section IV-B discusses the
reduction in the computational complexities due to the two
improvements. Some conclusions are given in Section V.

II. EXISTING MAJORITY DECODING ALGORITHMS

A regular LDPC codeC of length N over a finite field
GF(2r) is the null space of anM × N sparse parity check
matrix H over GF(2r). H has constant column and row
weights ofγ andρ, respectively. Leth0,h1, · · · ,hM−1 denote
the rows ofH, wherehi = (hi,0, hi,1, · · · , hi,N−1) for 0 ≤
i < M . Let (al,0, al,1, · · · , al,r−1) be the binary representation
of al ∈ GF(2r), for 0 ≤ l < 2r. Suppose a codeword
x = (x0, x1, · · · , xN−1) is transmitted. Sincexi ∈ GF(2r)
can be represented by anr-tuple (xi,0, xi,1, · · · , xi,r−1) over
GF(2) for 0 ≤ i < N , anNr-tuple over GF(2) is transmitted
for each codeword. Assume the BPSK modulation is used: “0”
is mapped to +1 and “1” to -1. Lety = (y0, y1, · · · , yN−1)
represent the received word, andz = (z0, z1, · · · , zN−1)
andq = (q0, q1, · · · , qN−1) represent the hard decision and
quantization, respectively, of the received word. LetN (i) =
{j : hi,j 6= 0, 0 ≤ j < N} for 0 ≤ i < M and
M(j) = {i : hi,j 6= 0, 0 ≤ i < M} for 0 ≤ j < N . Imax

represents the maximal iteration number.

A. ISRB algorithm

The ISRB algorithm [27] is described in Alg. 1, where
λ is a parameter to improve the error performance.s(k) is
the syndrome vector corresponding toz(k), ϕj,l a channel
reliability of the j-th received symbol beingal. φi,j andσ(k)

i,j

are the extrinsic weighting coefficient and the extrinsic check
sum of thek-th iteration, respectively, from check nodei to
variable nodej. ψ(k)

j,l is the extrinsic reliability of thej-th
received symbol beingal in the k-th iteration.

In the ISRB algorithm, line 21 is an accumulation operation.
Hence, the reliabilityR(k)

j,l is a non-decreasing function ofk as

ψ
(k)
j,l is non-negative. To perform the ISRB algorithm correctly,

R
(k)
j,l must be kept from numerical saturation based on two
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Algorithm 1: ISRB algorithm [27]

/* ---------Initialization---------- */

1 for j = 0 : (N − 1) do
2 z

(0)
j = zj ;

3 for l = 0 : (2r − 1) do
4 ϕj,l =

∑r−1
t=0 (1− 2al,t)qj,t;

5 R
(0)
j,l = λϕj,l;

6 for i = 0 : (M − 1) do
7 for j ∈ N (i) do
8 φi,j = mint∈N (i)\{j} maxl ϕt,l;

/* -----------Iteration------------ */

9 for k = 0 : Imax do
10 s(k) = H · (z(k))T ;
11 if s(k) == 0 then return z(k) else if k == Imax

then return Failure else
12 for j = 0 : (N − 1) do
13 for l = 0 : (2r − 1) do
14 ψ

(k)
j,l = 0;

15 for i ∈ M(j) do
16 σ

(k)
i,j = h−1

i,j

∑

t∈N (i)\{j} hi,tz
(k)
t ;

17 for l = 0 : (2r − 1) do
18 if σ(k)

i,j == al then

ψ
(k)
j,l = ψ

(k)
j,l + φi,j

19 for j = 0 : (N − 1) do
20 for l = 0 : (2r − 1) do
21 R

(k+1)
j,l = R

(k)
j,l + ψ

(k)
j,l ;

22 z
(k+1)
j = argal

maxR
(k+1)
j,l ;

methods. One is to use a very large numerical range forR
(k)
j,l ,

and the other is to carry out the following clipping operation
[27]:

R
(k)
j,l =

{

−η if R(k)
j,l < R

(k)
j,max − 2η

R
(k)
j,l −R

(k)
j,max + η otherwise

(1)
Here, R(k)

j,max , maxl(R
(k)
j,l ) and η is the predefined

maximal value ofR(k)
j,l after the clipping operation.

B. IHRB algorithm

When the soft-reliability information of the received word
is not available to the decoder, the IHRB algorithm [27] can
be used. The iteration procedure of the IHRB algorithm is the
same as that of the ISRB algorithm, but the IHRB algorithm
has a different initialization step, described in Alg. 2, where
λh is a parameter to improve the error performance.

C. EIHRB algorithm

The EIHRB algorithm [30], described by Alg. 3, was
devised based on the IHRB algorithm by introducing a soft-

Algorithm 2: Initialization of the IHRB algorithm [27]

1 for j = 0 : (N − 1) do
2 z

(0)
j = zj;

3 for l = 0 : (2r − 1) do
4 if (al == zj) then R

(0)
j,l = λh else R

(0)
j,l = 0

5 for i = 0 : (M − 1) do
6 for j ∈ N (i) do
7 φi,j = 1;

reliability initialization and recalculating the extrinsic infor-
mation. c1 and c2 are two parameters to improve the error
performance.

