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Abstract

Large-scale recurrent networks have drawn increasing attention recently because of their capabilities in mod-
eling a large variety of real-world phenomena and physical mechanisms. This paper studies how to identify all
authentic connections and estimate system parameters of a recurrent network, given a sequence of node observations.
This task becomes extremely challenging in modern network applications, because the available observations are
usually very noisy and limited, and the associated dynamical system is strongly nonlinear. By formulating the
problem as multivariate sparse sigmoidal regression, we develop simple-to-implement network learning algorithms,
with rigorous convergence guarantee in theory, for a variety of sparsity-promoting penalty forms. A quantile variant
of progressive recurrent network screening is proposed forefficient computation and allows for direct cardinality
control of network topology in estimation. Moreover, we investigate recurrent network stability conditions in
Lyapunov’s sense, and integrate such stability constraints into sparse network learning. Experiments show excellent
performance of the proposed algorithms in network topologyidentification and forecasting.

Index Terms

Recurrent networks, topology learning, shrinkage estimation, variable selection, dynamical systems, Lyapunov
stability.

I. INTRODUCTION

There has been an increasing interest in identifying network dynamics and topologies in the emerging
scientific discipline of network science. In a dynamical network, the evolution of a node is controlled not
only by itself, but also by other nodes. For example, in gene regulatory networks [1], the expression levels
of genes influence each other, following some dynamic rules,such that the genes are connected together to
form a dynamical system. If the topology and evolution rulesof the network are known, we can analyze
the regulation between genes or detect unusual behaviors tohelp diagnose and cure genetic diseases.
Similarly, the modeling and estimation of dynamical networks are of great importance in various domains
including stock market, brain network and social network [2, 3, 4]. To accurately identify the topology
and dynamics underlying those networks, scientists are devoted to developing appropriate mathematical
models and corresponding estimation methods.

In the literature, linear dynamical models are commonly used. For example, the human brain connectivity
network [5] can be characterized by a set of linear differential equations, where the rate of change of
activation/observation of any node is a weighted sum of the activations/observations of its neighbors:
dxi/ dt =

∑

j 6=i αijxj−dixi, 1 ≤ i ≤ n. Hereαij provide the connection weights anddi is the decay rate.
Nevertheless, a lot of complex dynamical networks clearly demonstratenonlinear relationships between
the nodes. For instance, the strength of influence is unbounded in the previous simple linear combination,
but the so-called “saturation” effect widely exists in physical/biological systems (neurons, genes, and
stocks)—the external influence on a node, no matter how strong the total input activation is, cannot go
beyond a certain threshold. To capture the mechanism, nonlinearity must be introduced into the network
system: dxi/ dt = liπ(

∑

j 6=i αijxj + ui) − dixi + ci, whereπ denotes a nonlinear activation function
typically taken to be the sigmoidal functionπ(θ) = 1/(1 + e−θ). It has a proper shape to resemble many
real-world mechanisms and behaviors.
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The model description is associated with acontinuous-time recurrent neural network. The existing
feedback loops allow the network to exhibit interesting dynamic temporal behaviors to capture many
kinds of relationships. It is also biologically realistic in say modeling the effect of an input spike train.
Recurrent networks have been successfully applied to a widerange of problems in bioinformatics, financial
market forecast, electric circuits, computer vision, and robotics; see, e.g., [6, 7, 8, 9, 10] among many
others.

In practical applications, it is often necessary to includenoise contamination:dxi = (liπ(
∑

j 6=i αijxj +
ui)− dixi + ci) dt + σ dBt, 1 ≤ i ≤ n, whereBt stands for ann-dimensional Brownian motion. Among
the very many unknown parameters,αij might be the most important: the zero-nonzero pattern ofαij

indicates if there exists a (direct) connection from nodej to nodei. Collecting all such connections results
in a directed graph to describe the node interaction structure.

A fundamental question naturally arises:Given a sequence of node observations (possibly at very few
time points), can one identify all existing connections andestimate all system parameters of a recurrent
network?

This task becomes extremely challenging in modern big network applications, because the available
observations are usually very noisy and only available at a relatively small number of time points (sayT ),
due to budget or equipment limitations. One frequently faces applications withn2 much larger thanT . In
addition, in this continuous time setting, no analytical formula of the likelihood exists for the stochastic
model, which increases the estimation difficulty even in large samples [11]. Instead of considering multi-
step ad-hoc procedures, this paper aims at learning the network systemas a whole. Multivariate statistical
techniques will be developed for identifying complete topology and recovering all dynamical parameters.
To the best of our knowledge, automatic topology and dynamics learning in large-scale recurrent networks
has not been studied before.

In this work, we are interested in networks that aresparse in topology. First, many real-world complex
dynamical networks indeed have sparse or approximately sparse structures. For example, in regulatory
networks, a gene is only regulated by a handful of others [12]. Second, when the number of nodes is
large or very large compared with the number of observations, the sparsity assumption reduces the number
of model parameters so that the system is estimable. Third, from a philosophical point of view, a sparse
network modeling is consistent with the principle of Occam’s razor.

Not surprisingly, there is a surge of interest of using compressive sensing techniques for parsimonious
network topology learning and dynamics prediction. However, relying on sparsity alone seems to have
only limited power in addressing the difficulties of large-scale network learning from big data. To add
more prior knowledge and to further reduce the number of effective unknowns, we propose to study how
to incorporate structural properties of the network systeminto learning and estimation, in addition to
sparsity. In fact, real-life networks of interest usually demonstrateasymptotic stability. This is one of
the main reasons why practitioners only perform limited number of measurements of the system, which
again provides a type of parsimony or shrinkage in network learning.

