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Optimization
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Abstract

In this paper we consider a probabilistic signal-to-interference-and-noise ratio (SINR) constrained
problem for transmit beamforming design in the presence of imperfect channel state information (CSI),
under a multiuser multiple-input single-output (MISO) downlink scenario. In particular, we deal with
outage-based quality-of-service constraints, where the probability of each user’s SINR not satisfying a
service requirement must not fall below a given outage probability specification. The study of solution
approaches to the probabilistic SINR constrained problem is important because CSI errors are often
present in practical systems and they may cause substantialSINR outages if not handled properly.
However, a major technical challenge is how to process the probabilistic SINR constraints. To tackle
this, we propose a novel relaxation-restriction (RAR) approach, which consists of two key ingredients—
semidefinite relaxation (SDR), and analytic tools for conservatively approximating probabilistic con-
straints. The underlying goal is to establish approximate probabilistic SINR constrained formulations in
the form of convex conic optimization problems, so that theycan be readily implemented by available
solvers. Using either an intuitive worst-case argument or specialized probabilistic results, we develop
various conservative approximation schemes for processing probabilistic constraints with quadratic uncer-
tainties. Consequently, we obtain several RAR alternatives for handling the probabilistic SINR constrained
problem. Our techniques apply to both complex Gaussian CSI errors and i.i.d. bounded CSI errors
with unknown distribution. Moreover, results obtained from our extensive simulations show that the
proposed RAR methods significantly improve upon existing ones, both in terms of solution quality and
computational complexity.
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I. INTRODUCTION

In multi-antenna multiuser downlinks, linear transmit beamforming has been recognized as an impor-

tant technique, capable of leveraging quality of service (QoS) and increasing limits on the number of

users served; see, e.g., the review article [3] and the references therein. Transmit beamforming design

approaches developed in this context have not only been proven to offer efficient and flexible solutions

for QoS optimization and interference management in standard downlinks, but have also been modified

or generalized to deal with designs arising from frontier scenarios, such as relay networks [3], cognitive

radios [4], and multicell coordinated downlinks [5]–[7].

In transmit beamforming, a very representative problem setting is the unicast multi-input single-output

(MISO) downlink scenario, wherein a multi-antenna base station simultaneously transmits data streams

to a number of single-antenna users, each stream for a designated user, by carefully directing transmit

beams to the users. The problem of interest is to provide a signal-to-interference-and-noise ratio (SINR)

constrained design formulation, in which transmit beamformers for the users are sought, so that each

user is served with a QoS, characterized by the SINR, no less than a prescribed requirement, and that the

transmit power is minimized. The SINR constrained problem is a meaningful and frequently used design

formulation in practice, and essentially the same problem formulation can be seen in other works, such as

those in the aforementioned frontier scenarios [6], [8], [9]. It is also a fundamentally intriguing problem.

There are three parallel solution approaches to the problem, namely, uplink-downlink duality [10], [11],

semidefinite relaxation (SDR) [5], [12], and the second-order cone programming (SOCP) formulation [13].

Each of those approaches is elegant, offering different implications both in theory and in practical

implementations. They also serve as stepping stones for more advanced designs, such as those under

imperfect channel state information (CSI) effects.

The SINR constrained problem, like many other transmit optimization problems, is based on the

assumption that the downlink CSI is perfectly available at the base station. Unfortunately, such an

assumption generally does not hold in practice [14]. In the time division duplex (TDD) setting, where

there is a reciprocity between the uplink and downlink channels, the downlink CSI is typically acquired

by uplink channel estimation from training data. Channel estimation errors, which are caused by noise

and a limited amount of training data, result in CSI errors inthis setting. In the frequency division

duplex (FDD) setting, CSI acquisition is often achieved by CSI feedback with limited rates. As a result,

quantization errors arising from the limited feedback leadto imperfect CSI. In addition, CSI may become

somewhat outdated if the user mobility speed happens to be faster than the CSI update speed. If one
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uses the corrupt CSI directly to design the transmit beamformers, then the users may experience severe

SINR outages and not be able to receive their anticipated QoSlevels.

Recently, there has been much attention on transmit beamforming designs that are robust against

CSI errors. In particular, it is of significant interest to consider “safe” SINR constrained formulations

under various CSI error models, where users’ SINR requirements must be satisfied even with the worst

possible CSI errors, or, alternatively, with high probability. One commonly considered formulation at

present is the worst-case SINR constrained problem, in which the CSI errors are assumed to lie in

a bounded set (known as theuncertainty set). This worst-case robust problem appears to be a hard

(nonconvex) problem, since the worst-case SINR constraints are semi-infinite and indefinite quadratic.

Several concurrent approximation schemes have been proposed to tackle the worst-case robust problem;

notable works include the conservative SOCP formulation [15], the robust MMSE formulation [16],

[17], and SDR [18]. The beauty of these works lies in the careful combination of robust optimization

results [19] and problem formulations, leading to convex and tractable design solutions.

Another safe formulation, which is the focus of this paper, is theprobabilistic, or outage-based, SINR

constrained problem. In this formulation, we assume a random CSI error model, such as the popular

complex Gaussian model, and the SINR outage probability of each user must be kept below a given

specification. Unfortunately, while the worst-case SINR constrained problem is considered hard to solve

already, this is even more so with the probabilistic SINR constrained problem— Probabilistic SINR

constraints generally have no closed form expressions and are unlikely to be easily handled in an exact

way. Thus, one has to resort to approximate design solutions. To date, there are very few works on the

probabilistic SINR constrained problem under the unicast downlink scenario. In [20], the authors fix the

transmit beam directions as zero forcing and then deal with aprobabilistic power control problem. In

[21], a conservative SOCP formulation is developed using some advanced results in chance constrained

optimization [22], [23]. A similar approach is presented in[24], where the robust MMSE formulation is

considered.

In this paper we propose several convex optimization solutions for approximating the probabilistic SINR

constrained problem. Our approach is based on a relaxation-restriction (RAR) methodology. Specifically,

in the relaxation step, we employ SDR to linearize the quadratic terms in the SINR expression. However,

this step alone does not lead to an efficiently solvable formulation, because the probabilistic constraints

imposed on the linearized SINR expressions are still nonconvex. We circumvent this problem in the

restriction step, where we first derive various analytic upper bounds on theviolation probability (i.e.,

the probability that the constraints on the linearized SINRexpressions are violated). Such upper bounds
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serve as sufficient conditions for the probabilistic constraints to hold, hence the term “restriction”. Next,

we show that our derived bounds are efficiently computable, which, together with the results from the

relaxation step, leads to efficiently solvable approximations of the original probabilistic SINR constrained

beamforming problem. It should be noted that the above restriction approach has many advantages. First, it

allows one to generate feasible solutions to the probabilistic constraints, even when there is no closed form

expression for the violation probability, or when the closed form expression is not efficiently computable.

Secondly, while it may be difficult to derive closed form expressions for the violation probability, it

is usually much easier to derive upper bounds on it, thanks tothe many powerful techniques from

the probability theory literature. Thirdly, there is usually more than one way to derive upper bounds

on the violation probability, and this offers the possibility of trading approximation performance with

computational complexity. These advantages will become clear in our subsequent exposition.

The rest of this paper is organized as follows. The problem statement of the outage-based SINR

constrained robust beamforming design problem is given in Section II. The idea of the proposed RAR

method is introduced in Section III. In Sections IV and V, various RAR formulations for complex

Gaussian CSI errors are developed using either robust optimization or probabilistic techniques. An RAR

formulation for i.i.d. bounded CSI errors is also presentedin Section V. Simulation results are then

presented in Section VI, and conclusions are drawn in Section VII.

