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Jason T. Parker, Member, IEEE, Philip Schniter, Fellow, IEEE, and Volkan Cevher, Senior Member, IEEE

Abstract—In this paper, we extend the generalized approximate
message passing (G-AMP) approach, originally proposed for
high-dimensional generalized-linear regression in the context
of compressive sensing, to the generalized-bilinear case, which
enables its application to matrix completion, robust PCA, dictio-
nary learning, and related matrix-factorization problems. Here,
in Part I of a two-part paper, we derive our Bilinear G-AMP
(BiG-AMP) algorithm as an approximation of the sum-product
belief propagation algorithm in the high-dimensional limit, where
central-limit theorem arguments and Taylor-series approxima-
tions apply, and under the assumption of statistically independent
matrix entries with known priors. In addition, we propose an
adaptive damping mechanism that aids convergence under finite
problem sizes, an expectation-maximization (EM)-based method
to automatically tune the parameters of the assumed priors, and
two rank-selection strategies. In Part II of the paper, we will
discuss the specializations of EM-BiG-AMP to the problems of
matrix completion, robust PCA, and dictionary learning, and we
will present the results of an extensive empirical study comparing
EM-BiG-AMP to state-of-the-art algorithms on each problem.

Index Terms—Approximate message passing, belief propaga-
tion, bilinear estimation, matrix completion, dictionary learning,
robust principal components analysis, matrix factorization.

I. INTRODUCTION

I N this work, we present a new algorithmic framework for
the following generalized bilinear inference problem: es-

timate the matrices and
from a matrix observation that is statisti-

cally coupled to their product, . In doing so, we treat
and as realizations of independent random matrices and
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with known separable pdfs (or pmfs in the case of discrete
models)

(1)

(2)

and we likewise assume that the likelihood function of is
known and separable, i.e.,

(3)

Recently, various special cases of this problem have gained
the intense interest of the research community, e.g.,
1) Matrix Completion: In this problem, one observes a few
(possibly noise-corrupted) entries of a low-rank matrix and
the goal is to infer the missing entries. In our framework,

would represent the complete low-rank ma-
trix (with tall and wide ) and the observation
mechanism, which would be (partially) informative about

at the observed entries and non-informa-
tive at the missing entries .

2) Robust PCA: Here, the objective is to recover a low-rank
matrix (or its principal components) observed in the
presence of noise and sparse outliers. In our framework,

could again represent the low-rank matrix,
and the noise-and-outlier-corrupted observation
mechanism. Alternatively, could also capture the out-
liers, as described in the sequel.

3) Dictionary Learning: Here, the objective is to learn a dic-
tionary for which there exists a sparse data representa-
tion such that closely matches the observed data .
In our framework, would be chosen to induce spar-
sity, would represent the noiseless observations,
and would model the (possibly noisy) observa-
tion mechanism.

While a plethora of approaches to these problems have been
proposed based on optimization techniques (e.g., [5]–[15]),
greedy methods (e.g., [16]–[20]), Bayesian sampling methods
(e.g., [21], [22]), variational methods (e.g., [23]–[27]), and
discrete message passing (e.g., [28]), ours is based on the
Approximate Message Passing (AMP) framework, an instance
of loopy belief propagation (LBP) [29] that was recently de-
veloped to tackle linear [30]–[32] and generalized linear [33]
inference problems encountered in the context of compressive
sensing (CS). In the generalized-linear CS problem, one esti-
mates from observations that are statistically
coupled to the transform outputs through a separable
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likelihood function , where in this case the transform
is fixed and known.
In the context of CS, the AMP framework yields algorithms

with remarkable properties: i) solution trajectories that, in
the large-system limit (i.e., as with fixed,
under iid sub-Gaussian ) are governed by a state-evolution
whose fixed points—when unique—yield the true posterior
means [34], [35] and ii) a low implementation complexity (i.e.,
dominated by one multiplication with and per iteration,
and relatively few iterations) [32]. Thus, a natural question is
whether the AMP framework can be successfully applied to the
generalized bilinear problem described earlier.
In this manuscript, which is Part I of a two-part work, we

propose an AMP-based approach to generalized bilinear infer-
ence that we henceforth refer to as Bilinear Generalized AMP
(BiG-AMP), and we uncover special cases under which the gen-
eral approach can be simplified. In addition, we propose an
adaptive damping [36] mechanism, an expectation-maximiza-
tion (EM)-based [37] method of tuning the parameters of ,

, and (in case they are unknown), and methods to
select the rank (in case it is unknown). In the case that ,

