Outage Constrained Robust Transmit
Optimization for Multiuser MISO Downlinks:
Tractable Approximations by Conic
Optimization

Kun-Yu Wang, Anthony Man-Cho So, Tsung-Hui Chang, Wing-iia, and Chong-Yung Chi

Abstract

In this paper we consider a probabilistic signal-to-irdeghce-and-noise ratio (SINR) constrained
problem for transmit beamforming design in the presencengfeirfect channel state information (CSI),
under a multiuser multiple-input single-output (MISO) ddimk scenario. In particular, we deal with
outage-based quality-of-service constraints, where tbability of each user's SINR not satisfying a
service requirement must not fall below a given outage fribaspecification. The study of solution
approaches to the probabilistic SINR constrained problernmiportant because CSI errors are often
present in practical systems and they may cause subst&ité® outages if not handled properly.
However, a major technical challenge is how to process tlobaiilistic SINR constraints. To tackle
this, we propose a novel relaxation-restriction (RAR) apggh, which consists of two key ingredients—
semidefinite relaxation (SDR), and analytic tools for cawatively approximating probabilistic con-
straints. The underlying goal is to establish approximatbabilistic SINR constrained formulations in
the form of convex conic optimization problems, so that tikap be readily implemented by available
solvers. Using either an intuitive worst-case argumentpacilized probabilistic results, we develop
various conservative approximation schemes for procggsiobabilistic constraints with quadratic uncer-
tainties. Consequently, we obtain several RAR alternafisehandling the probabilistic SINR constrained
problem. Our techniques apply to both complex Gaussian @®rsand i.i.d. bounded CSI errors
with unknown distribution. Moreover, results obtainednframur extensive simulations show that the
proposed RAR methods significantly improve upon existingspoth in terms of solution quality and
computational complexity.
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. INTRODUCTION

In multi-antenna multiuser downlinks, linear transmit darming has been recognized as an impor-
tant technique, capable of leveraging quality of service§Rand increasing limits on the number of
users served; see, e.g., the review article [3] and theamdes therein. Transmit beamforming design
approaches developed in this context have not only beerepray offer efficient and flexible solutions
for QoS optimization and interference management in stahdawnlinks, but have also been modified
or generalized to deal with designs arising from frontiegrsrios, such as relay networks [3], cognitive
radios [4], and multicell coordinated downlinks [5]-[7].

In transmit beamforming, a very representative problernirggts the unicast multi-input single-output
(MISO) downlink scenario, wherein a multi-antenna basé®stasimultaneously transmits data streams
to a number of single-antenna users, each stream for a désiynser, by carefully directing transmit
beams to the users. The problem of interest is to provideraakig-interference-and-noise ratio (SINR)
constrained design formulation, in which transmit beamens for the users are sought, so that each
user is served with a QoS, characterized by the SINR, no hegsa prescribed requirement, and that the
transmit power is minimized. The SINR constrained problera meaningful and frequently used design
formulation in practice, and essentially the same problemméilation can be seen in other works, such as
those in the aforementioned frontier scenarios [6], [8], [Qis also a fundamentally intriguing problem.
There are three parallel solution approaches to the probi@amely, uplink-downlink duality [10], [11],
semidefinite relaxation (SDR) [5], [12], and the secondeombne programming (SOCP) formulation [13].
Each of those approaches is elegant, offering differentlidaipons both in theory and in practical
implementations. They also serve as stepping stones foe mdvanced designs, such as those under
imperfect channel state information (CSI) effects.

The SINR constrained problem, like many other transmit rojatation problems, is based on the
assumption that the downlink CSI is perfectly available la# base station. Unfortunately, such an
assumption generally does not hold in practice [14]. In theetdivision duplex (TDD) setting, where
there is a reciprocity between the uplink and downlink ctesinthe downlink CSI is typically acquired
by uplink channel estimation from training data. Channdingstion errors, which are caused by noise
and a limited amount of training data, result in CSI errorsthiis setting. In the frequency division
duplex (FDD) setting, CSI acquisition is often achieved iy @edback with limited rates. As a result,
quantization errors arising from the limited feedback leadnperfect CSI. In addition, CSI may become

somewhat outdated if the user mobility speed happens to dierféhan the CSI update speed. If one
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uses the corrupt CSI directly to design the transmit beaméos, then the users may experience severe
SINR outages and not be able to receive their anticipated |©ass.

Recently, there has been much attention on transmit bearrfgrdesigns that are robust against
CSI errors. In particular, it is of significant interest tonsider “safe” SINR constrained formulations
under various CSI error models, where users’ SINR requindsneust be satisfied even with the worst
possible CSI errors, or, alternatively, with high probiilOne commonly considered formulation at
present is the worst-case SINR constrained problem, inlwliie CSI errors are assumed to lie in
a bounded set (known as thencertainty sét This worst-case robust problem appears to be a hard
(nonconvex) problem, since the worst-case SINR constrand semi-infinite and indefinite quadratic.
Several concurrent approximation schemes have been mopodackle the worst-case robust problem;
notable works include the conservative SOCP formulatiosy,[the robust MMSE formulation [16],
[17], and SDR [18]. The beauty of these works lies in the edrebmbination of robust optimization
results [19] and problem formulations, leading to conved &ractable design solutions.

Another safe formulation, which is the focus of this papgitheprobabilistic or outage-based, SINR
constrained problemin this formulation, we assume a random CSI error modelh @ag the popular
complex Gaussian model, and the SINR outage probabilityachaiser must be kept below a given
specification. Unfortunately, while the worst-case SINRsticained problem is considered hard to solve
already, this is even more so with the probabilistic SINR st@ined problem— Probabilistic SINR
constraints generally have no closed form expressions endrdikely to be easily handled in an exact
way. Thus, one has to resort to approximate design solutitmslate, there are very few works on the
probabilistic SINR constrained problem under the unicastrdink scenario. In [20], the authors fix the
transmit beam directions as zero forcing and then deal wigmohabilistic power control problem. In
[21], a conservative SOCP formulation is developed usingesadvanced results in chance constrained
optimization [22], [23]. A similar approach is presented24], where the robust MMSE formulation is
considered.