Notations: We use boldfaced lowercase letters, e.g.,a, to represent vectors and uppercase letters,

e.g.,A, to represent matrices. The notationsRn, Cn, Sn, andHn stand for the sets ofn-dimensional

real vectors, complex vectors, real symmetric matrices andcomplex Hermitian matrices, respectively. The

superscripts ‘T ’ and ‘H ’ represent the transpose and (Hermitian) conjugate transpose, respectively.A � 0

means that the matrixA is positive semidefinite.Tr(A) andλmax(A) denote the trace and maximum

eigenvalue ofA, respectively.vec(A) stands for the vector obtained by stacking the column vectors of

A. [a]i and[A]ij (or simplyai andAij) stand for theith entry ofa and(i, j)th entry ofA, respectively.

For a complexA, we denote byRe{A} andIm{A} its real and imaginary parts, respectively.In denotes

then×n identity matrix. Given scalarsa1, . . . , an, we useDiag(a1, . . . , an) to denote then×n diagonal

matrix whoseith diagonal entry isai. ‖ · ‖ and ‖ · ‖F represent the vector Euclidean norm and matrix

Frobenius norm, respectively.E{·}, Prob{·}, and exp(·) denote the statistical expectation, probability

function and exponential function, respectively. We writex ∼ CN (µ,C) if x−µ is a circular symmetric

complex Gaussian random vector with covariance matrixC � 0.
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II. PROBLEM FORMULATION

We focus on a downlink multiuser MISO scenario, in which the base station, or the transmitter, sends

parallel data streams to multiple users over the same channel. The transmission is unicast; i.e., each

data stream is exclusively for one user. The base station is equipped withNt transmit antennae and the

signaling strategy is transmit beamforming. Letx(t) ∈ CNt denote the multi-antenna transmit signal

vector of the base station at timet. We have the following transmit signal model:

x(t) =

K
∑

k=1

wksk(t), (1)

wherewk ∈ CNt is the transmit beamforming vector for userk, K is the number of users, andsk(t) is

the user-k data stream, which is assumed to have zero mean and unit power(i.e.,E{|sk(t)|2} = 1). It is

also assumed thatsk(t) is statistically independent of one another. For useri, the received signal can be

modeled as

yi(t) = hH
i x(t) + ni(t), (2)

wherehi ∈ CNt is the channel from the base station to useri, andni(t) is an additive noise, which is

assumed to have zero mean and varianceσ2
i > 0.

A common assumption in transmit beamforming is that the basestation has perfect knowledge of

h1, . . . ,hK ; i.e., the so-called perfect CSI setting. However, as discussed in detail in the Introduction,

the base station may not have perfect CSI in general. In this work, the CSI is modeled as follows:

hi = h̄i + ei, i = 1, . . . ,K,

wherehi ∈ CNt is the actual channel,̄hi ∈ CNt is the presumed channel at the base station (also

called the imperfect CSI), andei ∈ CNt is the respective error that is assumed to be random. Our

development will concentrate mainly on complex Gaussian CSI errors, which is a commonly adopted

model. Specifically, we assume that

ei ∼ CN (0,Ci)

for some known error covarianceCi � 0, i = 1, . . . ,K.

The goal here is to design beamforming vectorsw1, . . . ,wK such that the QoS of each user satisfies

a prescribed set of requirements under imperfect CSI, whileusing the least possible amount of transmit

power in doing so. To put this into context, let us consider users’ SINRs. Under the model in (1)-(2) and

the associated assumptions, the SINR of useri is

SINRi =
|hH

i wi|2
∑

k 6=i |hH
i wk|2 + σ2

i

.
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To accommodate imperfect CSI knowledge at the base station,which causes uncertainties in the actual

SINRs, we consider the following robust beamforming designproblem:

Probabilistic SINR constrained problem: Given minimum SINR requirementsγ1, . . . , γK > 0 and

maximum tolerable outage probabilitiesρ1, . . . , ρK ∈ (0, 1], solve

min
w1,...,wK∈CNt

K
∑

i=1

‖wi‖2 (3a)

s.t. Probhi∼CN (h̄i,Ci) {SINRi ≥ γi} ≥ 1− ρi, i = 1, . . . ,K. (3b)

Formulation (3) is an instance of the so-calledchance constrained optimization problemdue to the

presence of the probabilistic constraints (3b), and it willbe the main focus of this paper. In (3), the design

parametersρi’s govern service fidelity, making sure that each user, say, user i, is served with an SINR

no less thanγi at least(1 − ρi) × 100% of the time. In fact, the simulation results in Section VI will

demonstrate that a “non-robust design”; i.e., designing the beamformers by running the perfect-CSI-based

SINR constrained problem with actual channelshi substituted by the presumed channelsh̄i, can suffer

from serious SINR outage. Moreover, it should be noted that there is a tradeoff between service fidelity

and design conservatism. On one hand, it is desirable to request higher service fidelity by using small

values withρi’s. On the other hand, the design in (3) would become more conservative asρi’s decrease.

In particular, for very smallρi’s, one may end up with design solutions that have unacceptably large

transmit power, or there may be no feasible solution to (3).

Although the probabilistic SINR constrained problem in (3)is a meaningful design criterion, it is

a very hard problem. The main difficulty is that the probability functions in (3b) do not yield simple

closed form expressions for the considered CSI error distribution models. Thus, one may only resort to

approximation methods. In the next section we will describeour proposed approximation approach.

III. T HE RELAXATION -RESTRICTION APPROACH

To handle the main problem (3), we propose a novel relaxation-restriction (RAR) approach. RAR-based

methods feature the use of convex optimization techniques to approximate problem (3). Hence, they can

be efficiently implemented by available convex optimization software.

A. Relaxation Step

Let us first elaborate on the first step of RAR— relaxation. Themotivation is that for eachi, the

inequalitySINRi ≥ γi is nonconvex inw1, . . . ,wK ; specifically, it is indefinite quadratic. We handle this
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issue by semidefinite relaxation (SDR) [3], [25]. To illustrate SDR for the probabilistic SINR constrained

problem, we note that problem (3) can be equivalently represented by

min
W1,...,WK∈HNt

K
∑

i=1

Tr(Wi) (4a)

s.t. Prob







(h̄i + ei)
H





1

γi
Wi −

∑

k 6=i

Wk



 (h̄i + ei) ≥ σ2
i







≥ 1− ρi, i = 1, . . . ,K,

(4b)

W1, . . . ,WK � 0, (4c)

rank(Wi) = 1, i = 1, . . . ,K, (4d)

where the connection between (3) and (4) lies in the feasiblepoint equivalence

Wi = wiw
H
i , i = 1, . . . ,K.

The SDR of (4) works by removing the nonconvex rank-one constraints onWi; i.e., to consider the

relaxed problem

min
W1,...,WK∈HNt

K
∑

i=1

Tr(Wi) (5a)

s.t. Prob







(h̄i + ei)
H





1

γi
Wi −

∑

k 6=i

Wk



 (h̄i + ei) ≥ σ2
i







≥ 1− ρi, i = 1, . . . ,K,

(5b)

W1, . . . ,WK � 0. (5c)

The merit of this relaxation is that the inequalities insidethe probability functions in (5b) are linear in

W1, . . . ,WK , which makes the probabilistic constraints in (5b) more manageable. An issue that comes

with SDR is the solution rank— the removal ofrank(Wi) = 1 means that the solution(W1, . . . ,WK)

to problem (5) may have rank higher than one. We shall come back to this issue after presenting the

restriction step.

