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Decentralized Estimation Under Correlated Noise
Alireza S. Behbahani, Member, IEEE, AhmedM. Eltawil, SeniorMember, IEEE, and Hamid Jafarkhani, Fellow, IEEE

Abstract—In this paper, we consider distributed estimation of
an unknown random scalar by using wireless sensors and a fusion
center (FC). We adopt a linear model for distributed estimation of
a scalar source where both observation models and sensor opera-
tions are linear, and themultiple access channel (MAC) is coherent.
We consider a fusion center with multiple antennas and single an-
tenna. In order to estimate the source, best linear unbiased estima-
tion (BLUE) is adopted. Two cases are considered: Minimization
of the mean square error (MSE) of the BLUE estimator subject to
network power constraint, andminimization of the network power
subject to the quality of service (QOS). For a fusion center with
multiple antennas, iterative solutions are provided and it is shown
that the proposed algorithms always converge. For a fusion center
with single antenna, closed-form solutions are provided, and it is
shown that the iterative solutions will reduce to the closed-form
solutions. Furthermore, the effect of noise correlation at the sen-
sors and fusion center is investigated. It is shown that knowledge
of noise correlation at the sensors will help to improve the system
performance. Moreover, if correlation exists and not factored in,
the system performance might improve depending on the corre-
lation structure. We also show, by simulations, that when noise at
the fusion center is correlated, even with knowing the correlation
structure, the system performance degrades. Finally, simulations
are provided to verify the analysis and present the performance of
the proposed schemes.

Index Terms—Correlation, distributed estimation, multiple ac-
cess channel, wireless sensor networks.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) have attracted
significant attention recently due to their diverse

applications, such as environmental monitoring, industrial
monitoring, battlefield surveillance, agriculture, home appli-
cations, and smart energy to name a few [1], [2]. A wireless
sensor network consists of a large number of spatially dis-
tributed sensors with limited power, limited processing and
communication capabilities, and small size. However, such
a distributed system can achieve numerous high level tasks
[3]. Wireless sensor networks can be deployed to perform
distributed processing techniques, including distributed data
compression, tracking, classification and distributed detection
[4]–[7]. One important characteristic of a wireless sensor
network is its energy efficiency. There is a rich body of work
in literature on the design of energy efficient wireless sensor
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Fig. 1. Noise correlation model: common interference and noise propagation.

networks [8]–[12], and references therein. In this paper, we
focus on studying a distributed estimation problem with a
fusion center where each sensor linearly encodes its observa-
tions and transmits the encoded observations simultaneously
to the fusion center.

A. Prior Work

One of the main objective of a WSN is to reliably estimate
event features from the collective information provided by
distributed sensors [13]. Since typically sensors are sharing
the same spectrum with possible interferers, for example WiFi
access points, interference plays a major factor in the design
of sensors functionality. Thus, while the distributed structure
of WSNs creates opportunities to benefit from spatio-temporal
phenomena correlations, the same structure also creates noise
correlations that are unique. However most models in literature
approach this problem in a simplified manner where noise is
considered to be spatially uncorrelated among sensors with the
same power [14]–[16], or it is assumed that noise observations
are uncorrelated but with different powers [9], [17]. Noise at
the sensors can be correlated possibly due to common interfer-
ence or noise propagation as shown in Fig. 1 where common
interferers (I1 and I2) are propagated through the network via
member sensors and create spatially correlated noise among
sensors. This scenario can be extrapolated to many practical
applications such as multiple hop networks, mesh networks,
Structure Health Monitoring (SHM), habitat monitoring, smart
grid, etc., [18]–[20].
It is evident that spatially correlated noise has an impact on

distributed estimation in a distributed wireless sensor network,
but this impact is not well understood and has not been pre-
cisely quantified in the literature. Some early work in the area
has already established that considering noise correlation, re-
sults in improved performance metrics and reduced network
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power. For example, in [11], [21], [22] the authors claim that
when observation noise is considered to be correlated spatially,
power savings can be achieved by considering the noise co-
variance matrix. In [11] authors consider an analog communi-
cation framework where a linear minimum mean-square error
(LMMSE) estimator is deployed and show that power savings
can be achieved by considering the noise covariance matrix
in the design. In [21] authors consider a digital communica-
tion framework and introduce a distributed estimation technique
where quantization levels at the sensors are jointly designed by
the fusion center using the knowledge of the noise covariance
matrix. In [22] authors consider a cluster based sensor network
where sensors in the network are divided between different clus-
ters. It is assumed that the communication between sensors of
each cluster is allowed while there is no inter-cluster commu-
nication and noise within each cluster and the fusion center can
be correlated. Each cluster sends out one or more messages to
the fusion center through orthogonal MAC for the final estima-
tion. However, in these works the authors assume that the noise
covariance matrix is available at the fusion center and it is not
clear how different correlation scenarios can affect system per-
formance. Furthermore, the authors assume a fusion center with
one antenna and sensors send information over orthogonal chan-
nels to the fusion center.