In this paper we propose several convex optimization smigtfor approximating the probabilistic SINR
constrained problem. Our approach is based on a relaxeggirietion (RAR) methodology. Specifically,
in the relaxation step, we employ SDR to linearize the quadtarms in the SINR expression. However,
this step alone does not lead to an efficiently solvable fdéatian, because the probabilistic constraints
imposed on the linearized SINR expressions are still novexanWe circumvent this problem in the
restriction step, where we first derive various analytic @mppounds on theviolation probability (i.e.,

the probability that the constraints on the linearized Si®dRressions are violated). Such upper bounds
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serve as sufficient conditions for the probabilistic caaistis to hold, hence the term “restriction”. Next,
we show that our derived bounds are efficiently computabldchy together with the results from the
relaxation step, leads to efficiently solvable approxioradiof the original probabilistic SINR constrained
beamforming problem. It should be noted that the aboveicéstr approach has many advantages. First, it
allows one to generate feasible solutions to the prob#bitisnstraints, even when there is no closed form
expression for the violation probability, or when the cld$erm expression is not efficiently computable.
Secondly, while it may be difficult to derive closed form exgsions for the violation probability, it
is usually much easier to derive upper bounds on it, thankthéomany powerful techniques from
the probability theory literature. Thirdly, there is udyaiore than one way to derive upper bounds
on the violation probability, and this offers the posstilof trading approximation performance with
computational complexity. These advantages will becoreardin our subsequent exposition.

The rest of this paper is organized as follows. The probleatestent of the outage-based SINR
constrained robust beamforming design problem is giveneicti8n Il. The idea of the proposed RAR
method is introduced in Section Ill. In Sections IV and V, igas RAR formulations for complex
Gaussian CSI errors are developed using either robust iggtiion or probabilistic techniques. An RAR
formulation for i.i.d. bounded CSI errors is also presentedection V. Simulation results are then
presented in Section VI, and conclusions are drawn in Sedtid

Notations We use boldfaced lowercase letters, edy.,to represent vectors and uppercase letters,
e.g., A, to represent matrices. The notatioRg, C", S™, andH™ stand for the sets ofi-dimensional
real vectors, complex vectors, real symmetric matricescamaplex Hermitian matrices, respectively. The
superscriptsT’ and ‘H'’ represent the transpose and (Hermitian) conjugate tasgspespectivelyd = 0
means that the matrid is positive semidefiniteIr(A) and A\pax(A) denote the trace and maximum
eigenvalue ofA, respectivelyvec(A) stands for the vector obtained by stacking the column veatbr
A. [a]; and[A];; (or simplya; and A;;) stand for theith entry ofa and(z, j)th entry of A, respectively.
For a complex4, we denote byRe{ A} andIm{ A} its real and imaginary parts, respectively.denotes
the n x n identity matrix. Given scalars,, .. ., a,, we useDiag(aq,...,a,) to denote thew x n diagonal
matrix whoseith diagonal entry isy;. || - || and|| - ||» represent the vector Euclidean norm and matrix
Frobenius norm, respectiveli£{-}, Prob{-}, andexp(-) denote the statistical expectation, probability
function and exponential function, respectively. We wiaite- CN (u, C) if  — p is a circular symmetric

complex Gaussian random vector with covariance mattix 0.
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[I. PROBLEM FORMULATION

We focus on a downlink multiuser MISO scenario, in which tleesd station, or the transmitter, sends
parallel data streams to multiple users over the same chafhe transmission is unicast; i.e., each
data stream is exclusively for one user. The base statiogupped with N; transmit antennae and the
signaling strategy is transmit beamforming. Lett) ¢ C»: denote the multi-antenna transmit signal

vector of the base station at timeWe have the following transmit signal model:
K
z(t) = Y wisi(t), (1)
k=1

wherew;, € C"t is the transmit beamforming vector for userk is the number of users, angl(t) is
the userk data stream, which is assumed to have zero mean and unit gosveE{|s;(¢)|?} = 1). Itis
also assumed thai;(t) is statistically independent of one another. For uséhe received signal can be
modeled as

yi(t) = hi®(t) + ni(t), (2)

whereh; € CVt is the channel from the base station to useaindn;(t) is an additive noise, which is
assumed to have zero mean and variaste- 0.

A common assumption in transmit beamforming is that the lsaBon has perfect knowledge of
hi,...,hg; i.e., the so-called perfect CSI setting. However, as dised in detail in the Introduction,

the base station may not have perfect CSl in general. In thik,whe CSI is modeled as follows:
hi:ﬁi—i—ei, i=1,..., K,

where h; € C™: is the actual channeh; € C": is the presumed channel at the base station (also
called the imperfect CSI), and; ¢ C"* is the respective error that is assumed to be random. Our
development will concentrate mainly on complex Gaussiah &®&rs, which is a commonly adopted
model. Specifically, we assume that

e; ~CN(0,C;)

for some known error covariana@g; = 0,i=1,..., K.

The goal here is to design beamforming vecters . .., wg such that the QoS of each user satisfies
a prescribed set of requirements under imperfect CSI, wlilag the least possible amount of transmit
power in doing so. To put this into context, let us considars’sSINRs. Under the model in (1)-(2) and

the associated assumptions, the SINR of uger

b wi]?
SINR; = ]
> ki [hi wil* + o
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To accommodate imperfect CSI knowledge at the base statibich causes uncertainties in the actual

SINRs, we consider the following robust beamforming degigrblem:

Praobabilistic SINR constrained problem: Given minimum SINR requirements,,...,yx > 0 and

maximum tolerable outage probabilitigs, . .., px € (0, 1], solve

K
. . 2
min__ 2 [|w;| (3a)
1=

w1,...,WKE

s.t. Proby,, onrh,,c) {SINRi > 7i} > 1 —p;, i=1,.... K. (3b)

Formulation (3) is an instance of the so-callethnce constrained optimization probleine to the
presence of the probabilistic constraints (3b), and it ldllthe main focus of this paper. In (3), the design
parameterg;’s govern service fidelity, making sure that each user, ssgrd) is served with an SINR
no less thany; at least(1 — p;) x 100% of the time. In fact, the simulation results in Section VI lwil
demonstrate that a “non-robust design”; i.e., designiegothamformers by running the perfect-CSl-based
SINR constrained problem with actual channk}ssubstituted by the presumed channk)s can suffer
from serious SINR outage. Moreover, it should be noted thettet is a tradeoff between service fidelity
and design conservatism. On one hand, it is desirable toeestduigher service fidelity by using small
values withp;'s. On the other hand, the design in (3) would become moreatvatve asp;'s decrease.
In particular, for very smalbp;’s, one may end up with design solutions that have unacchplalye
transmit power, or there may be no feasible solution to (3).

Although the probabilistic SINR constrained problem in {8)a meaningful design criterion, it is
a very hard problem. The main difficulty is that the probapifunctions in (3b) do not yield simple
closed form expressions for the considered CSI error Higion models. Thus, one may only resort to

approximation methods. In the next section we will descohe proposed approximation approach.

I11. THE RELAXATION -RESTRICTION APPROACH

To handle the main problem (3), we propose a novel relaxasstriction (RAR) approach. RAR-based
methods feature the use of convex optimization techniquegpproximate problem (3). Hence, they can

be efficiently implemented by available convex optimizatsoftware.