In this paper we develop sparse sigmoidal network learning algorithms, with rigorous convergence
guarantee in theory, for a variety of sparsity-promoting penalty forms. A quantile variant, the progressive
recurrent network screening, is proposed for efficient computation and allows for direct cardinality control
of network topology in estimation. Moreover, we investigate recurrent network stability conditions inLya-
punov’s sense, and incorporate such stability constraints into sparse network learning. The remaining of this
paper is organized as follows. Section II introduces the sigmoidal recurrent network model, and formulates
a multivariate regularized problem based on the discrete-time approximate likelihood. Section III proposes
a class of sparse network learning algorithms based on the study of sparse sigmoidal regressions. A novel
and efficient recurrent network screening (RNS) with theoretical guarantee of convergence is advocated
for topology identification in ultra-high dimensions. Section IV investigates asymptotic stability conditions
in recurrent systems, resulting in a stable-sparse sigmoidal (S3) network learning. In Section V, synthetic
data experiments and real applications are given. All proofdetails are left to the Appendices.
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II. M ODEL FORMULATION

To describe the evolving state of a continuous-time recurrent neural network, one usually defines an
associated dynamical system. Ideally, without any randomness, the network behavior can be specified by
a set of ordinary differential equations:

dxi
dt

= liπ(
∑

j 6=i

αijxj + ui)− dixi + ci, i = 1, · · · , n, (1)

wherexi, short forxi(t), denotes the dynamic process of nodei. Throughout the paper,π is thesigmoidal
activation function

π(θ) =
1

1 + e−θ
, (2)

which is most frequently used in recurrent networks. This function is smooth and strictly increasing. It
has a proper shape to resemble many real-world mechanisms and behaviors. Due to noise contamination,
a stochastic differential equation model is more realistic

dxi = (liπ(
∑

j 6=i

αijxj + ui)− dixi + ci) dt + σ dBt, (3)

whereBt is a standard Brownian motion and reflects the stochastic nature of the system. Typicallyli >
0, di > 0, and in some applicationsαii = 0 (no self-regulation) is required.

In the sigmoidal recurrent network model, the coefficientsαij characterize the between-node interac-
tions. In particular,αij = 0 indicates that nodej does notdirectly influence nodei; otherwise, nodej
regulates nodei, and is referred to as a regulator of nodei in gene regulatory networks. Such a regulation
relationship can be either excitatory (ifαij is positive) or inhibitory (ifαij is negative). In this way,
A = [αij ] is associated with a directed graph that captures the Granger causal relationships between
all nodes [13], and the topology of the recurrent network is revealed by the zero-nonzero pattern of the
matrix. Therefore, to identify all significant regulation links, it is of great interest to estimateA, given a
sequence of node observations (snapshots of the network).

Denote the system state at timet by x(t) = [x1(t) · · ·xn(t)]T or xt (or simply x when there is no
ambiguity.) Definel = [l1, · · · ln]T, u = [u1, · · · , un]T, c = [c1, · · · , cn]T, D = diag{di}, L = diag{li},
andA = [αij] = [α1 · · ·αn]

T ∈ R
n×n. Then (3) can be represented in amultivariate form

dxt = (Lπ(Ax+ u)−Dx+ c) dt + σ dBt, (4)

whereBt is an n-dimensional standard Brownian motion. While this model isspecified in continuous
time, in practice, the observations are always collected atdiscrete time points. Estimating the parameters
of an SDE model from few discrete observations is very challenging. There rarely exists an analytical
expression of the exact likelihood. A common treatment is todiscretize (4) and use an approximate
likelihood instead. We use the Euler discretization scheme(see, e.g., [14]):

∆x = (Lπ(Ax+ u)−Dx+ c)∆t + σ∆Bt.

Suppose the system (4) is observed atT +1 time pointst1, · · · , tT+1. Let xs = [x1(ts), · · · , xn(ts)]T ∈
R

n be the observed values of alln nodes atts. Define ∆xs = (xs+1 − xs) and ∆ts = (ts+1 − ts),
1 ≤ s ≤ T . Because∆Bt ∼ N (0,∆tI), the negative conditional log-likelihood for the discretized model
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is given by

ℓ(x1, · · · ,xT+1|x1) = − logP (∆x1, · · · ,∆xT |x1)

=− logP (∆x1|x1) · · ·P (∆xT |xT )

=
T
∑

s=1

‖∆xs/∆ts − (Lπ(Axs + u)−Dxs + c)‖22∆ts/(2σ2) + C(σ2)

=:f(A,u, l,d, c)/σ2 + C(σ2).

C(σ2) is a function that depends onσ2 only. The fitting criterionf is separable inα1, . . . ,αn. To see
this, letxi,s = xi(ts) and∆xi,s = xi(ts+1)− xi(ts). Then, it is easy to verify that

f(A,u, l,d, c) =
1

2

n
∑

i=1

T
∑

s=1

(

∆xi,s
∆ts

− (liπ(α
T

i xs + ui)− dixi,s + ci)

)2

∆ts. (5)

Conventionally, the unknown parameters can then be estimated by minimizingf . In modern applications,
however, the number of available observations (T ) is often much smaller than the number of variables
to be estimated (n2 +4n), due to, for example, equipment/budget limitations. Classical MLE methods do
not apply well in this high-dimensional setting.

Fortunately, the networks of interest in reality often possess topology sparsity. For example, a stock
price may not be directly influenced by all the other stocks inthe stock market. A parsimonious network
with only significant regulation links is much more interpretable. Statistically speaking, the sparsity in
A suggests the necessity ofshrinkage estimation [15] which can be done by adding penalties and/or
constraints to the loss function. The general penalized maximum likelihood problem is

min
A,u,l,d,c

f(A,u, l,d, c) +
∑

i,j

P (αij;λji) (6)

whereP is a penalty promoting sparsity andλji are regularization parameters. Among the very many
possible choices ofP , the ℓ1 penalty is perhaps the most popular to enforce sparsity:

P (t;λ) = λ|t|. (7)

It provides a convex relaxation of theℓ0 penalty

P (t;λ) =
λ2

2
1t6=0. (8)

Taking both topology identification and dynamics prediction into consideration, we are particularly inter-
ested in theℓ0 + ℓ2 penalty [16]

P (t;λ, η) =
1

2

λ2

1 + η
1t6=0 +

η

2
t2, (9)

where theℓ2 penalty or Tikhonov regularization can effectively deal with large noise and collinearity
[17, 18] to enhance estimation accuracy.