B. An Information Theoretic Interpretation of the Relaxation Step

The SDR problem (5) has an alternative interpretation from an information-theoretic point of view.

Here, we briefly describe this interpretation and the resulting implications before moving to the restriction
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step of RAR. Consider a general transmission model:

x(t) =

K
∑

i=1

xi(t),

wherexi(t) ∈ CNt is the transmit signal intended for useri. Note that in contrast to the original transmis-

sion model in (1), where we fix the transmit scheme as beamforming by settingxi(t) = wisi(t), here we

do not assume any specific transmit structure. As a slight abuse of notations, letWi = E{xi(t)x
H
i (t)} be

the transmit covariance corresponding to useri. From an information-theoretic perspective, the achievable

rate of useri may be formulated as

Ri = log2

(

1 +
hH
i Wihi

∑

k 6=ih
H
i Wkhi + σ2

i

)

, (6)

where the rates in (6), in bits per channel use, are achieved whenxi(t) are Gaussian distributed (i.e.,

Gaussian codebook). One can easily verify that the SDR problem (5) is precisely the following rate

optimization problem:

min
W1,...,WK∈HNt

K
∑

i=1

Tr(Wi) (7a)

s.t. Probh∼CN (h̄,Ci) {Ri ≥ log2(1 + γi)} ≥ 1− ρi, i = 1, . . . ,K, (7b)

W1, . . . ,WK � 0. (7c)

Specifically, the SDR equivalent (7) is a total power minimization problem that aims to ensure that each

user is served with a minimal rate oflog2(1 + γi) bits per channel use, with an outage probability no

greater thanρi.

With this interpretation of the SDR, we can deduce an interesting implication: If the SDR solution

(W1, . . . ,WK) to (5) does not yield a rank-one structure, then an alternative to transmit beamforming is

to find another practical physical-layer scheme— e.g., a space-time code with appropriate precoding—

to adapt the transmit structures stipulated by the transmitcovariances(W1, . . . ,WK). While our main

interest in this paper is still in transmit beamforming, it is worthwhile to keep such a parallel possibility

in mind, since it eliminates the need for rank-one transmit covariances.

C. Restriction Step

Let us continue to illustrate the second step of RAR— restriction. The relaxation step alone does not

provide a convex approximation of the main problem (3). The SDR probabilistic constraints (5b) remain

intractable, although they appear to be relatively easier to handle than the original counterparts in (3b).
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The restriction step aims to find a convex approximation of (5b), in a restrictive or conservative sense.

More precisely, in the context of the probabilistic SINR constrained problem, the restriction step entails

finding a solution to the following:

Challenge 1: Consider the following chance constraint:

Prob{eHQe+ 2Re{eHr}+ s ≥ 0} ≥ 1− ρ, (8)

wheree ∈ Cn is a standard complex Gaussian vector (i.e.,e ∼ CN (0, In)), the 3-tuple(Q, r, s) ∈
Hn ×Cn ×R is a set of (deterministic) optimization variables, andρ ∈ (0, 1] is fixed. Find anefficiently

computable convex restrictionof (8); i.e., find an efficiently computable convex setS ⊂ Hn×Cn×R×Cℓ

such that whenever(Q, r, s, t) ∈ S, the 3-tuple(Q, r, s) ∈ Hn × Cn × R is feasible for (8).

Note that in the construction of the convex setS, we are allowed to include an extra optimization

variablet ∈ Cℓ, in addition to the original optimization variables(Q, r, s) ∈ Hn×Cn×R. Although the

precise role oft will depend on how the setS is formulated, it suffices to think oft as a slack variable.

It is not hard to see that the SDR probabilistic constraints in (5b) fall in the scope of Challenge 1.

Indeed, for each constraint in (5b), the following correspondence to (8) can be shown:

Q = C
1/2
i





1

γi
Wi −

∑

k 6=i

Wk



C
1/2
i , r = C

1/2
i





1

γi
Wi −

∑

k 6=i

Wk



 h̄i, (9a)

s = h̄H
i





1

γi
Wi −

∑

k 6=i

Wk



 h̄i − σ2
i , ρ = ρi. (9b)

The development of convex restriction methods plays a crucial role in RAR, and this will be our

focus in subsequent sections. By replacing each probabilistic constraint in (5b) with a convex restriction,

we will obtain a convex approximation of the original probabilistic SINR constrained problem. Table I

summarizes all the RAR methods to be proposed in later sections. Note that each RAR method is based

on a different convex restriction. Moreover, all the RAR formulations in Table I are conic problems with

linear matrix inequality constraints and/or second-ordercone constraints, which can be easily solved by

off-the-shelf convex optimization software [26].

The last step of RAR is to provide a feasible beamforming solution (w1, . . . ,wK) to the main

problem (3) by using the RAR solution(W1, . . . ,WK). As is common in all SDR-based methods,

the Wi’s obtained from RAR may have rank higher than one. A standardway of tackling this issue is

to apply some rank-one approximation procedure to(W1, . . . ,WK) to generate a feasible beamforming
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TABLE I. The proposed RAR formulations.

Method RAR Formulation

Method I:

Sphere bounding

(for complex Gaussian

CSI errors)

min
Wi∈H

Nt ,ti∈R,
i=1,...,K

K
∑

i=1

Tr(Wi)

s.t.





Qi + tiINt
ri

rH
i si − tid

2
i



 � 0, i = 1, . . . ,K,

W1, . . . ,WK � 0, t1, . . . , tK ≥ 0;

(10)

whereQi, ri and si are defined in the same way as (9), anddi =
√

Φ−1

χ2
2n

(1− ρi)/2, i =

1, . . . ,K.

Method II:

Bernstein-type

inequality

(for complex Gaussian

CSI errors)

min
Wi∈H

Nt ,xi,yi∈R,
i=1,...,K

K
∑

i=1

Tr(Wi)

s.t. Tr(Qi)−
√

−2 ln(ρi) · xi + ln(ρi) · yi + si ≥ 0, i = 1, . . . ,K,
∥

∥

∥

∥

∥

∥





vec(Qi)
√
2ri





∥

∥

∥

∥

∥

∥

≤ xi, i = 1, . . . , K,

yiINt
+Qi � 0, i = 1, . . . , K,

y1, . . . , yK ≥ 0, W1, . . . ,WK � 0;

(11)

whereQi, ri andsi are defined in the same way as (9),i = 1, . . . ,K.

Method III:

Decomposition into

independent parts

(for complex Gaussian

CSI errors)

min
Wi∈H

Nt ,xi,yi∈R,
i=1,...,K

K
∑

i=1

Tr(Wi)

s.t. si +Tr(Qi) ≥ 2
√

− ln(ρi) · (xi + yi), i = 1, . . . ,K,

1√
2
‖ri‖ ≤ xi, i = 1, . . . ,K,

vi ‖vec(Qi)‖ ≤ yi, i = 1, . . . ,K,

W1, . . . ,WK � 0;

(12)

whereQi, ri andsi are defined in the same way as (9),θ̄i is chosen such that̄θi + ln(1− θ̄i) =

ln(ρi), andvi =
√

− ln(ρi)/θ̄2i , i = 1, . . . ,K.