A. Relaxation Step

Let us first elaborate on the first step of RAR— relaxation. Tingtivation is that for each, the

inequalitySINR; > ~; is nonconvex inws, ..., wg; specifically, it is indefinite quadratic. We handle this
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issue by semidefinite relaxation (SDR) [3], [25]. To illedr SDR for the probabilistic SINR constrained
problem, we note that problem (3) can be equivalently represl by

K
i Tr(W; 4a
Wl,...I,I‘}‘l/};GHNf ; r( 2) ( )

_ 1 _
st. Probq (hi+e) | =W, =Y Wi | (hite) >0} p >1—p;, i=1,... K,
i

ki

(4b)
Wi,...,Wg =0, (4c)
rank(W;) =1, i=1,..., K, (4d)

where the connection between (3) and (4) lies in the feagibiet equivalence

H .
W, =ww;", 1=1,..., K.

)

The SDR of (4) works by removing the nonconvex rank-one caitds onW;; i.e., to consider the

relaxed problem

K
i Tr(W; 5a
Wl,...I,I‘}‘l/};GHNf ; r( 2) ( )

_ 1 _
st. Probq (hi+e) | =W, =Y Wi | (hite) >0} p>1—p;, i=1,... K,
Vi o
(5b)

Wi,...,Wg = 0. (5¢)
The merit of this relaxation is that the inequalities insttle probability functions in (5b) are linear in
W1, ..., Wk, which makes the probabilistic constraints in (5b) more aggable. An issue that comes
with SDR is the solution rank— the removal afnk(W;) = 1 means that the solutio1, ..., W)

to problem (5) may have rank higher than one. We shall comé& bachis issue after presenting the

restriction step.

B. An Information Theoretic Interpretation of the RelaratiStep

The SDR problem (5) has an alternative interpretation framndormation-theoretic point of view.

Here, we briefly describe this interpretation and the resgimplications before moving to the restriction
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step of RAR. Consider a general transmission model:
K
z(t) = Zwi(t)7
i=1

wherez;(t) € CMt is the transmit signal intended for useNote that in contrast to the original transmis-
sion model in (1), where we fix the transmit scheme as beanmfigrivy settinge; () = w;s;(t), here we
do not assume any specific transmit structure. As a sligrgeabinotations, leW; = E{z;(t)z(¢)} be
the transmit covariance corresponding to us&rom an information-theoretic perspective, the achivab
rate of useri may be formulated as

hHW,h,;
R; =log, | 1 L : 6
og2< +Zk#hf{thi+ag> (6)

where the rates in (6), in bits per channel use, are achievezhw;(¢) are Gaussian distributed (i.e.,
Gaussian codebook). One can easily verify that the SDR @nol{b) is precisely the following rate

optimization problem:

K
i Tr(W; 7a
o SO0 i
s.t. Proby, carh,cy {Ri = logo(1 +7i)} > 1 —pi, i=1,... K, (7b)
Wi,..., Wi &= 0. (7c)

Specifically, the SDR equivalent (7) is a total power miniatian problem that aims to ensure that each
user is served with a minimal rate &fg,(1 + ;) bits per channel use, with an outage probability no
greater tharp;.

With this interpretation of the SDR, we can deduce an intargamplication: If the SDR solution
(Wh,...,Wk) to (5) does not yield a rank-one structure, then an altamati transmit beamforming is
to find another practical physical-layer scheme— e.g., @espiane code with appropriate precoding—
to adapt the transmit structures stipulated by the transoviéiriance§Wh, ..., Wx ). While our main
interest in this paper is still in transmit beamforming,sitworthwhile to keep such a parallel possibility

in mind, since it eliminates the need for rank-one transmitaciances.

C. Restriction Step

Let us continue to illustrate the second step of RAR— re#tric The relaxation step alone does not
provide a convex approximation of the main problem (3). TBRSrobabilistic constraints (5b) remain

intractable, although they appear to be relatively easidrandle than the original counterparts in (3b).
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The restriction step aims to find a convex approximation d&f),(h a restrictive or conservative sense.
More precisely, in the context of the probabilistic SINR stvained problem, the restriction step entails

finding a solution to the following:

Challenge 1: Consider the following chance constraint:
Prob{e Qe + 2Re{efr} + 5 >0} > 1 —p, (8)

wheree € C" is a standard complex Gaussian vector (e~ CN(0,1,,)), the 3-tuple(Q,r,s) €
H"™ x C™ x R is a set of (deterministic) optimization variables, and (0, 1] is fixed. Find arefficiently
computable convex restrictiaf (8); i.e., find an efficiently computable convex sett H™ x C" x R x C*

such that wheneveiQ, r, s,t) € S, the 3-tuple(Q, r, s) € H" x C" x R is feasible for (8).

Note that in the construction of the convex setwe are allowed to include an extra optimization
variablet € C*, in addition to the original optimization variablég, r, s) € H" x C" x R. Although the
precise role ot will depend on how the sef is formulated, it suffices to think of as a slack variable.

It is not hard to see that the SDR probabilistic constraintg5b) fall in the scope of Challenge 1.

Indeed, for each constraint in (5b), the following corrasgence to (8) can be shown:

1 1 _
Q=c’|-w,-Sw,|c)? r=c”-Wi-Y W, |k, (92)
i = i =
_ 1 _
s=hil | =W, =Y Wy |hi—0}, p=pi (9b)
Vi o

The development of convex restriction methods plays a aftucile in RAR, and this will be our
focus in subsequent sections. By replacing each prob@bitisnstraint in (5b) with a convex restriction,
we will obtain a convex approximation of the original probstic SINR constrained problem. Table |
summarizes all the RAR methods to be proposed in later sectiote that each RAR method is based
on a different convex restriction. Moreover, all the RARmadations in Table | are conic problems with
linear matrix inequality constraints and/or second-omtare constraints, which can be easily solved by
off-the-shelf convex optimization software [26].

The last step of RAR is to provide a feasible beamforming tsmiu(w,...,wg) to the main
problem (3) by using the RAR solutioW7,..., Wy). As is common in all SDR-based methods,
the W;’s obtained from RAR may have rank higher than one. A standay of tackling this issue is

to apply some rank-one approximation procedur€¢Wd, ..., Wy ) to generate a feasible beamforming
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TABLE I. The proposed RAR formulations.