, and/or are completely unknown, they can be mod-
eled as Gaussian-mixtures with mean/variance/weight parame-
ters learned via EM [38]. In Part II [1], we detail the application
of BiG-AMP to matrix completion, robust PCA, and dictionary
learning, and present the results of an extensive numerical in-
vestigation into the performance of BiG-AMP in each applica-
tion. Those empirical results demonstrate that BiG-AMP yields
an excellent combination of estimation accuracy and runtime
when compared to existing state-of-the-art algorithms for each
application.
Although the AMP methodology is itself restricted to sepa-

rable known pdfs (1)–(3), the results of Part II suggest that this
limitation is not an issue for many practical problems of interest.
However, in problems where the separability assumption is too
constraining, it can be relaxed through the use of hidden (cou-
pling) variables, as originally proposed in the context of “turbo-
AMP” [39] and applied to BiG-AMP in [40]. Due to space lim-
itations, however, this approach will not be discussed here. Fi-
nally, although we focus on real-valued random variables, all of
the methodology described in this work can be easily extended
to circularly symmetric complex-valued random variables.
We now discuss related work. One possibility of applying

AMP methods to matrix completion was suggested by Mon-
tanari in [32, Sec. 9.7.3] but the approach described there dif-
fers from BiG-AMP in that it was i) constructed from a factor
graph with vector-valued variables and ii) restricted to the (in-
complete) additive white Gaussian noise (AWGN) observation
model. Moreover, no concrete algorithm nor performance eval-
uation was reported. Since we first reported on BiG-AMP in
[2], [3], Rangan and Fletcher [41] proposed an AMP-based ap-
proach for the estimation of rank-one matrices from AWGN-
corrupted observations, and showed that it can be characterized
by a state evolution in the large-system limit. More recently,
Krzakala,Mézard, and Zdeborová [42] proposed anAMP-based
approach to blind calibration and dictionary learning in AWGN
that bears similarity to a special case of BiG-AMP, and de-
rived a state-evolution using the cavity method. Their method,

however, was not numerically successful in solving dictionary
learning problems [42]. The BiG-AMP algorithm that we de-
rive here is a generalization of those in [41], [42] in that it han-
dles generalized bilinear observations rather than AWGN-cor-
rupted ones. Moreover, our work is the first to detail adaptive
damping, parameter tuning, and rank-selection mechanisms for
AMP based bilinear inference, and it is the first to present an
in-depth numerical investigation involving both synthetic and
real-world datasets. An application/extension of the BiG-AMP
algorithm described here to hyperspectral unmixing (an instance
of non-negative matrix factorization) was recently proposed in
[40].
The remainder of the document is organized as follows.

Section II derives the BiG-AMP algorithm, and Section III
presents several special-case simplifications of BiG-AMP.
Section IV describes the adaptive damping mechanism, and
Section V the EM-based tuning of prior parameters and selec-
tion of rank . Finally, Section VI concludes. In Part II [1],
we detail the application of BiG-AMP to matrix completion,
robust PCA, and dictionary learning, and present the results of
an extensive numerical investigation into the performance of
BiG-AMP in each application.
Notation: Throughout, we use san-serif font (e.g., ) for

random variables and serif font (e.g., ) otherwise. We use
boldface capital letters (e.g., and ) for matrices, boldface
small letters (e.g., and ) for vectors, and non-bold small
letters (e.g., and ) for scalars. We then use to denote
the pdf of random quantity , and to denote the
Gaussian pdf for a scalar random variable with mean and
variance . Also, we use and to denote mean
and variance of , respectively, and for the Kull-
back-Leibler (KL) divergence between pdfs and . For a
matrix , we use to denote the entry in the
row and column, to denote the Frobenius norm, and

to denote transpose. Similarly, we use to denote the
entry in vector and to denote the
norm.

II. BILINEAR GENERALIZED AMP

A. Problem Formulation

For the statistical model (1)–(3), the posterior distribution is

(4)

(5)

(6)

where (4) employs Bayes’ rule and denotes equality up to a
constant scale factor.
The posterior distribution can be represented with a factor

graph, as depicted in Fig. 1. There, the factors of from
(6) are represented by “factor nodes” that appear as black boxes,
and the random variables are represented by “variable nodes”
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Fig. 1. The factor graph for generalized bilinear inference for (toy-sized)
problem dimensions , , and .

that appear as white circles. Each variable node is connected to
every factor node in which that variable appears. The observed
data are treated as parameters of the factor nodes
in the middle of the graph, and not as random variables. The
structure of Fig. 1 becomes intuitive when recalling that

implies .

