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Abstract

Measurements of a scalar linear Gauss-Markov process ateoger a fading channel. The fading
channel is modeled as independent and identically disgitbtandom variables with known realization at
the receiver. The optimal estimator at the receiver is thienida filter. In contrast to the classical Kalman
filter theory, given a random channel, the Kalman gain anekthar covariance become random. Then the
probability distribution function of expected estimatiemmor and its outage probability can be chosen for
estimation quality assessment. In this paper and in ordgetdhe estimation error outage, we provide
means to characterize the stationary probability densitgtion of the random expected estimation error.
Furthermore and for the particular case of the i.i.d. Rayidading channels, upper and lower bounds
for the outage probability are derived which provide insighd simpler means for design purposes. We
also show that the bounds are tight for the high SNR regime,that the outage probability decreases

linearly with the inverse of the average channel SNR.
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. INTRODUCTION

Low or zero delay transmission of measurements of a dynaysiem to a remote controller/observer
is important in applications such as network monitoring awdtrol, wireless sensor networks, and
generally in real-time signal processing when the obsesigohls should be sent over a communication
channel. Due to tight delay conditions in many cases, higfiepmance block-wise coding schemes
which incur unacceptable delay should be avoided. For essefading channels, it is possible to send
the measurements directly over the channel using uncodedrnission and then perform estimation on
the channel outputs at the receiver. Analysis of the sigetilmation quality is therefore necessary to
ensure satisfactory performance for such applications.

The literature for network communication and control andeleiss sensor networks is diverse and
rich (see [[1]-]4] and the references within). For variouplaations where the dynamic system follows
a Gauss-Markov model and the channel realization is inddgretnof the randomness of the dynamic
system, the optimal estimator is the Kalman filterl( [6]-)1EJue to the randomness of the fading channel,
the Kalman filter is random and does not necessarily convierge constant value. The instantaneous
estimation error covariance is random as well. The estona#rror covariance matrix is related to
the prediction error covariance matrix with a simple transf. The prediction error covariance matrix
propagates through a Riccati equation studied extensivethe literature. With the channel matrices
being random, the prediction error covariance matricea ttanstitute a well-known stochastic process
referred to as the random Riccati equation (RRE) [13]. Wiwéefocus on the estimation error quality as
we are interested in the signal reconstruction, othersoéapein the control literature have focused on
the prediction error covariance matrix because it is useetdy in the controller design in many cases.
We review some of those works in the following.

In [14], stability of RRE is studied and it is shown that undeild assumptions on the random
observability Gramian matrix, it is both, and exponentially stable. In_[15], the peak covarianceiliiab
of the RRE resulting from Kalman filtering with random obsaion losses is studied. Boundedness of
the covariance matrix in the usual sense is also considertdtisame work. Ir_[16], an adaptive filtering
scheme based on the Riccati equation is proposed for stitea@en in network control systems subject
to delays, packet drops and missing measurements. In [L¥as shown that sequence of random
covariance matrices converges in probability when obsienva are sent over a packet erasure channel
where the erasure event is a Bernoulli i.i.d process. Th®matay distributions for infinitely large random

matrices with good approximations for dimensions aroun@Q@vere also found iri [18] and [19] for two
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classes of random Riccati and Lyapunov equations. AlsoOhBpaunds on the mean of the instantaneous
covariance matrices in the RRE formulation are obtained.

In this paper, we study the case when measurements of a &alsis-Markov process are sent over a
fading channel with i.i.d. channel realizations. This nidakest suits e.g. low-cost sensor networks with
processing at the fusion center. The samples are sent avehtdmnel using continuous-valued uncoded
(also known as analog [21]) transmission after they areiodth to avoid processing at the sensor or
block coding and the consequent delays. It is assumed tedthchannel knowledge is available at the
receiver at the time of the observation. The optimum MMSEefilLe. the Kalman filter is then random
and the exact value of the instantaneous estimation errt@ange (IEV) cannot be obtained in advance.
For that reason, we are in particular interested in statisttharacterization of the resulting estimation
error.

In the spirit of outage in fading channels, we utilize estiovaerror outage as a criterion for estimation
performance assessment. A similar property, namely diistooutage was proposed in_[22] for MIMO
block fading channels from an information theoretical paihview. There, it is mentioned that as for
our case, distortion outage measures are useful when detafyconcern. Outage is defined as the event
where the IEV exceeds a certain threshold. From a more pahetiewpoint, this measure could be used
as a design parameter for a control or monitoring system lwhliserves the process. While [22] finds
expressions for the distortion outage diversity order aravgs achievability, we are interested in the
practical case of the Kalman filter and its behavior. We tr§ind the estimation error outage probability
and find out how it is related to average channel SNR undenioedhannel statistics. We show for
instance that in the scalar case and for the i.i.d. Rayleaglinfy channel, the outage measure takes on
a simple form in the high SNR regime, which we believe is ihtfig for design purposes and further
development.