B. Contributions

In this paper, we adopt the model introduced by [16] for
decentralized estimation where both observation models and
sensors’ operations are linear and a coherent MAC is consid-
ered1. We consider a case where sensors observe a common
scalar source and each sensor has one observation and sends
out one message per observation. First we provide solutions
for the following two scenarios where the fusion center has
multiple antennas: A) Minimizing best linear unbiased esti-
mator (BLUE) subject to the total transmit power of sensors
(network power), and B)Minimizing network power subject to
the quality of service (QOS) where the MSE of BLUE is less
than some predefined value. For both of these scenarios, we
provide iterative solutions where the sensor factors and filter
at the fusion center are designed jointly. Furthermore, the pro-
vided solutions consider a generalized noise covariance matrix
at the sensors and fusion center where noise can be correlated.
Finally, it is shown that when the fusion center is equipped
with one antenna, a closed form solution can be derived for
both scenarios.
We explore the effect of noise correlation for the following

two cases:
• Noise correlation at the sensors. Due to the ambient noise,
sensors distributed densly, noise propagation, common in-
terference, and nonlinearity of sensors, observation noise
can be correlated.

1Note that while we adopt the model in [16] there are differences between
the two models. In our proposed model, the fusion center has multiple
antennas and the number of antennas at the fusion center can be arbitrary.
In contrast, in [16], the authors consider a fusion center with the number of
observations equal to the number of transmitted messages from the sensors.
Furthermore, it is assumed that the noise covariance matrix at the sensors and
the fusion center are identity matrices and therefore there is no discussion
on the effect of noise correlation on the system performance in [16].

• Noise correlation at the FC. Due to the broadcast nature of
wireless networks, the fusion center is exposed to a set of
common interferers resulting in correlated noise at the FC.

Both of the above models are of considerable importance. The
natural question will be if it is possible to exploit the noise cor-
relation to improve performance. In practice, knowledge of cor-
relation may result in overheads in the network. Whether such
overheads are justified depends on the potential scenario.
The main results of the paper are:
1) For the case of a fusion center with multiple antennas :

a) MSE of BLUE is minimized subject to network
power. In this case sensor factors and filter at the
fusion center are designed jointly and an iterative
solution is provided. The optimality and convergence
of the proposed solution is investigated.

b) Network power is minimized subject to QOS where a
minimum MSE is required to be achieved. An itera-
tive solution is provided to design sensor factors and
filter at the fusion center.

c) It is shown by simulations that if noise at the fusion
center is correlated, the MSE performance degrades
and the knowledge of correlation does not help.

2) For the case of a fusion center with a single antenna:
a) A closed form solution for the sensor factors and filter
at the fusion center are provided for both optimization
scenarios. It is shown that the iterative solution pro-
vided for the case of multiple antennas will reduce to
the closed form solution for both scenarios.

b) The effect of noise correlation at the sensor is con-
sidered for four different scenarios, where the noise
is either correlated or uncorrelated and the FC ei-
ther aware or unaware of the correlation. It is shown
that while knowledge of noise correlation at the sen-
sors will improve system performance (unlike knowl-
edge of noise correlation at the fusion center), there
are situations where correlation helps, even without
knowing that correlation exists.