Method H RAR Formulation
K
min Tr(W;)

w; E]HIN*,t;{EJR, Pt
i=1,...
Method I: o

. ¢ Qi +tiln, T C0 i1 % (10)
S. . b /L - EARR ) )
Sphere bounding o oon|©

(for complex Gaussiar

W17"'7WK t07 t17--'7tK 201
CSl errors)
where Q;, r; and s; are defined in the same way as (9), afid= 1/<I>;21 (1—=pi)/2, i =
2n
1. K.
K
min Tr(W;
WiEHNt,wi,yiER, ; ( )
Method I1: =1,..,K
Bernstein-type st Tr(Q:) — v/ —2Wn(ps) @i +In(ps) - yi + 8. >0, i =1,..., K,

) 11
inequality vee(@:) <z, i=1,...,K, )
(for complex Gaussian V2,

CSil errors) vilwe + Qi 2 0, i =1,..., K,
Yi,..- -, YK ZO, W17...,WK EO,
where@;, r; ands; are defined in the same way as 9% 1,..., K.
K
min Tr(W;

WiGHNf,:ci,yiE]R, ; ( )
Method I11: =1
Decompoasition into st si +Tr(Q) = 2/ —In(pi) - (wi +wi), i =1,..., K, (12)

independent parts
(for complex Gaussiar

%H"WH <z i=1,..,K,
v ||vec(Qi)|| <wi, i=1,..., K,

W17"'7WKt0;

CSl errors)
where@;, m; ands; are defined in the same way as (8),is chosen such tha; + In(1 - 6;) =
In(p;), andv; = \/—In(p;)/02,i=1,..., K.
K
Method 1V: Z'H(Wi)

Decomposition into
independent parts
(for elementwise i.i.d.
and bounded CSI error
with mean 0 and vari-
ance o2, but otherwise

unknown distribution)

1T

min
W, eaNt t;eR2Nt+1
ie

s.t. 85+ 02 - Te(Qy) > 2/— In(pi) - 251:\73
V2|7l < [tido, i=1,..., K,
(Z(j,k)eAe v} [Qi]ik)l/z < [tile,

=1,...,2N;, i=1,..., K,
Wi,...,Wxk = 0;

[t:]e, Vi,
(13)

where Q;, r»; and s; are defined in the same way as (32); are defined in the same way as
Table I, andv;; = 1/v/8 andv;, = 1if j # k.
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solution (w1, ..., wg) to (3); see [25] for a review and references. In our setting,apply a Gaussian
randomization procedure to a non-rank-one RAR solutiore Ptocedure is provided in Algorithm 1;
the spirit follows that of [27], and readers are referred2@][for an exposition of the idea. We should
point out that obtaining a feasible RAR solution does notlyntpat we can always generate a feasible
solution to the main problem (3). This issue has also beemtifterl before in the context of multigroup
multicast beamforming with perfect CSI [27]. However, ifetiRAR solution happens to give rank-
one W; for all i, then we can simply solve the rank-one decomposi#®n= w;w!’ and output the
correspondingwy, ..., wg) as the approximate beamforming solution. For such insgnitean be
easily verified thafw;,...,wgk) is already feasible for the main problem (3). Rather suirpyly, we
found that the proposed RAR methods returned rank-oneigontuin almost all the simulation trials we
rant. Such empirical finding provides another interesting igtion when we consider the information-
theoretic interpretation in the last subsection: SinceRA& methods are essentially the same as convex
restrictions of the outage-based rate optimization probile (7), the numerical observation that RAR
solutions are almost always rank-one somehow hints thasitndg beamforming may inherently be an
optimal physical-layer scheme, at least for the outagedbamicast multiuser MISO downlink scenario
considered here.

As a summary to the solution approximation aspect discuabeue, in most cases a simple rank-one
decompositiorV; = winH of the RAR solution suffices to produce a feasible solutian, ..., wg) to
the main problem (3). The more complicated solution appnation procedure in Algorithm 1, proposed

for instances where the RAR solution is not of rank one, islyaneeded in our empirical experience.
IV. RAR METHOD |I: SPHEREBOUNDING
In this section we describe our first convex restriction radtfor Challenge 1. The method is based
on two key ingredients. The first is the following lemma:
Lemma 1 Consider Challenge 1. Suppose that we have a3setC™ that satisfies
Prob{e € B} > 1—p. (14)
Then, the following implication holds:

07Qs + 2Re{é"r} +5>0,
forall 6 €¢ B

— Eq. (8) in Challenge 1 holds. (15)

1A similar phenomenon was observed in a different probleninggtnamely that of the worst-case SINR constrained
design [18].
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Algorithm 1: Gaussian randomization procedure for RAR
Given : A number of randomizationg, and an optimal solutiotW7, ..., W) to an employed

RAR formulation.
1for /=1,...,L do

2 generate random vectowy) ~CNO,W),i=1,...,K,
3 set beam directionaf.f) = wz(z)/||wi(£)||, i=1,...,K,
4 let pgf), . ,p%) be beam powers and obtayh{f), o ,p%) as follows: substitute

W,; = piugé)(uy))H, i=1,..., K, into the RAR problem, solve the problem with respect to
p1,---,pK >0, and setpg), . ,pﬁ? as its solution if the problem is feasible; also, £t to
be the associated optimal objective value if the problene#sible; otherwise se?¥) = o ;

5 end

6 (* = argming,_ P,

Output: w} = pgé*)ugf”, i=1,..., K, as an approximate solution to the main problem (3).

The proof of Lemma 1 is simple and is given as follows. bgt) denote the probability density function
of e. Suppose that (14) and the left-hand side (LHS) of (15) holken, we have the following chain:

Prob{e”! Qe + 2Re{rfle} + s > 0} = p(e)de
efQe+2Re{re}+s>0

>1—p.

Hence, Eq. (8) is satisfied.

Lemma 1 suggests that we can approximate the chance congiré8) in a conservative (or restrictive)
fashion by using the worst-case deterministic constramthe LHS of (15). Moreover, it can be easily
seen that the same idea applies to general chance corsstiantthe quadratic functions in (8) and (15)
may be replaced by any arbitrary function. Such an insigét, (ising worst-case deterministic constraints
to approximate (general) chance constraints) have beadeallto or used in many different contexts;
e.g., [28], [29] in optimization. Here, we are interestedthie chance constraint in (8), which involves
a quadratic function of the standard complex Gaussian vecttn our method, we choosB to be a
spherical set; i.e.,

B={6<cC"[|d] <d}, (16)
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whered is the sphere radius. It can be shown that by choosing
~1
(I)Xgn(l —p)
2 )

Where<I>;21 (+) is the inverse cumulative distribution function of the (ral) Chi-square random variable

d=

with m degrees of freedom, Eqg. (14) is satisfied.
The second ingredient is the so-callgdemma, which enables us to turn the infinitely many constsai

on the LHS of (15) into a set of tractable constraints. Thkemma is given as follows:

Lemma 2 ( S-lemma [30] ) Let f;(x) = 27 Q;x + 2Re{z!r;} + s; for i = 0,1, wherex € C" and
(Qi,7i,s;) € H" x C" xR for i = 0, 1. Suppose that there exists a&nc C" satisfyingf; (&) < 0. Then,
the following statements are equivalent:

1. fo(x) >0 for all z € C" satisfyingfi(z) < 0.