Method IV:

Decomposition into

independent parts

(for elementwise i.i.d.

and bounded CSI errors

with mean 0 and vari-

anceσ2
e , but otherwise

unknown distribution)

min
Wi∈H

Nt ,ti∈R
2Nt+1

i=1,...,K

K
∑

i=1

Tr(Wi)

s.t. si + σ2
e · Tr(Qi) ≥ 2

√

− ln(ρi) ·
∑2Nt

ℓ=0 [ti]ℓ, ∀i,
√
2‖ri‖ ≤ [ti]0, i = 1, . . . ,K,

(

∑

(j,k)∈Aℓ
v2jk[Qi]

2
jk

)1/2

≤ [ti]ℓ,

ℓ = 1, . . . , 2Nt, i = 1, . . . ,K,

W1, . . . ,WK � 0;

(13)

whereQi, ri and si are defined in the same way as (32),Aℓ are defined in the same way as

Table II, andvjj = 1/
√
8 andvjk = 1 if j 6= k.
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solution (w1, . . . ,wK) to (3); see [25] for a review and references. In our setting, we apply a Gaussian

randomization procedure to a non-rank-one RAR solution. The procedure is provided in Algorithm 1;

the spirit follows that of [27], and readers are referred to [27] for an exposition of the idea. We should

point out that obtaining a feasible RAR solution does not imply that we can always generate a feasible

solution to the main problem (3). This issue has also been identified before in the context of multigroup

multicast beamforming with perfect CSI [27]. However, if the RAR solution happens to give rank-

oneWi for all i, then we can simply solve the rank-one decompositionWi = wiw
H
i and output the

corresponding(w1, . . . ,wK) as the approximate beamforming solution. For such instances, it can be

easily verified that(w1, . . . ,wK) is already feasible for the main problem (3). Rather surprisingly, we

found that the proposed RAR methods returned rank-one solutions in almost all the simulation trials we

ran1. Such empirical finding provides another interesting implication when we consider the information-

theoretic interpretation in the last subsection: Since theRAR methods are essentially the same as convex

restrictions of the outage-based rate optimization problem in (7), the numerical observation that RAR

solutions are almost always rank-one somehow hints that transmit beamforming may inherently be an

optimal physical-layer scheme, at least for the outage-based unicast multiuser MISO downlink scenario

considered here.

As a summary to the solution approximation aspect discussedabove, in most cases a simple rank-one

decompositionWi = wiw
H
i of the RAR solution suffices to produce a feasible solution(w1, . . . ,wK) to

the main problem (3). The more complicated solution approximation procedure in Algorithm 1, proposed

for instances where the RAR solution is not of rank one, is rarely needed in our empirical experience.

IV. RAR METHOD I: SPHEREBOUNDING

In this section we describe our first convex restriction method for Challenge 1. The method is based

on two key ingredients. The first is the following lemma:

Lemma 1 Consider Challenge 1. Suppose that we have a setB ⊂ Cn that satisfies

Prob{e ∈ B} ≥ 1− ρ. (14)

Then, the following implication holds:

δHQδ + 2Re{δHr}+ s ≥ 0,

for all δ ∈ B
=⇒ Eq. (8) in Challenge 1 holds. (15)

1A similar phenomenon was observed in a different problem setting, namely that of the worst-case SINR constrained

design [18].
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Algorithm 1: Gaussian randomization procedure for RAR

Given : A number of randomizationsL, and an optimal solution(W ⋆
1 , . . . ,W

⋆
K) to an employed

RAR formulation.

1 for ℓ = 1, . . . , L do

2 generate random vectorsw(ℓ)
i ∼ CN (0,W ⋆

i ), i = 1, . . . ,K;

3 set beam directionsu(ℓ)
i = w

(ℓ)
i /‖w(ℓ)

i ‖, i = 1, . . . ,K;

4 let p(ℓ)1 , . . . , p
(ℓ)
K be beam powers and obtainp(ℓ)1 , . . . , p

(ℓ)
K as follows: substitute

Wi = piu
(ℓ)
i (u

(ℓ)
i )H , i = 1, . . . ,K, into the RAR problem, solve the problem with respect to

p1, . . . , pK ≥ 0, and setp(ℓ)1 , . . . , p
(ℓ)
K as its solution if the problem is feasible; also, setP (ℓ) to

be the associated optimal objective value if the problem is feasible; otherwise setP (ℓ) = ∞ ;

5 end

6 ℓ⋆ = argminℓ=1,...,L P (ℓ).

Output: ŵ⋆
i =

√

p
(ℓ⋆)
i u

(ℓ⋆)
i , i = 1, . . . ,K, as an approximate solution to the main problem (3).

The proof of Lemma 1 is simple and is given as follows. Letp(e) denote the probability density function

of e. Suppose that (14) and the left-hand side (LHS) of (15) hold.Then, we have the following chain:

Prob{eHQe+ 2Re{rHe}+ s ≥ 0} =

∫

eHQe+2Re{rHe}+s≥0
p(e)de

≥
∫

e∈B
p(e)de

≥ 1− ρ.

Hence, Eq. (8) is satisfied.

Lemma 1 suggests that we can approximate the chance constraint in (8) in a conservative (or restrictive)

fashion by using the worst-case deterministic constraint on the LHS of (15). Moreover, it can be easily

seen that the same idea applies to general chance constraints; i.e., the quadratic functions in (8) and (15)

may be replaced by any arbitrary function. Such an insight (i.e., using worst-case deterministic constraints

to approximate (general) chance constraints) have been alluded to or used in many different contexts;

e.g., [28], [29] in optimization. Here, we are interested inthe chance constraint in (8), which involves

a quadratic function of the standard complex Gaussian vector e. In our method, we chooseB to be a

spherical set; i.e.,

B = {δ ∈ C
n | ‖δ‖ ≤ d}, (16)
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whered is the sphere radius. It can be shown that by choosing

d =

√

Φ−1
χ2

2n

(1− ρ)

2
,

whereΦ−1
χ2

m

(·) is the inverse cumulative distribution function of the (central) Chi-square random variable

with m degrees of freedom, Eq. (14) is satisfied.

The second ingredient is the so-calledS-lemma, which enables us to turn the infinitely many constraints

on the LHS of (15) into a set of tractable constraints. TheS-lemma is given as follows:

Lemma 2 ( S-lemma [30] ) Let fi(x) = xHQix+ 2Re{xHri} + si for i = 0, 1, wherex ∈ Cn and

(Qi, ri, si) ∈ Hn×Cn×R for i = 0, 1. Suppose that there exists anx̂ ∈ Cn satisfyingf1(x̂) < 0. Then,

the following statements are equivalent:

1. f0(x) ≥ 0 for all x ∈ Cn satisfyingf1(x) ≤ 0.

2. There exists at ≥ 0 such that




Q0 r0

rH0 s0



+ t





Q1 r1

rH1 s1



 � 0. (17)

By theS-lemma, the LHS of (15), withB given by (16), can be equivalently represented by an LMI of

the form (17), where(Q0, r0, s0) = (Q, r, s) and(Q1, r1, s1) = (In,0,−d2). We therefore have built a

convex restriction for Challenge 1. To summarize, we have the following:

Method I for Challenge 1 (Sphere bounding): The following feasibility problem is a convex restriction

of (8) in Challenge 1:

Find Q, r, s, t

s.t.





Q+ tIn r

rH s− td2



 � 0,

t ≥ 0,

whered =
√

Φ−1
χ2

2n

(1− ρ)/2.