In the rest of the paper and after introducing the system iniaddetails, we first show that foany
i.i.d. fading channel, the first order probability densimétion (pdf) may be obtained through a recursive
integral equation. We then select the case of Rayleigh éaclimnnel and provide upper and lower bounds
for the outage probability. Next, we show that the boundstitet for the high SNR regime. Finally,
we show that the outage probability decreases linearly witlerse of the channel SNR in the high
SNR regime. This could for instance be used a rule of thumthatefor estimation quality assessment
under settings discussed in this paper. The high SNR asadywibles us to perform diversity analysis
for the Kalman estimator as well. A shorter version of thisgkvavithout high SNR analysis appears in

[23]. The current work also provides a different and moraigtitforward proof for the integral equation
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characterizing the pdf of the IEV.

[I. SYSTEM MODEL AND PROBLEM DEFINITION
Consider the following scalar complex Gauss-Markov signatel
z(n) = pr(n—1) 4+ u(n), n > 1, z(0) ~ CN (0, M(0))

h(n)a(n) + v(n), (1)

=
3

N~—
I

with u(n) andv(n) as white circularly symmetric complex Gaussian randomadeis with variances
o2 >0 andao? > 0, respectively. Considéei(n) to be i.i.d. samples of a random variable (starting from
Sec[II-B, we will assume that channel is Rayleigh fadinge also assume thain) cannot be equal to
zero for alln (non-existent channel is not included). This signal modracterizes e.g. measurements
of a first-order Gauss-Markov process sent over a fadingradaft is assumed that perfect knowledge
of the random channéi(n) is available at the receiver aridn) are also independent afn) andv(n).
For further development in Sec. IIItA, we require thdtl) # 0 andp # 0. The objective at the receiver
is optimal estimation of the signal(n), given the channel outputs.

Given the previous assumptions, and wittn) independent of.(n) and v(n), the optimal MMSE

estimator ofz(n) based on the observatiopén) is the well-known Kalman filter [24] with the following

steps
#(nln —1) = pi(n — 1ln — 1) )
P(n)=p*M(n —1)+ o2 (3)
K(n) = P(n)h* (n)loy + |h(n)]> P(n)] " (4)
E(n|n) = &(nn — 1) + K(n)(y(n) — h(n)z(n|n — 1)) (5)
M(n) = (1 = K(n)h(n)) P(n). (6)

Concisely stated, eqd.](2) is the prediction of the curreatesbased on the previous estimated state (
priori estimatg using the system model and elgl (3) is the instantaneous®&dévith respect to noise)
prediction error. Equatiori{4) is the corresponding Kalngam equation and ed.](5) is the correction
equation based on the Kalman gain updae@steriori estimate Finally eq. [6) provides us with the
instantaneous estimation error variance.

It is straightforward to show that both thé(n), i.e. the prediction error variance aidd(n), i.e. the

estimation error variance may be written recursively inmgrof their previous values and current value

October 23, 2018 DRAFT



of h(n), where one is a deterministic function of the other. Theisttaal properties of the one may then
be acquired using the statistical properties of the otmethé rest of this paper, we study (n).

The recursion forM (n) is obtained as follows

B P(n)]h(n)]?
- (1 " T [h(n |2P<n>> Pl

o3+ [h(n)P(n)
P(n)
1+ [h(n)?P(n)/o}
(@) p*M(n —1) + o2
~ 149(n) (PPM(n — 1) +03)’

where in(a) we have sety(n) = |h(n)|?/o2 to simplify representation of the functions which depend

(7)

on the channel. With this notation{n) corresponds to the instantaneous SNR at the receiver side.
In order to characterize the random estimation outage ewentefine estimation error outage proba-
bility (EOP) as

Fou(Mn) = Pr(M(n) > M) (8)

and in particular the asymptotic EOP which is of interest,oider to characterize the steady-state

distributions, i.e.

Pout(Mth) = nh—{go P(;Lt(Mth) = lim PI’(M(n) > Mth)- (9)

n—oo
Clearly Pgi(Mwn) = 1 — Frpn) (M) and Pou(Min) = 1 — Far (M), whereFpr,y (M) (Fpr(M)) is the

(steady state) cumulative distribution function (cdf) df(n).