2. There exists & > 0 such that

Qo 1o Qi ™
+1

’T‘é{ S0 ’l"{{ S1

= 0. (17)

By the S-lemma, the LHS of (15), wittB given by (16), can be equivalently represented by an LMI of
the form (17), wherdQo, 7o, s0) = (Q,r,s) and(Qq,r1,s1) = (I,,,0,—d?). We therefore have built a

convex restriction for Challenge 1. To summarize, we haeefttiowing:

Method | for Challenge 1 (Sphere bounding): The following feasibility problem is a convex restrictipn
of (8) in Challenge 1:

Find Q,r,s,t

+ t1, r
s.t. Q " =0

—_ bl
r s — td?
t>0,

whered = /3., (1 - p)/2.

By first applying SDR and then Method | to the probabilistitNBl constrained problem (3), we obtain
the RAR formulation (10) in Table I. Interestingly, this foulation turns out to be similar to that of
the worst-case robust SDR problem considered in [18]. Heweét/should be noted that the prior work
does not consider outage probability constraints. Morgowe show a way of using the worst-case

robust formulation to deal with the probabilistic SINR ctraged problem. Finally, by incorporating the
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bisection scheme proposed in [21], which will be considéredur simulations in Section VI (Example

3), we will be able to further improve the performance of tpbexe bounding RAR method.

V. PROBABILITY INEQUALITY APPROACHES

The reader may notice that the development of Method | isigtyomotivated by the worst-case robust
optimization paradigm. Indeed, the problem on the LHS of ithplication (15) is precisely a robust
feasibility problem with uncertainty se8. By choosingB judiciously, it is shown that the violation
probability Prob{e’ Qe + 2Re{r" e} + s < 0} can be controlled, and the resulting robust feasibility
problem is a convex restriction of (8). However, this apptoaas an intrinsic drawback, namely, it is
difficult to define and analyze an uncertainty Sebther than those that have very simple geometry, such
as the spherical set considered in the previous sectionsegmently, it is not clear whether there exist
other choices oB3 that would lead to better convex restrictive approximagion

As it turns out, one can circumvent the above drawback bygusimalytic upper bounds on the violation
probability to construct efficiently computable convextriesions of (8). Specifically, suppose that we
have an efficiently computable convex functigQ, r, s, t), wheret is an extra optimization variable,

such that
Prob{e” Qe + 2Re{eflr} + s < 0} < f(Q,r,s,1). (18)
Then, the constraint

f(Q,r,s,t) <p (19)

is, by construction, a convex restriction of (8). An upshiothis approach is that there are many available
techniques for constructing such upper bounds, and eattosé tbounds yields a convex restriction of (8).
Moreover, it is known [19, Chapter 4] that under some fairlifdntonditions, every convex restriction

corresponds to a robust feasibility problem with a suitatbbfined uncertainty set. Thus, the above
approach can be viewed as an enhancement of Method |, in tise ¢$leat it provides a handle on more

sophisticated uncertainty sets that are difficult to cacstdirectly.

A. Method II: Bernstein-Type Inequality

Let us now illustrate the above approach by showing how a ®eimtype inequality for Gaussian
guadratic forms can be used to construct a convex restrictig8). Our approach relies on the following

lemma due to Bechar [31]:
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Lemma 3 Lete ~ CN(0,1,), Q € H" andr € C". Then, for any; > 0, we have
Prob{e” Qe + 2Re{eflr} > T(n)} > 1 -, (20)
where the functiorf” : R, — R is defined by
T(n) = Q) — V2n/IIQIE + 2|71 — nA*(Q). (21)
with AT (Q) = max{A\nax(—Q), 0}.

Lemma 3 is obtained by extending the corresponding resuylBlih for quadratic forms of real-valued
Gaussian random variables. The inequality in (20) is a ded8ernstein-type inequalifywhich bounds
the probability that the quadratic foraf’ Qe+-2Re{e!’r} of complex Gaussian random variables deviates
from its meanTr(Q).

Since T'(n) is monotonically decreasing, its inverse mappifig! : R — R, is well defined. In

particular, the Bernstein-type inequality in (20) can beressed as
Prob{e’’ Qe + 2Re{er} + s> 0} > 1 —e T (=9, (22)
As discussed in (18) and (19), the constraint (=) < p, or equivalently,

Tr(Q) — v —2In(p)/QI% + 2lI7||* + In(p) - AT(Q) +5 > 0 (23)

serves as a sufficient condition for achieving (8).
While it is not obvious at this stage whether (23) is convex@h r, s) or not, a crucial observation

is that (23) can be equivalently represented by the follgwsgstem of convex conic inequalities:

Tr(Q) — v/—2In(p) - t1 +In(p) - t2 + s > 0, (24a)
VIRIE +2[r|? <t (24b)
tolp, + Q = 0, (24c)
ty >0, (24d)

wheretq,to € R are slack variables. Therefore, formulation (24) is an ieffitdy computable convex

restriction of (8). We now summarize the Bernstein-typegusadity method as follows:

Roughly speaking, a Bernstein-type inequality is one wiiohnds the probability that a sum of random variables desiat
from its mean. The famous Markov inequality, Chebyshev ity and Chernoff bounds can all be viewed as instances of

Bernstein-type inequalities.
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Method Il for Challenge 1 (Bernstein-type inequality method): The following feasibility problem i

Ur

a convex restriction of (8) in Challenge 1:
Find Q,r,s,t

st. Tr(Q) — v/ —21In(p) - t1 +1n(p) - ta +s > 0,

VIRIE +2Ir|* < ta,

tQIn +Q t 07

to > 0.

Upon applying Method Il to (5), we obtain the RAR formulati¢hl) in Table I. As can be easily
seen from the formulations (10) and (11), the latter has eemomplex constraint set and thus a higher
computational complexity in general. However, it will beogn later that the Bernstein-type inequality

method (11) exhibits better approximation performance tthe sphere bounding method.

B. Method Ill: Decomposition into Independent Parts

For both the sphere bounding and Bernstein-type inequalé@thods, the resulting convex restrictions
of (8) contain linear matrix inequality constraints. As kuthey could be computationally costly when the
problem size is large. It turns out that one can also developnaex restriction of (8) that contains only
second-order cone constraints. The resulting formulatim thus be solved more efficiently than those
developed using the sphere bounding or Bernstein-typeauadityg method. The idea is to first decompose
the sume’Qe + 2Re{e’’r} + s into several parts, each of which is a sum of independentorand
variables. Then, one bounds the moment generating funofi@ach of those parts and stitch the results
together to obtain an analytic upper bound on the violaticrbability [32]. To illustrate this approach,
let Q = UAU! be the spectral decomposition ¢, where A = Diag(\,...,\,) and\q,...,\, are
the eigenvalues of). Sincee ~ CN(0,1,,) andU* is unitary, we have = U e ~ CN(0,1,,). Thus,
we can write

U =eQe + 2Re{efr} = " Aé + 2Re{ellr} = U, 4+ 0.