By first applying SDR and then Method I to the probabilistic SINR constrained problem (3), we obtain

the RAR formulation (10) in Table I. Interestingly, this formulation turns out to be similar to that of

the worst-case robust SDR problem considered in [18]. However, it should be noted that the prior work

does not consider outage probability constraints. Moreover, we show a way of using the worst-case

robust formulation to deal with the probabilistic SINR constrained problem. Finally, by incorporating the
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bisection scheme proposed in [21], which will be consideredin our simulations in Section VI (Example

3), we will be able to further improve the performance of the sphere bounding RAR method.

V. PROBABILITY INEQUALITY APPROACHES

The reader may notice that the development of Method I is strongly motivated by the worst-case robust

optimization paradigm. Indeed, the problem on the LHS of theimplication (15) is precisely a robust

feasibility problem with uncertainty setB. By choosingB judiciously, it is shown that the violation

probability Prob{eHQe + 2Re{rHe} + s < 0} can be controlled, and the resulting robust feasibility

problem is a convex restriction of (8). However, this approach has an intrinsic drawback, namely, it is

difficult to define and analyze an uncertainty setB other than those that have very simple geometry, such

as the spherical set considered in the previous section. Consequently, it is not clear whether there exist

other choices ofB that would lead to better convex restrictive approximations.

As it turns out, one can circumvent the above drawback by using analytic upper bounds on the violation

probability to construct efficiently computable convex restrictions of (8). Specifically, suppose that we

have an efficiently computable convex functionf(Q, r, s, t), wheret is an extra optimization variable,

such that

Prob{eHQe+ 2Re{eHr}+ s < 0} ≤ f(Q, r, s, t). (18)

Then, the constraint

f(Q, r, s, t) ≤ ρ (19)

is, by construction, a convex restriction of (8). An upshot of this approach is that there are many available

techniques for constructing such upper bounds, and each of those bounds yields a convex restriction of (8).

Moreover, it is known [19, Chapter 4] that under some fairly mild conditions, every convex restriction

corresponds to a robust feasibility problem with a suitablydefined uncertainty set. Thus, the above

approach can be viewed as an enhancement of Method I, in the sense that it provides a handle on more

sophisticated uncertainty sets that are difficult to construct directly.

A. Method II: Bernstein-Type Inequality

Let us now illustrate the above approach by showing how a Bernstein-type inequality for Gaussian

quadratic forms can be used to construct a convex restriction of (8). Our approach relies on the following

lemma due to Bechar [31]:
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Lemma 3 Let e ∼ CN (0, In), Q ∈ Hn and r ∈ Cn. Then, for anyη > 0, we have

Prob{eHQe+ 2Re{eHr} ≥ T (η)} ≥ 1− e−η, (20)

where the functionT : R++ → R is defined by

T (η) = Tr(Q)−
√

2η
√

‖Q‖2F + 2‖r‖2 − ηλ+(Q), (21)

with λ+(Q) = max{λmax(−Q), 0}.

Lemma 3 is obtained by extending the corresponding result in[31] for quadratic forms of real-valued

Gaussian random variables. The inequality in (20) is a so-called Bernstein-type inequality2, which bounds

the probability that the quadratic formeHQe+2Re{eHr} of complex Gaussian random variables deviates

from its meanTr(Q).

SinceT (η) is monotonically decreasing, its inverse mappingT−1 : R → R++ is well defined. In

particular, the Bernstein-type inequality in (20) can be expressed as

Prob{eHQe+ 2Re{eHr}+ s ≥ 0} ≥ 1− e−T−1(−s). (22)

As discussed in (18) and (19), the constrainte−T−1(−s) ≤ ρ, or equivalently,

Tr(Q)−
√

−2 ln(ρ)
√

‖Q‖2F + 2‖r‖2 + ln(ρ) · λ+(Q) + s ≥ 0 (23)

serves as a sufficient condition for achieving (8).

While it is not obvious at this stage whether (23) is convex in(Q, r, s) or not, a crucial observation

is that (23) can be equivalently represented by the following system of convex conic inequalities:

Tr (Q)−
√

−2 ln(ρ) · t1 + ln(ρ) · t2 + s ≥ 0, (24a)
√

‖Q‖2F + 2‖r‖2 ≤ t1, (24b)

t2In +Q � 0, (24c)

t2 ≥ 0, (24d)

where t1, t2 ∈ R are slack variables. Therefore, formulation (24) is an efficiently computable convex

restriction of (8). We now summarize the Bernstein-type inequality method as follows:

2Roughly speaking, a Bernstein-type inequality is one whichbounds the probability that a sum of random variables deviates

from its mean. The famous Markov inequality, Chebyshev inequality and Chernoff bounds can all be viewed as instances of

Bernstein-type inequalities.
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Method II for Challenge 1 (Bernstein-type inequality method): The following feasibility problem is

a convex restriction of (8) in Challenge 1:

Find Q, r, s, t

s.t. Tr (Q)−
√

−2 ln(ρ) · t1 + ln(ρ) · t2 + s ≥ 0,
√

‖Q‖2F + 2‖r‖2 ≤ t1,

t2In +Q � 0,

t2 ≥ 0.

Upon applying Method II to (5), we obtain the RAR formulation(11) in Table I. As can be easily

seen from the formulations (10) and (11), the latter has a more complex constraint set and thus a higher

computational complexity in general. However, it will be shown later that the Bernstein-type inequality

method (11) exhibits better approximation performance than the sphere bounding method.

B. Method III: Decomposition into Independent Parts

For both the sphere bounding and Bernstein-type inequalitymethods, the resulting convex restrictions

of (8) contain linear matrix inequality constraints. As such, they could be computationally costly when the

problem size is large. It turns out that one can also develop aconvex restriction of (8) that contains only

second-order cone constraints. The resulting formulationcan thus be solved more efficiently than those

developed using the sphere bounding or Bernstein-type inequality method. The idea is to first decompose

the sumeHQe + 2Re{eHr} + s into several parts, each of which is a sum of independent random

variables. Then, one bounds the moment generating functionof each of those parts and stitch the results

together to obtain an analytic upper bound on the violation probability [32]. To illustrate this approach,

let Q = UΛUH be the spectral decomposition ofQ, whereΛ = Diag(λ1, . . . , λn) andλ1, . . . , λn are

the eigenvalues ofQ. Sincee ∼ CN (0, In) andUH is unitary, we havẽe = UHe ∼ CN (0, In). Thus,

we can write

Ψ = eHQe+ 2Re{eHr} = ẽHΛẽ+ 2Re{eHr} = Ψq +Ψl.