The remainder of the paper is organized as follows: Section II
describes the system model and problem formulation. In
Section III, we minimize MSE under network power constraint
for a fusion center with multiple antennas. In Section IV, net-
work power minimization under QOS is introduced for a fusion
center with multiple antennas. In Section V, MSE is minimized
under network power constraint for a single antenna fusion
center and some asymptotic properties of such a network are
provided. Section VI exploits noise correlation at the sensors.
In Section VII, the solution for network power minimization for
a single antenna fusion center is provided. Simulation results
are provided in Section VIII and we conclude in Section IX.
Notation: We use bold lower case for vectors, while bold

capital letters are used for matrices. Further , , and
stand for conjugation, transposition and Hermitian transposition
respectively. represents element-wise multiplication,
denotes the element in row and column of matrix , and

is the trace of matrix . We further define
as a diagonal matrix that contains the elements of on its di-
agonal and as a vector whose elements are the di-
agonal elements of matrix . In addition, is the principle
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Fig. 2. Block diagram of a general coherent MAC linear decentralized estima-
tion.

eigenvector of matrix associated to its highest eigenvalue and
is themaximum eigenvalue ofmatrix . Also stands

for expectation operator, denotes the set of complex scalars,
and represents the set of matrices with complex
entries.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a distributed wireless sensor network (WSN)
with a fusion center as shown in Fig. 2. Suppose there are
sensors, each observing a common unknown random source
, where has zero mean and variance of . We assume
there is no inter-sensor communication since the sensors are
distributed. In this work, we consider a linear decentralized
estimation where both observation model and sensor operations
are linear. The sensors transmit their information to a fusion
center through a coherent multiple access channel (MAC).
The observation at sensor can be described as

(1)

where is the observation at the th sensor, and is
the additive noise at the th sensor with the variance . By
stacking the observations from all sensors into a single vector,
the collection of sensor observations can be expressed as

(2)

where is the observations at the
sensors. Also is the additive
noise vector at the sensors which has zero mean and covariance
matrix , and is the
vector with all elements equal to one.
Considering the assumption of a linear model at the sensors,

Sensor encodes its observations by multiplying it with .
Thus, the transmitted signal, , at Sensor can be written
as

(3)

where is the encoder coefficient for Sensor . Again,
by stacking the transmitted signals from all sensors into a

single vector, the collection of the transmitted sensor signals,
, can be expressed as

(4)

where , is block
diagonal matrix such that the th diagonal element is the encoder
matrix of the th sensor which is , and .
Assuming a coherent MAC between sensors and the fusion

center, all the sensors transmit simultaneously by using e.g.,
the same time slot in TDMA or the same frequency band in
FDMA. The transmitted signals from all sensors will reach the
fusion center coherently under the assumption of perfect syn-
chronization between sensors and the fusion center2. Assuming
a fusion center which is equipped with antennas, the re-
ceived signal at the fusion center can be expressed as

(5)

where , is the channel
matrix between the sensors and fusion center and is an ad-
ditive noise with covariance matrices . The
channel matrix is further defined as where

is the channel from the th sensor to the
FC as shown in Fig. 2. Furthermore, we assume that the noise
at the sensors, , and the noise at the fusion center, , are in-
dependent.

III. MSE MINIMIZATION UNDER NETWORK POWER FOR A
MULTIPLE ANTENNAS FC

In this section, we jointly design the optimum sensor encoder
coefficients and fusion center filter in order to minimize the
MSE of BLUE estimator subject to total transmit power con-
straints at the sensors. We use the total transmit power since it
allows tractable analysis leading to useful insights. The fusion
center linearly processes the received signal, , by multiplying it
with the filter . Thus, the decision statistic
is given by

(6)

Furthermore, the total noise power after processing at the fusion
center would be .

A. Sensor Optimizations

We use a BLUE estimator [26] for estimating the source, ,
which can be expressed as

(7)

2Note that a coherent MAC is considered over an orthogonal MAC since it
is times more bandwidth efficient. Furthermore, for a coherent MAC, the
achievable MSE decreases in the order of while for an orthogonal MAC
the achievable MSE is finite even when the number of sensors goes to infinity.
From an information theoretical point of view, it has been shown that an asyn-

chronous MAC can provide a higher capacity [28]. From a communication/net-
working point of view, asynchronous transmission is still an important open
research topic. However some recent results show that it is possible to handle
asynchronousMAC transmission and get results that are as good as synchronous
MAC (see [29] and references therein).
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and therefore the MSE of the BLUE estimator can be written as

(8)

Note that the expectation is taken over random variables and
. However, since BLUE estimator is an unbiased estimator,

is not a function of the random variable anymore and
the expectation is only needed to be taken over the distribution
of noise at the sensors and the fusion center.
Now, the optimization can be expressed as

(9)

where is the total transmit power of sensors. The above op-
timization can be solved iteratively if we can find in terms of
and in terms of .
To solve (9), we first solve in terms of . In this case, the

optimization problem becomes

(10)

The above optimization problem can be recast as

(11)

