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Abstract

Large-scale recurrent networks have drawn increasingtaiterecently because of their capabilities in mod-
eling a large variety of real-world phenomena and physicatmanisms. This paper studies how to identify all
authentic connections and estimate system parametergofiaent network, given a sequence of node observations.
This task becomes extremely challenging in modern netwpglieations, because the available observations are
usually very noisy and limited, and the associated dynansigstem is strongly nonlinear. By formulating the
problem as multivariate sparse sigmoidal regression, weldp simple-to-implement network learning algorithms,
with rigorous convergence guarantee in theory, for a vanésparsity-promoting penalty forms. A quantile variant
of progressive recurrent network screening is proposeeffazient computation and allows for direct cardinality
control of network topology in estimation. Moreover, we éstigate recurrent network stability conditions in
Lyapunov’s sense, and integrate such stability consgamb sparse network learning. Experiments show excellent
performance of the proposed algorithms in network topolidgytification and forecasting.

Index Terms

Recurrent networks, topology learning, shrinkage estomatariable selection, dynamical systems, Lyapunov
stability.

I. INTRODUCTION

There has been an increasing interest in identifying né¢wignamics and topologies in the emerging
scientific discipline of network science. In a dynamicalwaak, the evolution of a node is controlled not
only by itself, but also by other nodes. For example, in gageilatory networks [1], the expression levels
of genes influence each other, following some dynamic rgiesh that the genes are connected together to
form a dynamical system. If the topology and evolution rudéshe network are known, we can analyze
the regulation between genes or detect unusual behavionglppdiagnose and cure genetic diseases.
Similarly, the modeling and estimation of dynamical netkgare of great importance in various domains
including stock market, brain network and social networkid24]. To accurately identify the topology
and dynamics underlying those networks, scientists aretddvo developing appropriate mathematical
models and corresponding estimation methods.

In the literature, linear dynamical models are commonlhduser example, the human brain connectivity
network [5] can be characterized by a set of linear diffeedreéquations, where the rate of change of
activation/observation of any node is a weighted sum of tttevations/observations of its neighbors:
dz;/dt = Z#i a;jx; —diz;, 1 <1 < n. Hereo;; provide the connection weights adgis the decay rate.
Nevertheless, a lot of complex dynamical networks cleadyndnstratenonlinear relationships between
the nodes. For instance, the strength of influence is untembindthe previous simple linear combination,
but the so-called saturation” effect widely exists in physical/biological systems (news, genes, and
stocks)—the external influence on a node, no matter how gttioa total input activation is, cannot go
beyond a certain threshold. To capture the mechanism,mearity must be introduced into the network
system: dx;/dt = lﬂr(zj# oz + u;) — dx; + ¢;, wherer denotes a nonlinear activation function
typically taken to be the sigmoidal functior(d) = 1/(1 + e~?). It has a proper shape to resemble many
real-world mechanisms and behaviors.
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The model description is associated withcantinuous-time recurrent neural networkhe existing
feedback loops allow the network to exhibit interesting aymc temporal behaviors to capture many
kinds of relationships. It is also biologically realistic say modeling the effect of an input spike train.
Recurrent networks have been successfully applied to anaitge of problems in bioinformatics, financial
market forecast, electric circuits, computer vision, aabatics; see, e.g.,|[6, 7} 8, 9,/110] among many
others.

In practical applications, it is often necessary to incladése contaminationdz; = (lﬂr(zj# oGz +
u;) — dix; + ¢;)dt + odB;, 1 < i < n, where5, stands for am-dimensional Brownian motion. Among
the very many unknown parameters, might be the most important: the zero-nonzero pattermy,pf
indicates if there exists a (direct) connection from ngde node:. Collecting all such connections results
in a directed graph to describe the node interaction strectu

A fundamental question naturally aris€siven a sequence of node observations (possibly at very few
time points), can one identify all existing connections astimate all system parameters of a recurrent
network?

This task becomes extremely challenging in modern big netvapplications, because the available
observations are usually very noisy and only available aatively small number of time points (s&)),
due to budget or equipment limitations. One frequently $ameplications withm? much larger thart". In
addition, in this continuous time setting, no analyticainfiala of the likelihood exists for the stochastic
model, which increases the estimation difficulty even igéasamples [11]. Instead of considering multi-
step ad-hoc procedures, this paper aims at learning theorletystemas a whole Multivariate statistical
techniques will be developed for identifying complete timgy and recovering all dynamical parameters.
To the best of our knowledge, automatic topology and dynameiarning in large-scale recurrent networks
has not been studied before.

In this work, we are interested in networks that gpar se in topology. First, many real-world complex
dynamical networks indeed have sparse or approximatelssspaructures. For example, in regulatory
networks, a gene is only regulated by a handful of others . [$2Ftond, when the number of nodes is
large or very large compared with the number of observatithressparsity assumption reduces the number
of model parameters so that the system is estimable. Thiody & philosophical point of view, a sparse
network modeling is consistent with the principle of Occamrdzor.

Not surprisingly, there is a surge of interest of using cagspive sensing techniques for parsimonious
network topology learning and dynamics prediction. Howgevelying on sparsity alone seems to have
only limited power in addressing the difficulties of largeake network learning from big data. To add
more prior knowledge and to further reduce the number otéife unknowns, we propose to study how
to incorporate structural properties of the network systeta learning and estimation, in addition to
sparsity. In fact, real-life networks of interest usuallgnabnstrateasymptotic stability. This is one of
the main reasons why practitioners only perform limited bemof measurements of the system, which
again provides a type of parsimony or shrinkage in netwoakniag.