B. Loopy Belief Propagation

In this work, we aim to compute minimum mean-squared
error (MMSE) estimates of and , i.e., the means1 of the
marginal posteriors and , for all pairs

and . Although exact computation of these quan-
tities is generally prohibitive, they can be efficiently approxi-
mated using loopy belief propagation (LBP) [29].
In LBP, beliefs about the random variables (in the form of

pdfs or log pdfs) are propagated among the nodes of the factor
graph until they converge. The standard way to compute these
beliefs, known as the sum-product algorithm (SPA) [43], [44],
stipulates that the belief emitted by a variable node along a
given edge of the graph is computed as the product of the in-
coming beliefs from all other edges, whereas the belief emitted
by a factor node along a given edge is computed as the inte-
gral of the product of the factor associated with that node and
the incoming beliefs on all other edges. The product of all be-
liefs impinging on a given variable node yields the posterior
pdf for that variable. In cases where the factor graph has no
loops, exact marginal posteriors result from two (i.e., forward
and backward) passes of the SPA [43], [44]. For loopy factor
graphs, exact inference is in general NP hard [45] and so LBP
does not guarantee correct posteriors. That said, LBP has shown
state-of-the-art performance in many applications, such as in-
ference on Markov random fields [46], turbo decoding [47],
LDPC decoding [48], multiuser detection [49], and compres-
sive sensing [30], [31], [33]–[35].
In high-dimensional inference problems, exact implementa-

tion of the SPA is impractical, motivating approximations of the

1Another worthwhile objective could be to compute the joint MAP estimate
; we leave this to future work.

TABLE I
SPA MESSAGE DEFINITIONS AT ITERATION

SPA. A notable example is the generalized approximate mes-
sage passing (GAMP) algorithm, developed in [33] to solve
the generalized CS problem, which exploits the “blessings of
dimensionality” that arise when is a sufficiently large and
dense and which was rigorously analyzed in [35]. In the se-
quel, we derive an algorithm for the generalized bilinear in-
ference BiG-AMP algorithm that employs GAMP-like approx-
imations to the SPA on the factor graph in Fig. 1. As we shall
see, the approximations are primarily based on central-limit-the-
orem (CLT) and Taylor-series arguments.

C. Sum-Product Algorithm

In our formulation of the SPA, messages take the form of
log-pdfs with arbitrary constant offsets. For example, the iter-
ation- (where ) message can be converted to
the pdf , where the choice of scale factor

ensures that the pdf integrates to
one. Four types of message will be used, as specified in Table I.
We also find it convenient to express the (iteration- SPA-ap-
proximated) posterior pdfs and in
the log domain as and , respectively, again
with arbitrary constant offsets.
Applying the SPA to the factor graph in Fig. 1, we arrive at

the following update rules for the four messages in Table I.

(7)

(8)

(9)

(10)
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TABLE II
BIG-AMP VARIABLE SCALINGS IN THE LARGE-SYSTEM LIMIT

where is an arbitrary constant (w.r.t in (7) and (8), and
w.r.t in (9) and (10)). In the sequel, we denote the mean
and variance of the pdf by and

, respectively, and we denote the mean and variance of
by and . For the log-

posteriors, the SPA implies

(11)

(12)

and we denote the mean and variance of
by and , and the mean and variance of

by and .

D. Approximated Factor-to-Variable Messages

We now apply AMP approximations to the SPA updates (7)–
(12). As we shall see, the approximations are based primarily on
central-limit-theorem (CLT) and Taylor-series arguments that
become exact in the large-system limit, where
with fixed ratios and . (Due to the use of finite

in practice, we still regard them as approximations.)
In particular, our derivation will neglect terms that vanish
relative to others as , which requires that we establish
certain scaling conventions. First, we assume w.l.o.g2 that

and scale as , i.e., that the magnitudes of
these elements stay finite as , and that .
In this case, the relationship implies that

must scale as . These scalings are assumed
to hold for random variables , , and distributed
according to the prior pdfs, according to the pdfs corresponding
to the SPA messages (7)–(10), and according to the pdfs cor-
responding to the SPA posterior approximations (11)–(12).
These assumptions lead straightforwardly to the scalings of

, , , , , , ,
, , and specified in Table II. Further-

more, because and differ by only one

2Other scalings on , , and could be used as long as
they are consistent with the relationship .

term out of , it is reasonable to assume [32], [33] that the
corresponding difference in means and vari-
ances are both , which then implies
that is also . Similarly, because

and differ by only one term out of ,
where and are , it is reasonable
to assume that is and that both

and are . The
remaining entries in Table II will be explained below.
We start by approximating the message . Ex-

panding (7), we find

(13)

For large , the CLT motivates the treatment of , the
random variable associated with the identified in (13),
conditioned on , as Gaussian and thus com-
pletely characterized by a (conditional) mean and variance.
Defining the zero-mean r.v.s and

, where
and , we can write

(14)

after which it is straightforward to see that

(15)

(16)

for

(17)

(18)

With this conditional-Gaussian approximation, (13) becomes

(19)

(20)

in terms of the function

(21)
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Unlike the original SPA message (7), the approximation (20)
requires only a single integration. Still, additional simplifica-
tions are possible. First, notice that and differ
from the corresponding -invariant quantities

(22)

(23)

by one term. In the sequel, we will assume that and
are since these quantities can be recognized as the

mean and variance, respectively, of an estimate of , which is
. Writing the term in (20) using (22)–(23),