This is the minimum variance distortionless response (MVDR)
problem [23] and the solution to this problem is

(12)

where is a constant which satisfies the equality condition in
(11) and can be ignored since it has no effect on the original
optimization problem (9). Note that, if the cost function in (11)
equals to another number other than 1, it will change the con-
stant scalar in (11). However, in (12) which satisfies the
equality condition in the constraint can be ignored since it has
no effect on the original optimization problem in (9). In fact
any scaling factor for the vector does not change the value of
the cost function as can be seen from (9). This means that no
matter what value we choose for the constraint in (11), it does
not change the cost function and consequently it does not affect
the value of vector . Therefore, we have chosen an arbitrary
number, i.e., 1. Now that we have solved in terms of , we
solve in terms of from the original optimization problem
in (9). In order to do that we substitute where

and . Therefore,
for fixed , the vector can be obtained from the following op-
timization problem

(13)

It is shown in Appendix A that the inequality power constraint in
the above optimization can be replaced with equality. Therefore,
the optimization in (13) can be recast as

(14)

Now, as shown in Appendix B, the optimum solution is

(15)

where
and .

Now that we have solved in terms of and in terms of
, we can iteratively solve for and such that the total MSE
monotonically decreases. The algorithm starts with initializing
the vector , then the fusion center filter, , and sensors’ encoder
vector, , can be updated iteratively. Note that the objective
function, namely MSE, will be nonincreasing in every iteration
step. Therefore, it will converge [24].

B. High Observation SNR

At high observation SNR at the sensors, i.e., ,

noise at the sensors can be neglected. Then, the received signal
can be expressed as

(16)

and the total network transmit power will be
.

In this case, it is possible to find an exact closed form solu-
tion instead of having an iterative algorithm. This solution is in
fact the matched filter. In this case, the optimizations can be ex-
pressed as

(17)

One can first solve in terms of similar to (12) and obtain

(18)

where is a scalar which will be determined by the constraint
. However, this scalar can be ignored since it has

no effect on the cost function in (17). Substituting the above
solution into the cost function in (17), the optimization problem
becomes

(19)
By using the methodology presented in Appendix B and
Rayleigh quotient [25], the solution can be expressed as

(20)

where is determined in order to satisfy the power constraint
and is . Further-

more, the maximum cost function in (19) can be expressed as
. Therefore, the
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minimum MSE for the case of high observation SNR for a
WSN with a FC with multiple antennas can be expressed as

(21)

IV. NETWORK POWER MINIMIZATION UNDER QOS
CONSTRAINT FOR A MULTIPLE ANTENNAS FC

In this section we design sensor factors by minimizing the
total sensor transmit power (network power), , subject to the
fusion center QOS constraint. The QOS is given by the BLUE
MSE at the FC, therefore, this problem can be written as

(22)

By using (7) to (9), the above optimization can be written as

(23)

where . Note that in the optimiza-
tion problem in (23) the constraint function is a function of ,
and , however the cost function is only a function of . Con-
sequently, we first construct a non constraint optimization and
find in terms of , then we construct another optimization to
find in terms of . To solve in terms of , we formulate the
following optimization problem

(24)

The above optimization problem can be recast as

(25)

This is the minimum variance distortionless response (MVDR)
problem [23] with the following solution

(26)

where is a constant which satisfies the equality condition in
(25). Note that can be ignored since it has no effect on the
original optimization problem (24).
Now that we have solved in terms of , we solve in terms

of from the original optimization problem in (23). In order to
do that, we substitute where and

. For fixed , the vector can
be obtained from the following optimization problem

(27)
Introducing

(28)

we can reformulate the optimization problem in (27) as

(29)

The constraint function in (29) can be used for checking the
feasibility of the problem for any given value of . In particular,
for all the values of that lead to a negative semidefinite , the
problem in (29) is infeasible. In addition, the constraint in (29)
can be replaced by the equality constraint .
Hence, the problem in (29) is equivalent to

(30)

The solution to (30) can be found by using the Lagrangian
method. The Lagrangian function of the optimization problem
in (30) can be written as

(31)

where is the Lagrange multiplier. Now, in order to find
the optimum sensor factors, , we differentiate (31) with respect
to and equate it to zero, resulting in,

(32)

Multiplying both sides of (32) by yields

(33)