In this paper we develop sparse sigmoidal network learniggrithms, with rigorous convergence
guarantee in theory, for a variety of sparsity-promotinggiyy forms. A quantile variant, the progressive
recurrent network screening, is proposed for efficient astaipon and allows for direct cardinality control
of network topology in estimation. Moreover, we investgegcurrent network stability conditions Lya-
punovs sense, and incorporate such stability constraints jpéose network learning. The remaining of this
paper is organized as follows. Sectioh Il introduces thensigal recurrent network model, and formulates
a multivariate regularized problem based on the disciete-approximate likelihood. Sectignllll proposes
a class of sparse network learning algorithms based on tldy sif sparse sigmoidal regressions. A novel
and efficient recurrent network screening (RNS) with thecak guarantee of convergence is advocated
for topology identification in ultra-high dimensions. SeatlVlinvestigates asymptotic stability conditions
in recurrent systems, resulting in a stable-sparse sigah(®) network learning. In SectionlV, synthetic
data experiments and real applications are given. All pdmdéils are left to the Appendices.



[I. MODEL FORMULATION

To describe the evolving state of a continuous-time rectirneural network, one usually defines an
associated dynamical system. Ideally, without any randessnthe network behavior can be specified by
a set of ordinary differential equations:

dl’i
dt

:lm(Zozmxj—i—ul)—dlxz—i—cz, 1= 1, ,n, (1)
i

wherex;, short forz;(t), denotes the dynamic process of nad&hroughout the paper; is thesigmoidal

activation function

m(0) = ﬁa (2

which is most frequently used in recurrent networks. Thiscfion is smooth and strictly increasing. It
has a proper shape to resemble many real-world mechanisinisedwaviors. Due to noise contamination,
a stochastic differential equation model is more realistic

dl’i = (llﬂ'(z Q5 + Ul) - dll’l + CZ') dt +o0 dBt, (3)
J#
where 5; is a standard Brownian motion and reflects the stochastioranaif the system. Typically; >
0,d; > 0, and in some applications;; = 0 (no self-regulation) is required.

In the sigmoidal recurrent network model, the coefficiemts characterize the between-node interac-
tions. In particulara;; = 0 indicates that nodg does notdirectly influence node; otherwise, nodeg
regulates node, and is referred to as a regulator of noda gene regulatory networks. Such a regulation
relationship can be either excitatory (f; is positive) or inhibitory (ifa;; is negative). In this way,
A = |o4j] is associated with a directed graph that captures the Grasayesal relationships between
all nodes [[13], and the topology of the recurrent networkeierled by the zero-nonzero pattern of the
matrix. Therefore, to identify all significant regulationis, it is of great interest to estimat4, given a
sequence of node observations (snapshots of the network).

Denote the system state at timedy x(t) = [z1(t) - x,(t)]T or x; (or simply z when there is no
ambiguity.) Definel = [l;,---1,]7, w = [u1, -+ ,u,]", ¢ = [c1,- -+ ,¢,|T, D = diag{d;}, L = diag{l;},
and A = [a;;] = [ - - - @] € R™*™. Then [3) can be represented imailtivariate form

dx; = (Lw(Az +u) — Dz + ¢) dt + 0 dB,, (4)

where B; is ann-dimensional standard Brownian motion. While this modesjecified in continuous
time, in practice, the observations are always collectedisatrete time points. Estimating the parameters
of an SDE model from few discrete observations is very chgiley. There rarely exists an analytical
expression of the exact likelihood. A common treatment igliscretize [(#) and use an approximate
likelihood instead. We use the Euler discretization schésee, e.g., [14]):

Az = (Lw(Ax +u) — Dz + ¢)At + 0 AB,.

Suppose the systerl (4) is observed’at 1 time pointst,, - - - ,tp, ;. Letx, = [x1(t,), -, 2. (ts)]" €
R™ be the observed values of all nodes att,. Define Az, = (xs1 — xs) and Aty = (tgp1 — ts),
1 < s <T.BecauseAB; ~ N (0, AtI), the negative conditional log-likelihood for the discretil model



is given by

Uz, xrii|xy) = —log P(Axy, -+, Azxyp|x,)
—log P(Az;|x,) - - - P(Axr|zT)

T
=Y ||Az,/At, — (Lw(Az, +u) — Dz, + c)|3At,/(20%) + C(0?)
s=1

=f(A,u,l,d,c)/o* + C(c?).

C(c?) is a function that depends aff only. The fitting criterionf is separable irxy,. .., a,. To see
this, letz; s = z;(ts) and Ax; s = x;(ts+1) — x:(t5). Then, it is easy to verify that

A 2

(A u,l.d, c) ZZ( Tis  (Lir(aTx, + ) — dixi,s—i—ci)) At,. (5)
i=1 s=1

Conventionally, the unknown parameters can then be esdrat minimizingf. In modern applications,

however, the number of available observatio$ (s often much smaller than the number of variables

to be estimatedr® + 4n), due to, for example, equipment/budget limitations. €ilzed MLE methods do

not apply well in this high-dimensional setting.

Fortunately, the networks of interest in reality often mssstopology sparsity. For example, a stock
price may not be directly influenced by all the other stockthim stock market. A parsimonious network
with only significant regulation links is much more interfadele. Statistically speaking, the sparsity in
A suggests the necessity dirinkage estimation [15] which can be done by adding penalties and/or
constraints to the loss function. The general penalizedimmax likelihood problem is

Join f(Aulde)+ ) Plag; Ai) (6)
2¥)
where P is a penalty promoting sparsity and; are regularization parameters. Among the very many
possible choices oP, the ¢, penalty is perhaps the most popular to enforce sparsity:

P(t; A) = Alt]. ()
It provides a convex relaxation of thg penalty

)\2

Taking both topology identification and dynamics predictioto consideration, we are particularly inter-
ested in the/y + ¢ penalty [16]

2 N2
1 —t 9
211y P20 ©)
where the/, penalty or Tikhonov regularization can effectively dealtwlarge noise and collinearity
[17,118] to enhance estimation accuracy.