Algorithm 3: EIHRB algorithm [30]

/* ---------Initialization---------- */

1 for j = 0 : (N − 1) do
2 z

(0)
j = zj;

3 z
(0)
i.j = zj;

4 for l = 0 : (2r − 1) do
5 ϕj,l =

∑r−1
t=0 (1 − 2al,t)qj,t;

6 R
(0)
j,l = max(⌊ϕj,l/c1⌋+ c2−maxl(⌊ϕj,l/c1⌋), 0);

/* -----------Iteration------------ */

7 for k = 0 : Imax do
8 s(k) = H · (z(k))T ;
9 if s(k) == 0 then return z(k) else if k == Imax

then return Failure else
10 for i = 0 : (M − 1) do
11 for j ∈ N (i) do
12 σ

(k)
i,j = h−1

i,j

∑

t∈N (i)\{j} hi,tz
(k)
i,t ;

13 for l = 0 : (2r − 1) do
14 if σ(k)

i,j == al then R
(k)
j,l = R

(k)
j,l + 1

R
(k+1)
j,l = R

(k)
j,l ;

15 for j = 0 : (N − 1) do
16 R

(k+1)m
j = maxl R

(k+1)
j,l ;

17 z
(k+1)
j = field element ofR(k+1)m

j ;

18 R
(k+1)m2
j = second largest amongR(k+1)

j,l ;

19 z
′(k+1)
j = field element ofR(k+1)m2

j ;
20 for i ∈ M(j) do
21 if

(σ
(k)
i,j == z

(k+1)
j )&(R

(k+1)m
j ≤ R

(k+1)m2
j ) + 1

then z
(k+1)
i,j = z

′(k+1)
j else z

(k+1)
i,j = z

(k+1)
j

If the soft-reliability information of the received symbol
is available, the EIHRB algorithm achieves a better error
performance than the IHRB algorithm. Therefore, we focus on
the EIHRB algorithm and do not consider the IHRB algorithm
further.



4

III. T WO IMPROVEMENTS

A. New Reliability Information Update

The reliability information update of line 21 of Alg. 1 can
be written as:

R
(k+1)
j,l = R

(k)
j,l + ψ

(k)
j,l

= R
(0)
j,l +

k
∑

t=0

ψ
(t)
j,l

(2)

For both the ISRB and IHRB algorithms, the reliability
information of thek-th iteration,R(k)

j,l , includes all check-to-
variable (c-to-v) messages of previous iterations. This conflicts
with the extrinsic information principle. In the EIHRB algo-
rithm, lines 15 to 21 of Alg. 3 are used to recalculate the
extrinsic information.

We propose a new reliability information update to exclude
the c-to-v messages of previous iterations. In our new reliabil-
ity information update, only the channel informationϕj,l and
ψ
(k)
j,l of the current iteration are used to compute the reliability

informationR(k+1)
j,l . Our new reliability information update is

R
(k+1)
j,l = ξ1ϕj,l + ξ2ψ

(k)
j,l , (3)

where ξ1 and ξ2 are two parameters to improve the error
performance.

Eq. (3) is used to replace the reliability information update
of line 21 of Alg. 1, and consequently the new algorithm is
called the IISRB algorithm.

To reduce complexity of the IISRB algorithm, we change
the initialization as follows. For the ISRB algorithm,φi,j and
ϕj,l are calculated in the initialization. Hence, for the IISRB
algorithm, we calculateξ1ϕi,j and ξ2φi,j in the initialization
as well. This helps to reduce the complexity of each iteration.
The IISRB algorithm is presented in Alg. 4.

A new reliability information is also applied to the EIHRB
algorithm. The reliability information update in line 14 of
Alg. 3 is replaced with

R
(k)
j,l = R

(k)
j,l + c3, (4)

where,c3 is a parameter to improve the error performance.
Meanwhile, at the beginning of each iteration,R

(k)
j,l is initial-

ized asR(0)
j,l which is already scaled in line 6 by a parameter

c1. Furthermore, to be consistent with the IISRB algorithm,
z
(k+1)
i,j = z

(k+1)
j . Finally, lines 15 to 21 of Alg. 3 are not

needed any more. The new algorithm derived from the EIHRB
algorithm with the four modifications above is referred to as
the IEIHRB algorithm.

B. Re-selection Scheme

Furthermore, we observe that the error floor of the ISRB
algorithm becomes higher, as the column weight of the parity
check matrix decreases. The IISRB algorithm suffers the same
problem.