The shrinkage estimation problem (6) is however nontrivial. The lossf is nonconvex,π is nonlinear,
and the penaltyP may be nonconvex or even discrete, let alone the high-dimensionality challenge. Indeed,
in many practical networks, the available observations areusually quite limited and noisy. Effective and
efficient learning algorithms are in great need to meet the modern big data challenge.
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III. SPARSE SIGMOIDAL REGRESSION FORRECURRENT NETWORK LEARNING

A. Univariate-response sigmoidal regression

As analyzed previously, to solve (6), it is sufficient to study a univariate-response learning problem

min
(β,l,γ)

1

2

T
∑

s=1

ws

(

ys − lπ(x̃T

sβ)− zT

s γ
)2

+

n
∑

k=1

P (βk, λk) =: F (β, l,γ) (10)

wherex̃s, zs, ys, ws are given, andl,γ,β are unknown withβ desired to be sparse. (10) is the recurrent
network learning problem for nodei when we set̃xs = [1,xs]

T, ys = ∆xi,s/∆ts, zs = [1, xi,s]
T, and

ws = ∆ts (1 ≤ s ≤ T ) (note that the interceptβ1 is usually subject to no penalization corresponding
to λ1 = 0). For notational ease, definẽX = [x̃1, · · · , x̃T ]

T, y = [y1, · · · , yT ]T, Z = [z1, · · · , zT ]
T,

λ = [λk] ∈ R
n, andW = diag{w} = diag{w1, · · · , ws} (to be used in this subsection only, unless

otherwise specified).
We propose a simple-to-implement and efficient algorithm tosolve the general optimization problem

in the form of (10). First define two useful auxiliary functions

ξ(θ, y) = π(θ)(1− π(θ))(π(θ)− y), (11)

k0(y,w) = max
1≤s≤T

ws

16

(

1 +
(1− 2ys)

2

2

)

. (12)

The vector versions ofπ and ξ are defined componentwise:π(θ) = [π(θ1), · · · , π(θT )]T and ξ(θ,y) =
[ξ(θ1, y1), · · · , ξ(θT , yT )]T, and the matrix versions are defined similarly. A prototype algorithm is de-
scribed as follows, starting with an initial estimateβ(0), a thresholding ruleΘ (an odd, shrinking and
nondecreasing function, cf. [19]), andj = 0.

repeat
0) j ← j + 1
1) µ(j) ← π(X̃β(j−1))
2) Fit a weighted least-squares model

min
l,γ
‖W 1/2(y − [µ(j) Z][l γT]T)‖22, (13)

with the corresponding solution denoted by(l(j),γ(j)).

3) Constructỹ(j) ← (y − Zγ(j))/l(j), w̃(j) ← (l(j))2w, W̃
(j)

= diag{w̃(j)}. Let K(j) be any
constant no less thank0(ỹ

(j), w̃(j))‖X̃‖22, where‖ · ‖2 is the spectral norm.
4) Updateβ via thresholding:

β(j) = Θ(β(j−1) − 1

K(j)
X̃

T

W̃
(j)
ξ(X̃β(j−1), ỹ(j));λ(j)), (14)

whereλ(j) = [λ
(j)
k ]n×1 is a scaled version ofλ satisfyingP (t;λk)/K(j) = P (t;λ

(j)
k ) for any t ∈ R ,

1 ≤ k ≤ n.
until convergence
Before proceeding, we give some examples ofΘ andλ(j). The specific form of the thresholding function

Θ in (14) is related to the penaltyP through the following formula [16]:

P (t;λ)− P (0;λ)

=

∫ |t|

0

(sup{s : Θ(s;λ) ≤ u} − u) du+ q(t;λ)
(15)

with q(·;λ) nonnegative andq(Θ(s;λ)) = 0 for all s. The regularization parameter(s) are rescaled at
each iteration according to the form ofP . Examples include: (i) theℓ1 penalty (7), and its associated
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soft-thresholdingΘS(t;λ) = sgn(t)(|t| − λ)1|t|>λ, in which caseP (t;λ)/K(j) = P (t;λ(j)), ∀t implies
λ(j) = λ/K(j), (ii) the ℓ0 penalty (8) and thehard-thresholdingΘH(t) = t1|t|>λ, which determines
λ(j) = λ/

√
K(j), and (iii) theℓ0+ℓ2 penalty (9) and its associatedhard-ridge thresholdingΘHR(t;λ, η) =

t
1+η

1|t|>λ, whereλ(j) = λ
K(j)

√

(η +K(j))/(η + 1), η(j) = η/K(j). Theℓp (0 < p < 1) penalties, the elastic
net penalty, and others [16] are also instances of this framework.

Theorem 1. Given the objective function in(10), supposeΘ and P satisfy (15) for some nonnegative
q(t;λ) with q(Θ(t;λ)) = 0 for all t and λ. Then given any initial pointβ(0), with probability 1 the
sequence of iterates(β(j), l(j),γ(j)) generated by the prototype algorithm satisfies

F (β(j−1), l(j−1),γ(j−1)) ≥ F (β(j), l(j),γ(j)). (16)

See Appendix A for the proof.
Normalization is usually necessary to make all predictors equally span in the space before penalizing

their coefficients using a single regularization parameterλ. We can center and scale all predictor columns
but the intercept before calling the algorithm. Alternatively, it is sometimes more convenient to specify
λk componentwise—e.g., in theℓ1 penalty

∑

λk|βk| setλk = λ · ‖X[:, k]‖2 for non-intercept coefficients.

B. Cardinality constrained sigmoidal network learning

In the recurrent network setting, one can directly apply theprototype algorithm in Section III-A to
solve (6), by updating the columns inB one at a time. On the other hand, a multivariate update form is
usually more efficient and convenient in implementation. Moreover, it facilitates integrating stability into
network learning (cf. Section IV).

To formulate the loss in a multivariate form, we introduce

Y = [yi,s] = [∆xi,s/∆ts] ∈ R
T×n,

X = [x1, · · · ,xT ]
T ∈ R

T×n,

B = AT = [α1, · · · ,αn] ∈ R
n×n,

W = diag{w} = diag{∆t1, · · · ,∆tT}.
Thenf in (5) can be rewritten as

f(B,u, l,d, c) =
1

2
‖W 1/2

{

Y − [π(XB + 1uT)L−XD + 1cT]
}

‖2F , (17)

with ‖ · ‖F denoting the Frobenius norm, and the objective function to minimize becomes‖W 1/2{Y −
[π(XB + 1uT)L−XD + 1cT]}‖2F + P (B,Λ).

One of the main issues is to choose a proper penalty form for sparse network learning. Popular
sparsity-promoting penalties includeℓ1, SCAD, ℓ0, among others. Theℓ0 penalty (8) is ideal in pursuing a
parsimonious solution. However, the matter of parameter tuning cannot be ignored. Most tuning strategies
(such asK-fold cross-validation) require computing a solution pathfor a grid of values ofλ, which is
quite time-consuming in large network estimation. Rather than applying theℓ0 penalty, we propose anℓ0
constrained sparse network learning

‖B‖0 ≤ m, (18)

where‖·‖0 denotes the number of nonzero components in a matrix. In contrast to the penalty parameterλ in
(8),m is more meaningful and customizable. One can directly specify its value based on prior knowledge
or availability of computational resources to have controlof the network connection cardinality. To account
for collinearity and large noise contamination, we add a furtherℓ2 penalty inB, resulting in a new ‘ℓ0+ℓ2’
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regularized criterion

min
B,L,D,u,c

1

2
‖W 1/2{Y − [π(XB + 1uT)L−XD + 1cT]}‖2F

+
η

2
‖B‖2F =: F0, s.t. ‖B‖0 ≤ m.