Now, observe that both

Ψq = ẽHΛẽ =

n
∑

ℓ=1

λℓ|eℓ|2 and Ψl = 2Re{eHr} = 2

n
∑

ℓ=1

(Re{rℓ}Re{eℓ}+ Im{rℓ}Im{eℓ})
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are sums of independent random variables. Moreover, it can be shown that for any fixed̄θ < 1,

E
{

exp
(

θ(|eℓ|2 − 1)
)}

=
exp(−θ)

1− θ
≤ exp

(

v2θ2
)

,

E {exp (θ · 2Re{eℓ})} = E {exp (θ · 2Im{eℓ})} = exp

(

1

2
θ2
)

for θ ∈ R,

wherev =
(

−
(

θ̄ + ln
(

1− θ̄
))

/θ̄2
)1/2

< ∞. Thus, for anyp1, p2 > 0 such thatp1 + p2 = 1, the chain

of inequalities

E {exp(u(Tr(Λ)−Ψ))} = E

{

exp

(

p1 ·
(−u)

p1
(Ψq − Tr(Λ)) + p2 ·

(−u)

p2
Ψl

)}

≤ p1E

{

exp

(

− u

p1
(Ψq − Tr(Λ))

)}

+ p2E

{

exp

(

− u

p2
Ψl

)}

(25)

= p1

n
∏

ℓ=1

E

{

exp

(

− u

p1
λℓ(|eℓ|2 − 1)

)}

(26)

+ p2

n
∏

ℓ=1

E

{

exp

(

− u

p2
2Re{rℓ}Re{eℓ}

)}

E

{

exp

(

− u

p2
2Im{rℓ}Im{eℓ}

)}

≤ p1 exp

(

n
∑

ℓ=1

v2
u2λ2

ℓ

p21

)

+ p2 exp

(

n
∑

ℓ=1

1

2

(

u2Re{rℓ}2
p22

+
u2Im{rℓ}2

p22

)

)

(27)

holds whenever−uλℓ/p1 < θ̄ for ℓ = 1, . . . , n, where (25) follows from Jensen’s inequality and (26)

follows from the independence of the random variables inΨq andΨl. By setting

c1 = v2
n
∑

ℓ=1

λ2
ℓ , c2 =

1

2
‖r‖2, T =

√
c1 +

√
c2, p1 =

√
c1
T

, p2 =

√
c2
T

,

we see from (27) that the inequality

E {exp(u(Tr(Λ)−Ψ))} ≤ p1 · exp
(

u2T 2
)

+ p2 · exp
(

u2T 2
)

= exp
(

u2T 2
)

holds whenever|u|T < θ̄v. In particular, by Markov’s inequality, it can be shown thatfor any ζ > 0,

Prob{Tr(Λ)−Ψ ≥ ζ} ≤ inf
0<u<θ̄v/T

{

exp(−uζ) · E {exp(u(Tr(Λ)−Ψ))}
}

=



















exp

(

− ζ2

4T 2

)

for 0 < ζ < 2θ̄vT,

exp

(

− θ̄vζ

T
+ (θ̄v)2

)

for ζ ≥ 2θ̄vT.

(28)

Now, setζ = s+Tr(Λ). Then, the LHS of (28) becomes

Prob{Ψ+ s ≤ 0} = Prob
{

eHQe+ 2Re{eHr}+ s ≤ 0
}

.
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In particular, by imposing the constraint that the right-hand side of (28) is less thanρ and using the fact

thatTr(Λ) = Tr(Q) and
∑n

ℓ=1 λ
2
ℓ = ‖Q‖2F , followed by some tedious derivations (see [32] for details),

we obtain the following method for Challenge 1.

Method III for Challenge 1 (Decomposition into Independent Parts): Given a parameter̄θ < 1, let

v =

(

− θ̄ + ln
(

1− θ̄
)

θ̄2

)1/2

and

µ =







2
√

− ln(ρ), if θ̄v >
√

− ln(ρ),

θ̄v − ln(ρ)
θ̄v

, otherwise.

Then, the following feasibility problem is a convex restriction of (8) in Challenge 1:

Find Q, r, s, t (29)

s.t. s+Tr (Q)− µ(t1 + t2) ≥ 0,

1√
2
‖r‖ ≤ t1,

v‖Q‖F ≤ t2.

Observe that in Method III, we have the flexibility to choose the parameter̄θ. Ideally,θ̄ should be chosen

so that bothµ andv are small, since then the constraints in (29) are easier to satisfy. However, as can be

seen from the definition,µ andv cannot be chosen independently of each other. Our simulation results

suggest that it is better to have a smaller value ofµ; i.e., choosēθ (and hencev) such thatµ = 2
√

− ln(ρ).

Specifically, for a givenρ ∈ (0, 1), we choosēθ such thatv is minimized andµ = 2
√

− ln(ρ). This can

be achieved by solvinḡθv =
√

− ln(ρ), or equivalently,

θ̄ + ln(1− θ̄) = ln(ρ), (30)

which can be done numerically. We remark that for small values of ρ (say,ρ ∈ (0, 0.2)), the solutionθ̄

to (30) can be approximated by

θ̄ ≈ 1− exp(ln(ρ)− 1).

C. Variation on a Theme: i.i.d. Bounded CSI Errors with Unknown Distribution via the Decomposition

Approach

An advantage of the decomposition approach outlined above is that it can be applied to cases where

the distribution of the random vectore is not Gaussian. As an illustration, let us generalize the setting
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considered in the previous section and develop an RAR methodfor handling theelementwise i.i.d. bounded

support model with unknown distribution. In this model, the real and imaginary parts of the CSI error

vectorei are assumed to be independent and have i.i.d. components. Each component has zero mean and

is supported on, say,[−ǫi, ǫi], whereǫi > 0. Again, we pose the restriction step in RAR as the following

generic challenge:

Challenge 2: Consider the following chance constraint:

Prob
{

eTQe+ 2eT r + s ≥ 0
}

≥ 1− ρ, (31)

wheree ∈ Rn is a mean-zero random vector supported on[−
√
3,
√
3]n with independent components,

the 3-tuple(Q, r, s) ∈ Sn × Rn × R is a set of optimization variables, andρ ∈ (0, 1] is fixed. Find

an efficiently computable convex restriction of (31).

Note that Challenge 2 and the SDR probabilistic SINR constrained problem (5) are related via the

following identification:

Q =
ǫ2i
3





Re
{

1
γi

Wi −
∑

k 6=iWk

}

−Im
{

1
γi

Wi −
∑

k 6=iWk

}

Im
{

1
γi

Wi −
∑

k 6=iWk

}

Re
{

1
γi

Wi −
∑

k 6=iWk

}



 , (32a)

r =
ǫi√
3





Re
{(

1
γi

Wi −
∑

k 6=iWk

)

h̄i

}

Im
{(

1
γi

Wi −
∑

k 6=iWk

)

h̄i

}



 , (32b)

s = h̄H
i





1

γi
Wi −

∑

k 6=i

Wk



 h̄i − σ2
i , ρ = ρi. (32c)

To tackle Challenge 2 using the decomposition approach, we first observe that the sumΨ = eTQe+2eT r

can be written as

Ψ =

n
∑

ℓ=1

Qℓℓe
2
ℓ +

∑

1≤ℓ 6=j≤n

Qℓjeℓej + 2

n
∑

ℓ=1

eℓrℓ

= σ2
e

n
∑

ℓ=1

Qℓℓ +

n
∑

ℓ=1









∑

(j,j)∈Aℓ

Qjj(ej − σ2
e)



+





∑

(j,k)∈Aℓ

Qjkejek







+ 2

n
∑

ℓ=1

eℓrℓ

= σ2
e · Tr(Q) +

n
∑

ℓ=1

Ψqℓ +Ψl,

whereσ2
e = E{e21} and the setsA1, . . . ,An are defined as in Table II. In other words, if the(j, k)th

entry of the table is labeledAℓ, then(j, k) ∈ Aℓ.

Using Table II, it is not hard to verify that each of the termsΨq1,Ψq2, . . . ,Ψqn,Ψl is a sum of

independent random variables. Thus, by bounding their moment generating functions and using an
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TABLE II. Construction of the setsA1, . . . ,An.

1 2 · · · n− 1 n

1 A1 A2 · · · An−1 An

2 A2 A3 · · · An A1

...
...

...
. . .