In Fig. 1, C1 is an (837, 726) LDPC code over GF(25)
with a column weight of four, C2 an (806, 680) LDPC code
over GF(25) with a column weight of five, C3 a (775, 634)

Algorithm 4: IISRB algorithm

1 /* ---------Initialization---------- */

2 for j = 0 : (N − 1) do
3 z

(0)
j = zj;

4 for l = 0 : (2r − 1) do
5 ϕ′

j,l =
∑r−1

t=0 (1 − 2al,t)qj,t;
6 ϕj,l = ξ1ϕ

′
j,l;

7 for i = 0 : (M − 1) do
8 for j ∈ N (i) do
9 φi,j = ξ2 mint∈N (i)\{j} maxl ϕ

′
t,l;

/* -----------Iteration------------ */

10 for k = 0 : Imax do
11 s(k) = H · (z(k))T ;
12 if s(k) == 0 then return z(k) else if k == Imax

then return Failure else
13 for j = 0 : (N − 1) do
14 for l = 0 : (2r − 1) do
15 ψ

(k)
j,l = 0;

16 for i ∈ M(j) do
17 σ

(k)
i,j = h−1

i,j

∑

t∈N (i)\{j} hi,tz
(k)
t ;

18 for l = 0 : (2r − 1) do
19 if σ(k)

i,j == al then

ψ
(k)
j,l = ψ

(k)
j,l + φi,j

20 for j = 0 : (N − 1) do
21 for l = 0 : (2r − 1) do
22 R

(k+1)
j,l = ϕj,l + ψ

(k)
j,l ;

23 z
(k+1)
j = argal

maxR
(k+1)
j,l ;

LDPC code over GF(25) with a column weight of six. All
three codes are constructed based on Reed–Solomen codes
with two information symbols [20]. The error floor of BLER
performance becomes lower as the column weight of the parity
check matrix increases. Hence, the column weight of the parity
check matrix is one key factor for the error floor.

We propose a re-selection scheme to address this problem.
To simplify the discussion, here we focus on the IISRB

algorithm. Our simulation results show that the re-selection
scheme also applies to the ISRB, EIHRB and IEIHRB algo-
rithms.

To analyze the error floor, the concept of periodic points
is introduced. Given an endomorphismf : Z → Z, a point
z in Z is called aperiodic point with a period ofi if there
exists a smallest positive integeri so thatf (i)(z) = z, where
f (i) = f(f (i−1)(z)).

An iteration of the IISRB algorithm can be considered a
functionf . Thek-th iteration of the IISRB algorithm isz(k) =
f(z(k−1)) = f (2)(z(k−2)) = · · · = f (k)(z(0)), and if s(k) 6= 0
and z(k) = z(k−i) for 0 < i ≤ k, the decoding algorithm
results in a periodic point with a period ofi. Our algorithm
focuses on only the periodic points with a period of up to
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Fig. 1. Block error rates of the soft-reliability based algorithms for different codes with different column weights over the AWGN channel whenImax = 50
and the modulation scheme is BPSK

two for two reasons. First, our simulation results show that
the BLERs are caused mainly by periodic points with periods
one and two. Second, to identify the existence of a periodic
point with a period of greater than two needs more memory
to keep track of the hard decisions of the previous iterations.

If the Hamming distance between a periodic point and its
corresponding transmitted codeword is less thanθ, the periodic
point is called a small-distance periodic point. Otherwise, it
is called a large-distance periodic point. Fig. 2 compares the
BLERs of the IISRB algorithm with those caused by the
large-distance and small-distance periodic points for the(837,
726) code whenθ = 8. For low SNRs, the overall BLER is
dominated by those caused by large-distance periodic points.
The sum of the BLERs due to the large-distance and the
small-distance periodic points is less than the overall BLER,
because periodic points with a period greater than two also
cause some BLERs. For high SNRs, the BLER caused by the
small-distance periodic points dominates the total BLER. A
similar trend for the ISRB algorithm was observed as well.
Hence, for the ISRB and IISRB algorithms, the error floor is
mainly caused by the small-distance periodic points. In order
to lower the error floor of IISRB algorithm, the BLER caused
by the small-distance periodic points should be reduced.

Consider the hard decision process of line 22 of Alg. 1.
If the most likely decision is wrong, the second most likely
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Small−distance periodic points
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Fig. 2. BLERs of the small-distance and large-distance periodic points for
the IISRB algorithm to decode the (837, 726) code over the AWGN channel
when the modulation scheme is BPSK

decision is supposed to be the best choice to be decoded.
The smaller the difference between the maximal reliability
information and the second maximal reliability information,
the greater the probability that the most likely decision is
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wrong.
Based on this intuition, when a periodic point is detected,

the re-selection scheme tries to help the decoder get away from
the periodic point by using the second most likely decision.
The re-selection scheme consists of two steps. The first step
is to identify the existence of a periodic point when the
syndrome vector is a non-zero vector. The second step is to
identify positions of erroneous symbols. A set is defined to
include variable nodes adjacent to unsatisfied check nodes.
This set contains some erroneous symbols. Then, among
the variable nodes belonging to the set, the position of a
variable node which has the smallest difference between its
maximal reliability information and second maximal reliability
information can be identified. If there are multiple variable
nodes having the smallest difference, the first one is selected.
Assume the index of this position isrs n. Let us cj represent
the number of unsatisfied check nodes connected with thej-
th variable node for0 ≤ j < N . The most likely decision
z
(k)
rs n is replaced by the second most likely decisionz̃(k)rs n.

Meanwhile,ϕ
rs n,z

(k)
rs n

is reduced by a preset offsetζ and
ϕ
rs n,z̃

(k)
rs n

is added by the same preset offset. The detailed

re-selection scheme is described in Alg. 5.Here, s(k)i is the
i-th value of the syndrome vectors(k).