(19)

Not only is the cardinality boundm convenient to set, because of the sparsity assumption, but the ℓ2
shrinkage parameterη is easy to tune. Indeed,η is usually not a very sensitive parameter and does not
require a large grid of candidate values. Many researchers simply fix it at a small value (say,1e − 3)
which can effectively reduce the prediction error (e.g., [18]). Similarly, to handle the possible collinearity
betweenπ and1, we recommend adding mild ridge penaltiesηl

2
‖l‖22 + ηc

2
‖c‖22 in (19) (say,ηl = 1e− 4

andηc = 1e− 2).
The constrained optimization of (19) does not apparently fall into the penalized framework proposed in

Section III-A. However, we can adapt the technique to handleit through aquantile thresholding operator
(as a variant of the hard-ridge thresholding (9)). The detailed recurrent network screening (RNS) algorithm
is described as follows, where for notational simplicityX̃ := [1 X], B̃ := [u BT]T, and we denote by
A[I, J ] the submatrix ofA consisting of the rows and columns indexed byI andJ , respectively.

Algorithm 1 Recurrent Network Screening (RNS)

given B̃
(0)

(initial estimate),m (cardinality bound),η (ℓ2 shrinkage parameter).
j ← 0
repeat

0) j ← j + 1

1) µ(j) ← π(X̃B̃
(j−1)

)
2) UpdateL = diag{l},D = diag{d}, andc by fitting a weighted vector least-squares model:

min
L,D,c

‖W 1/2(Y − [µ(j)L−XD + 1cT])‖2F , (20)

with the solution denoted byL(j) = diag{l(j)} = diag{l(j)1 , · · · , l(j)n }, D(j) = diag{d(j)1 , · · · , d(j)n },
andc(j). (This amounts to solvingn separate weighted least squares problems.)
3) ConstructỸ ← (Y +XD(j) − 1(c(j))T)(L(j))−, W̃ ← w · (l(j) ◦ l(j))T, where− denotes the
Moore-Penrose pseudoinverse and◦ is the Hadamard product. LetK(j)

i be any constant no less than
k0(Ỹ [:, i], W̃ [:, i]])‖X̃‖22, andK(j) ← diag{K(j)

1 , · · · , K(j)
n }.

4) UpdateB andu:
4.1) Ξ̃ ← B̃

(j−1) − X̃
T{W̃ ◦ ξ(X̃B̃

(j−1)
, Ỹ )}(K(j))−, u(j) ← (Ξ̃[1, :])T, Ξ ← Ξ̃[2 : end, :] (the

submatrix ofΞ̃ without the first row),η(j) = η · (11T)(K(j))−.
4.2) Perform the hard-ridge thresholdingB(j) ← ΘHR

(

Ξ; ζ(Ξ),η(j)
)

(cf. Section III-A for the
definition of ΘHR) with an adaptive threshold matrixζ(Ξ). The entries ofζ(Ξ) are all set to the
medium of themth and the(m + 1)th largest components of vec(|Ξ|). See (21) for other variants
when certain links must be maintained or forbidden.
4.3) B̃

(j) ← [u(j) (B(j))T]T

until the decrease in function value is small
deliver B̂ = B(j), û = u(j), L̂ = L(j), D̂ = D(j), ĉ = c(j).

Theorem 2. Given any initial pointB̃
(0)

, Algorithm 1 converges in the sense that with probability 1,the
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function value decreasing property holds:

F0(B
(j−1),L(j−1),D(j−1),u(j−1), c(j−1))

≥ F0(B
(j),L(j),D(j),u(j), c(j)),

and all B(j) satisfy‖B(j)‖0 ≤ m, ∀j ≥ 1.

See Appendix B for the proof.
Step 2 can be implemented by solvingn weighted least squares. Or, one can re-formulate it as a

single-response problem to obtain the solution(l(j),d(j), c(j)) in one step. The latter way is usually more
efficient. When there are ridge penalties imposed onl andc, the computation is similar.

In certain applications self-regulations are not allowed.Then ζ(Ξ) should be the medium of themth
and the(m+1)th largest elements of|Ξ−Ξ◦I| (Ξ in absolute value after excluding its diagonal entries).1

Other prohibited links can be similarly treated in determining the dynamic threshold. In general, givenT
the index set of the links that must be maintained andF the index set of the links that are forbidden, the
threshold is constructed as follows

Ξ[i]← 0, ∀i ∈ F

ζ[i]←
{

0, if i ∈ T
|Ξ[T c]|(m+1) , otherwise,

(21)

where|Ξ[T c]|(m+1) is the(m+1)th largest element (in absolution value) inΞ[T c] (all entries ofΞ except
those indexed byT ). It is easy to show that the convergence result still holds based on the argument in
Appendix B.

In implementation, we advocate reducing the network cardinality in a progressive manner to lessen
greediness: at thejth step,m is replaced bym(j), where{m(j)} is a monotone sequence of integers
decreasing fromn(n − 1) (assuming no self-regulation) tom. Empirical study shows that the sigmoidal
decay cooling schedulem(j) =

⌈

2n(n− 1)/(1 + eαj)
⌉

with α = 0.01, works well.
RNS involves no costly operations at each iteration, and is simple to implement. It runs efficiently for

large networks. The RNS estimate can be directly used for analyzing the network topology. One can also
use it for screening (in which case a relatively large value of m is specified), followed by a fine network
learning algorithm restricted on the screened connections. In either case RNS substantially reduces the
search space of candidate links.

IV. STABLE-SPARSE SIGMOIDAL NETWORK LEARNING

For a general dynamical system possibly nonlinear, stability is one of the most fundamental issues
[20, 21]. If a system’s equilibrium point isasymptotically stable, then the perturbed system must approach
the equilibrium point ast increases. Moreover, one of the main reasons many real network applications
only have limited number of observations measured after perturbation is that the associated dynamical
systems stabilize fast (e.g., exponentially fast). This offers another important type of parsimony/shrinkage
in network parameter estimation.

To design a new type of regularization, we first investigate stability conditions of sigmoidal recurrent
networks in Lyapunov’s sense [22, 23]. Then, we develop a stable sparse sigmoidal (S3) network learning
approach.