(24)

(25)

where in (25) we used the facts that
and

are both .
Rewriting (20) using a Taylor series expansion in about

the point , we get

(26)

where and are the first two derivatives of w.r.t
its first argument and is the first derivative w.r.t its second
argument. Note that, in (26) and elsewhere, the higher-order
terms in the Taylor’s expansion are written solely in terms of
their scaling dependence on , which is what will eventually
allow us to neglect these terms (in the large-system limit).
We now approximate (26) by dropping terms that vanish, rel-

ative to the second-to-last term in (26), as . Since this
second-to-last term is due to the scalings of ,

, and , we drop terms that are of order ,
such as the final term. We also replace with ,
and with , since in both cases the difference
is . Finally, we drop the terms inside the

derivatives, which can be justified by taking a Taylor se-
ries expansion of these derivatives with respect to the
perturbations and verifying that the higher-order terms in this
latter expansion are . All of these approximations
are analogous to those made in previous AMP derivations, e.g.,
[31], [32], and [33].
Applying these approximations to (26) and absorbing -in-

variant terms into the term, we obtain

(27)

where we used the relationship

(28)

and defined

(29)

(30)

Note that (27) is essentially a Gaussian approximation to the pdf
.

We show in Appendix A that

(31)

(32)

for the conditional mean and variance

(33)

(34)

computed according to the (conditional) pdf

(35)

where here .
In fact, (35) is BiG-AMP’s iteration- approximation to
the true marginal posterior . We note that (35)
can also be interpreted as the (exact) posterior pdf for
given the likelihood from (3) and the prior

that is implicitly assumed by itera-
tion- BiG-AMP.
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Since , the derivation of the BiG-AMP ap-
proximation of closely follows the derivation for

. In particular, it starts with (similar to (13))

(36)

where again the CLT motivates the treatment of , condi-
tioned on , as Gaussian. Eventually we arrive at
the Taylor-series approximation (similar to (27))

(37)

E. Approximated Variable-to-Factor Messages

We now turn to approximating the messages flowing from the
variable nodes to the factor nodes. Starting with (8) and plug-
ging in (27) we obtain

(38)

(39)

(40)

for

(41)

(42)

Since and are , and recalling and
are , we take to be . Meanwhile, since
is an estimate of , we reason that it is .

The mean and variance of the pdf associated with the
approximation in (40) are

(43)

(44)

where here and
denotes the derivative of with respect to the first argument.
The fact that (43) and (44) are related through a derivative was
shown in [33].
We now derive approximations of and that

avoid the dependence on the destination node . For this, we
introduce -invariant versions of and :

(45)

(46)

Comparing (45)–(46) with (41)–(42) and applying previously
established scalings from Table II reveals that
is and that

, so that (43) implies

(47)

(48)

(49)

(50)

Above, (48) follows from taking Taylor series expansions
around each of the perturbations in (47); (49) follows
from a Taylor series expansion in the first argument of (48)
about the point ; and (50) follows by neglecting the

term (which vanishes relative to the others in the
large-system limit) and applying the definitions

(51)

(52)

which match (43)–(44) sans the dependence. Note that (50)
confirms that the difference is , as
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was assumed at the start of the BiG-AMP derivation. Likewise,
taking Taylor series expansions of in (44) about the point

in the first argument and about the point in the
second argument and then comparing the result with (52) con-
firms that is .
We then repeat the above procedure to derive an approxi-

mation to analogous to (40), whose corre-
sponding mean is then further approximated as

(53)

for

(54)

(55)

(56)

where

(57)

(58)

Arguments analogous to the discussion following (42) justify
the remaining scalings in Table II.

F. Closing the Loop

The penultimate step in the derivation of BiG-AMP is to ap-
proximate earlier steps that use and in place
of and . For this, we start by plugging (50) and
(53) into (22), which yields3

(59)

(60)

where, for (60), we used in place of ,
used in place of , and neglected terms
that are , since they vanish relative to the remaining

terms in the large-system limit.

3Recall that the error of the approximation in (50) is and the error
in (53) is .

Next we plug (50), (53), , and
into (23), giving

(61)

(62)

where (62) retains only the terms from (61).
Similarly, we plug (53) into (46) and (50) into (58) to obtain

(63)

(64)

where the approximations involve the use of in place of
, of in place of , of

in place of , and the dropping of terms that vanish in
the large-system limit. Finally, we make the approximations

(65)

(66)

by neglecting the terms in (45) and (57), as
explained in Appendix B.

G. Approximated Posteriors

The final step in the BiG-AMP derivation is to approximate
the SPA posterior log-pdfs in (11) and (12). Plugging (27) and
(37) into those expressions, we get

(67)

(68)

using steps similar to (40). The associated pdfs are

(69)
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TABLE III
THE BIG-AMP ALGORITHM

(70)

for and
, which are iteration-

BiG-AMP’s approximations to the true marginal posteriors
and , respectively.