Algorithm 5: Re-selection scheme

1 for j = 0 : (N − 1) do
2 z̃

(k)
j = arg

al∈GF (2r)\{z
(k)
j

}
maxR

(k)
j,l ;

3 if (z(k−1) == z(k)) or (z(k−2) == z(k)) then
4 dif R= R

(k)

0,z
(k)
0

;

5 for j = 0 : (N − 1) do
6 us cj = 0;
7 for i ∈ M(j) do
8 if (s

(k)
i > 0) then us cj ++

9 if (us cj > 0) and ((R
(k)

j,z
(k)
j

−R
(k)

j,z̃
(k)
j

) < dif R)

then
10 dif R = (R

(k)

j,z
(k)
j

−R
(k)

j,z̃
(k)
j

);

11 rs n = j;
12

13 ϕ
rs n,z

(k)
rs n

= ϕ
rs n,z

(k)
rs n

− ζ;
14 ϕ

rs n,z̃
(k)
rs n

= ϕ
rs n,z̃

(k)
rs n

+ ζ;

15 z
(k)
rs n = z̃

(k)
rs n;

16 for i ∈ M(rs n) do
17 s

(k)
i = hi · (z(k))T ;

This scheme can be applied to any majority decoding
algorithms. For the ISRB algorithm, this scheme is added
between lines 11 and 12. Similarly, the re-selection schemecan
be inserted at the corresponding position of other algorithms.
“RS-” is prefixed in front of the name of the algorithms to
show that an algorithm adopts the re-selection scheme. For
instance, the ISRB algorithm with the re-selection scheme is
called as the RS-ISRB algorithm.

Fig. 3 shows the BLERs of the RS-IISRB algorithm and
those caused by the low-distance and high-distance periodic
points. Compared with the IISRB algorithm, the BLER caused
by the high-distance periodic points descends to2×10−4 from
1.2×10−3, and the BLER caused by the low-distance periodic
points is reduced to7×10−5 from 4×10−3 when SNR is 4.8
dB. Hence, the rs-selection scheme reduces the occurrences
of both the low-distance and high-distance periodic pointsand
works better on the low-distance periodic points. Even for the
RS-IISRB algorithm, the low-distance periodic points still are
the primary reason for the error floor.
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Fig. 3. BLERs of the small-distance and large-distance periodic points for the
RS-IISRB algorithm to decode the (837, 726) code over the AWGN channel
when the modulation scheme is BPSK

The re-selection scheme helps the decoding algorithm cor-
rect some periodic points. It is likely that the decoding algo-
rithm goes out of a periodic point temporarily, and goes back
to the same periodic point or results in another periodic point.
Therefore, even with the re-selection scheme, the decoding
algorithm still encounters the error floor problem. Moreover,
the re-selection scheme works better on the small-distance
periodic points because in general a small-distance periodic
point involves fewer unsatisfied check nodes than a large-
distance periodic point.

IV. PERFORMANCEEVALUATION

A. Error Performance andAverage Numbers of Iterations

The BPSK modulation scheme, the additive white Gaussian
noise (AWGN) channel with a single-sided power spectral
densityN0, and a 6-bit uniform quantization with 64 levels
which has an interval length∆ = 0.0625 are used in our
numerical simulations. The maximum number of iterations is
50, i.e.,Imax = 50. Our simulations focus on C1, C2, and C3,
whose parity check matrices have small column weights, as
well as a (255,175) cyclic LDPC code over GF(28) constructed
with the method as describe in [19, Example 4], because it has
a large column weight of 16.

We first compare the performance of the soft-reliability
based algorithms. The ISRB, IISRB and RS-IISRB algorithms
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are used to decode the (255, 175) code. For the ISRB
algorithm, different values ofλ = 4l for l = 1, 2, · · · , 8,
were tried, andλ = 16 leads to the best performance. For
the new reliability information update, different combinations
of ξ1 and ξ2 were tested. Since they are weighting factors,
we fix ξ2 = 1 and try different values forξ1. As shown in
Fig. 4, for the (255, 175) code, (ξ1 = 7, ξ2 = 1) results in
the best error performance. The real values from 6.2 to 7 with
a step size of 0.2 forξ1 and ξ2 = 1 were tested, shown in
Fig. 5. Performance differences between different real value
coefficients are very small. Henceforth, integer values areused
for ξ1 andξ2 to reduce complexity.
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Fig. 4. The impact of different integer values forξ1 on the BLER of the
IISRB algorithm for the (255, 175) code whenImax = 50 and the modulation
scheme is BPSK over the AWGN channel
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Fig. 5. The impact of different real values forξ1 on the BLER of the IISRB
algorithm to decode the (255, 175) code whenImax = 50 and the modulation
scheme is BPSK over the AWGN channel

The BLER curves of the ISRB, IISRB, RS-IISRB and
Min-Max algorithms for the (255,175) code are shown in
Fig. 6. The IISRB algorithm has a 0.15 dB coding gain versus

the ISRB algorithm in this case. The RS-IISRB algorithm
also achieves a slight improvement compared to the IISRB
algorithm and has a performance loss of about 0.4 dB versus
the Min-Max algorithm.
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Fig. 6. Block error rates of the ISRB, IISRB and RS-IISRB algorithms for
the (255, 175) code whenImax = 50 and the modulation scheme is BPSK
over the AWGN channel