...
...

n− 1 An−1 An · · · An−3 An−2

n An A1 · · · An−2 An−1

argument similar to that in the previous subsection, we obtain the following method for Challenge 2

(again, see [32] for details):

Method IV for Challenge 2 (Decomposition into Independent Parts): The following feasibility

problem is a convex restriction of (31) in Challenge 2:

Find Q, r, s, t

s.t. s+ σ2
e · Tr(Q) ≥ 2

√

− ln(ρ) ·
n
∑

ℓ=0

tℓ,

√
2‖r‖ ≤ t0,





∑

(j,k)∈Aℓ

v2jkQ
2
jk





1/2

≤ tℓ, ℓ = 1, . . . , n,

whereσ2
e = E{e21}, vjj = 1/

√
8 andvjk = 1 if j 6= k, for (j, k) ∈ Aℓ andℓ = 1, . . . , n.

VI. SIMULATION RESULTS

This section shows an extensive set of simulation results illustrating the performance of the proposed

RAR methods.

Let us first describe the general simulation settings. We employ a universal QoS specification for all

users; i.e.,γ1 = · · · = γK , γ, ρ1 = · · · = ρK , ρ. The users’ noise powers are identical and fixed

at σ2
1 = · · · = σ2

K = 0.1. In each simulation trial, the presumed channels{h̄i}Ki=1 are randomly and

independently generated according to the standard complexGaussian distribution.

Next, we provide some implementation details of the RAR methods. The RAR problems (those in Table

I) are solved by the conic optimization solverSeDuMi [33], implemented through the now popularized

and very convenient parser softwareCVX [26]. Then, we check whether a solution(W1, . . . ,WK) to an

September 11, 2018 DRAFT



21

RAR problem is of rank one or not. If yes, then the rank-one decomposition,Wi = wiw
H
i ∀i, is used

to obtain a beamforming solution(w1, . . . ,wK). Otherwise, the Gaussian randomization procedure in

Algorithm 1 is called to generate a feasible(w1, . . . ,wK). Numerically, we declare that(W1, . . . ,WK)

is of rank one if the following conditions hold:

λmax(Wi)

Tr(Wi)
≥ 0.99 for all i = 1, . . . ,K;

i.e., the largest eigenvalue ofWi is at least100 times larger than any of the other eigenvalues. Moreover,

we say that an RAR method is feasible if the RAR problem has a feasible solution and the subsequent

beamforming solution generation procedure is able to output a feasible(w1, . . . ,wK).

The RAR methods are benchmarked against the probabilistic SOCP methods in [21]. The latter are

also implemented bySeDuMi throughCVX. To provide a reference, we also run a conventional perfect-

CSI-based SINR constrained design (e.g., [13]), where the presumed channels{h̄i}Ki=1 are used as if

they were perfect CSI. We will call this the “non-robust method”, for convenience.

A. Simulation Example 1

We start with the simple case ofNt = K = 3; i.e., three antennae at the base station, and three users.

The CSI errors are spatially i.i.d. and have standard complex Gaussian distributions; i.e.,C1 = · · · =
CK = σ2

eINt
, whereσ2

e > 0 denotes the error variance. We setσ2
e = 0.002. The SINR requirement is

γ = 11dB. The outage probability requirement is set toρ = 0.1, which is equivalent to having a90% or

higher chance of satisfying the SINR requirements.

First, we are interested in examining the actual SINR satisfaction probability,Prob{SINRi ≥ γ}, of

the various methods. Figure 1 shows the histograms of the actual SINR satisfaction probabilities over

different channel realizations. To obtain the histograms,we generated500 realizations of the presumed

channels{h̄i}Ki=1. Then, for each channel realization, the actual SINR satisfaction probabilities of all

methods were numerically evaluated using10, 000 randomly generated realizations of the CSI errors

{ei}Ki=1, which should be sufficient in terms of the probability evaluation accuracy. Figure 1 validates

that our RAR methods (and the existing probabilistic SOCP method) indeed adhere to the90% SINR

satisfaction specification. There are two interesting observations, as can be seen from the figure. The first

is with the non-robust method. While the non-robust method is, by nature, expected to violate the SINR

outage specification, its actual SINR satisfaction probabilities are below50% for most of the channel

realizations, which is severe. This reveals that the perfect-CSI-based design can be quite sensitive to

CSI errors. The second is with the conservatism of the various robust methods. The probabilistic SOCP
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Fig. 1. Histograms of the actual SINR satisfaction probabilities of the various methods.Nt = K = 3; C1 = · · · =
CK = 0.002INt

; γ = 11 dB; ρ = 0.1.

method has its actual SINR satisfaction probabilities concentrating at100%, which indicates that it may

be playing too safe in meeting the outage specification. By contrast, our RAR methods seem to be less

conservative. Particularly, among the three methods, RAR Method II (Bernstein-type inequality) appears

to be the most relaxed as observed from its histogram.

Next, we investigate the conservatism of the various robustmethods by evaluating their feasibility

rates; i.e., the chance of getting a feasible beamforming solution under different channel realizations.

Similar to the last investigation,500 channel realizations were used. The obtained result is shown in

Figure 2(a), where the feasibility rates of the various methods are plotted against the SINR requirements

γ. Remarkably, the three RAR methods yield feasibility ratesmuch higher than that of the probabilistic

SOCP method. In particular, RAR Method II has the best feasibility rate performance, which is consistent

with the SINR satisfaction probability result we noted in Figure 1. The feasibility rates of RAR Methods

I and III are a close match: Forγ > 9dB, RAR Method I slightly outperforms RAR Method III; for

γ ≤ 9dB, we see the converse.

In addition to the feasibility rate, it is important to examine the transmit power consumptions of the

design solutions offered by the various robust methods. Figure 2(b) shows the result. It was obtained based

on channel realizations for which all methods yield feasible solutions atγ = 11dB; 181 such realizations
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Fig. 2. Feasibility and transmit power performance of the various methods.Nt = K = 3; ρ = 0.1; spatially i.i.d.

Gaussian CSI errors withσ2

e
= 0.002.

were found out of500 realizations (the same realizations used in the last resultin Figure 2(a)). As can

be seen from Figure 2(b), RAR Method II yields the best average transmit power performance, followed

by RAR Methods I and III (with Method I exhibiting noticeablybetter performance forγ > 15dB), and

then the probabilistic SOCP method in [21]. As a reference, we also plot the transmit powers of the

non-robust method in the figure, so as to get an idea of how muchadditional transmit power would be

needed for the robust methods to accommodate the outage specification. We see that forγ ≤ 11dB, the

transmit power difference between an RAR method and the non-robust method is about1.5dB, which

is reasonable especially when compared to the probabilistic SOCP method. The gaps gradually widen,

otherwise. This seems to indicate that imperfect CSI effects are more difficult to cope with when we

demand higher SINRs.

Now, let us consider the computation times of the various robust methods. The result is illustrated

in Figure 3. To obtain this result, we use a desktop PC with2.13GHz CPU and3GB RAM. Moreover,

instead of calling the convenient parserCVX, we use directSeDuMi implementations of all the methods,

done by careful manual problem transformation and programming. The reason of doing so is to bypass

parsing overheads, which may result in unfair runtime comparisons. From the figure, we see that the

runtime ranking, from the shortest to longest, is: RAR Method III, RAR Method I, RAR Method II, and

the probabilistic SOCP method. Interestingly and coincidently, the runtime ranking of the RAR methods

is exactly the opposite of their performance ranking we see in the previous simulation result.

As the last result in this example, we numerically inspect a technical issue that has much implication to
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Fig. 3. Average runtimes of the various methods.