Note that and from (51)–(52) are
the mean and variance, respectively, of the posterior pdf in
(69). Note also that (69) can be interpreted as the (exact)
posterior pdf of given the observation
under the prior model and the likelihood model

implicitly
assumed by iteration- BiG-AMP. Analogous statements can
be made about the posterior pdf of in (70).
This completes the derivation of BiG-AMP. As a final com-

ment, we note that some of the approximations used in (60),
(63), and (64) are not exact in the large-system limit. Empirical
experiments, however, suggest that the effect of these approxi-
mations are very minor. Although we would have liked to first
present the “exact” version of the algorithm and then simplify it
to yield the BiG-AMP in Table III, this was prevented by page
constraints.

Algorithm Summary

The BiG-AMP algorithm derived in Sections II-C to II-G is
summarized in Table III. There, we have included a maximum
number of iterations, and a stopping condition (R17)
based on the (normalized) change in the residual and a user-de-
fined parameter . We have also written the algorithm

in a more general form that allows the use of complex-valued
quantities [note the complex conjugates in (R10) and (R12)],
in which case in (D1)-(D3) would be circular complex
Gaussian. For ease of interpretation, Table III does not include
the important damping modifications that will be detailed in
Section IV-A. Suggestions for the initializations in (I2) will be
given in the sequel.
We note that BiG-AMP avoids the use of SVD or QR de-

compositions, lending itself to simple and potentially parallel
implementations. Its complexity order is dominated4 by ten ma-
trix multiplications per iteration [in steps (R1)-(R3) and (R9)-
(R12)], each requiring multiplications, although simpli-
fications will be discussed in Section III.
The steps in Table III can be interpreted as follows. (R1)-(R2)

compute a “plug-in” estimate of the matrix product
and a corresponding set of element-wise variances .

(R3)-(R4) then apply “Onsager” correction (see [32] and [33]
for discussions in the contexts of AMP andGAMP, respectively)
to obtain the corresponding quantities and . Using these
quantities, (R5)-(R6) compute the (approximate) marginal pos-
terior means and variances of . Steps (R7)-(R8) then
use these posterior moments to compute the scaled residual
and a set of inverse-residual-variances . This interpreta-
tion becomes clear in the case of AWGNobservations with noise
variance , where

(71)

and hence

(72)

Steps (R9)-(R10) then use the residual terms and
to compute and , where can be interpreted as a
-variance-AWGN corrupted observation of the true .

Similarly, (R11)-(R12) compute and , where can
be interpreted as a -variance-AWGN corrupted observation
of the true . Finally, (R13)-(R14) merge these AWGN-cor-
rupted observations with the priors to produce the
posterior means and variances ; (R15)-(R16) do the
same for the quantities.
The BiG-AMP algorithm in Table III is a direct (although

non-trivial) extension of the GAMP algorithm for compressive
sensing [33], which estimates assuming perfectly known ,
and even stronger similarities to the -uncertain GAMP from
[50], which estimates assuming knowledge of the marginal
means and variances of unknown random , but which makes
no attempt to estimate itself. In Section III-B, a simplified
version of BiG-AMP will be developed that is similar to the
Bayesian-AMP algorithm [31] for compressive sensing.

III. BIG-AMP SIMPLIFICATIONS

We now describe simplifications of the BiG-AMP algorithm
from Table III that result from additional approximations and
from the use of specific priors , , and that arise
in practical applications of interest.

4The computations in steps (R4)-(R8) are , while the remainder of the
algorithm is . Thus, as grows, the matrix multiplies dominate
the complexity.
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A. Scalar Variances

The BiG-AMP algorithm in Table III stores and processes
a number of element-wise variance terms whose values vary
across the elements (e.g., can vary across and ). The use
of scalar variances (i.e., uniform across ) significantly re-
duces the memory and complexity of the algorithm.
To derive scalar-variance BiG-AMP, we first assume

and
, so from

(R1)

(73)

(74)

Note that using (74) in place of (R1) avoids two matrix multi-
plies. Plugging these approximations into (R3) gives

(75)

which, when used in place of (R3), avoids another matrix
multiply. Even with the above scalar-variance approximations,

from (R5) are not guaranteed to be equal (except in
special cases like AWGN ). Still, they can be approx-
imated as such using , in
which case

(76)

(77)

Using (76) in place of (R9) and (77) in place of (R11) avoids
two matrix multiplies and scalar divisions, and
furthermore allows (R10) and (R12) to be implemented as

(78)

(79)

saving two more matrix multiplies, and leaving a total of only
three matrix multiplies per iteration.