I1l. STATISTICAL PROPERTIES OANSTANTANEOUS ESTIMATION ERRORVARIANCE

In this section, we study the asymptotic probability dgnginction of the IEV. Becausé), (M) and
fu (M) are related with a linear operation (derivative), we begirstudy f,,(M). After that, the EOP

will readily be obtained with one integration operation.
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A. Asymptotic Pdf of The Instantaneous Estimation Erroliarase

Given (1), it is easy to verify that for any arbitrary posdtiveal numbei\/, M(n) < M leads to

) > 37—
“ M pPM(n—1)+ 02

Also, we have that(n) > 0 and0 < M (n) < Mmax WhereMmay, the upper limit forM (n) is obtained

y

from
{ o, =1
Mimax = ) (10)
=, ol <1
Mmax is effectively the estimation error variance for the worsaenel, i.en(n) = 0 with probability 1.
In that case, the best estimator is the average mean(h¢.= E(xz(n)) = 0 and therefore the estimation
error variance is equal td/.x. Also note that the casgp| > 1 is of little practical importance in our
case, because for a divergent signal, continuous-amgplimgdoded transmission would not be practical.
It is however included in the definition df/,« to show that the analysis does not depend on the value
of p.
Given the above limits and conditions fefn) and M (n) and according to [25], it is possible to get

the cdf of M (n), i.e. iy, (M) as follows.

Mmax o)
Pu® = [ [7 fwaren G M = D) dr(m) M n =), @)

pZM(n—1)+o2
where £ ) vn—1) (7(n), M(n — 1)) is the joint pdf ofy(n) and M (n — 1). The pdf for M (n) is then
obtained by simply applyingy;(, (M) = %FM(M (M). That leads to

Mmax a oo
P = [ [T By 600 M0 = D) dym) aM (= 1)

M~ p2M(n—1)+02

Mmac 1 1 1
= /0 Wf'y(n),M(n—l) (M - ng(n — 1) + 0_5>M(n - 1)) dM(TL - 1)7 (12)

or with some change of notation,

Mmac 1 1 1
fM(n)(M) = o Wf’y(n),M(n—l) M mﬂn dm. (13)
Now if we assume thaf(n) is independent of\/ (n — 1) (y(n) 1L M(n — 1)), we may rewrite[(I3) as
1 M 1 1
frmy(M) = e, Jyn) M Pmio? Ir(n—1)(m) dm. (14)

Note that as we have assumed i.i.d. channels, then we have(thall ~(i) for i < n. We can simply
assume that (i) 1L M (0) (M(0) is a constant). As a result, we obtain thdt) 1L M(n — 1) because
M(n —1) is a function of M (0) and~(1),v(2),--- ,v(n — 1) only. Thus i.i.d. channel assumption is a
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sufficient condition to get the main result in_{14). As we hagsumed an i.i.d. channel, al(n) have
the same pdf, i.ef,,,)(v(n)) = fy(y(n)). Therefore, we rewrite (14) to obtain
FuwD =53 [ 5 (35 ez ) e m) . (15)
0 prm + oy
Equation [(I5) may be used to finfl;.,)(M) for any n by starting fromfy; (M) = 6(M — M(0))
and iterating ovemn. However, the objective of this paper is outage analysis fandhat purpose, we
need the steady-state distribution. In the following, wesent Theorer| 1 which proves the existence of

a steady-state distribution fdv/ (n), namely fy,(M) and outlines how it can be obtained.

Theorem 1. The random proces8/(n) converges in law and has a steady-state distribution, ngmel

fu (M) which satisfies the following equality

Mma)(
i =35 [ 1 (55~ sz ) St dm. (16)

Proof: See AppendixA. [
After stating Theoreril1, we will utilizé (16) for the rest ditanalysis in order to characterifg (M).
To be more specific witH (16), we use the fact that) > 0. That necessitates that the argument of the
function f,() should always be positive. Clearly, }f < o2, the term% — WM is always positive.
However for M > o2, the integral should be taken over the rangeyofvherel —

for m > Mp 7. With this background, we can finally provide the followingmima that describes the

1 .
m > 0, l.e.

asymptotic pdf ofM (n), i.e. fa;(M) in terms of itself integrated with a kernel which is a funatiof
the instantaneous channel SNR. Solving this equation leads; (A7) and with one integration t@,

which is the target.

Lemma 1. Asymptotic pdf of\/ (n), i.e. fas(M) can be obtained from the following equation

fM(M) _ ﬁfgj\/lmaxf’y ( p? m+a2) fM( ) M < Z (17)
]\}2 fj\/[max ffy(]\/[ Pm+o-2>f1\/[( )dm M>Jg

p2

The solution is general and is explicitly given in terms aftantaneous channel SNR pdf and system
parameters. Though (IL7) can be solved numerically if neethexd general closed-form solution does
not seem to be readily attainable. In the following, we hax@ised on the important case of Rayleigh
fading channels wherg, (v) = Ae™»U(v) (U() is the unit step function Note that with this definition,

A=1/E(y(n)) = o2/E(|h(n)|?), i.e. stronger channels yield smaller values foand vice versa.
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Fig. 1. Asymptotic pdf ofM(n) for 02 = 02 =1, p = 0.95, A = 1,0.5,0.25 (SNR = 0, 3, 6 dB respectively). Note the
break point atM = 2.