The shrinkage estimation problef (6) is however nontrividle lossf is nonconvex;r is nonlinear,
and the penalty? may be nonconvex or even discrete, let alone the high-dilmeakty challenge. Indeed,
in many practical networks, the available observationsustgally quite limited and noisy. Effective and
efficient learning algorithms are in great need to meet thdemobig data challenge.

P(t; \,n) =




[1l. SPARSE SIGMOIDAL REGRESSION FORRECURRENTNETWORK LEARNING
A. Univariate-response sigmoidal regression
As analyzed previously, to solvel (6), it is sufficient to studunivariate-response learning problem

gl;g—Zws «—In(®B) — z]v) +ZPﬁk,/\k ) =1 F(B,1,7) (10)
k=1
wherez,, z,, y,, w, are given, and,~, 3 are unknown with3 desired to be sparsé. (10) is the recurrent
network learning problem for nodewhen we setz, = [1,z,]", vy, = Az, /At z, = [1,7;4", and
ws = Aty (1 < s < T) (note that the intercept; is usually subject to no penalization corresponding
to A\; = 0). For notational ease, definX = [z, -+, 27|, ¥y = [y1, - ,yr|'s Z = [z1,--+, 27",
A =[N € R", and W = diag{w} = diag{w;,---,ws} (to be used in this subsection only, unless
otherwise specified).
We propose a simple-to-implement and efficient algorithnsdtve the general optimization problem
in the form of [10). First define two useful auxiliary funati®

§0,y) = =(0)(1—mn(0))(7(0) —y), (11)
_ 2
ko(y, w) = Eﬁ’%% <1 + %) : (12)
The vector versions of and¢ are defined componentwise(0) = [r(6,),--- ,7(07)]T and&(0,y) =

[€01,91), -+ ,&(Or,yr)]T, and the matrix versions are defined similarly. A prototyjfgoathm is de-
scribed as follows, starting with an initial estima®”, a thresholding rule® (an odd, shrinking and
nondecreasing function, ct. [19]), and= 0.
repeat
0) j«<j+1
1) pl) ﬂ-(j(ﬁ(j—l))
2) Fit a weighted least-squares model

min [W'2(y — [u" Z][L T3, (13)
Y
with the corresponding solution denoted @$’, %) _
3) Constructy!) « (y — Z'y(j )19, w9 — (1U)) 2, WY = diag{w")}. Let KU) be any
constant no less thaiy (3, w")|| X |2, where|| - ||, is the spectral norm.
4) Updateg via thresholdlng

ﬁ(j) _ @(ﬁ(j—l) K X W £<Xﬁ(ﬂ 1) ~(J ); A0 ), (14)
whereA?) = [\Y)], ., is a scaled version ok satisfying P(t; A,) /KW = P(t; \")) for anyt e R ,
1<k <n.

until convergence

Before proceeding, we give some example®aind ). The specific form of the thresholding function
O in ([14) is related to the penalt§ through the following formulal [16]:

P(t; \) — P(0; \)
[¢]
:/0 (SUp(s : ©(s;A) < u} — ) du+ q(t; \)

with ¢(-; \) nonnegative and(©(s;\)) = 0 for all s. The regularization parameter(s) are rescaled at
each iteration according to the form éf. Examples include: (i) thé, penalty [T), and its associated

(15)



soft-thresholding®s(t; ) = sgn(t)(|t| — A\)1=x, in which caseP(t;\)/KY) = P(t; \W), vVt implies
AW = N/KW, (i) the ¢, penalty [8) and thenard-thresholding®(t) = t1j~,, which determines
A0 = \/VK®@, and (iii) the/, + ¢, penalty [9) and its associatéard-ridge thresholding® ;z(t; A\, n) =
T Lt whereAV) = 251/ (n + KO /(n+1), nl) = _n/K(j). The’, (0 < p < 1) penalties, the elastic
net penalty, and others [16] are also instances of this frarie

Theorem 1. Given the objective function ifild), supposed® and P satisfy (15) for some nonnegative
q(t; ) with ¢(©(t;A)) = 0 for all + and A. Then given any initial poini3'”, with probability 1 the
sequence of iterateg3"), I) () generated by the prototype algorithm satisfies

F(BUD 10=D 4=D) > p(30) 1) 4. (16)

See Appendix_A for the proof.

Normalization is usually necessary to make all predictapga#ly span in the space before penalizing
their coefficients using a single regularization paramgtaie can center and scale all predictor columns
but the intercept before calling the algorithm. Alternaty it is sometimes more convenient to specify
Ar componentwise—e.g., in thie penalty " A\x|0x| set\, = A+ || X[, k]||2 for non-intercept coefficients.

B. Cardinality constrained sigmoidal network learning

In the recurrent network setting, one can directly apply phetotype algorithm in Section II[-A to
solve [6), by updating the columns B one at a time. On the other hand, a multivariate update form is
usually more efficient and convenient in implementationrébwer, it facilitates integrating stability into
network learning (cf. Section1V).

To formulate the loss in a multivariate form, we introduce

Y = [yis] = [Ax;s/AL] € RT>n,

X =[x, -,z € RT*",
B=A"=[a, - ,a,] € R™",

W =diag{w} = diag{Aty, - - - , Atr}.

Then f in (B) can be rewritten as
1
f(B,u,l,d,c) = §||W1/2 {Y —[n(XB+1u")L- XD +1c"]} |3, (17)

with || - || denoting the Frobenius norm, and the objective function ioimize becomeg|W/*{y —
[m(XB+1u")L — XD +1c"]}||% + P(B, A).