A. Conditions for asymptotic stability

Recall the multivariate representation of (1)

dx

dt
= Lπ(Ax+ u)−Dx+ c. (22)

1Throughout the paper|A| is the absolute value of the elements ofA. That is, forA = [aij ], |A| = [|aij |].
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BecauseA is sparse and typically singular and the degradation ratesdi are not necessarily identical, in
general (22) can not be treated as an instance of the Cohen-Grossberg neural networks [24]. We must
first derive its own stability conditions to be considered innetwork estimation.

Hereinafter,A � A′ andA ≻ A′ stand for the positive semi-definiteness and positive definiteness of
A−A′, respectively, and the set of eigenvalues ofA is spec(A). Our conditions are stated below:

D ≻ 0, (A1)

L � 0, (A2)

Re(λ) < 0 for any λ ∈ Spec(LA− 4D), (A3a)

LA/2 +ATL/2 ≺ 4D, (A3b)

Theorem 3. Suppose(A1) & (A2) hold. Then(A3a) guarantees the network defined by(22) has a unique
equilibrium pointx∗ and is globally exponentially stable in the sense that‖x(t)−x∗‖22 ≤ e−εt‖x(0)−x∗‖22
for any solutionx(t). The same conclusion holds if(A3a) is replaced by(A3b).

See Appendix C for the detailed proof.
Figure 1 shows an example of stochastic processes generatedfrom a stable recurrent network and

an unstable recurrent network respectively. In the upper panel, the recurrent network system parameters
satisfy the stability condition (A3a), while those in the lower panel violate (A3a). (In both situations, the
number of nodes is 10 and the diffusion parameterσ is fixed at0.5.) The differences between the two
models are obvious.

In reality, asymptotically stable systems are commonly observed. The stability conditions reflect struc-
tural characteristics. For example, when allli are equal anddi > 0, then theskew-symmetryof A, i.e.,
A = −AT, guarantees asymptotic stability. The information provided by the constrains can assist topology
learning. This motivates the design of sparse recurrent network learning with stability.

0 5 10 15 20 25 30 35 40 45 50
−1

0

1

2

3
process of a stable model

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15
x 10

7 process of an unstable model

t

Figure 1: Stochastic processes generated from a stable recurrent network model and an unstable recurrent
network model.

B. S3 network estimation

(A3a) is less restrictive than (A3b). In optimization, imposing (A3a) seems however difficult. We propose

min
B,L,D,u,c

1

2
‖W 1/2{Y − [π(XB + 1uT)L−XD + 1cT]}‖2F + P (B,Λ) =: F1,

s.t.L � 0,D � 0, (LBT +BL)/2 � 4D,

(23)

referred to as the Stable-Sparse Sigmoidal (S3) network learning. The stability constraints are now imposed
onB as the transpose of the raw coefficient matrixA. Similar to the discussion of (19), in implementation,
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we add mildℓ2 penalties onli andci to deal with possible collinearity, and it is common to replace0 by
ǫI with ǫ extremely small.

In this part, we focus on theℓ1 penaltyP (B,Λ) = ‖Λ ◦B‖1 where matrixΛ usually has the form
Λ[k, k′] = ‖X[:, k]‖2 for any k, k′ ≤ n (other options are possible.) Introducing the componentwise
regularization matrix is helpful when one wants to maintainor forbid certain links based on prior
knowledge or preliminary screening. For example, if no self-regulation is allowed, then all diagonal
entries ofΛ ought to be+∞.

It turns out that one can modify Step 2 and Step 4 of the RNS algorithm to solve (23).
First, the non-negativity ofli anddi can be directly incorporated, if the weighted least-squares problem

in Step 2 is replaced by the following programming problem with generalized non-negativity constraints:

Step 2) Solve min
L,D,c

‖W 1/2{Y − [µ(j)L−XD + 1cT]}‖2F
s.t.L = diag{li} � 0,D = diag{di} � 0, (LB(j−1)T +B(j−1)L)/2 � 4D. (24)

A variety of algorithms and packages can be used. (The technique in Appendix D also applies.)
Integrating the spectral constraint onB into network learning is much trickier. We modify Step 4 of

Algorithm 1 as follows.

Step 4) UpdateB andu:
4.1) Ξ̃ ← B̃

(j−1) − X̃
T{W̃ ◦ ξ(X̃B̃

(j−1)
, Ỹ )}(K(j))−, u(j) ← (Ξ̃[1, :])T, Ξ ← Ξ̃[2 : end, :], and

Λ
(j) = Λ · (K(j))−.

4.2) Perform the inner loop iterations, starting withB3 ← Ξ, C3 ← (L(j)BT

3 +B3L
(j))/2, P = 0,

QB = 0, QC = 0, R = 0, and the operatorsP1,P2,P3 defined in Lemmas 4-6:
repeat

i) B1 ← P1(B3 + P ;Λ(j)), C1 ← C3, P ← P +B3 −B1.
ii) [B2,C2]← P2(B1 +QB ,C1 +QC ;L

(j)),
QB ← QB +B1 −B2, QC ← QC +C1 −C2.

iii) B3 ← B2, C3 ← P3(C2 +R;D(j)), R← R+C2 −C3.
until convergence
B(j) ← B3

4.3) B̃
(j) ← [u(j) (B(j))T]T

Algorithm 1 with such modifications in Step 2 and Step 4 is referred to as theS3 estimation algorithm.

Theorem 4. Given any initial pointB̃
(0)

, theS3 algorithm converges in the sense that the function value
decreasing property holds, and furthermore,B(j), L(j), andD(j) satisfyL(j) � 0,D(j) � 0, (L(j)(B(j))T+
B(j)L(j))/2 � 4D(j) for any j ≥ 1.

The proof is given in Appendix D.
We observe that practically, the inner loop converges fast (usually within 100 steps). Moreover, to

guarantee the functional value is decreasing, one does not have to run the inner loop till convergence.
Although it is possible to apply the stable-sparse estimation directly, we recommend running the screening
algorithm (RNS) first, followed by the fineS3 network learning.

V. EXPERIMENTS

A. Simulation Studies

In this subsection, we conduct synthetic data experiments to demonstrate the performance of the
proposed learning framework in recurrent network analysis. An Erdős-Rényi-like scheme of generating
system parameters, including a sparse regulation matrixA, is described as follows. Given any nodei, the
number of its regulators is drawn from a binomial distributionB(n−1, 1

2n
). The regulator setSi is chosen
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(a) Example 1.
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(b) Example 2.
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(c) Example 3.