B. Pdf of The Instantaneous Estimation Error Variance UnRayleigh Fading

We can rewrite[(1]7) given that channel is i.i.d. Rayleighirigd Using that we obtain

fu (M) A eXp(_)\) OMmaxeXp<”m+"2>fM( Jdm, M <oy (18)
M = -
M2 M @exp<p m+0—2>fM( )dm M>O_Z7

which in order to get more insight and with some algebraic im#ation, can also be written as
K, M < o2

A —-A u
fu(M) = expl7) Moot (19)
M M =Jo " exp(,, m+02>f1\/[( ydm, M > o2,

Mimax )\

Though in generak depends on the pdf itself_{I19) is insightful in the sensd thahows the exact

where

shape of the pdf for the first part wheid < o2

Typical shapes of such pdf's which are obtained through El&drlo simulations are depicted in Fig.
to further highlight the points mentioned. For Hig. 1, itaissumed that? = 02 =1, A = 1,0.5,0.25
(SNR = 0, 3, 6 dB respectively), and= 0.95. Note that the pdf support is theoretically bounded in
this case at poini/max = 02/(1 — p?) ~ 10.26 (not shown in the figure due to its insignificance). Also

note that the break poinfy/ = o2 where the pdf changes shape is quite visible in Fig. 1. Alsamf
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Fig. 2. Asymptotic pdf ofd (n) and its approximates using upper and lower bounds:fgiven thato? = 02 = 1, p = 0.95,
A =0.25 (SNR = 6 dB).

(19), it is easily verified that the pdf has an extremum potnt/a= \/2 for the given SNR values. This
extremum point is only a function of the average channel SINRE(y(n)) = 1/A.

The break pointM = o2 corresponds to the steady-state variance of the signal whee is no
correlation p = 0), whereas the poimMt/yax = 02 /(1 — p?) corresponds to the upper limit for the support
of fa/(M) (maximum value for the IEV) for the worst channel(f) = 0) when no information gets
passed the channel and the estimator is equalit9 = E(x(n)) = 0. It is quite visible and theoretically
verifiable that the pdf tail vanishes rapidly after the breaknt if the SNR increases. Also that the higher
the threshold, the lower the outage probability would be.aAmesult, getting bounds on the first part
helps with understanding the pdf behavior better and ataheegime get approximate values and bounds
for Pou(Mi). Using [19) and[(20), we find upper and lower boundsHApapproximations for the pdf
and upper and lower bounds for the outage for the first gdrt{ o2). Another insight from[{20) is that
the pdf shape is independent of whether the system is stable 1) or unstable ¢ > 1), though the
value of x depends ormnp.

Though the pdf is given by the equatiofii; (M) = J’;Téexp(‘ﬁ*) (M < ¢2), the exact value of;
depends on the whole pdf and cannot be known without solVi8Y. (However, it is possible to obtain

the following bounds fow, hamelyx; < k < k,, which later on are used to characterize two functions
Pl (My) and P%(My) for which P. (M) < Pou( M) < PE(My) for all M < o2.

October 23, 2018 DRAFT



Lemma 2. For all M < o2, we havexs; < k < k,, where

oy = ! (21)

(a,@xp(W) + exp(——))
i = 1 — 22)

(a,.@exp(W) + exp(—a—ﬁ))

where we have defined
a,=1-— /U expl—5——— )(i)exp(_—A)dm (23)
e 0 p>m + 02 m? m '

Proof: See AppendixB. [

Note that for stable system3/nyax = % and not surprisinglyp? Mmax + 02 = Mmax. Then we get

b 1

K] = (24)
! Y \
(a,{exp(m) + exp(—a—i))
For unstable systems we halé,,x — oo, and as a result
1
K© = (25)

(ax +exp—2))
To show how tight the bounds are, we have plotted the sinuilptf and two approximates using the
bounds forx in Fig.[2, given that? = 02 = 1, A = 0.25 (SNR = 6dB), andp = 0.95.
With Lemmal2 at hand, we are now ready to present the bound®,fgiVy,). We then show that the

bounds are tight for the high SNR regime, ide— 0. This is discussed in the next section.

IV. BOUNDS ONOUTAGE PROBABILITY FOR HIGH SNR

In this section, we get upper and lower bounds Ry ( My,). We show that for a given non-zerdy,,
EOP decreases with inverse of average channel SNR. We tleen thlat the bounds are tight for the
high SNR regime.

As defined beforePyui( M) is given by

Mmax
PouMw) = [ fus(anyai, (26)
Min
For M < o2, we get
Mmax o\ -
Pou(Mn) = [ Tex(37) dM =1 - rexi Mm» (27)
As shown in the previous sectior; < k < k. AS a result, we get
- -

Mt Mth
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Fig. 3. Pouw(Mwn) and its upper and lower bounds fef = o2 =1, p = 0.95, A = 2,1,0.5,0.25,0.125 (SNR =-3, 0, 3, 6, 9
dB).

which gives us an upper bound and a lower boundHgk(Mi). Figure[3 depicts the outage probability
and the bounds for the case wheh= 02 =1, A = 2,1,0.5,0.25,0.125 (SNR =-3, 0, 3, 6, 9 dB), and
p=0.95 and for M < o2.