One of the main issues is to choose a proper penalty form farsspnetwork learning. Popular
sparsity-promoting penalties includg SCAD, ¢,, among others. Thé&, penalty [(8) is ideal in pursuing a
parsimonious solution. However, the matter of paramet@ntgucannot be ignored. Most tuning strategies
(such asK-fold cross-validation) require computing a solution p&th a grid of values of\, which is
quite time-consuming in large network estimation. Ratlhentapplying the/y penalty, we propose afy
constrained sparse network learning

IBllo < m, (18)

where||-||, denotes the number of nonzero components in a matrix. Im&sirib the penalty parametein
@), m is more meaningful and customizable. One can directly $pésivalue based on prior knowledge
or availability of computational resources to have contfdhe network connection cardinality. To account
for collinearity and large noise contamination, we add #ier/, penalty inB, resulting in a new/q+ /5’



regularized criterion

1/2 ™y T2
B%nuCQHW (Y — [#(XB+1u")L — XD + 1"]}|)> .

+§HBH§ = Fp, st.|| By < m.

Not only is the cardinality boundn convenient to set, because of the sparsity assumption,hiut;t
shrinkage parameter is easy to tune. Indeed, is usually not a very sensitive parameter and does not
require a large grid of candidate values. Many researchierphs fix it at a small value (sayle — 3)
which can effectively reduce the prediction error (e.g8]J1Similarly, to handle the possible collinearity
betweenm and 1, we recommend adding mild ridge penaltiégl||3 + %||c||3 in (@I9) (say,y = le —4
andn. = le — 2).

The constrained optimization df (19) does not apparentlyirfto the penalized framework proposed in
Section IlI-A. However, we can adapt the technique to haitdlerough aquantilethresholding operator
(as a variant of the hard-ridge thresholdihp (9)). The disdaiecurrent network screeninBNS) algorithm
is described as follows, where for notational simplicky:= [1 X|, B := [u B']", and we denote by
A[I, J] the submatrix ofA consisting of the rows and columns indexed bgnd J, respectively.

Algorithm 1 Recurrent Network ScreeningrNS)

given B(O) (initial estimate),m (cardinality bound)y (¢, shrinkage parameter).
7+ 0
repeat
0 j«+j+1
) G-1)
1) pY) «—7n(XB' )
2) UpdateL = diag{l}, D = diag{d}, andc by fitting a weighted vector least-squares model:

min WYY — [uWL — XD +1c")|2, (20)
with the solution denoted b = diag{iV)} = diag{l U 2 }, DY) = diag{d; R ,dﬁf)},

and ¢ . (This amounts to solving separate welghted Ieast squares problems)
3) ConstructY « (Y + XDY —1(cD)TYLY)", W — w - (I¥ ol )T, where~ denotes the
Moore-Penrose pseudomverse an the Hadamard product. Léf be any constant no less than

ko(Y s, i), W[, d]) || X ||2, and K9 « diag{ K\, .-, K},
4) UpdateB andwu:
41) 2« BV - X (Wog(XBY " Y)HKY), ul) « (B[1,))T, E « E[2: end, | (the

submatrix ofZ without the first row)n) = - (117)(KYW)~.
4.2) Perform the hard-ridge thresholdinB"Y”) «+ ©yx (E;¢(E),n) (cf. Section[I-A for the
definition of ©x) with an adaptive threshold matri&(=). The entries of((Z) are all set to the
medium of themth and the(m + 1)th largest components of V@E|). See [(2]l) for other variants
when c?rtaln links must be maintained or forbidden.
4.3) B ul) B(J) |7

until the decrease in function value is small

deliver B=BY, a4 =u, L =LY, D=DY, ¢=cV.

(0)

Theorem 2. Given any initial pointB", Algorithm[ converges in the sense that with probabilityh,



function value decreasing property holds:
Fy(BYU™D, LU0, D=1 40=1) ¢l=D)
> Fy(BY, LW, D) 40), W),

and all BY) satisfy|| BY) ||y < m, Vj > 1.

See Appendix B for the proof.

Step 2 can be implemented by solvingweighted least squares. Or, one can re-formulate it as a
single-response problem to obtain the solutit?, d"), ¢1)) in one step. The latter way is usually more
efficient. When there are ridge penalties imposed and ¢, the computation is similar.

In certain applications self-regulations are not allow&den ((Z) should be the medium of theith
and the(m+1)th largest elements 0E —Zo 1| (E in absolute value after excluding its diagonal entﬂks).
Other prohibited links can be similarly treated in deterimgnthe dynamic threshold. In general, givén
the index set of the links that must be maintained &nthe index set of the links that are forbidden, the
threshold is constructed as follows

E[i] « 0,Vie F

¢l 0, ifieT (21)
ST VEIT N gy otherwise,

where|E[T*|,,,,, is the(m+1)th largest element (in absolution value)&j7*] (all entries of= except
those indexed by/). It is easy to show that the convergence result still holaised on the argument in
Appendix[B.

In implementation, we advocate reducing the network catdinin a progressive manner to lessen
greediness: at thgth step,m is replaced bym(j), where{m(j)} is a monotone sequence of integers
decreasing fromn(n — 1) (assuming no self-regulation) te. Empirical study shows that the sigmoidal
decay cooling schedule:(j) = [2n(n —1)/(1 4 e*)] with o = 0.01, works well.

RNS involves no costly operations at each iteration, andniple to implement. It runs efficiently for
large networks. The RNS estimate can be directly used fdyzng the network topology. One can also
use it for screening (in which case a relatively large valiemas specified), followed by a fine network
learning algorithm restricted on the screened connectibngither case RNS substantially reduces the
search space of candidate links.

V. STABLE-SPARSE SIGMOIDAL NETWORK LEARNING

For a general dynamical system possibly nonlinear, stgligi one of the most fundamental issues
[20,121]. If a system’s equilibrium point i@symptotically stablethen the perturbed system must approach
the equilibrium point ag increases. Moreover, one of the main reasons many real rieapplications
only have limited number of observations measured aftetugsation is that the associated dynamical
systems stabilize fast (e.g., exponentially fast). Thfsrefanother important type of parsimony/shrinkage
in network parameter estimation.