Figure 2: Comparison of ROC curves.

randomly from the rest(n−1) nodes (excluding nodei itself). If j /∈ Si, aij = 0. Otherwise,aij follows a
mixture of two GaussiansN (1.5, 0.12) adN (−1.5, 0.12) with probability1/2 for each. Then draw random
l, u, c from Gaussian distributions (independently)li ∼ N (1.5, 0.12), ui ∼ N (0, 0.12), ci ∼ N (0, 0.12).
Finally d is generated so that the system satisfies the stability condition (A3a).

Topology identification.First, we test the performance of RNS in recurrent network topology identifi-
cation. We compare it with TSNI [25] and QTIS [26]. TSNI is a popular network learning approach and
applies principle component analysis for dimensionality reduction. QTIS is a network screening algorithm
based on sparsity-inducing techniques. To avoid the ad-hocissue of parameter tuning, ROC curves will
be used to summarize link detection results in a comprehensive way, in terms of true positive rate (TPR)
and false positive rate (FPR).

We simulate two networks according to the scheme introducedearly. In the first example we set
n = 10, T = 100, in the second examplen = 200, T = 500, and in the thirdn = 100, T = 1000. Given
all system parameters, we can call Matlab functionsSDE andSDE.SIMULATE to generate continuous-time
stochastic processes according to (4). The discrete-time observations are sampled from the stochastic
processes with sampling period∆T = 1.

In this experiment, the number of unknowns in either case is larger than the sample size, especially in
Ex.2 which has about41K variables but only 500 observations. Given any algorithm, we vary the target
cardinality parameterm from 1 ton(n− 1), collect all estimates, and compute their associated TPRs and
FPRs. The experiment is repeated for50 times and the averaged rates are shown in the ROC curves in
Figure 2. RNS beats TSNI and QTIS by a large margin. In fact, the ROC curve of RNS iseverywhere
above the TSNI curve and the QTIS curve.

System stability.Next, we show the necessity of stable learning in network dynamics forecasting. For
simplicity, the ℓ1 penalization is used. We compare theS3 network estimation with the approach based
on sparse sigmoidal regression in Section III-A (with no stability guarantee), denoted by SigSpar.

We use two network examples (Ex.4 and Ex.5) withn = 20, 40 respectively. In each setting, we generate
T = 20 samples for training, and200 validation samples for parameter tuning. In this experiment, forecast
error at a future time point is the major concern. Supposex(T ), the network snapshot atT , is given. With
system parameter estimates obtained, one can simulate a stochastic procesŝx(t) (t ≥ T ) starting withx(T )
based on model (4). The forecast error at time pointT +h is defined as FE= ‖x(T +h)− x̂(T +h)‖22/n.
Long-term forecasting corresponds to large values ofh. We repeat the experiment for 50 times and show
the average FE in Table I. The error of SigSpar becomes extremely large ash increases, because there
is no stability guarantee of its network estimate, whileS3 has excellent performance even in long-term
forecasting.
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Table I: Forecasting error comparison on the simulation data.

h 1 5 10 15 20

Ex.4
SigSpar 0.08 3.01 41.95 450.54 4.4×103

S3 0.04 0.48 1.01 1.39 1.76

Ex.5
SigSpar 0.35 23.76 41.95 7.3×103 1.0×105

S3 0.06 0.70 1.75 2.80 4.04

Table II: Regulatory connections of the Yeast cell cycle subnetwork. ‘×’ stands for the regulatory
connections identified by RNS, ‘’ stands for those by [28], and ‘�’ stands for the confirmed regulatory
connections with published evidence in the literature.

SWI4 HCM1 NDD1 SWI5 ASH1
SWI4
HCM1 ⊠

NDD1 ⊠

SWI5
ASH1 ⊠

CLN2 ⊠

SVS1 ⊠

SWE1 ⊠

MNN1 ⊠

CLB6 ⊠

HTA1 ⊠

HTB1 ⊠

HHT1
CLB4 ⊠

CLB2 ⊠ ⊠

CDC20
SPO12 �

SIC1 ⊠

CLN3 ⊠ ⊠ ⊠ �

CDC46

B. Real data

Yeast gene regulatory network.We use RNS to study the transcriptional regulatory network in the
yeast cell cycle. The dataset is publicly available and a detailed description of the microarray experiment
is in [27]. Following [28], we focus on the 20 genes whose expression patterns fluctuate in a periodic
manner. The dataset contains their expression levels recorded at 18 time points during a cell cycle. In this
regulatory (sub)network, five genes have been identified as transcription factors, namely SWI4, HCM1,
NDD1, SWI5, ASH1, and 19 regulatory connections from them totarget genes have been reported with
direct evidence in the literature (cf. the YEASTRACT database at http://yeastract.com/). [28] found 55
connections from the transcription factors to the target genes, of which 14 have biological evidence (and
so the true positive rate is14/19 = 73.7%). For a fair comparison, we also let RNS detect 55 connections
from the transcription factors to the target genes, and achieved a higher true positive rate89.5%. A detailed
comparison of the identified regulatory connections is shown in Table II.

fMRI data. The resting state fMRI data provided by the ADHD-200 consortium [29] have been
preprocessed by the NIAK interface [30]. The dataset we are using has 954 ROIs (regions of interest)

http://yeastract.com/
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Table III: Forecast error on the fMRI data.

m/n2 0.5 0.6 0.7 0.8 0.9
TSNI 0.981 1.021 1.044 1.056 1.060

S3 0.194 0.194 0.194 0.194 0.194

and 257 time points. In the experiment, the first 200 observations are for training (and soT = 200 and
n = 954), and the following 57 observations are for testing. We applied RNS to get a network pattern,
followed by theS3 network estimation for stability correction. Table III shows the results averaged over
10 randomly chosen subjects. Our learning algorithm can achieve much lower error than TSNI, and its
performance is pretty robust to the choice ofm.

APPENDIX A
PROOF OFTHEOREM 1

For notation simplicity, we introduceµs(β) := π(x̃T

sβ). Then∂µs(β)/∂β = µs(β)(1−µs(β))x̃
T

s , from
which it follows that

∇(
T
∑

s=1

ws(ys − µs(β))
2/2) = X̃

T

Wξ(X̃β,y),

whereW = diag{ws}Ts=1 and ξ is the function defined in (11) applied componentwise. Moreover, we
can compute its Hessian (details omitted)

H = D(∇(
∑

ws(ys − µs(β))
2/2))

= X̃
T

Wdiag{µs(1− µs) [µs(1− µs) + (µs − ys)(1− 2µs)]} X̃
=: X̃

T

WΣ(β)X̃.