As seen in Fig[13, a smallex yields a smaller outage probability. It is interesting t@ $®w the
increase in the SNR, i.e. a decrease in the valug, ofill lead to a lower outage probability. Also, we

will show that the bounds are tight for high SNR, iJe— 0.
Lemma 3. The upper and lower bounds fdty(My,) are tight for A — 0.

Proof: As shown in AppendiX_C, we have that

li =l = li =1 29
v v A v S (29)

which proves the lemma, because then the outage probadnildythe bounds will have the same values
ask, ky, k; converge to the same value. [ |

It is also interesting to see how fastconverges to 1 for small values afand for which values oA,
the upper and lower bound are approximately equal. This psctirl in Fig.[4. Quite visibly, for values
of A smaller than0.01 (SNR greater than 20dB) the upper and lower bounds:fare very close. Due
to the fact that the bounds for are tight, the bounds foP,( M) are also tight. Even for the range

of medium SNR depicted in Fi@l 3, it is quite visible that thepar and lower bounds for the outage
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Fig. 4. ki, k. as a function of\ for 02 = 02 =1, p = 0.95.
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Fig. 5. Pou as a function of\ for 02 = 62 =1, p = 0.95 and its linear approximation

probability are quite close to the one obtained from the &tmmn and that increasing the SNR improves
their accuracy. However, the bounds, especially the uppendb lose their accuracy in the low SNR
regime. This necessitates taking extra precautions if thentis are to be used in applications prone to
low SNR's. It is also quite visible from Fid.l 4 that the lineapproximation obtained from the Taylor

series expansion of as a function of\ (see AppendiXx ) is acurate. At this point we are ready to
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present the asymptotic behavior of the outage probabilitytie high SNR regime. This is presented in

Lemmal 4.
Lemma 4. For the high SNR regime?,( My,) decreases approximately linearly with

Proof: We can use the Taylor series expansionafround\ = 0 from Appendix C to approximate
the outage probability for the high SNR regime. Using theldageries expansion for (from App.[Q)

and expy37 ), we obtain

=1 (14 5 001 = £+ O0%)

_ (Mith _ 0—12))\+(’)()\2) (30)

[
For small), O()\?) vanishes faster thak and as a result we could claif,(Mi,) is approximately
a linear function of\. The linear approximation is depicted in FIg. 5 fare [0.001,0.01] (SNR €
[20dB, 30dBJ). The consequence of this linearity is that though increagie channel SNR helps with
outage probability, it does not help significantly and it mag beneficial to find a trade-off between

power consumption and required outage probability for thglieation at hand.

V. CONCLUSIONS

In this paper, a recursive integral equation approach weasepted for finding the pdf of the instanta-
neous estimation error variance for MMSE estimation of ac@auss-Markov signals sent over fading
channels. We also utilized the notion of estimation errdaga as a means of characterizing the estimation
accuracy. It was shown that the pdf can be written as a twbfpaction over the domain of instantaneous
estimation error variance values. The first part of the pdf,the range up to the Gauss-Markov process
variance also corresponding to higher outage probalsilif@lows a closed-form non-recursive equation.
As a result and for the case of i.i.d. Rayleigh fading chasirtbe outage probability can be approximated
with a closed-form formula for the first part. Upper and lovunds on the estimation error outage
probability were also obtained to simplify characteriaatiof estimation error outage. The presented
bounds were shown to be tight when the SNR grows unboundethelrend, it was shown that the

outage decreases linearly with inverse of the SNR in the B§R regime.
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APPENDIXA

PROOF OFTHEOREM 1

In order to prove Theoref 1, we refer o [5] which considergié filtering with random coefficients.
In [5], a general vector state-space Kalman filter compriteessystem model, which can be shown to
include our system model as well. There and based on a ctintrgmroperty of the Kalman filter, it is
proven that the sequence of estimation error covarianceaaatconverges in law to a stationary process
[5] Theorem 2.4], given that some ergodicity conditions izeg. In the following, we show in Lemma
[ that those conditions are also met in our system model. A&sualtr the equivalent random variable in
our case, i.eM (n) also converges in distribution and therefgig (M) in fact exists. Then we prove in

Lemmal6 whyfy,(M) can be obtained froni_(16).
Lemma 5. The instantaneous estimation error variant®n) converges in distribution.

Proof: According to [5, Theorem 2.4], three conditions are requfo convergence of the estimation
error covariance matrix of the Kalman filter with stochastystem parameters. Firstly, a hypotheXis
(introduced in [[5, Section 2]) should be satisfied. Secaniilys required that the system is weakly
observable and weakly controllable as defined[ih [5]. Thjrdlertain (random) system parameters,
specified later, should be integrable.