To design a new type of regularization, we first investigaabitity conditions of sigmoidal recurrent
networks in Lyapunov’s sense [22,/23]. Then, we develop bistsparse sigmoidaB{) network learning
approach.

A. Conditions for asymptotic stability
Recall the multivariate representation bf (1)
dx

i Ln(Az + u) — Dz + c. (22)

Throughout the papetA| is the absolute value of the elementsAf That is, for A = [a;;], |A| = [Jai;]].



BecauseA is sparse and typically singular and the degradation r&tese not necessarily identical, in
general [[2R) can not be treated as an instance of the Colmssitarg neural networks [24]. We must
first derive its own stability conditions to be consideredch&twork estimation.

Hereinafter,A = A’ and A = A’ stand for the positive semi-definiteness and positive defiess of
A — A, respectively, and the set of eigenvaluesdfs spe¢A). Our conditions are stated below:

D -0, (A1)

L =0, (A2)

Re(\) < 0 for any A\ € Spe¢LA — 4D), (A3a)

LA/2+ ATL/2 < 4D, (A3Db)

Theorem 3. SupposdAl) & (A2) hold. Then(A3d) guarantees the network defined @2) has a unique
equilibrium pointz* and is globally exponentially stable in the sense thett) —z*||3 < e ||z (0)—x*||3
for any solutionz(t). The same conclusion holds (&34) is replaced by(A3h).

See Appendix C for the detailed proof.

Figure[1 shows an example of stochastic processes gendratada stable recurrent network and
an unstable recurrent network respectively. In the uppeelpdhe recurrent network system parameters
satisfy the stability conditior_(A3a), while those in thevier panel violate[(A3a). (In both situations, the
number of nodes is 10 and the diffusion parametas fixed at0.5.) The differences between the two
models are obvious.

In reality, asymptotically stable systems are commonlyeoled. The stability conditions reflect struc-
tural characteristics. For example, when lalare equal and/; > 0, then theskew-symmetrgf A, i.e.,

A = — AT, guarantees asymptotic stability. The information predithy the constrains can assist topology
learning. This motivates the design of sparse recurrentor&tlearning with stability.

process of a stable model
T T T

Figure 1: Stochastic processes generated from a stableertunetwork model and an unstable recurrent
network model.

B. S network estimation
(A34) is less restrictive thah (ABb). In optimization, ingirog (A3a) seems however difficult. We propose

. 1
B,ir,l})l}u,(;i”Wl/Q{Y — [7(XB+ 1uT)L — XD+ 1cT]}||% + P(B,A) =: F, 23)

sttL>0,D>0,(LB" + BL)/2 < 4D,

referred to as the Stable-Sparse Sigmoi83) fetwork learning. The stability constraints are now ingabs
on B as the transpose of the raw coefficient matixSimilar to the discussion of (1.9), in implementation,
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we add mild/, penalties or; andc¢; to deal with possible collinearity, and it is common to regl@ by
eI with ¢ extremely small.

In this part, we focus on thé, penalty P(B,A) = ||A o B||; where matrixA usually has the form
Ak, K| = || X[, k]| for any k, k" < n (other options are possible.) Introducing the componesgwi
regularization matrix is helpful when one wants to maintain forbid certain links based on prior
knowledge or preliminary screening. For example, if no-seffulation is allowed, then all diagonal
entries of A ought to be+cc.

It turns out that one can modify Step 2 and Step 4 of the RNSritthgo to solve [(Z2B).

First, the non-negativity of; andd; can be directly incorporated, if the weighted least-sgaipreblem
in Step 2 is replaced by the following programming problernthvgeneralized non-negativity constraints:

Step 2) Solve min WYY — [uW9DL — XD+ 1]}
s.t. L = diag{l;} = 0, D = diag{d;} > 0,(LBY~YT + BU=VL)/2 < 4D. (24)

A variety of algorithms and packages can be used. (The tqakrin AppendiX_ID also applies.)
Integrating the spectral constraint d into network learning is much trickier. We modify Step 4 of
Algorithm[1 as follows.

Step 4) UpdateB‘ andu: .
41) 2« BV X" (Woe(XBY TV, Y)HKD), ) « (B[1,)T, E « E[2 : end ], and
A(J) A (K(J))
4.2) Perform the inner loop iterations, starting wiBy « Z, C3 «+ (LY BI + B;LY)/2, P = 0,
Qs =0, Q- =0, R=0, and the operator®!, P, P defined in LemmaE]&}6:
repeat
) B, < PY(Bs+ P;AY),C, + C3, P+ P+ B;— B;.
II) [Bg, Cg] < P2(Bl + QBv Cl + QC L(J )
QB%QB‘i‘Bl—BQ, QC%Q +C —
iy Bs <+ B, Cs + P3(Cy + R; D<(§ R« R+ C, - Cs.
until convergence
BY) B,
43) BY « [ (BT
Algorithm [T with such modifications in Step 2 and Step 4 ismefe to as theS® estimation algorithm.

Theorem 4. Given any initial pointB(O), the S’ algorithm converges in the sense that the function value
decreasing property holds, and furthermof8{’, L, and DY) satisfyL"?) = 0, DY) » 0, (LY(BY))T+
BYLY) /2 <4DY for anyj > 1.

The proof is given in AppendixD.

We observe that practically, the inner loop converges fasudlly within 100 steps). Moreover, to
guarantee the functional value is decreasing, one doesawet to run the inner loop till convergence.
Although it is possible to apply the stable-sparse estimmadirectly, we recommend running the screening
algorithm (RNS) first, followed by the fin& network learning.