B. Possibly Incomplete AWGN Observations

We now consider a particular observation model wherein
the elements of are AWGN-corrupted at a subset of
indices and unobserved at the re-
maining indices, noting that the standard AWGN model (71)

is the special case where . This “possibly incom-
plete AWGN” (PIAWGN) model arises in a number of im-
portant applications, such as matrix completion and dictionary
learning.
We can state the PIAWGN model probabilistically as

,
(80)

where is the noise variance on the non-missing obser-
vations and denotes a point mass at . Thus, at the
observed entries , the quantities and
calculated using the AWGN expressions (72), while at the
“missing” entries , where is invariant to ,
we have and

, so that and . This is
expected, given that can be interpreted as an inverse residual
variance and as a -scaled residual. In summary, the PI-
AWGN model yields

(81)

(82)

When the PIAWGN model is combined with the scalar-vari-
ance approximations from Section III-A, BiG-AMP simplifies
considerably. To see this, we start by using from (75) in
place of in (81)–(82), resulting in

(83)

(84)

where denotes the fraction of observed entries and
is the projection operator defined by

(85)

We can then write (R10) and (R12) as

(86)

(87)

using (78)–(79) and (83)–(85) with

(88)

(89)

(90)

since is a projection operator, and using (R4) and (83).
Scalar-variance BiG-AMP under PIAWGN observations is

summarized in Table IV. Note that the residual matrix
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TABLE IV
SCALAR-VARIANCE BIG-AMP WITH PIAWGN

TABLE V
BIG-AMP-LITE: SCALAR-VARIANCE, PIAWGN, GAUSSIAN AND

needs to be computed and stored only at
the observed entries , leading to significant sav-
ings5 when the observations are highly incomplete (i.e.,

). The same is true for the Onsager-corrected residual, .
Thus, the algorithm in Table IV involves only three (partial)
matrix multiplies [in steps (R3p), (R8p), and (R10p), respec-
tively], each of which can be computed using only scalar
multiplies.

5Similar computational savings also occur with incomplete non-Gaussian ob-
servations.

We note that Krzakala, Mézard, and Zdeborová recently pro-
posed an AMP-based approach to blind calibration and dic-
tionary learning [42] that bears close similarity6 to BiG-AMP
under the special case of AWGN-corrupted observations (i.e.,

) and scalar variances. Their derivation differs sig-
nificantly from that in Section II due to the many simplifications
offered by this special case.

C. Zero-Mean iid Gaussian Priors on and

In this section we will investigate the simplifications that
result in the case that both and are zero-mean iid
Gaussian, i.e.,

(91)

(92)

which, as will be discussed later, is appropriate for matrix
completion. In this case, straightforward calculations re-
veal that and

and, similarly,
that and

. Com-
bining these iid Gaussian simplifications with the scalar-vari-
ance simplifications from Section III-A yields an algorithm
whose computational cost is dominated by three matrix multi-
plies per iteration, each with a cost of scalar multiplies.
The precise number of multiplies it consumes depends on the
assumed likelihood model that determines steps (R7g)-(R8g).
Additionally incorporating the PIAWGN observations

from Section III-B reduces the cost of the three matrix mul-
tiplies to only scalar multiplies each, and yields the
“BiG-AMP-Lite” algorithm summarized in Table V, con-
suming multiplies per
iteration.

IV. ADAPTIVE DAMPING

The approximations made in the BiG-AMP derivation pre-
sented in Section II were well-justified in the large system limit,
i.e., the case where with fixed and . In prac-
tical applications, however, these dimensions (especially ) are
finite, and hence the algorithm presented in Section II may di-
verge. In case of compressive sensing, the use of “damping”
with GAMP yields provable convergence guarantees with arbi-
trary matrices [36]. Here, we propose to incorporate damping
into BiG-AMP. Moreover, we propose to adapt the damping of
these variables to ensure that a particular cost criterion decreases
monotonically (or near-monotonically), as described in the se-
quel. The specific damping strategy that we adopt is similar to
that described in [51] and coded in [52].

A. Damping

In BiG-AMP, the iteration- damping factor is
used to slow the evolution of certain variables, namely , ,

6The approach in [42] does not compute (or use) as given in lines (R4p)-
(R5p) of Table IV, but rather uses an empirical average of the squared Onsager-
corrected residual in place of our throughout their algorithm.
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, , , and . To do this, steps (R1), (R3), (R7), and
(R8) in Table III are replaced with

(93)

(94)

(95)

(96)

and the following are inserted between (R8) and (R9):

(97)

(98)

The newly defined state variables and are then
used in place of and in steps (R9)-(R12) [but not
(R1)-(R2)] of Table III. A similar approach can be used for the
algorithm in Table IV (with the damping applied to instead
of ) and those in Table V. Notice that, when , the
damping has no effect, whereas when , all quantities
become frozen in .