For the first condition, it is mentioned ih|[5, Section 2] tleatonditionally Gaussian system satisfies
hypothesisH. In our systemyu(n) andwv(n) are i.i.d. Gaussian random variables and also independent
of h(n). Therefore, our system is also conditionally Gaussian atidfees the condition.

For the second condition, we must show that our system is yweaktrollable and weakly observable.

Using the definition for weak controllability, we must sholaat

Pr(o2 + p®o2 + ptos + ...+ p™o2 #0) > 0, (31)
which obviously holds as long ag > 0. For weak controllability, we must show that

Pr(p*y(1) + p*y(2) + ...+ p™y(n) # 0) > 0. (32)

It is possible to show that (B2) holds for all channel disttibns apart from the non-existent channel
(h(n) = 0 for all n). Therefore, the second condition for convergence is alsb m

For the third condition to hold, we must have that the (rangeariableslog log™ (p), loglog™ (p~1),
loglog™ (02) and loglog™ (h(1)) are integrable (wherdog™(r) = max (log(z),0)), i.e. they have a

well-defined expectation value (see elg./[26] Chapter 1&fdefinition of integrable random variables).
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Obviously,p # 0 ando?2 > 0 are deterministic variables. Therefore, they are intdgrdbg log™ (h(1)),
is also integrable, given thdi(n) is defined as in Se€.lll. As a result, our system model satisfies
the prerequisites of Theorem 2.4 [ [5]. The consequencaefiforementioned theorem is thiak(n)

converges in distribution (law) and therefofgs (M) exists. [ |

Lemma 6. The steady-state distribution of the random proc#£&:) can be obtained from

1 [Mrec ] 1
fM(M) = W/o fw <M - m) fM(m) dm. (33)

Proof: We use the fact that/ (n) is a Markov process. This is due to the fact thén) is determined
by only M(n — 1) and~(n). We have also shown in Lemnia 5 th&f(n) converges in distribution.
From the theory of Markov processes in[27] and utilizing teétionship betweerfy;(,_)(M) and
fr@y (M) in (15), we can verify thatV (n) has a transition probability measure (function) equal to

= fy (% %) We can then refer to Theorem 2.3.5 (i) In [27] and concluu t

— 2 2
prmtoy

Mma)(
0 =3 [ (57 e ) futmyam. (34

[
as stated in(16).
Proof of Theorerhl1:We have shown in Lemmnid 5 thaf (n) converges in law. We have also shown
in Lemmal4 that the steady-state distribution, namgly(M) can be obtained froni (84). The proof is

then complete. |

APPENDIX B

UPPER AND LOWER BOUNDS FORs

We begin to rewritefy; (M) in the following manner for simplicity

KA —A 2
exp(7F) M < o]
fu(dM) = M (35)
g(M) M > o2.
We have thatfy,(M) is a pdf, thereforefOM"‘ax fu(M)dM = 1. As a result, we have that
1= [ puanar = [ e 2 [ g an
~Jo . Jo M2 M o2 I
.\ & Mimax
= — M)dM
v+ [ e
-\ Mimax
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which gives
Mmax —
/ g(M)dM =1 — rexp(—-). (37)
Now we take
02 <m < Mmax
Then we have

(P* + 1)o2 < p’m + 02 < p* Max+ 02

and
A A A
T —_— — . 38
(i) < () <o) )
Now we have that
Mmax Mmax )\
[, oo (e ) stman> [ oG )stmam 9
Mmax Mmax b
/ai exp(p G ) )dm < ﬁ exp<m> g(m)dm. (40)
Next, if we use the definition of (M) for M < o;, we obtain the following

_ Mmax A
FOn) = gpex57) [ exqmvmm) am

- e ) @1)

= %exp(_ﬁ)‘) (/0 ' exp(pzmi);rgg) <;—);> exp(%)dm 42)
Mimax

+/aﬁ exp(p o )g(m) dm) , (43)

from which by equating[{41) and(¥3) and removing common $eom both sides, we deduce that

p*m + o2
Mmax )\
And then we obtain
Mmax A
K= Jo pmto, . (45)

1— f()gﬁ exmpzm)\—i-oﬁ) (%) exq%) dm
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Now by letting

a,{:l—/o exp(pm+a2)<m2> xp( ) (46)
and combining[(39) intd (45) while usinfg _(37), we get

2 ax+ 02
)\ Mmax
> exp(;)(l — /-;exp(_—/\)) (48)
p* Mmax+ o3 og "
which leads to
K> ! . (49)

(ar XD sepr2rsr) + €XP(52))
So, we finally get
1
(a,@xp(w) + expl== )>'
The same procedure also holds fgr by integrating [(4D) into[(20) while using (B7). We then get
1

(a,@xp(m) + eXp(——)) .