V. EXPERIMENTS
A. Simulation Studies

In this subsection, we conduct synthetic data experimemtdeimonstrate the performance of the
proposed learning framework in recurrent network analyais Erdds-Rényi-like scheme of generating
system parameters, including a sparse regulation mdtyis described as follows. Given any nogehe
number of its regulators is drawn from a binomial distribatB(n — 1, 5-). The regulator ses; is chosen
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Figure 2: Comparison of ROC curves.

randomly from the restn — 1) nodes (excluding nodgitself). If j ¢ S;, a;; = 0. Otherwiseg,; follows a
mixture of two Gaussian&/(1.5,0.1%) ad V'(—1.5, 0.1?) with probability1/2 for each. Then draw random
l, u, ¢ from Gaussian distributions (independently)y~ N (1.5,0.1%), u; ~ N(0,0.1%),¢; ~ N(0,0.1%).
Finally d is generated so that the system satisfies the stability tondiA33).

Topology identificationFirst, we test the performance of RNS in recurrent netwogokogy identifi-
cation. We compare it with TSNI [25] and QTIS [26]. TSNI is apuar network learning approach and
applies principle component analysis for dimensionakiguction. QTIS is a network screening algorithm
based on sparsity-inducing techniques. To avoid the adidsue of parameter tuning, ROC curves will
be used to summarize link detection results in a comprebengay, in terms of true positive rate (TPR)
and false positive rate (FPR).

We simulate two networks according to the scheme introduestly. In the first example we set
n = 10,7 = 100, in the second example = 200, 7 = 500, and in the thirdn = 100,77 = 1000. Given
all system parameters, we can call Matlab functieng and SDE.SIMULATE to generate continuous-time
stochastic processes according {6 (4). The discrete-tibsergations are sampled from the stochastic
processes with sampling periatl” = 1.

In this experiment, the number of unknowns in either casariger than the sample size, especially in
Ex.2 which has abowt1K variables but only 500 observations. Given any algorithra,vary the target
cardinality parametem from 1 ton(n — 1), collect all estimates, and compute their associated TRRS a
FPRs. The experiment is repeated §ortimes and the averaged rates are shown in the ROC curves in
Figure[2. RNS beats TSNI and QTIS by a large margin. In fae,ROC curve of RNS igverywhere
above the TSNI curve and the QTIS curve.

System stabilityNext, we show the necessity of stable learning in networkadyios forecasting. For
simplicity, the ¢, penalization is used. We compare t&& network estimation with the approach based
on sparse sigmoidal regression in Secfion 1ll-A (with ndoBity guarantee), denoted by SigSpar.

We use two network examples (Ex.4 and Ex.5) with- 20, 40 respectively. In each setting, we generate
T = 20 samples for training, an2D0 validation samples for parameter tuning. In this experitnemecast
error at a future time point is the major concern. Suppo&E), the network snapshot dt, is given. With
system parameter estimates obtained, one can simulatetest@ process(t) (¢t > T') starting withaz(7T')
based on model[14). The forecast error at time p@inth is defined as FE- ||x(T+h) —&(T +h)||3/n.
Long-term forecasting corresponds to large values.dlVe repeat the experiment for 50 times and show
the average FE in Tablé I. The error of SigSpar becomes egtyelarge ash increases, because there
is no stability guarantee of its network estimate, wifehas excellent performance even in long-term
forecasting.
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Table I. Forecasting error comparison on the simulatiom.dat

h 1 5 10 15 20
SigSpar 0.08 3.01 41.95 450.54 4X0°

s 0.04 048 1.01 1.39 1.76
SigSpar 0.35 23.76 41.95 %30° 1.0x10°

s 0.06 0.70 1.75 2.80 4.04

Ex.4

Ex.5

Table II: Regulatory connections of the Yeast cell cycle mitvork. <’ stands for the regulatory
connections identified by RNS,’‘stands for those by [28], andT stands for the confirmed regulatory
connections with published evidence in the literature.

SWi4 HCM1 NDD1 SWI5S5 ASH1

SWi4
HCM1
NDD1

SWI5
ASH1
CLN2
SVS1
SWE1
MNN1
CLB6
HTAl
HTB1
HHT1
CLB4
CLB2
CDC20
SPO12

SIC1
CLN3 X X
CDC46

IX X

IX

IX X X XX X X

X
X
X

I

X X
O

B. Real data

Yeast gene regulatory network/e use RNS to study the transcriptional regulatory networkhie
yeast cell cycle. The dataset is publicly available and aiet description of the microarray experiment
is in [27]. Following [28], we focus on the 20 genes whose egpion patterns fluctuate in a periodic
manner. The dataset contains their expression levelsdedat 18 time points during a cell cycle. In this
regulatory (sub)network, five genes have been identifiedaass¢ription factors, namely SWi4, HCM1,
NDD1, SWI5, ASH1, and 19 regulatory connections from thentatget genes have been reported with
direct evidence in the literature (cf. the YEASTRACT datedbat http://yeastract.com/). [28] found 55
connections from the transcription factors to the targetege of which 14 have biological evidence (and
so the true positive rate isl/19 = 73.7%). For a fair comparison, we also let RNS detect 55 connestion
from the transcription factors to the target genes, andeekii a higher true positive ra36.5%. A detailed
comparison of the identified regulatory connections is shawTable[ll.

fMRI data. The resting state fMRI data provided by the ADHD-200 corigant [29] have been
preprocessed by the NIAK interface [30]. The dataset we ameguhas 954 ROIs (regions of interest)


http://yeastract.com/
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Table Ill: Forecast error on the fMRI data.