If a total of T iterations is used to decodeK received
words, the average number of iterations per received word is
T/K. The average numbers of iterations per received word
for the soft-reliability algorithms are compared in Table I,
whereK is chosen such that at least 100 erroneous decoded
words are observed for each SNR. Table I shows that both
the RS-IISRB and IISRB algorithmsrequire fewer iterations
than the ISRB algorithm. At 4.7 dB,the average number of
iterations of the IISRB algorithm is fewer by10% than that
of the ISRB algorithm.The advantage of the IISRB and RS-
IISRB algorithm is even more pronounced for low SNRs.

TABLE I
AVERAGE NUMBER OF ITERATIONS OF THEM IN-MAX (nm = 16), ISRB,

IISRB AND RS-IISRBALGORITHMS FOR THE(255, 175)CODE WHEN

Imax = 50 AND THE MODULATION SCHEME IS BPSKOVER THE AWGN
CHANNEL

Eb/N0 Min-Max ISRB IISRB RS-IISRB
(dB) [26] [27]
4.0 2.35 18.76 11.58 11.25
4.1 1.91 13.25 8.17 7.85
4.2 1.60 9.10 5.78 5.71
4.3 1.36 6.46 4.46 4.41
4.4 N/A 4.59 3.59 3.59
4.5 N/A 3.68 3.06 3.05
4.6 N/A 3.10 2.71 2.70
4.7 N/A 2.74 2.46 2.46
4.8 N/A 2.50 2.27 2.28

The ISRB, IISRB and RS-IISRB algorithms are also used
to decode the (837, 726) code. The best BLER performance
of the IISRB algorithm is achieved whenξ1 = 4 andξ2 = 1.
Fig. 7 compares the BLERs of the ISRB, IISRB, RS-IISRB
and Min-Max algorithms for this code. The IISRB algorithm
has a 0.2 dB coding gain versus the ISRB algorithm, but both
algorithms show an error floor around10−3. Compared with
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Fig. 7. Block error rates of the ISRB, IISRB and RS-IISRB algorithms for
the (837, 726) code whenImax = 50 and the modulation scheme is BPSK
over the AWGN channel

these two algorithms, for low SNRs the RS-IISRB algorithm
shows a slight improvement, and for high SNRs the RS-IISRB
algorithm lowers the error floor to below10−5 and has a
performance loss of only 0.6 dB versus the Min-Max algorithm
at the BLER of10−3.

The average numbers of iterations for the (837,726) code
with different SNRs are listed in Table II.The average numbers
of iterations required by the IISRB and RS-IISRB algorithms
are reduced by at least 20% when theImax = 50. Iterations
required by the RS-IISRB algorithm is slightly fewer than that
of the IISRB algorithm because of the re-selection scheme. In
addition, we compare the running time of different decoding
algorithms (implemented in C) on a DELL Optiplex 755.
To decode 10,000 codewords of the (837,726) code over the
AWGN channel at the SNR of 5.4 dB, the ISRB, IISRB and
RS-IISRB algorithms run 22.22, 19.48 and 19.37 seconds,
respectively. In terms of the running time, RS-IISRB< IISRB
< ISRB, which is consistent with the comparison based on the
average number of iterations.

TABLE II
AVERAGE NUMBER OF ITERATIONS OF THEISRB, IISRBAND RS-IISRB

ALGORITHMS FOR THE(837, 726)CODE WHENImax = 50 AND THE
MODULATION SCHEME IS BPSKOVER THE AWGN CHANNEL

Eb/N0 (dB) ISRB [27] IISRB RS-IISRB
4.5 22.18 10.58 9.97
4.6 16.52 8.22 7.62
4.7 12.69 6.54 6.30
4.8 9.40 5.49 5.33
4.9 7.44 4.79 4.64
5.0 5.99 4.20 4.12
5.1 5.21 3.80 3.71
5.2 4.53 3.44 3.38
5.3 4.06 3.15 3.10
5.4 3.66 2.90 2.87

For C1, C2 and C3, the BLERs of the RS-IISRB algorithm
are shown with the dashed curves in Fig. 1. For C1 and C2,
ξ1 = 4, ξ2 = 1, λ = 16, ζ = 32. For C3, ξ1 = 5, ξ2 = 1,
λ = 16, ζ = 32. The RS-IISRB algorithm improves the BLER

performance and lowers the error floor for all three codes. In
Fig. 1, for C1, the simulation result for the RS-ISRB algorithm
is shown as well, which does not adopt the new reliability
information update but the re-selection scheme. It appearsthat
the re-selection scheme also provides some performance gain.
If both improvements are applied, the RS-IISRB algorithm
achieves a greater performance gain.