Note thatH is not necessarily positive semi-definite.
Let F0(β) =

1
2

∑

ws(ys−µs(β))
2+
∑

P (βk;λ). Define a surrogate function asG(β,β′) = 1
2

∑

ws(ys−
µs(β

′))2+
∑

P (β ′
k;λ)+

K
2
‖β−β′‖22+ 1

2

∑

ws((ys−µs(β))
2− (ys−µs(β

′))2)+
∑

wsξ(x
T

sβ, ys)(x
T

sβ
′−

xT

sβ). Based on the previous calculation, we have

1

2

∑

ws((ys − µs(β))
2 − (ys − µs(β

′))2)

=(X̃
T

Wξ(X̃β,y))T(β − β′)− 1

2
(β − β′)T(X̃

T

WΣ(θβ + (1− θ)β′)X̃)(β − β′),

for someθ ∈ [0, 1]. Let ζ = θβ + (1− θ)β′. It follows that

K

2
‖β − β′‖22 +

1

2

∑

ws((ys − µs(β))
2 − (ys − µs(β

′))2)

+
∑

wsξ(x̃
T

sβ, ys)(x̃
T

sβ
′ − x̃T

sβ)

=
1

2
(β′ − β)T(KI − X̃

T

Σ(ζ)WX̃)(β′ − β)

≥K − ‖X̃‖
2
2‖Σ(ζ)W ‖2
2

‖β − β′‖22.
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Because
wsµs(1− µs)((1− 2µs)(µs − ys) + µs(1− µs))

≤ws

4

(

1

2

(

1− 2µs + 2µs − 2ys
2

)2

+
1

4

)

=
ws

4

(

(1− 2ys)
2

8
+

1

4

)

,

the diagonal entries ofWΣ(ζ) are uniformly bounded by

max
s

ws

4

(

(1− 2ys)
2

8
+

1

4

)

or k0(y,w) (see (12)). Therefore, choosingK ≥ k0(y,w)‖X̃‖22, we haveG(β,β′) = 1
2

∑

ws(ys −
µs(β

′))2 +
∑

P (β ′
k;λ) +

1
2
(K − ‖X̃‖22‖WΣ‖22) ≥ F0(β) for anyβ,β′.

On the other hand, based on the definition, it is easy to show (details omitted) that givenβ, minβ′ G(β,β′)
is equivalent to:

min
β′

K

2
‖β′ − β +

1

K
X̃

T

Wξ(X̃β,y)‖22 +
∑

P (β ′
k;λ). (25)

Applying Lemma 1 in [16] without requiring uniqueness, there exists a globally optimal solution

β′
o(β) = Θ(β − X̃

T

Wξ(X̃β,y)/K;λ′), (26)

provided thatP (t;λ′) = P (t;λ)/K for any t. In summary, we obtainF0(β) = G(β,β) ≥ G(β,β′
o(β)) ≥

F0(β
′
o(β)).

We are now in a position to prove (16). In fact, givenγ and l, the optimization problem

min
β

1

2

∑

ws(ys − zT

s γ − lπ(x̃T

s β))
2 +

∑

P (βk, λ),

is equivalent tominβ
1
2

∑

w′
s(ỹs − π(x̃T

sβ))
2 +

∑

P (βk, λ) with ỹs = (ys − zT

s γ)/l, w
′
s = l2ws. (Note

that thel obtained from WLS is nonzero with probability 1.) Therefore, the function value decreasing
property always holds during the iteration.

APPENDIX B
PROOF OFTHEOREM 2

Define a quantile thresholding ruleΘ#(·;m, η) as a variant of the hard-ridge thresholding rule (9).
Given 1 ≤ m ≤ np: A ∈ Rn×p → B ∈ Rn×p is defined as follows:bij = aij/(1 + η) if |aij| is among
them largest in the set of{|aij| : 1 ≤ i ≤ n, 1 ≤ j ≤ p}, andbij = 0 otherwise.

Lemma 1. B̂ = Θ#(A;m, η) is a globally optimal solution to

min
B

f0(A) =
1

2
‖A−B‖2F +

η

2
‖B‖2F

s.t. ‖B‖0 ≤ m.

Proof: Let I ⊂ {(i, j)|1 ≤ i ≤ n, 1 ≤ j ≤ p} with |I| = m. AssumingBIc = 0, we get the optimal
solution B̂ with B̂ = 1

1+η
AI . It follows that f0(B̂) = 1

2
‖A‖2F − 1

2

∑

i,j∈I a
2
ij . Therefore, the quantile

thresholdingΘ#(A;m, η) yields a global minimizer.
Using Lemma 1, we can prove the function value decreasing property; the remaining part follows

similar lines of Theorem 1 because of the separability ofF .
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APPENDIX C
PROOF OFTHEOREM 3

Let f(x) = Lπ(Ax + u) −Dx + c, wherex is short forx(t). First, we prove the existence of an
equilibrium. It suffices to show that there is a solution tof(x) = 0 or x = D−1Lπ(Ax+u)+D−1c =:
ϕ(x). Obviously, the mappingϕ is continuous and bounded (say‖ϕ‖∞ ≤ M), Brouwer’s fixed point
theorem [31] indicates the existence of at least one equilibrium in [−M,M ]n.

Let x∗ be an equilibrium point, i.e.,f(x∗) = 0. Construct a Lyapunov function candidateV (x) =
1
2
(x− x∗)TP (x− x∗) with P positive definite and to be determined. Then

dV (x)

dt
= V ′(x)f (x)

=(x− x∗)TPf (x)

=(x− x∗)TP (f (x)− f (x∗))

=− (x− x∗)TPD(x− x∗) + (x− x∗)TPL(π(Ax+ u)− π(Ax∗ + u))

=− (x− x∗)T(PD − PLGA)(x− x∗)

=− (x− x∗)T
(

PD +DP T

2
− PLGA+ATGLP T

2

)

(x− x∗),

where

G = diag

{

π(αT

i x+ u)− π(αT

i x
∗ + u)

αT

i xi −αT

i x
∗
i

}

.

It is easy to verify thatG = diag{π′(ξ)} � I/4, and thusPLGA+ATGLP T � (PLA+ATLP T)/4.
It is well known [21] that under (A3a), the Lyapunov equation

P

(

D − LA

4

)

+

(

D − LA

4

)T

P T = −R (27)

is solvable and uniquely determines a positive definiteP for any positive definiteR. Therefore,V is
indeed a Lyapunov function for the nonlinear dynamical system (22). Moreover, (A3a) implies

dV (x)

dt
≤ −ε0‖x− x∗‖22 ≤ −εV (x)

for someε0, ε > 0. By the Lyapunov stability theory—see, e.g., [32] (Chapter3), (22) must be globally
exponentially stable. The uniqueness of the equilibrium isimplied by the global exponential stability.