K| = (50)

Ry =

(51)

APPENDIXC

HIGH SNR LIMITS FOR K, Ky, K;

In this section we show that, x,,, x; converge to 1 in the high SNR regime, i.e. in the limit)of- 0.
We also get the Taylor series expansion #oto accommodate for the high SNR linear approximation
for the outage probability in Lemnid 4.
We have
1
(a,@xp(m) + exp(—= )) '

For finite o2, the condition\ — 0 can be extended t4/02 — 0. We make this assumption to simplify

(52)

Ry =

the calculations. Assumg = aag, then

(53)
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For finite o2, the condition\ — 0 will be equal toa — 0. We can then see that

1
ilino rula) = 1+ limg 0 ax(a) (54)
In the following, we show thalim,_,¢ a,(«) = 0. We have
o A A —A
« —
=1 —/0 exp(1 e v) (W) exp(T)dv, (55)
where we made the change of variable- 75. Now takea, (o) = 1 — I(«), where
1
(%
o) = [ et () exe =) do (56)
1
—Q
= exp(1 n p%)eXp(T) 0
2
— ex ex d 57
/0 p( 2 p(1+pv)<(1+p2v)2> i &7
= exp(1 2)exp(—oz)
1
2 ex ex dv. 58
+pa/0 P e ) oy (58)
Now, because all of the functions e{x‘g),exp(%p%), W are finite forv € [0, 1], then the integral

term in [58) is also finite. As a resulim,—,o I(«) = 1 andlim,_, k() = 1. Similar results also hold
for k7, KJ?.

To get the limiting behavior fox when A — 0, we use the original definition fat, i.e.

Mmax
i [ xR () dm (59)

to obtain the aforementioned limit. As a prerequisite fontead 8 andl4, we also need the Taylor series
expansion fors around the point = 0, which is done in the following.

We begin by first showing that the cdf of IEV, i.€,,(M) approaches the step function whenr- 0.
We have that

-
Fy(M)=1— Pow(M) = nexp(ﬁ). (60)
Now for any M > 0, we have
. . -A
Jim Fa (M) = fimm, rexpl(7r)

= 1li . 61
Jim (61)
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Now we see that

M,
. . max A
fimw =T | xR ) far(m) dm
Mmax > 1
mar &0\ 1
— 1 L -
A0 0 ; Il (p2m+02)lfM(m) dm
Mmax
— 1
lim ; far(m)dm
Mmax > 1
mar &0\ 1
li A —
S TRy
Mimax Al 1
— lim 1+ li e
A 0 ! (p2m+ag)lfM(m) dm
Mmax )\l 1
— 141 AN — d
MY e
(62)
but for m > 0, we have that/ﬂmlﬁ < 2. As a result we get
Mmax % 1
max A 1
li —_— dm <
Y e
o0 )\l 1 Mmax
li SR d 63
f > 7 oy [ futmyam, (63)
and thus
Mmax % 1
max )\ 1
li . dm <
By UGy
N U |
;\% — F(U?L)l’ (64)
but
SN US| A
li = lim(exp( %) — 1) = 65
B0 — 1! (o2)! )\lg%)( Xp(ag) ) =0, (65)
therefore
Mmax OO )\l 1
lim g fur(m) dm = 0, (66)

2—0 /o I (p*m+o2)

=1
and finally,lim)_,o ~ = 1 as claimed before. In addition and from [61), this resultvehthat F, (M)

approaches the unit step function when— 0 and as a resulf,;(M) approaches the Dirac’s delta
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function when\ — 0. With this assumption we have

max )\

Sl US|
ZIZ;_!(JZ)P (67)

which is the Taylor series expansion feraround\ = 0 to be used in lemmds 3 afd 4.

REFERENCES

[1] W. Zhang, M. S. Branicky, and S. M. Phillips, “Stabilityf aetworked control systemsControl Systems, |IEER/ol. 21,
no. 1, pp. 84-99, 2001.

[2] X. Lihua, “Control over communication networks: Trendidachallenges in integrating control theory and informmatio
theory,” in 2011 30th Chinese Control Conference (CCC)EEE, 2011, pp. 35-39.

[3] P. Antsaklis and J. Baillieul, “Technology of networkedntrol systems,Special Issue of Proceedings of the IERAI. 95,
no. 1, 2007.

[4] J. A. Stankovic, “Wireless Sensor Network&bmputer vol. 41, no. 10, pp. 92-95, Oct. 2008.

[5] P. Bougerol, “Kalman filtering with random coefficientadacontractions,”"SIAM Journal on Control and Optimizatipn
vol. 31, no. 4, pp. 942-959, 1993.

[6] L. Shi, L. Xie, and R. M. Murray, “Kalman filtering over a pket-delaying network: A probabilistic approacititomatica
vol. 45, no. 9, pp. 2134-2140, 2009.