Next, we compare the performances of hard-reliability
based MLGD algorithms. The EIHRB-INIT algorithm [30]
is a simplified version of the EIHRB algorithm without the
recalculation of the extrinsic information. The RS-IEIHRB
algorithm is developed by integrating the re-selection scheme
describe in Section III-B into the IEIHRB algorithm.
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Fig. 8. Block error rates of hard-reliability based algorithms for the (255,175)
code whenImax = 50 and the modulation scheme is BPSK over the AWGN
channel

Fig. 8 shows the BLERs of different hard-reliability based
algorithms for the (255,175) code, and Table III lists the
average numbers of iterations whenImax = 50. For the
EIHRB-INIT and EIHRB algorithm,c1 = 4 and c2 = 15.
For the IEIHRB and RS-IEIHRB algorithm,c1 = 1, c2 = 63,
c3 = 12 andζ = 16. For the (255,175) code the new reliability
information update provides about 0.05 dB performance gain,
and the re-selection scheme provides another 0.05 dB perfor-
mance gain. Hence, compared with the EIHRB algorithm, the
RS-IEIHRB algorithm has about 0.1 dB performance gain, and
the average number of iterations required by the RS-IEIHRB
algorithm is reduced by about30%.

Fig. 9 compares the BLERs of hard-reliability based al-
gorithms for different non-binary LDPC codes with different
column weights. For C1 and C2,c1 = 10, c2 = 63, c3 = 2 and
ζ = 32. For C3,c1 = 11, c2 = 63, c3 = 2 andζ = 32. For the
(837,726) code, the EIHRB algorithm also has an error floor
of 10−3. For low SNRs, the IEIHRB algorithm outperforms
the EIHRB algorithm and the RS-IEIHRB algorithm reduces
the error floor to a level of10−5. In the error floor region,
the EIHRB algorithm is better than the IEIHRB algorithm
because of the use ofz(k)i,t and recalculating the extrinsic
information in the latter. The two improvements in Section III
alsohelp to reduce the average number of iterations by about
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Fig. 9. Block error rates of hard-reliability based algorithms for different non-binary LDPC codes with different column weights whenImax = 50 and the
modulation scheme is BPSK over the AWGN channel

TABLE III
AVERAGE NUMBER OF ITERATIONS OF THE HARD-RELIABILITY BASED

ALGORITHMS FOR THE(255, 175)CODE WHENImax = 50 AND THE

MODULATION SCHEME IS BPSKOVER THE AWGN CHANNEL

Eb/N0 EIHRB-INIT EIHRB IEIHRB RS-IEIHRB
(dB) [30] [30]
4.0 22.28 18.56 12.67 12.09
4.1 16.48 13.62 8.99 8.85
4.2 12.21 9.54 6.42 6.09
4.3 8.57 7.20 4.70 4.62
4.4 6.44 5.57 3.70 3.69
4.5 5.15 4.70 3.10 3.10
4.6 4.29 4.07 2.73 2.72
4.7 3.75 3.65 2.47 2.47
4.8 3.38 3.33 2.28 2.28
4.9 3.09 3.06 2.14 2.14

20% for the (837,726) code as listed in Table IV. For C2
and C3, the new reliability information update provides some
performance gains for low SNRs, and the error floors are
lowered effectively.

We evaluate the proposed decoding algorithms over block
fading channels, which are widely used in wireless commu-
nication systems involving slow time-frequency hopping or
multi-carrier modulation using orthogonal frequency division
multiplexing technique. We assume that each codeword expe-
riences a block Rayleigh fading channel and that the receiver
has perfect channel state information. Fig. 10 and Fig. 11
show the BLERs and the average numbers of iterations of

TABLE IV
AVERAGE NUMBER OF ITERATIONS OF THE HARD-RELIABILITY BASED

ALGORITHMS ALGORITHM FOR THE (837, 726)CODE WHENImax = 50
AND THE MODULATION SCHEME IS BPSKOVER THE AWGN CHANNEL

Eb/N0 EIHRB-INIT EIHRB IEIHRB RS-IEIHRB
(dB) [30] [30]
4.2 43.01 37.25 28.83 27.49
4.4 32.19 23.09 15.52 14.55
4.6 18.85 12.41 8.29 7.83
4.8 10.57 7.60 5.45 5.22
5.0 6.79 5.49 4.13 4.01
5.2 4.98 4.37 3.36 3.27

different MLGD algorithms for the (837,726) code over a
block Rayleigh fading channel. In Fig. 10, the IISRB and
RS-IISRB algorithms have a gain of about 0.2 dB over the
ISRB algorithm, which is similar to that over the AWGN
channel shown in Fig. 7. At a SNR of 23 dB, the proposed
improvements reduce the average number of iterations by
about5%.

In a word, the two improvements introduced in Section III
apply to both the soft-reliability and hard-reliability based
MLGD algorithms. While both improvements improve the
error performance andrequire fewer iterations on average, the
re-selection scheme lowers the error floor of codes having low
column weights effectively.