The second result can be shown by settingP = I in (27); details are omitted.

APPENDIX D
PROOF OFTHEOREM 4

Based on the proof of Theorem 1, the modified Step 2 does not affect the convergence of function value
because at each iteration a global optimum of (24) is obtained. It remains to show that̃B

(j)
generated by

the modified Step 4 improves̃B
(j−1)

in terms of reducing the objective function value, andB(j) obeys
the stability condition.

Let Ξ̃ = B̃
(j−1) − X̃

T

Wξ(X̃B̃
(j−1)

, Ỹ )(K(j))−, Λ
(j) = Λ · (K(j))−. (The modified Step 2 may

result in zeros inΞ̃ to make the associated activation terms inπ(X̃B̃) vanish; using the pseudoinverse
can handle the issue and maintain the decreasing property.)Based on the argument of Appendix A, the
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problem in Step 4 reduces to

min
B̃=[u,BT]T

1

2
‖B̃ − Ξ̃‖2F + ‖Λ(j) ◦B‖1,

s.t. (L(j)BT +BL(j))/2 � 4D(j).

(28)

Therefore it suffices to prove Lemma 2 for any givenΞ(= Ξ̃[2 : end, :]), Λ(j), L(j) � 0, D(j) � 0,
andB(j−1). (In fact, the lemma holds given any initialization ofC3.)

Lemma 2. For any j ≥ 1, , 1
2
‖B(j) −Ξ‖2F + ‖Λ(j) ◦B(j)‖1 ≤ 1

2
‖B(j−1) −Ξ‖2F + ‖Λ(j) ◦B(j−1)‖1, and

(L(j)B(j)T +B(j)L(j))/2 � 4D(j).

Proof: Definef(B) = 1
2
‖B−Ξ‖2F + ‖Λ ◦B‖1, andg(B′,C ′,B,C) = 1

2
‖B′−Ξ‖2F + ‖Λ ◦B‖1 +

1
2
‖B−B′‖2F + 1

2
‖C−C ′‖2F +〈B′−Ξ,B−B′〉. Thenf(B′) = g(B′,C ′,B′,C ′) andg(B′,C ′,B,C) ≥

f(B).
On the other hand, given(B′,C ′), we can writeg as a function of(B,C): 1

2
‖[Ξ,C ′]−[B,C]‖2F +‖Λ◦

B‖1 (up to additive functions ofB′ andC ′). Based on Lemma 3, withΞC = C ′, g(B′,C ′,B′,C ′) ≥
g(B′,C ′,Bo,Co) ≥ f(Bo) and (LBoT +BoL)/2 = Co � 4D.

Applying the result to the modified Step 4 in Section IV-B yields the desired result.

Lemma 3. Consider the sequence of(B3,C3) generated by the following procedure, with the operators
P1, P2, P3 defined in Lemma 4, Lemma 5 and Lemma 6, respectively:

0) B3 ← ΞB, C3 ← ΞC , P = 0, QB = 0, QC = 0, R = 0

repeat
1) B1 ← P1(B3 + P ;Λ), C1 ← C3, P ← P +B3 −B1

2) [B2,C2]← P2(B1 +QB,C1 +QC ;L), [QB ,QC ]← [QB,QC ] + [B1,C1]− [B2,C2]
3) B3 ← B2, C3 ← P3(C2 +R;D), R← R +C2 −C3.

until convergence
Then, the sequence of iterates converges to a globally optimal solution(Bo,Co) to

min
B,C

1

2
‖[ΞB ,ΞC ]− [B,C]‖2F + ‖Λ ◦B‖1
s.t.C = (LBT +BL)/2,C � 4D.

(29)

Proof: With the following three lemmas, applying Theorem 3.2 and Theorem 3.3 in [33] yields the
strict convergence of the iterates and the global optimality of the limit point.

Lemma 4. Let P1(Φ) be the optimal solution to

min
B

1

2
‖B −Φ‖2F + ‖Λ ◦B‖1. (30)

ThenP1(Φ;Λ) = ΘS(Φ;Λ) whereΘS, applied componentwise onΦ, is the soft-thresholding rule given
in Section III-A.

Proof: Apply Lemma 1 in [16].

Lemma 5. The optimal solution to

min
B,C

1

2
‖[B C]− [ΦB ΦC ]‖2F s.t.C = (LBT +BL)/2. (31)

is given byP2(ΦB,ΦC ;L) = [Bo,Co] with Bo = [boi,j ], b
o
i,j = ψi,j

2+l2i
2+l2i+l2j

− ψj,i
lilj

2+l2i+l2j
, and Co =

(LBoT +BoTL)/2, whereΨ = [ψi,j ] = ΦB + (ΦC +Φ
T

C)L/2.

Proof: Let f(B) = ‖B − ΦB‖2F/2 + ‖(LBT +BL)/2 − ΦC‖2F/2. It is not difficult to obtain the
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gradient (details omitted):B −ΦB + (LBTL+BL2)/2− (ΦC +Φ
T

C)L/2. The optimalB andC can
be evaluated accordingly.

Lemma 6. Let P3(Φ;D) be the optimal solution to

min
C

1

2
‖C −Φ‖2F s.t.C is symmetric and satisfiesC � 4D. (32)

Then it is given byUdiag{min(si, 0)}UT+4D, whereS = diag{s1, · · · , sn} andU are from the spectral
decomposition of(Φ+Φ

T)/2− 4D = USUT.

Proof: BecauseC is symmetric (butΦ may not be), we have

‖C −Φ‖2F

=
∑

1≤i<j≤p

[(cij − φij)
2 + (cij − φji)

2] +

p
∑

i=1

(cii − φii)
2

=
∑

1≤i<j≤p

2(cij −
φij + φji

2
)2 +

p
∑

i=1

(cii − φii)
2 + const(Φ)

= ‖C − Φ+Φ
T

2
‖2F + const(Φ),

(33)

whereconst(Φ) is a term that does not depend onC. Therefore, problem (32) is equivalent to

min
C

1

2
‖C − Φ+Φ

T

2
‖2F , s.t.C − 4D � 0. (34)

The optimality ofP3(Φ;D) can then be argued by von Neumann’s trace inequality [34, 35].
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