By looking at (33) and the optimization problem in (30), it can
be seen that minimizing leads to the smallest positive
since and are fixed positive values. This is equivalent
to finding the largest in (32). Now, the optimal solution of the
problem in (29) can be written as

(34)

where ensures that the power constraint is satisfied and can
be written as

(35)

Finally, the optimal solution and the minimum total power can
be expressed as

(36)

(37)

Now that we have solved in terms of and in terms of ,
similar to the algorithm proposed in Section III-A, we can it-
eratively solve for and such that the total MSE monotoni-
cally decreases. The algorithm starts with initializing the vector
, then the fusion center filter, , and sensors’ encoder vector,
, can be updated iteratively. Note that the objective function,



5608 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 21, NOVEMBER 1, 2014

namely MSE, will be nonincreasing in every iteration step and
the algorithm converges.

V. MSE MINIMIZATION UNDER NETWORK POWER FOR A
SINGLE ANTENNA FC

In this section we consider a fusion center with one antenna.
The problem formulation in the case of single antenna is the
same as the one introduced in Section III except that there is no
need to have a filter at the fusion center. The received signal at
the fusion center, which is equipped with one antenna, can be
expressed as

(38)

where 3 is the channel vector between
the sensors and the fusion center and is the channel between
Sensor and the fusion center. Also, is an additive noise with
zero mean and variance , where we assume there is no corre-
lation between the fusion center noise, , and the sensor noise
vector . Furthermore, the total noise variance at the fusion
center is .
The BLUE estimator for the case of single antenna at the fu-

sion center can be expressed as

(39)

and the MSE of the BLUE estimator is

(40)

where .

A. Sensor Optimization

In this section, similar to Section III-A, we design sensor
gains in such a way as to minimize BLUE MSE subject to
the total transmit power of sensors. Therefore, the optimization
problem can be formulated as

(41)

Note that for the case of single antenna fusion center there is no
need to have a filter at the fusion center. This also can be verified
by looking at (9), where is a scalar and is canceled out from
the numerator and denominator of the cost function. Therefore
a closed form solution can be found.
By using the same methodology provided in Appendix B, the

minimum MSE for BLUE estimator for a distributed wireless
sensor network with one antenna at the fusion center and the
sensor noise covariance matrix is given by

(42)

3Note that for the case of fusion center with one antenna. This is
due to the fact that all vectors are defined as column vectors

and the optimal sensor gain factors are

(43)

where and
.

B. Asymptotic Properties of the Network

1) Case I: : At high total network
power , for any , the noise at the FC is negligible. Then, the
received signal can be written as

(44)

and the optimal solution would be

(45)

Then, the MSE can be expressed as

(46)

By looking at (44), one can see that the network looks like a
single input multiple output (SIMO) system. Also, MSE is in-
versely proportional with the number of sensors in the network.
Furthermore, noise power at the senors is the main limiting
factor of MSE.
2) Case II: HighObservation SNR: At high observation SNR

at the sensors, i.e., , noise at the sensors can be

neglected. Then, the received signal can be expressed as

(47)

and the total network transmit power would be
. In this case, the optimal

solution can be expressed as

(48)

and the MSE will be

(49)

This network behaves like a multiple input single output
(MISO) system. Again, like the previous case, MSE is in-
versely proportional with the number of sensors.

VI. EXPLOITING CORRELATION

In this section we address different correlation scenarios
and their effect on the MSE. The natural question to ask is
whether correlation improves or degrades performance given
that the noise covariance matrix is known or unknown. In order
to answer the above question, we consider the following four
scenarios:



BEHBAHANI et al.: DECENTRALIZED ESTIMATION UNDER CORRELATED NOISE 5609

• The noise is uncorrelated and FC is aware of that (Scheme-
00).

• The noise is i.i.d. and FC is aware of that (Scheme-iid).
(Note: This is a special case of Scheme-00.)

• The noise is correlated and FC is unaware of the correla-
tion (Scheme-10).

• The noise is correlated and FC is aware of the correlation
(Scheme-11).

Note that the trace of the noise covariance matrix, , rep-
resents the total sensors’ noise power in the network. Therefore,
it is fair to compare different correlation scenarios as long as
the total noise power in the network is the same. As a result, in
order to be fair, we assume that the trace of the noise covari-
ance matrix, , is the same for all schemes. This means that
for Scheme-11 and Scheme-10, is the general noise covari-
ance matrix. For Scheme-00, is the noise covariance

matrix and finally for Scheme-iid, is the noise covari-
ance matrix.