Now, observe that both

U, =eé"Aé =) Mle* and ¥, =2Re{e”r} =2 (Re{r;}Refes} + Im{re}Im{e,})
=1 =1
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are sums of independent random variables. Moreover, it eashbwn that for any fixed < 1,

—0
eX1P£ ; ) < exp (,0292) 7

E {exp (9(‘65‘2 - 1))} =

E {exp (6 - 2Re{es})} = E {exp (6 - 2Im{es})} = exp <%92> for 0 € R,

wherev = (= (A +1n (1 —0)) /62)"* < oc. Thus, for anyp;, ps > 0 such thatp, + ps = 1, the chain

of inequalities

E {exp(u(Tr(A) — )} = E {exp <p1 0w, - (A +p - xm) }

< pE {exp <—pll(x1/q - Tr(A))) } + poF {exp <—pﬂ2\y,> } (25)
- plgE{exp (- Zxtier - 1) } (26)

+ p2 é:fIl E {exp <—p%2Re{rz}Re{ee}> } E {exp <_]%2Im{7“g}]:m{e£}> }
<o (S5 ) o (3] (1 i)

P1 (=1
(27)

holds whenever-u),/p; < 0 for £ = 1,...,n, where (25) follows from Jensen’s inequality and (26)

follows from the independence of the random variable@ jnand ¥;. By setting

n
1 Vel V€2
01:’022)\?7 0225”7’”27 T:\/C1+\/C, p1:T7 p2:T7
(=1

we see from (27) that the inequality
E {exp(u(Tr(A) — ¥))} < p; -exp (u2T2) + p2 - exp (u2T2) = exp (u2T2)
holds whenevefu|T < fv. In particular, by Markov’s inequality, it can be shown ttiat any ¢ > 0,

Prob{Tr(A) - ¥ > (} < inf {exp(—u() -E{exp(u(Tr(A) — ¥))} }

0<u<6v/T
2
exp (—%) for 0 < ¢ < 20vT,
= g (28)
exp (—%C + (9_2})2> for ¢ > 200T.

Now, set( = s + Tr(A). Then, the LHS of (28) becomes

Prob{¥ + s < 0} = Prob {e” Qe + 2Re{e’r} + 5 < 0} .
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In particular, by imposing the constraint that the rightitiaside of (28) is less tham and using the fact
that Tr(A) = Tr(Q) and >, A2 = ||Q||%, followed by some tedious derivations (see [32] for de}ails

we obtain the following method for Challenge 1.

Method 111 for Challenge 1 (Decomposition into Independent Parts): Given a parametef < 1, let
g+m(1-0)\"
v = —T

. { 2¢/—In(p), if Gv > /—1In(p),

fv — M2 otherwise
v

Then, the following feasibility problem is a convex redina of (8) in Challenge 1:

and

Find Q,r,s,t (29)
st s+ Tr(Q) — u(ty +t2) >0,

1 ]| <t
T )
sl =

V|l < ta.

Observe that in Method Ill, we have the flexibility to choolse parametef. Ideally,d should be chosen
so that both, andv are small, since then the constraints in (29) are easiertigfysddowever, as can be
seen from the definitiory, andwv cannot be chosen independently of each other. Our simnlagisults
suggest that it is better to have a smaller valug;dfe., choos# (and hence) such thaf, = 2,/—In(p).
Specifically, for a giverp € (0,1), we choosé such thatv is minimized andu = 21/~ In(p). This can

be achieved by solvingv = \/—1In(p), or equivalently,
0+ 1In(1 —6) = In(p), (30)

which can be done numerically. We remark that for small valokp (say, p € (0,0.2)), the solutiond
to (30) can be approximated by
0 ~ 1 —exp(ln(p) — 1).

C. Variation on a Theme: i.i.d. Bounded CSI Errors with UnkmoDistribution via the Decomposition

Approach

An advantage of the decomposition approach outlined ab®weai it can be applied to cases where

the distribution of the random vecteris not Gaussian. As an illustration, let us generalize thenge
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considered in the previous section and develop an RAR médthidwndling theslementwise i.i.d. bounded
support model with unknown distributiom this model, the real and imaginary parts of the CSI error
vectore; are assumed to be independent and have i.i.d. componegts cBmponent has zero mean and

is supported on, say;-¢;, €;], wheree; > 0. Again, we pose the restriction step in RAR as the following
generic challenge:

Challenge 2: Consider the following chance constraint:
Prob {eTQe +2elr + 5> 0} >1—p, (31)

wheree € R" is a mean-zero random vector supported-o)/3, v/3]" with independent components,
the 3-tuple(Q,r,s) € S” x R" x R is a set of optimization variables, apde (0, 1] is fixed. Find
an efficiently computable convex restriction of (31).

Note that Challenge 2 and the SDR probabilistic SINR coirstch problem (5) are related via the
following identification:

Q:% Re{?m_Zk#Wk} _Im{ﬁm—Zk;ﬁiWk} ’ (32a)
Im{qvvi—Zk;éiWk} Re{qm—Zk#Wk}
o (e Swa)
TV m{ (2w sw)Rd] o
SIFLZ-H %VVZ—E:W}g Bi—az-z, P = p;. (32¢)

ki
To tackle Challenge 2 using the decomposition approach,ratsofoserve that the suii = e’ Qe+2e”'r
can be written as

n n
U = Z Quee? + Z Qujece; + 2 Z eory
=1 1

1<tj<n =
n n n
=02 Z Que + Z Z Qjilej —a2) | + Z Qjrejer | | +2 Z eqry
(=1 (=1 (4.5)EA (4,k)EA: =1

n
=07 -Tr(Q)+ ) Wy + ¥y,
/=1

whereo? = E{e?} and the setsdy, ..., A, are defined as in Table Il. In other words, if thg k)th
entry of the table is labeledl,, then(j, k) € Aj.

Using Table II, it is not hard to verify that each of the ternrg;, Wyo,..., ¥y, ¥, is a sum of

independent random variables. Thus, by bounding their morgenerating functions and using an
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TABLE I1. Construction of the setdly, ..., A,.