[7] L. Shiand L. Xie, “Optimal sensor power scheduling faatst estimation of Gauss—Markov systems over a packet-ohgpp
network,” IEEE Trans. Signal Processvol. 60, no. 5, pp. 2701-2705, 2012.

[8] E. Rohr, D. Marelli, and M. Fu, “Kalman filtering for a clasof degenerate systems with intermittent observatioms,” i

2011 50th IEEE Conference on Decision and Control and Ewmap8ontrol Conference (CDC-ECC) IEEE, 2011, pp.
2422-2427.

[9] K. You, M. Fu, and L. Xie, “Mean square stability for Kalmdiltering with Markovian packet lossesfutomaticavol. 47,
no. 12, pp. 2647-2657, 2011.

[10] D. E. Quevedo, A. Ahlén, A. S. Leong, and S. Dey, “On Kahrfiltering over fading wireless channels with controlled

transmission powersAutomatica vol. 48, no. 7, pp. 1306-1316, 2012.
[11] A. Subramanian and A. H. Sayed, “Joint rate and powettrobmlgorithms for wireless networks/EEE Trans. Signal
Process.vol. 53, no. 11, pp. 4204-4214, Nov. 2005.

October 23, 2018 DRAFT



20

[12] H. Zhu, I. D. Schizas, and G. B. Giannakis, “Power-eéfitidimensionality reduction for distributed channel-esMdalman
tracking using WSNSs,IEEE Trans. Signal Processvol. 57, no. 8, pp. 3193-3207, Aug. 2009.

[13] W. M. Wonham, “On a matrix Riccati equation of stochastontrol,” SIAM Journal on Contrglvol. 6, no. 4, pp. 681-697,
1968.

[14] Y. Wang and L. Guo, “On stability of random Riccati eqgoas,” Science in China Series E: Technological Sciences
vol. 42, no. 2, pp. 136-148, 1999.

[15] L. Xie and L. Xie, “Stability of a random Riccati equatiavith Markovian binary switching,TEEE Trans. Autom. Control
vol. 53, no. 7, pp. 1759-1764, 2008.

[16] M. Moayedi, Y. K. Foo, and Y. C. Soh, “Adaptive Kalman éting in networked systems with random sensor delays,
multiple packet dropouts and missing measuremehEEE Trans. Signal Processvol. 58, no. 3, pp. 1577-1588, Jan.
2010.

[17] S. Kar, B. Sinopoli, and J. M. Moura, “Kalman filtering thiintermittent observations: Weak convergence to a statio
distribution,” IEEE Trans. Autom. Controlol. 57, no. 2, pp. 405-420, 2012.

[18] A. Vakili and B. Hassibi, “A Stieltjes transform appra for analyzing the RLS adaptive filter,” #6th Annual Allerton
Conference on Communication, Control, and ComputindeEE, 2008, pp. 432—-437.

[19] —, “A Stieltjes transform approach for studying theady-state behavior of random Lyapunov and Riccati recnssi
in 47th IEEE Conference on Decision and Control (CDC)EEE, 2008, pp. 453—-458.

[20] S. Dey, A. S. Leong, and J. S. Evans, “Kalman filteringhwiaded measurements&utomatica vol. 45, no. 10, pp.
2223-2233, 20009.

[21] G. Caire and K. Narayanan, “On the distortion SNR exmorad hybrid digital-analog space—time codindfZEE Trans.
Inf. Theory vol. 53, no. 8, pp. 2867—2878, 2007.

[22] L. Peng and A. Guillen i Fabregas, “Distortion outagehability in MIMO block-fading channels,” i2010 IEEE
International Symposium on Information Theory Proceeslii®IT) 2010, pp. 2223-2227.

[23] R. Parseh and K. Kansanen, “On estimation error outagesdalar Gauss-Markov processes sent over fading chahnels
in 22nd European Signal Processing Conference, (EUSIPCBpon, Portugal, Sep. 2014.

[24] T. Kailath, A. H. Sayed, and B. Hassiliijnear estimation Prentice Hall New Jersey, 2000, vol. 1.

[25] A. Papoulis and S. U. PillaRrobability, random variables, and stochastic procesgek ed. McGraw-Hill Europe, Jan.
2002.

[26] D. Williams, Probability with martingales Cambridge university press, 1991.

[27] O. Hernandez-Lerma and J. B. Lasseiviarkov chains and invariant probabilities Springer, 2003.

October 23, 2018 DRAFT



	I Introduction
	II System Model and Problem Definition
	III Statistical Properties of Instantaneous Estimation Error Variance
	III-A Asymptotic Pdf of The Instantaneous Estimation Error Variance
	III-B Pdf of The Instantaneous Estimation Error Variance Under Rayleigh Fading

	IV Bounds on Outage Probability for High SNR
	V Conclusions
	Appendix A: Proof of Theorem 1
	Appendix B: Upper and lower bounds for 
	Appendix C: High SNR Limits for , u, l
	References