A. Correlation Scenarios

1) Sensors With Uncorrelated Noise (Scheme-00, and
Scheme-iid): In this case, the noise covariance matrix is given
by . The optimum solution can be obtained by replacing

in (43) with , i.e.,

(50)

Thus, the corresponding MSE in this case will be

(51)

A special case of Scheme-00 is where noise at the sensors are
i.i.d. Considering the requirement that the trace of noise covari-
ance matrix has to be the same for all schemes, this means that

the noise covariance matrix for Scheme-iid will be .
The MSE for this case is

(52)

2) Sensors With Correlated Noise When FC is not Aware
of the Correlation (Scheme-10): In this case, since the FC is
not aware of the correlation, the correlation is ignored in de-
signing the sensor amplification factor. Therefore, the solution
for sensor factors is the same as that of Scheme-00 i.e.,

(53)

and the MSE can be written as

(54)

3) Sensors With Correlated Noise When FC is Aware of
the Correlation (Scheme-11): In this case, since the FC is
aware of the correlation, the correlation can be exploited in the
sensor design. The solution for this case is already provided in
Section V-A.

B. Asymptotic Analysis

1) Case I: :
• Scheme-00:

(55)

• Scheme-iid:

(56)

• Scheme-10:

(57)

• Scheme-11:

(58)

2) Case II: HighObservation SNR: At high observation SNR
at the sensors, for all schemes, MSE can be expressed as

(59)

C. Performance Comparison

In this section we compare the performance of different
schemes introduced earlier. Since Scheme-11 has complete
knowledge of correlation, it is easy to see that always

(60)

For comparison between Scheme-10 and Scheme-00 one can
show that

(61)

where

(62)

and

(63)

It is easy to see that scalar is always positive, however can
be positive or negative depending on negative or positive corre-
lated noise. So the difference between the MSE of Scheme-10
and Scheme-00 can be positive or negative. In other words,
• If all the noise components are correlated negatively then

(64)
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• If all the noise components are correlated positively then

(65)

• If some of the noise components are correlated positively
and some negatively then the relationship between
and depends on the correlation values and the
channels from sensors to the fusion center and is governed
by (63).

One should note that if the source is real and thus the chan-
nels and noise, then is a real scalar. In the case of a
complex source, where we assume the source and thus channels
and noise are complex random variables, this makes
for a complex number. However, it is easy to see that if
one changes the index of and , the term that is multiplied by

and is the same which implies that is a func-
tion of since for

. In this case, positive or negative correlation implies the
real part of the cross correlation between noise.
1) Example 1: In order to clarify the above discussion, we

consider a network with two sensors. In this case one can write

(66)
where ,

, is the channel from
sensor one to the fusion center, and is the channel from
sensor two to the fusion center. Note that since and are
always positive numbers, the denominator of the right hand
side of (66) is always a positive real number. Therefore, the
numerator of (66) which is defines the
relationship between and .
If the source and thus channels and noise are real then

and therefore

If the source and thus channels and noise are complex then
and therefore

It is easy to see from (66) that if noise at the sensors are corre-
lated negatively then the right hand side of (66) which is ,
is negative and and if noise is positively
correlated then .
The only remaining schemes to compare are Scheme-00 and

Scheme-iid. The MSE for these two schemes are provided in
(51) and (52). Since it is hard to compare these two schemes
in the general form, we consider the case where (or

). In this case, one can show that

(67)

The term is the harmonic mean (HM) and the

term is the arithmetic mean (AM). It is known
that . This means that for high network power

(68)

Note that if noise is uncorrelated with the same marginal dis-
tributions (or uncorrelated and with different marginal distri-
butions but with the same power), then the same results as in
Scheme-iid can be drawn as we are only dealing with the noise
covariance matrix. This can be seen from (51) and (52) (also
from (67) and (68) for high network power), where if noise is
uncorrelated with the same marginal distributions (or uncorre-
lated and with different marginal distributions but with the same
power) then .
While it was shown in the above that when noise at all sen-

sors is negatively correlated then , it is not
possible to have noise at all sensors negatively correlated si-
multaneously. It is easy to see that only two sensors at the same
time can have negative correlated noise. However, as mentioned
before, if some of noise components are correlated positively
and some negatively then the relationship between and

depends on the correlation value and channels from sen-
sors to the fusion center and is governed by (63). This means that
different network configuration will control the relationship be-
tween and .