TABLE III. Ratios of rank-one RAR solutions.

ρ 0.1 0.01

γ (dB) 3 7 11 15 3 7 11 15

Method I 464/464 448/448 404/404 292/292 450/450 424/424 343/343 225/225

Method II 489/489 475/475 441/441 363/363 479/480 463/463 428/428 322/322

Method III 488/488 453/453 389/389 267/267 476/476 421/421 306/306 144/144

the RAR approach— how frequent do the RAR problems yield rank-one solutions. Recall that rank-one

RAR solution instances have the benefits that the beamforming solution generation is simple (simple

rank-one decomposition, no Gaussian randomization), and that feasibility of the RAR problem directly

implies that of beamforming solution generation. Table IIIshows the result. There is a ratio in each field.

The denominator is the realizations count for which the RAR problem is feasible, and the numerator

is the realizations count for which the RAR problem yields a rank-one solution. Again,500 channel

realizations were used. Curiously, almost all the fields in Table III indicate rank-one solution all the time.

We encountered only one non-rank-one instance out of480 for the setting ofρ = 0.01, γ = 3dB, RAR

Method II. We therefore conclude, on the basis of numerical evidence, that occurrence of high-rank RAR

solutions is very rare for the unicast outage-based SINR constrained problem considered here.
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Fig. 4. Performance under spatially correlated Gaussian CSI errors.Nt = K = 8; ρ = 0.01; σ2

e
= 0.002.

B. Simulation Example 2

This example considers more challenging settings, described as follows:Nt = K = 8; spatially

correlated CSI errors whereC1 = · · · = CK = Ce,

[Ce]m,n = σ2
e × 0.9|m−n|,

andσ2
e = 0.002; ρ = 0.01 (or 99% SINR satisfaction probability). We do not run the probabilistic SOCP

method in [21], since, as seen in Figure 3, it is computationally very demanding for large problem sizes.

The same simulation method in Simulation Example 1 was used to produce the results here. Figure 4

shows the resulting feasible rates and average transmit powers. A minor simulation aspect with the transmit

power performance plot in Figure 4(b) is that we chooseγ = 7dB as the pick-up point of feasible channel

realizations of all the methods. We can see that, once again,RAR Method II offers superior performance

over the others. Another observation is that RAR Method III manages to outperform RAR Method I this

time.

Figure 5 illustrates another set of results, where we increase the CSI error varianceσ2
e from 0.002 to

0.01. The number of users is set toK = 6. The feasible realizations pick-up point isγ = 13dB. We can

see similar performance trends as in the previous result in Figure 4.

C. Simulation Example 3

One might have noticed from Simulation Example 1, Figure 1, that none of the robust methods

yield actual SINR satisfaction probabilities at1− ρ. This means that the robust methods are, to certain
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Fig. 5. Performance under spatially correlated Gaussian CSI errors.Nt = 8; K = 6; ρ = 0.01; σ2

e
= 0.01.

extent, conservative. If more computations are allowed, this conservatism may be mitigated by running

a bisection scheme. Such a scheme was first proposed in [22] inthe context of chance constrained

optimization, and then was adopted in [21] for the probabilistic SOCP method. The idea is to fine tune

some design parameters relevant to the outage requirement.If a design solution is found to satisfy the

outage specification well, then we adjust the design parameters to relax the outage requirement (e.g., for

RAR Method I, decreasingd1, . . . , dK ) and rerun the design problem. Otherwise, we do the opposite

and rerun the design problem. The above step is done repeatedly following a bisection search, requiring

the design problem to be solved multiple times. The bisection search also requires a validation procedure

for satisfiability of the outage specification, which can be done using the Monte-Carlo based validation

procedure in [22]. It is clear from the above discussion thatthe bisection scheme can also be applied

to all the RAR methods. For more complete descriptions of thebisection scheme in the context of the

probabilistic SINR constrained beamforming problem, readers are referred to [1], [2], [21].

Figure 6 shows how bisection may improve the performance. The simulation settings areNt = K = 5,

ρ = 0.1, C1 = · · · = CK = 0.002INt
, and the feasible realizations pick-up point atγ = 9dB (for the

transmit power performance evaluations only). We can see that all the robust methods, after applying

the bisection scheme, exhibit improved performance. Notwithstanding, we also see that RAR Method II

without bisection already gives performance quite on a par with the bisection-aided methods.
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Fig. 6. Performance with bisection.Nt = K = 5; ρ = 0.1; spatially i.i.d. Gaussian CSI errors withσ2

e = 0.002.

TABLE IV. Ratio of rank-one RAR solutions.

γ (dB) 1 3 5 7 9 11 13 15

Method IV 500/500 498/499 498/498 497/497 493/493 490/490 482/482 473/473

D. Simulation Example 4

This example demonstrates the performance of RAR Method IV,which handles elementwise i.i.d.

bounded CSI errors with unknown distribution. We test the method using elementwise i.i.d. uniform CSI

errors, where the real and imaginary parts of allei are independent and uniformly distributed on[−ǫ, ǫ]

with ǫ > 0. The probabilistic SOCP method in [21] also has a version fori.i.d. uniform CSI errors and

is included in our simulation.

The simulation settings are:Nt = K = 3, ρ = 0.1, ǫ = 0.02, and the feasible realizations pick-up

point atγ = 7dB. The result, presented in Figure 7, illustrates that RAR Method IV provides much better

performance than the probabilistic SOCP method. Table IV shows the ratios of getting a rank-one RAR

solution, where we see clearly that encountering high rank RAR solutions is rare.

VII. C ONCLUSIONS

Motivated by the presence of CSI errors in practical systemsand the need to avoid substantial SINR out-

ages among users, we studied a probabilistic SINR constrained formulation of the transmit beamforming

design problem. Although such formulation can safeguard each user’s SINR requirement, it is difficult to

September 11, 2018 DRAFT



28

1 3 5 7 9 11 13 15 17 19 21 23 25
0

10

20

30

40

50

60

70

80

90

100

γ (dB)

F
e
a
s
ib

ili
ty

 r
a
te

 (
%

)

 

 

RAR Method IV

Probabilistic SOCP

(a)

1 3 5 7 9 11 13 15 17 19

−6

−4

−2

0

2

4

6

8

10

12

14

γ (dB)

A
v
e
ra

g
e
 t
ra

n
s
m

is
s
io

n
 p

o
w

e
r 

(d
B

)

 

 

Non-robust

RAR Method IV
Probabilistic SOCP

(b)

Fig. 7. Performance under i.i.d. uniform CSI errors.Nt = K = 3; ρ = 0.1; ǫ = 0.02.

process computationally due to the SINR outage probabilityconstraints. To circumvent this, we proposed a

novel relaxation-restriction (RAR) approach, which features the use of semidefinite relaxation techniques,

as well as analytic tools from probability theory, to produce efficiently computable convex approximations

of the aforementioned probabilistic formulation. One of our main contributions is the development of three

methods— namely, sphere bounding, Bernstein-type inequality, and decomposition— for processing the

probabilistic SINR constraints. Our simulation results indicated that the proposed RAR methods provide

good approximations to the probabilistic SINR constrainedproblem, and they significantly improved upon

existing methods, both in terms of solution quality and computational complexity.

At the core of our technical development is a set of tools for constructing efficiently computable convex

restrictions of chance constraints with quadratic uncertainties. An interesting future direction would be to

apply these new tools to other transmit beamforming formulations, such as those arising from the frontier

cognitive radio and multicell scenarios, or perhaps even other signal processing applications.
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