m/n? 0.5 0.6 0.7 0.8 0.9
TSNI 0.981 1.021 1.044 1.056 1.060
S  0.194 0.194 0.194 0.194 0.194

and 257 time points. In the experiment, the first 200 obsematare for training (and s@ = 200 and

n = 954), and the following 57 observations are for testing. We igopRNS to get a network pattern,
followed by theS® network estimation for stability correction. Taljlel Il sk® the results averaged over
10 randomly chosen subjects. Our learning algorithm cameaehmuch lower error than TSNI, and its
performance is pretty robust to the choicerof

APPENDIX A
PROOF OFTHEOREM[I

For notation simplicity, we introduce,(3) := m(&! 3). Thendu.(8)/08 = 1(8)(1—pus(B))&!, from
which it follows that

zws " )?/2) = X ' WE(XB, y),

where W = diag{w,}_, and ¢ is the function defined in[(11) applied componentwise. Moegowe
can compute its HeSS|an (details omitted)

Zws Ys — /2))
= X Wdlag{ﬂs( - /~Ls> [:us(l - ,us) + (:us - ys)<1 - 2#3)]} X
= X WE(B)X.

Note thatH is not necessarily positive semi-definite.
Let Fo(B) = £ > w,(ys—ps(8))? +E P(Bx; \). Define a surrogate function 8§83, 8') = 1 > w,(y,—
1a(B)2+ 3 PUAE ) + + 518 =815+ 5 2o ws((ys = 15(8))? = (s — 115(8)%) + 2wl (] B, ys) (x ] B —

x!3). Based on the previous calculatlon we have
5 Z ws(( fas( )2 —(ys — Ns(ﬁ/))2)
~(XTWE(XB,9) (B 8) ~ 5(8 - B) (X WSE8+ (1-0)8)X)(8 - )
for somef € [0,1]. Let ¢ =68 + (1 — 6)3'. It follows that
K 1
5”6 - ﬁ/Hg + 5 Zwé’((ys - MS(ﬁ))2 - (ys - MS(ﬁl))z)

=58~ BT(KT - XTS(QOWX)(3 — )

— IX1BI=W Iz

> ; 18-85
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Because
ws,us(l - ,us)((l - 2:“5)(:“8 - ys) + :us(l - :us))

2
<% 1 1_2/~Ls+2,us_2ys _|_1
— 4 \2 2 4

w (1-2y,)% 1
1 (T 1)

the diagonal entries oV % (¢) are uniformly bounded by

ws [((1—2y5)? 1
max 1 < 3 —1—4

or ko(y,w) (see [(IR)). Therefore, choosing > ko(y, w)|| X |2, we haveG(8,8) = 13 w,(y, —
ps(B))? + 22 P(Bi ) + 3(K — I X[3|WX3) > Fo(B) for any B, 8.

On the other hand, based on the definition, it is easy to shetai{d omitted) that give$, ming G(83, 3')
is equivalent to:

rr;;,n—nﬁ B+ X WEXB,y)l3+ D P(Bii M) (25)
Applying Lemma 1 in[[16] without requiring uniqueness, taxists a globally optimal solution
/ T v ’
Bo(B) =6(8 - X WEXB,y)/K;X), (26)
provided thatP(¢; \') = P(t; \)/K for anyt. In summary, we obtaiy(3) = G(8,8) > G(3,8,(8)) >

Fo(B,(8))-

We are now in a position to prove (|16). In fact, giverand/, the optimization problem

min 2 S w,ly, — 1y — In(@TH) + 3 P(5 N,

is equivalent toming 1 > wl (s — m(&]8))% + > P(Bk, ) with g = (ys — z1v)/l, w, = [*w;. (Note
that the! obtained from WLS is nonzero with probability 1.) Therefotlke function value decreasing
property always holds during the iteration.

APPENDIX B
PROOF OFTHEOREM[2

Define a quantile thresholding rul@#(-;m,n) as a variant of the hard-ridge thresholding rulée (9).
Givenl <m < np: A € R"? — B € R™?" is defined as followsb;; = a;;/(1 + ) if |a;;| is among
the m largest in the set of|a;;| : 1 <i <n,1 <j <p}, andb;; = 0 otherwise.

Lemma 1. B = ©#(A;m,n) is a globally optimal solution to

. 1 n
min fo(A) = 5|14 - BI} + 2| BJI}

Proof: Let I C {(i, ])|1 <i<n,1<j<p}with |I| m. AssumingBlc = 0, we get the optimal
solution B with B = AI It follows that fo(B) = A% -4 i je1 @3- Therefore, the quantile
thresholding®# (A; m, n) ylelds a global minimizer. [ |

Using Lemmalll, we can prove the function value decreasingepty;, the remaining part follows
similar lines of Theoreml1 because of the separability-'of
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APPENDIX C
PROOF OFTHEOREM[3

Let f(x) = Lw(Ax + u) — Dz + ¢, wherex is short forxz(¢). First, we prove the existence of an
equilibrium. It suffices to show that there is a solutionftac) = 0 orx = D 'Lw(Ax +u)+ D 'c =:
o(x). Obviously, the mapping is continuous and bounded (sdy| . < M), Brouwer’s fixed point
theorem [[31] indicates the existence of at least one equitibin [—M, M|".

Let * be an equilibrium point, i.e.f(x*) = 0. Construct a Lyapunov function candidatéxz) =
1(x —x*)"P(x — «*) with P positive definite and to be determined. Then

dVi(z) _,
—a (z)f(x)

=(z —z") Pf(x)

(x — ") P(f(x) - f(z"))

=—(x—a")"PD(x —x*) + (x — ") PL(w(Ax + u) — w(Azx" + u))
—(z—2")"(PD - PLGA)(z — x*)

(o) (PD 4—2DP _ PLGA +2A GLP ) (@ — )

where

T _ T %
G:diag{”(aim+f‘) Mo @ “‘)}.