VII. NETWORK POWER MINIMIZATION UNDER QOS
CONSTRAINT FOR A SINGLE ANTENNA FC

In this section, similar to Section IV, we design sensor factors
by minimizing the total sensor transmit power (network power),
, subject to the fusion center QOS constraint for the case of

one antenna. The QOS is given by the BLUE MSE at the FC,
therefore, this problem can be written as

(69)

which can be expressed as

(70)

where . Note that this problem for-
mulation is similar to the case of multiple antennas defined in
(23) except that there is no need to have a filter at the fusion
center as it is canceled out from the numerator and denomi-
nator of the cost function in (23). Therefore, following the same
methodology introduced in Section IV, the optimal solution and
the minimum total power can be expressed as

(71)

(72)

where .
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Fig. 3. MSE for the four schemes presented in Section VI-C versus for a
network with two sensors. Here there is one antenna at the fusion center, only
one specific channel realization is used, , , and

.

VIII. SIMULATION RESULTS

In this section, we provide simulation results to verify analyt-
ical calculations. We assume the elements of (and for the
single antenna fusion center) are generated as zero-mean and
unit-variance i.i.d complex Gaussian random variables. Note
that while the iterative algorithm provided for the case of a FC
with multiple antennas does not guarantee global optimality and
might converge to a local optimum, this does not change the
conclusions drawn. In order to have a fair comparison, different
scenarios are compared under the same simulation setup.
First we consider a network with two sensors. The noise at the

sensors is assumed to be correlated with the covariance matrix

defined as where

and and are two random variables to create a heteroge-
nous system (sensors with different noise power). Furthermore,
we assume and .

Fig. 3 shows MSE for the four schemes discussed in
Section VI-C, for positive and negative correlation values.
The figure is for a network with two sensors and a fusion
center with one antenna where , and
for a fixed channel realization. One can see that for negative
correlation and for positive correlation

. While in this figure ,
one can find channels where . However,
as the total network power is increased, it can be verified by
simulations that which is consistent with
the discussion in Section VI-C.
Fig. 4 shows MSE versus different number of antennas at the

fusion center for a network with two sensors and averaged over
different channel realizations where , ,

. As it can be seen, by increasing the number of antennas
at the fusion center, , the MSE performance improves and
gets closer to the benchmark. Also, the performance benchmark
is defined for all decentralized estimators where all sensor ob-
servations are directly available to the fusion center. The MSE
in this case is . Note that due to the coherent MAC
channel between the sensors and the fusion center, intersymbol

Fig. 4. MSE versus time index where for a network with two sensors
and averaged over different channel realizations. Here there are two antennas at
the fusion center, , , and .

Fig. 5. MSE versus time index for . Here , ,
, and . Also, MSE is averaged over different channel

realizations.

interference is created at the fusion center. Having multiple an-
tennas at the fusion center provides more degrees of freedom
and therefore it is possible to remove intersymbol interference
better and have a performance closer to the benchmark.
Fig. 5 shows MSE versus time index for . The

figure is for a network with two sensors and a fusion center
with 5 antennas, , where ,
and MSE is averaged over different channel realizations. It can
be seen that as the correlation becomes less positive and more
negative, the MSE performance improves which is consistent
with the results provided in Section VI-C.
In order to generate a valid noise covariance matrix at the sen-

sors, for any number of sensors, we consider a common interfer-
ence based model. In such a model each sensor in addition to its
local noise which includes thermal and components noise, ob-
serves received signals from different common interferers. The
total noise at the sensors under such a model can be expressed
as

(73)
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Fig. 6. MSE versus the number of sensors, . Here , ,
, , and . Also, MSE is averaged over

different channel realizations.

where is the number of interferer, is the transmitted signal
from the th interferer with zero mean and the power of ,
and is the channel from the th interferer to the sen-
sors. is additive noise with the covariance matrix of

. It is also assumed that different interferers are
independent of each other. As previously mentioned, we define

. Given this model, the covariance matrix of noise at
the sensors can be expressed as

(74)

where is the interference power from the th interferer.
Fig. 6 shows MSE versus different number of sensors, ,

for a fusion center with one antenna, . It is assumed
that there are 10 interferers, , and each has the power
of . Furthermore, , , and
the MSE is averaged over different channel realizations from
the sensors to the fusion center. Since the noise covariance ma-
trix is generated randomly, there is no control on how noise at
the sensors are correlated. This is the reason why the curves
are not smooth. Also, as expected, for any
number of sensors. Note that in Fig. 6 noise correlation is fixed
for each , after being generated randomly. If further the curves
are averaged over different interferes (different noise correla-
tion matrices), then the curves would be smooth. In this case, as
expected, outperforms the other scenarios with a very
good margin. and have a very similar perfor-
mance and slightly performs worse than and