10

8 10 12 14 16 18 20 22 24 26 28
10

−3

10
−2

10
−1

10
0

SNR (dB)

B
lo

ck
 E

rr
or

 R
at

e

 

 
ISRB
IISRB
RS−IISRB

17.9 18 18.1
10

−1.41

10
−1.37

Fig. 10. Block error rates of algorithms for the (837, 726) code when
Imax = 50 and the modulation scheme is BPSK over the block Rayleigh
fading channel
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Fig. 11. Average numbers of iterations for different algorithms for the (837,
726) code whenImax = 50 and the modulation scheme is BPSK over the
block Rayleigh fading channel

B. Computational Complexity Reduction

We evaluate impacts on the complexity by the two proposed
improvements and focus on the soft-reliability based MLGD
algorithms first. Assume the quantized input informationqj,t
has a bit width ofω. Without the clipping operation of Eq. (1),
for the ISRB algorithm,R(k)

j,l needsω+⌈log2((λ+Imaxγ)r)⌉
bits and its bit width increases asImax grows. However, for
the IISRB algorithm,R(k)

j,l needs onlyω+⌈log2((ξ1+ξ2γ)r)⌉

bits andImax has no impact onR(k)
j,l ’s bit width. With the

clipping operation,R(k)
j,l needs a smaller bit width in the ISRB

algorithm. However,N2r IAs andN(2r − 1) ICs are needed
per iteration to carry out the clipping operation. In contrast,
there is no accumulation operation in the IISRB and RS-IISRB
algorithms. Thus, saturation is not an issue for the IISRB
and RS-IISRB algorithms, and the clipping operation is not
needed.

For the IISRB algorithm, let us consider the initialization
step first. There areN2r ϕj,l’s. To computeϕj,l’s needsNr2r

IAs. Becausemaxl ϕt,l = ϕt,zt and there areNγ φi,j ’s,
Nγ(ρ−2) ICs are needed to calculateφi,j ’s. The calculations
of ξ1ϕj,l’s andξ2φi,j ’s needN2r andNγρ IMs, respectively.
Therefore, the initialization step needsNr2r IAs, N2r+Nγρ
IMs andNγ(ρ− 2) ICs.

We now analyze the complexity per iteration of the IISRB
algorithm. Each iteration needsMρ FMs andM(ρ− 1) FAs
to calculate the syndromes(k). Line 16 in Alg. 1 can be
reformulated as:

σ
(k)
i,j = h−1

i,j s
(k)
i + z

(k)
j (5)

Hence,Nγ FAs andNγ FMs are needed to calculateσ(k)
i,j ’s.

Assume there areu(k)j (0 < u
(k)
j ≤ γ) different values among

σ
(k)
i,j ’s for eachj, thenu(k)j R

(k+1)
j,l ’s need to be updated. To

computeψ(k)
j,l ’s andR(k+1)

j,l ’s, γ−u(k)j andu(k)j IAs are needed,

respectively, for eachj. For z(k+1)
j , R(k+1)

j,z
(k+1)
j

must be one

of R(k+1)
j,zj

and thoseR(k+1)
j,l updated in thek-th iteration. To

make the hard decisions,Nγ ICs are needed at most. Hence, in
the worst case, each iteration of the IISRB algorithm requires
2Nγ FMs, 2Nγ−M FAs,Nγ IAs andNγ ICs (Mρ = Nγ).
Compared with the ISRB algorithm, the IISRB algorithm saves
N2r IAs andN(2r+1 − 2 − γ) ICs for each iteration, while
requiring the same numbers of FAs and FMs. This saving is
significant if 2r is large.

Let us calculate computational complexity overhead due to
the re-selection scheme.z̃ = (z̃0, z̃1, · · · , z̃N−1) represents the
second most likely decision of the received wordy. To acquire
z̃j in the initialization step,r − 1 ICs are needed for eachj,
becauser-bit representations of̃zj and zj differ by one bit
and there arer elements over GF(2r) satisfying this constraint.
Hence, the initialization step of the RS-IISRB algorithm needs
N(r−1) ICs more than that of the IISRB algorithm. For each
iteration, the second maximum amongR(k)

j,l ’s must be one

of R(k)
j,z̃j

, R(k)
j,zj

and thoseR(k)
j,l ’s updated. It needs at most

N(γ + 1) ICs per iteration. Line 3 of Alg. 5 needs2N ICs
to identify the existence of a periodic point.Nγ IAs andNγ
ICs are needed to calculate uscj . The calculation ofdif R
needs2N ICs andN IAs. ϕ

rs n,z
(k)
rs n

andϕ
rs n,z̃

(k)
rs n

need two
IAs. After the re-selection scheme, there areγ syndromes to
be recalculated so that Eq. (5) can be applied, requiring2γ
FAs andγ FMs. Therefore, the RS-IISRB algorithm needs2γ
FAs,γ FMs,Nγ+N+2 IAs and5N+2Nγ ICs per iteration
more than the IISRB algorithm.

Complexities of the hard-reliability based algorithms can
be analyzed similarly. The IEIHRB algorithm has the same
computational complexity per iteration as the IISRB algorithm,
because they have the same iteration procedure. For the same
reason, the RS-IEIHRB algorithm has the same computational
complexity per iteration as the RS-IISRB algorithm.