L 2 [2f[-[n1] n |
1 A Az | o+ | Anoa A
2 Ao Az | - An Ai
n — 1 An.71 .An e Ay;f:s A'nif2
n An Av | - | Anca | Ana

argument similar to that in the previous subsection, we inhitge following method for Challenge 2

(again, see [32] for details):

Method 1V for Challenge 2 (Decomposition into Independent Parts): The following feasibility,
problem is a convex restriction of (31) in Challenge 2:

Find Q,r,s,t

st s+ 02 -Tr(Q) > 2v/—1In(p) - Ztg,
=0
\/5”7'” < th
1/2
Z U.]sz?k St[, 521,...,71,
(j,k)EA,

whereo? = E{e?}, vj; = 1/v/8 andv;, = 1 if j #k, for (j,k) € A, andl=1,...,n.

VI. SIMULATION RESULTS

This section shows an extensive set of simulation resultstibting the performance of the proposed
RAR methods.

Let us first describe the general simulation settings. Wele@yng universal QoS specification for all
users; i.e.y1 = --- =Yg = v, p1 = --- = px = p. The users’ noise powers are identical and fixed
ato? = --- = 0% = 0.1. In each simulation trial, the presumed channgis}X , are randomly and
independently generated according to the standard con@desssian distribution.

Next, we provide some implementation details of the RAR méth The RAR problems (those in Table
I) are solved by the conic optimization solveeDuMi [33], implemented through the now popularized

and very convenient parser softwarex [26]. Then, we check whether a solutigh, ..., Wi ) to an
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RAR problem is of rank one or not. If yes, then the rank-oneodgmosition,W; = w,w? Vi, is used

to obtain a beamforming solutiofw;, ..., wg). Otherwise, the Gaussian randomization procedure in
Algorithm 1 is called to generate a feasiljke, ..., wx). Numerically, we declare thg®, ..., W)

is of rank one if the following conditions hold:

/\;1;*("7‘(;2?) >099 forali=1,... K;
i.e., the largest eigenvalue ¥V, is at leastl00 times larger than any of the other eigenvalues. Moreover,
we say that an RAR method is feasible if the RAR problem hasaailfée solution and the subsequent
beamforming solution generation procedure is able to dudpieasible(ws, ..., wk).

The RAR methods are benchmarked against the probabili Q€S methods in [21]. The latter are
also implemented bgeDuMi throughcvx. To provide a reference, we also run a conventional perfect-
CSl-based SINR constrained design (e.g., [13]), where tesumed channelh;}X | are used as if

they were perfect CSI. We will call this the “non-robust naathy, for convenience.

A. Simulation Example 1

We start with the simple case &f; = K = 3; i.e., three antennae at the base station, and three users.
The CSI errors are spatially i.i.d. and have standard com@laussian distributions; i.eC; = --- =
Ck = o2Iy,, wherea? > 0 denotes the error variance. We 8ét= 0.002. The SINR requirement is
~ = 11dB. The outage probability requirement is seppte- 0.1, which is equivalent to having 0% or
higher chance of satisfying the SINR requirements.

First, we are interested in examining the actual SINR satt&fn probability,Prob{SINR; > ~}, of
the various methods. Figure 1 shows the histograms of thea®INR satisfaction probabilities over
different channel realizations. To obtain the histogrames,generated00 realizations of the presumed
channels{h;}X . Then, for each channel realization, the actual SINR satifn probabilities of all
methods were numerically evaluated usit@ 000 randomly generated realizations of the CSI errors
{e;}X,, which should be sufficient in terms of the probability ewian accuracy. Figure 1 validates
that our RAR methods (and the existing probabilistic SOCRho®) indeed adhere to th#% SINR
satisfaction specification. There are two interesting nlagmns, as can be seen from the figure. The first
is with the non-robust method. While the non-robust metlspdy nature, expected to violate the SINR
outage specification, its actual SINR satisfaction proii@s are below50% for most of the channel
realizations, which is severe. This reveals that the pe@&i-based design can be quite sensitive to

CSl errors. The second is with the conservatism of the variobust methods. The probabilistic SOCP
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Fig. 1. Histograms of the actual SINR satisfaction probabilitiéshe various methodsV, = K =3; C, = --- =
Cr =0.0021y,; v =11dB; p=0.1.

method has its actual SINR satisfaction probabilities eotr@ating atl00%, which indicates that it may
be playing too safe in meeting the outage specification. Bytrest, our RAR methods seem to be less
conservative. Particularly, among the three methods, RA®RhM 1l (Bernstein-type inequality) appears
to be the most relaxed as observed from its histogram.

Next, we investigate the conservatism of the various rolbusthods by evaluating their feasibility
rates; i.e., the chance of getting a feasible beamformirgtien under different channel realizations.
Similar to the last investigatiorj00 channel realizations were used. The obtained result is show
Figure 2(a), where the feasibility rates of the various rodthare plotted against the SINR requirements
~. Remarkably, the three RAR methods yield feasibility ratesch higher than that of the probabilistic
SOCP method. In particular, RAR Method Il has the best félégibate performance, which is consistent
with the SINR satisfaction probability result we noted igtiie 1. The feasibility rates of RAR Methods
| and Ill are a close match: Foy > 9dB, RAR Method | slightly outperforms RAR Method llI; for
~ < 9dB, we see the converse.

In addition to the feasibility rate, it is important to exaraithe transmit power consumptions of the
design solutions offered by the various robust methodsurgig(b) shows the result. It was obtained based

on channel realizations for which all methods yield feas#xlutions aty = 11dB; 181 such realizations
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Fig. 2. Feasibility and transmit power performance of the variowthods.V; = K = 3; p = 0.1; spatially i.i.d.
Gaussian CSI errors with? = 0.002.

were found out o600 realizations (the same realizations used in the last r@siigure 2(a)). As can
be seen from Figure 2(b), RAR Method Il yields the best avetagnsmit power performance, followed
by RAR Methods | and Il (with Method | exhibiting noticeabhetter performance foy > 15dB), and
then the probabilistic SOCP method in [21]. As a reference,algo plot the transmit powers of the
non-robust method in the figure, so as to get an idea of how radditional transmit power would be
needed for the robust methods to accommodate the outagéicgiem. We see that fory < 11dB, the
transmit power difference between an RAR method and therobast method is abouit.5dB, which

is reasonable especially when compared to the probabiBHCP method. The gaps gradually widen,
otherwise. This seems to indicate that imperfect CSI effeace more difficult to cope with when we
demand higher SINRs.

Now, let us consider the computation times of the varioususblmethods. The result is illustrated
in Figure 3. To obtain this result, we use a desktop PC ®@il3GHz CPU and3GB RAM. Moreover,
instead of calling the convenient pargerx, we use directeDuMi implementations of all the methods,
done by careful manual problem transformation and progrisgnT he reason of doing so is to bypass
parsing overheads, which may result in unfair runtime camspas. From the figure, we see that the
runtime ranking, from the shortest to longest, is: RAR Methib, RAR Method I, RAR Method II, and
the probabilistic SOCP method. Interestingly and coingilye the runtime ranking of the RAR methods
is exactly the opposite of their performance ranking we sethé previous simulation result.