.
Fig. 7 showsMSE versus time index for a network with 5 sen-

sors, , , and . Furthermore,
, and the MSE is averaged over different channel realiza-

tions from the sensors to the fusion center. Two different cases
for noise covariance matrix at the sensors and fusion center are
considered. In one case, which means that
noise at the sensors and fusion center are i.i.d. with the same
power. In the other case, , and is gen-

Fig. 7. MSE versus time index. Here , , , ,
, and . Also,MSE is averaged over different channel

realizations and .

Fig. 8. Minimum power versus number of antennas at the fusion center. Here
, , , and . Also, MSE is

averaged over different channel realizations.

erated based on the interference model. As it can be seen, when
noise at the fusion center is correlated due to the common inter-
ference, the MSE performance degrades compared to the case
that noise at the fusion center is i.i.d. This suggests that corre-
lated noise can be beneficial at the sensors, while it degrades the
MSE performance if it exists at the fusion center.
Finally, Fig. 8 shows the minimum network power, ,

versus the number of antennas at the fusion center. In this figure
, , , , and the

MSE is averaged over different channel realizations from the
sensors to the fusion center. It is clear that as the number of
antennas at the fusion center increases, the minimum power re-
quired to achieve the upper bound on MSE, decreases. In other
words, increasing the number of antennas at the fusion center
decreases the network power.

IX. CONCLUSIONS

In this paper, a WSN is considered in which sensor observa-
tions and operations are linear and a coherent MAC is used. We
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design sensor precoders and filter at the fusion center jointly
in order to estimate an unknown scalar random source for the
two cases of: Minimization of the mean square error (MSE) of
BLUE estimator subject to the network power constraint, and
minimization of the network power subject to the quality of ser-
vice (QOS). For a fusion center with multiple antennas, iterative
solutions are provided and it is proved that the proposed algo-
rithms always converge. Also, closed form solutions are pro-
vided for a fusion center with single antenna, and it is shown
that the iterative solutions will reduce to the closed form so-
lutions. Furthermore, the effect of noise correlation at the sen-
sors and fusion center is investigated. It is shown that knowl-
edge of noise correlation at the sensors will help to improve the
system performance. Moreover, if correlation exists and we are
not aware of that, the system performance might improve de-
pending on the correlation structure. It is also shown, by simu-
lations, that when noise at the fusion center is correlated, even
with knowing the structure of the correlation, the system perfor-
mance degrades. Finally, simulations are provided to verify the
analysis and present the performance of the proposed schemes.

APPENDIX A
POWER CONSTRAINT PROPOSITION

In this appendix we show that the optimization in (13) is
achieved with the equality power constraint. In order to show
this we start with the optimization in (13) which is

(75)

We prove that if is the solution of the optimization problem

(76)

then solves the original optimization in

(75). This means that and the optimum solu-
tion to the original optimization problem is achieved with equal
power constraint.

Proof: For any vector satisfying the power constraint
, one can show that

(77)

The equality holds by just substituting in

the equation. The first inequality holds because of the definition

of which is the optimal solution to the optimization in (76).
The second equality holds since any other vector is such that

. Therefore is the optimal solution to the opti-
mization problem in (75) and satisfies the power constraint with
equality which is .

APPENDIX B
PROOF OF THE OPTIMIZATION

The goal is to provide the solution to the optimization intro-
duced in (14) which is,

(78)

To solve the above optimization problem, we incorporate the
power constraint in the denominator of the cost function, where
we have

(79)

where and
. Note that the matrix

is Hermitian and positive semi-definite and matrix is
Hermitian and positive definite.
By using generalized eigenvalue problem [27], the solution

to the optimization in (78) can be expressed as

(80)

where is the principle eigenvector associated to the highest
eigenvalue and ensures that the power constraint is satisfied.
Therefore, the optimal sensor gains can be expressed as

(81)

where .

Accordingly, the maximum value of the cost function can be
expressed as

(82)

Finally the minimum MSE for the BLUE estimator introduced
in (8) for a given can be expresses as

(83)
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