*
o T — oy T

It is easy to verify thatG' = diag{n’(£)} < I/4, and thusPLGA+A'GLP' < (PLA+A"LP")/4.
It is well known [21] that under(A3a), the Lyapunov equation

:
P(D—%)+<D—E) P =_R (27)

is solvable and uniquely determines a positive defidtdor any positive definiteR. Therefore,V is
indeed a Lyapunov function for the nonlinear dynamical eys{22). Moreover, (A3a) implies
dV (x)
dt

for someey, e > 0. By the Lyapunov stability theory—see, e.q.,/[32] (Cha@gr(22) must be globally
exponentially stable. The uniqueness of the equilibriunmiglied by the global exponential stability.
The second result can be shown by settidg= I in (21); details are omitted.

< —sollw — 7|3 < —eV ()

APPENDIX D
PROOF OFTHEOREM[4

Based on the proof of Theordm 1, the modified Step 2 does rettdffe convergence of function value
because at each iteration a global optimuniof (24) is obthiheemains to show thaB generated by

the modified Step 4 |mproveB Yin terms of reducing the objective function value, aB&’ obeys
the stability condition.
Let 2 = BV - XTweXBY Y ¥)(KW)-, AY = A . (KW)~. (The modified Step 2 may

result in zeros irE to make the assouated activation termsriftX B) vanish; using the pseudoinverse
can handle the issue and maintain the decreasing propBeggd on the argument of Appendix A, the



16

problem in Step 4 reduces to

~mlﬂ —||B |7 + [|AY o Bl
B:[uv (28)

s.t. (L( )BT + BLYW)/2 < 4DV,

Therefore it suffices to prove Lemnia 2 for any give= Z[2 : end:]), AY, LY = 0, DY > 0,
and BU=Y_ (In fact, the lemma holds given any initialization 6f;.)

Lemma 2. For any] >1,, 51BY —E|} +[|[AY 0o BY||, < §|BU™Y —E|} + |[AY o BY7Y|,, and
(L( YBUT L B )/2<4D(J)

Proof: Deflnef( )=1B-E|%+|AoB|:, andg(B',C',B,C) = 3| B' - E||% + |[Ao BJ|; +
|B-B'|3+3|C—C'|3+(B'—2,B—B’). Thenf(B') = ¢(B',C’',B',C") andg(B',C', B,C) >
(B).

On the other hand, givefB’, C"), we can writey as a function of B, C): 1||[E, C'| - [B, C]||% +|| Ao
Bj||; (up to additive functions ofB’ and C’). Based on Lemmal 3, witEc = C’, ¢(B',C’, B',C") >
g(B',C',B°,C°) > f(B°) and (LB°" + B°L)/2 = C° < 4D.

Applying the result to the modified Step 4 in Section IV-B dielthe desired result. [ |

Kﬁl\)l»—-

Lemma 3. Consider the sequence (B3, C3) generated by the following procedure, with the operators
P!, P2, P? defined in Lemmi 4, Lemrih 5 and Lenifha 6, respectively:
0) B;< Ep,C3+ Ec,P=0,Qg=0,Q-=0,R=0
repeat
l) Bl <—P1(B3+P7A), Cl <—Cg, P(—P—I—Bg—Bl
2) [B3,C,] + P*(B14+Qp,C1+Q¢; L), [Qp.Qc + [@p,Qc] + [B1,C1] — [By,Cy)
3) B; + B,, Cg — P3(02+R;D), R+ R+C5— Cg.
until convergence

Then, the sequence of iterates converges to a globally apsoiution (B°, C°) to

1 2
rglg§ll[~37~c] [B,C]|ly + [|Ao Bl (29)

st.C = (LB" + BL)/2,C < 4D.

Proof: With the following three lemmas, applying Theorem 3.2 an@drem 3.3 in|[33] yields the
strict convergence of the iterates and the global optigalitthe limit point. [ |

Lemma 4. Let P!(®) be the optimal solution to
1
min || B — @[} + Ao Bls. (30)

ThenP!(®; A) = O5(®; A) whereOg, applied componentwise ob, is the soft-thresholding rule given
in Section 1II-A.
Proof: Apply Lemma 1 in [16]. [ ]

Lemma 5. The optimal solution to
1
min - |[[B C] - [®5 ®cl||% st.C = (LB" + BL)/2. (31)
is given byP*(®p, ®c; L) = [B°,C°] with B® = [i¢,], bY, = zpmj;:ﬁ rigsit and C° =

(LB°T + B°TL)/2, whereW¥ = [i; ;] = ®p + (®c + ®5)L/2.
Proof: Let f(B) = |B — ®p|%/2+ |[(LBT + BL)/2 — ®¢||%/2. It is not difficult to obtain the
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gradient (details omitted)B — ®p + (LB'L + BL?)/2 — (®¢ + ®5)L/2. The optimalB and C can
be evaluated accordingly. [ |

Lemma 6. Let P3(®; D) be the optimal solution to
1 . . I
mcin §HC — ®|]2 s.t. C is symmetric and satisfie§ < 4D. (32)

Then it is given by/diag{min(s;,0)}U " +4D, whereS = diag{si, - - - ,s,} andU are from the spectral
decomposition of® + ®')/2 —4D = USU".

Proof: BecauseC' is symmetric (but® may not be), we have

IC — @|%
p
= D (e = 0i)* + (cij — 651+ Y _(cii — ¢a)’
1<i<j<p i=1
Gij + Pji o . 9 (33)
= Z 2(Cij - T) + Z(CZ‘Z‘ — ¢ii) + const(@)
1<i<j<p 1=1
o+ "
=llc = 22 + const(@),
whereconst(®) is a term that does not depend 6h Therefore, probleni(32) is equivalent to
1 o+ "
min =€ — %H%,s.t.C—ZLD <0 (34)

The optimality of P3(®; D) can then be argued by von Neumann'’s trace inequality|[34, 35] [ |
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