B. Adaptive Damping

The idea behind adaptive damping is to monitor a chosen
cost criterion and decrease when the cost has not de-
creased sufficiently7 relative to for some “step
window” . This mechanism allows the cost criterion to
increase over short intervals of iterations and in this sense is
similar to the procedure used by SpaRSA [53].We now describe
how the cost criterion is constructed, building on ideas in
[54].
Notice that, for fixed observations , the joint posterior pdf

solves the (trivial) KL-divergence minimization problem

(99)

The factorized form (5) of the posterior allows us to write

(100)

(101)

7The following adaptation procedure is borrowed from GAMPmatlab[52],
where it has been established to work well in the context of GAMP-based com-
pressive sensing. When the current cost is not smaller than the largest
cost in the most recent iterations, then the “step” is deemed un-
successful, the damping factor is reduced by the factor , and
the step is attempted again. These attempts continue until either the cost crite-
rion decreases or the damping factor reaches , at which point the step
is considered successful, or the iteration count exceeds or the damping
factor reaches , at which point the algorithm terminates. When a step
is deemed successful, the damping factor is increased by the factor ,
up to the allowed maximum value .

Equations (99) and (101) then imply that

(102)

(103)

To judge whether a given time- BiG-AMP approximation
“ ” of the joint posterior is better than the previous
approximation , one could in principle plug the pos-
terior approximation expressions (69)– (70) into (103) and then
check whether . But, since the ex-
pectation in (103) is difficult to evaluate, we approximate the
cost (103) by using, in place of , an independent Gaussian
matrix8 whose component means and variances are matched to
those of . Taking the joint BiG-AMP posterior approxima-
tion to be the product of the marginals from (69)–(70),
the resulting component means and variances are

(104)

(105)

(106)

(107)

In this way, the approximate iteration- cost becomes

(108)

Intuitively, the first term in (108) penalizes the deviation be-
tween the (BiG-AMP approximated) posterior and the assumed
prior on , the second penalizes the deviation between the
(BiG-AMP approximated) posterior and the assumed prior on
, and the third term rewards highly likely estimates .

V. PARAMETER TUNING AND RANK SELECTION

A. Parameter Tuning via Expectation Maximization

Recall that BiG-AMP requires the specification of priors
, , and

. In practice, although
one may know appropriate families for these distributions, the
exact parameters that govern them are generally unknown. For
example, one may have good reason to believe apriori that
the observations are AWGN corrupted, justifying the choice

8The GAMP work [54] uses a similar approximation.
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, but the noise variance
may be unknown. In this section, we outline a method-

ology that takes a given set of BiG-AMP parameterized priors
and tunes the

parameter vector using an expectation-maximization (EM)
[37] based approach, with the goal of maximizing the like-
lihood, i.e., finding . The approach
presented here can be considered as a generalization of the
GAMP-based work [38] to BiG-AMP.
Taking , , and to be the hidden variables, the EM recur-

sion can be written as [37]

(109)

where for (109) we used the fact

and the factorizability of , , and . As can be
seen from (109), knowledge of the marginal posteriors

is sufficient to compute the EM
update. Since the exact marginal posteriors are unknown, we
employ BiG-AMP’s approximations from (69), (70), and (35)
for approximate EM. In addition, we adopt the “incremental”
update strategy from [55], where the maximization over is
performed one element at a time while holding the others fixed.
As a concrete example, consider updating the noise variance
under the PIAWGN model (80). Equation (109) suggests

(110)

where the true marginal posterior is re-
placed with the most recent BiG-AMP approximation

, where “most recent” is
with respect to both EM and BiG-AMP iterations. Zeroing the
derivative of the sum in (110) with respect to ,

(111)

where and are the BiG-AMP approximated pos-
terior mean and variance from (33)–(34).
The overall procedure can be summarized as follows.

From a suitable initialization , BiG-AMP is run using

the priors
and iterated to completion, yielding approximate marginal
posteriors on . These posteriors are

used in (109) to update the parameters one element

at a time, yielding . BiG-AMP is then run using the

priors ,
and so on. A detailed discussion in the context of GAMP,
along with explicit update equations for the parameters of
Bernoulli-Gaussian-mixture pdfs, can be found in [38].

B. Rank Selection

BiG-AMP and EM-BiG-AMP, as described up to this point,
require the specification of the rank , i.e., the number of
columns in (and rows in ) in the matrix factorization

. Since, in many applications, the best choice of
is difficult to specify in advance, we now describe two proce-
dures to estimate from the data , building on well-known
rank-selection procedures.
1) Penalized Log-Likelihood Maximization: Consider a set

of possible models for the observation where,
under , EM-BiG-AMP estimates .
Here, the subscripts on and indicate the restriction
to columns and rows, refers to the vector of parameters
defined in Section V-A, and the subscript on indicates the
dependence of the overall number of parameters in with the
rank . Because the selection rule
is typically intractable, several well-known rules of the form