As the last result in this example, we numerically inspe@dhhical issue that has much implication to
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Fig. 3. Average runtimes of the various methods.

TABLE I1l. Ratios of rank-one RAR solutions.

P 0.1 0.01

~ (dB) 3 7 11 15 3 7 11 15
Method | 464/464| 448/448| 404/404| 292/292|| 450/450| 424/424| 343/343| 225/225
Method 11 489/489 | 475/475| 441/441| 363/363|| 479/480| 463/463| 428/428| 322/322
Method 111 488/488| 453/453| 389/389| 267/267|| 476/476| 421/421| 306/306| 144/144

the RAR approach— how frequent do the RAR problems yield +@amdk solutions. Recall that rank-one
RAR solution instances have the benefits that the beamfgrmdatution generation is simple (simple
rank-one decomposition, no Gaussian randomization), aadfeasibility of the RAR problem directly
implies that of beamforming solution generation. Tablesibws the result. There is a ratio in each field.
The denominator is the realizations count for which the RABbfem is feasible, and the numerator
is the realizations count for which the RAR problem yieldsaak-one solution. Again;00 channel
realizations were used. Curiously, almost all the fieldsabl& 11l indicate rank-one solution all the time.
We encountered only one non-rank-one instance oui80ffor the setting ofp = 0.01, v = 3dB, RAR
Method II. We therefore conclude, on the basis of numericalence, that occurrence of high-rank RAR

solutions is very rare for the unicast outage-based SINRtcained problem considered here.
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Fig. 4. Performance under spatially correlated Gaussian CSleir= K = 8; p = 0.01; o2 = 0.002.

B. Simulation Example 2

This example considers more challenging settings, de=sttrds follows: N, = K = 8; spatially

correlated CSI errors whe®; = --- = Cg = C,
[Celinn = o2 x 0.9Im="!,

ando? = 0.002; p = 0.01 (or 99% SINR satisfaction probability). We do not run the probaiiti SOCP
method in [21], since, as seen in Figure 3, it is computatipnvary demanding for large problem sizes.
The same simulation method in Simulation Example 1 was usqurdduce the results here. Figure 4
shows the resulting feasible rates and average transménso¥x minor simulation aspect with the transmit
power performance plot in Figure 4(b) is that we chogse 7dB as the pick-up point of feasible channel
realizations of all the methods. We can see that, once aB&R, Method Il offers superior performance
over the others. Another observation is that RAR Method ldnages to outperform RAR Method | this
time.
Figure 5 illustrates another set of results, where we irsgrehe CSI error variancg® from 0.002 to

0.01. The number of users is set 10 = 6. The feasible realizations pick-up pointys= 13dB. We can

see similar performance trends as in the previous resuligar€ 4.

C. Simulation Example 3

One might have noticed from Simulation Example 1, Figure hht thone of the robust methods

yield actual SINR satisfaction probabilities Bt- p. This means that the robust methods are, to certain
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Fig. 5. Performance under spatially correlated Gaussian CSlemior= 8; K = 6; p = 0.01; 02 = 0.01.

extent, conservative. If more computations are alloweis, ¢bnservatism may be mitigated by running
a bisection scheme. Such a scheme was first proposed in [2Rjeirtontext of chance constrained
optimization, and then was adopted in [21] for the probatidiSOCP method. The idea is to fine tune
some design parameters relevant to the outage requirethentlesign solution is found to satisfy the
outage specification well, then we adjust the design paemnéb relax the outage requirement (e.g., for
RAR Method I, decreasings,...,dx) and rerun the design problem. Otherwise, we do the opposite
and rerun the design problem. The above step is done repeédttdwing a bisection search, requiring
the design problem to be solved multiple times. The bisact®arch also requires a validation procedure
for satisfiability of the outage specification, which can lmmel using the Monte-Carlo based validation
procedure in [22]. It is clear from the above discussion that bisection scheme can also be applied
to all the RAR methods. For more complete descriptions ofltisection scheme in the context of the
probabilistic SINR constrained beamforming problem, exadare referred to [1], [2], [21].

Figure 6 shows how bisection may improve the performance.siimulation settings ar%;, = K =5,
p=01,Cy =---=Cgkg = 0.0021y,, and the feasible realizations pick-up pointyat 9dB (for the
transmit power performance evaluations only). We can sat at the robust methods, after applying
the bisection scheme, exhibit improved performance. Nbstanding, we also see that RAR Method I

without bisection already gives performance quite on a pér the bisection-aided methods.
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TABLE |V. Ratio of rank-one RAR solutions.

~ (dB) 1 3 5 7 9 11 13 15
Method IV || 500/500| 498/499| 498/498| 497/497| 493/493| 490/490| 482/482| 473/473

D. Simulation Example 4

This example demonstrates the performance of RAR Methodvhich handles elementwise i.i.d.
bounded CSI errors with unknown distribution. We test thehme using elementwise i.i.d. uniform CSI
errors, where the real and imaginary parts ofealare independent and uniformly distributed pre, €]
with e > 0. The probabilistic SOCP method in [21] also has a version.fat. uniform CSI errors and
is included in our simulation.

The simulation settings aréy; = K = 3, p = 0.1, ¢ = 0.02, and the feasible realizations pick-up
point aty = 7dB. The result, presented in Figure 7, illustrates that RA&Hdd IV provides much better
performance than the probabilistic SOCP method. Table idMvshthe ratios of getting a rank-one RAR

solution, where we see clearly that encountering high raAR Rolutions is rare.

VIlI. CONCLUSIONS

Motivated by the presence of CSl errors in practical systenasthe need to avoid substantial SINR out-
ages among users, we studied a probabilistic SINR consttdarmulation of the transmit beamforming

design problem. Although such formulation can safeguacth eser's SINR requirement, it is difficult to
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process computationally due to the SINR outage probalgititystraints. To circumvent this, we proposed a
novel relaxation-restriction (RAR) approach, which featithe use of semidefinite relaxation techniques,
as well as analytic tools from probability theory, to prodwtficiently computable convex approximations
of the aforementioned probabilistic formulation. One of main contributions is the development of three
methods— namely, sphere bounding, Bernstein-type ingguahd decomposition— for processing the
probabilistic SINR constraints. Our simulation resultdigated that the proposed RAR methods provide
good approximations to the probabilistic SINR constraipemblem, and they significantly improved upon
existing methods, both in terms of solution quality and cataponal complexity.

At the core of our technical development is a set of tools @rstructing efficiently computable convex
restrictions of chance constraints with quadratic una@rés. An interesting future direction would be to
apply these new tools to other transmit beamforming fortiada, such as those arising from the frontier

cognitive radio and multicell scenarios, or perhaps evéerosignal processing applications.
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