Tables V and VI compare computational complexities of
various decoding algorithms. For the initialization step,the
numbers of IMs of the IISRB and RS-IISRB algorithms are
greater than that of the ISRB algorithm because the calculation
of ξ2φi,j is done in initialization to reduce computational
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TABLE V
COMPUTATIONAL COMPLEXITIES OF THE INITIALIZATION STEP FOR VARIOUS DECODING ALGORITHM TO DECODE ANLDPC CODE OVERGF(2r) WITH

AN M ×N PARITY CHECK MATRIX WHOSE COLUMN AND ROW WEIGHTS AREγ AND ρ

Algorithms IA IM IC ID Floor
ISRB [27] Nr2r N2r MN(2r − 1)(3ρ − 6) 0 0

IISRB Nr2r N2r +Nγρ Nγ(ρ − 2) 0 0
RS-IISRB Nr2r N2r +Nγρ Nγ(ρ − 2) +N(r − 1) 0 0

EIHRB [30] N2r(r + 2) 0 N2r N2r N2r

IEIHRB N2r(r + 2) 0 N2r N2r N2r

RS-IEIHRB N2r(r + 2) 0 N2r +N(r − 1) N2r N2r

TABLE VI
COMPUTATIONAL COMPLEXITIES PER ITERATION FOR VARIOUS DECODING ALGORITHM TO DECODE AN LDPC CODE OVERGF(2r) WITH AN M ×N

PARITY CHECK MATRIX WHOSE COLUMN AND ROW WEIGHTS AREγ AND ρ

Algorithms FA FM IA IC
ISRB [27] 2Nγ −M 2Nγ Nγ +N2r 2N2r − 2N

IISRB 2Nγ −M 2Nγ Nγ Nγ
RS-IISRB 2Nγ −M + 2γ 2Nγ + γ 2Nγ +N + 2 5N + 3Nγ

EIHRB [30] 3Nγ − 2M 3Nγ 2Nγ +N2r 2N2r − 2N +Nγ
IEIHRB 2Nγ −M 2Nγ Nγ Nγ

RS-IEIHRB 2Nγ −M + 2γ 2Nγ + γ 2Nγ +N + 2 5N + 3Nγ

complexities of iterations. This is a good trade-off for com-
putational complexity. The number of ICs needed by the
initialization step of the ISRB algorithm provided in [27,
Section III-A] is significantly greater than those of the other
algorithms. This is because in [27],φi,j ’s are calculated for
everyi andj, andmaxl ϕt,l’s are re-calculated for eachφi,j .
For each iteration, the numbers of integer operations required
by the ISRB and EIHRB algorithms scale with2r, the order
of the finite field. With the new reliability information update,
the numbers of integer operations are reduced greatly and are
now independent of2r. The re-selection scheme incurs some
additional complexity, but complexities of the RS-IISRB and
RS-IEIHRB algorithms are still lower than those of the ISRB
and EIHRB algorithms, respectively.

Tables VII and VIII list the numbers of various operations
for initialization and each iteration, respectively, needed by
various decoding algorithms for the (255,175) code. For ini-
tialization, the ISRB algorithm needs significantly more ICs
than the other algorithms. When the order of the finite field
is higher, our improved algorithms reduce the numbers of IAs
and ICs for each iteration significantly.

From a perspective of the computational complexity, the
IISRB and IEIHRB algorithms are the best. The re-selection
scheme needs more finite field operations and integer opera-
tions. All the improved algorithms are simpler than the ISRB
and EIHRB algorithms.

Let us consider the memory overhead required by the
two improvements. Our first improvement—the new reliability
information update—does not need any extra memory units.
The second improvement—the re-selection scheme—needs to
storez(k−1) andz(k−2) and hence requires2Nr extra memory
bits. Hence, the re-selection scheme increases the memory
requirement slightly, but it does lower the error floor.

V. CONCLUSION

In this paper, we propose two improvements to the soft-
reliability and hard-reliability based MLGD algorithms for

TABLE VII
COMPUTATIONAL COMPLEXITIES OF THE INITIALIZATION STEP FOR

VARIOUS DECODING ALGORITHMS TO DECODE THE(255,175)CODE

Algorithm IA IM IC ID Floor
ISRB [27] 522240 65280 696417750 0 0

IISRB 522240 130560 57120 0 0
RS-IISRB 522240 130560 58905 0 0

EIHRB [30] 522750 0 65280 65280 65280
IEIHRB 522750 0 65280 65280 65280

RS-IEIHRB 522750 0 67065 65280 65280

TABLE VIII
COMPUTATIONAL COMPLEXITIES REQUIRED PER ITERATION FOR VARIOUS

DECODING ALGORITHM TO DECODE THE(255,175)CODE

Algorithm FA FM IA IC
ISRB [27] 7905 8160 69360 130050

IISRB 7905 8160 4080 4080
RS-IISRB 7937 8176 8417 13515

EIHRB [30] 11730 12240 73440 134130
IEIHRB 7905 8160 4080 4080

RS-IEIHRB 7937 8176 8417 13515

non-binary LDPC codes. The first improvement—the new reli-
ability information update—helps the reliability-based MLGD
algorithms achieve better BLERs,require fewer iterations, and
have lower complexities. The second improvement—the re-
selection scheme—results in a better error performance,fewer
iterations on average, and a lower error floor. Although the
re-selection scheme needs additional complexity, the MLGD
algorithms with the re-selection scheme still require lower
computational complexities than the existing MLGD algo-
rithms.
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