(112)

have been developed, such as the Bayesian Information Crite-
rion (BIC) and Akaike’s Information Criterion (AIC) [56]. In
(112), is the ML estimate of under , and is a
penalty function that depends on the effective number of scalar
parameters estimated under model (which depends on
) and possibly on the number of scalar parameters that

make up the observation .
Applying this methodology to EM-BiG-AMP, where

, we obtain the rank-se-
lection rule

(113)

Since depends on the application (e.g., matrix completion,
robust PCA, dictionary learning), detailed descriptions of
are postponed to [1].
To perform the maximization over in (113), we start with

a small hypothesis and run EM-BiG-AMP to completion,
generating the (approximate) MMSE estimates and
ML estimate , which are then used to evaluate9 the penalized
log-likelihood in (113). The hypothesis is then increased
by a fixed value (i.e., ), initializations
of are chosen based on the previously com-
puted , and EM-BiG-AMP is run to completion,

9Since we compute approximate MMSE estimates rather than ML estimates,
we are in fact evaluating a lower bound on the penalized log-likelihood.
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yielding estimates with which the penalized
likelihood is again evaluated. This process continues until either
the value of the penalized log-likelihood decreases, in which
case is set at the previous (i.e., maximizing) hypothesis of
, or the maximum-allowed rank is reached.
2) Rank Contraction: We now describe an alternative rank-

selection procedure that is appropriate when has a “cliff”
in its singular value profile and which is reminiscent of that
used in LMaFit [13]. In this approach, EM-BiG-AMP is initially
configured to use the maximum-allowed rank, i.e., .
After the first EM iteration, the singular values of the esti-
mate and the corresponding pairwise ratios
are computed,10 from which a candidate rank estimate

is identified, corresponding to the largest gap in
successive singular values. However, this candidate is accepted
only if this maximizing ratio exceeds the average ratio by the
user-specified parameter (e.g., ), i.e., if

(114)

and if is sufficiently small. Increasing makes the ap-
proach less prone to selecting an erroneous rank during the first
few iterations, but making the value too large prevents the algo-
rithm from detecting small gaps between the singular values. If
is accepted, then the matrices and are pruned to size

and EM-BiG-AMP is run to convergence. If not, EM-BiG-AMP
is run for one more iteration, after which a new candidate is
identified and checked for acceptance, and so on.
In many cases, a rank candidate is accepted after a small

number of iterations, and thus only a few SVDs need be
computed. This procedure has the advantage of running
EM-BiG-AMP to convergence only once, rather than several
times under different hypothesized ranks. However, when
the singular values of decay smoothly, this procedure can
mis-estimate the rank, as discussed in [13].

VI. CONCLUSION

In this work, we proposed and derived BiG-AMP, an ex-
tension of the G-AMP algorithm [33] originally proposed for
high-dimensional generalized-linear regression in the context
of compressive sensing, to generalized-bilinear regression,
with applications in matrix completion, robust PCA, dictio-
nary learning, and related matrix-factorization problems. In
addition, we proposed an adaptive damping mechanism to
aid convergence under realistic problem sizes, an expecta-
tion-maximization (EM)-based method to automatically tune
the parameters of the assumed priors, and two rank-selection
strategies. In Part II [1] of this two-part work, we detail the ap-
plication of BiG-AMP to matrix completion, robust PCA, and
dictionary learning, and we present the results of an extensive
numerical investigation into the performance of BiG-AMP
on both synthetic and real-world datasets. The results in [1]
demonstrate that BiG-AMP yields excellent reconstruction

10In some cases the singular values of could be used instead.

accuracy (often best in class) while maintaining competi-
tive runtimes, and that the proposed EM and rank-selection
strategies successfully avoid the need to tune algorithmic
parameters.

APPENDIX A

Here we derive (31)–(32), which are stated without a detailed
derivation in [33]. Recalling (21) and omitting the subscripts
for brevity, it can be seen that

(115)

for an appropriately defined function . Now, defining
with normalization term

, simple calculus yields

(116)

(117)

Thus, from (115) and (116) it follows that

(118)

Equation (31) is then established by applying definitions (33)
and (35) to (118).
Similarly, from (115) and (117),

(119)
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where is the expectation from (33). Equation (32) is then es-
tablished by applying the definitions (34) and (35) to (119).

APPENDIX B

Here we explain the approximations (65)–(66). The term ne-
glected in going from (45) to (65) can be written using (31)–(32)
as

(120)

(121)

where the expectations are taken over
from (35). For GAMP, [57, Sec.VI.D] clar-

ifies that, in the large system limit, under i.i.d priors and
scalar variances, the true and the iterates converge
empirically to a pair of random variables that satisfy

. This result leads us to believe
that the expectation in (121) is approximately unit-valued when
averaged over , and thus (121) is approximately zero-valued.
Similar reasoning applies to (66).
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