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Abstract

Measurements of a scalar linear Gauss-Markov process are sent over a fading channel. The fading

channel is modeled as independent and identically distributed random variables with known realization at

the receiver. The optimal estimator at the receiver is the Kalman filter. In contrast to the classical Kalman

filter theory, given a random channel, the Kalman gain and theerror covariance become random. Then the

probability distribution function of expected estimationerror and its outage probability can be chosen for

estimation quality assessment. In this paper and in order toget the estimation error outage, we provide

means to characterize the stationary probability density function of the random expected estimation error.

Furthermore and for the particular case of the i.i.d. Rayleigh fading channels, upper and lower bounds

for the outage probability are derived which provide insight and simpler means for design purposes. We

also show that the bounds are tight for the high SNR regime, and that the outage probability decreases

linearly with the inverse of the average channel SNR.
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I. INTRODUCTION

Low or zero delay transmission of measurements of a dynamic system to a remote controller/observer

is important in applications such as network monitoring andcontrol, wireless sensor networks, and

generally in real-time signal processing when the observedsignals should be sent over a communication

channel. Due to tight delay conditions in many cases, high-performance block-wise coding schemes

which incur unacceptable delay should be avoided. For wireless fading channels, it is possible to send

the measurements directly over the channel using uncoded transmission and then perform estimation on

the channel outputs at the receiver. Analysis of the signal estimation quality is therefore necessary to

ensure satisfactory performance for such applications.

The literature for network communication and control and wireless sensor networks is diverse and

rich (see [1]–[4] and the references within). For various applications where the dynamic system follows

a Gauss-Markov model and the channel realization is independent of the randomness of the dynamic

system, the optimal estimator is the Kalman filter ( [5]–[12]). Due to the randomness of the fading channel,

the Kalman filter is random and does not necessarily convergeto a constant value. The instantaneous

estimation error covariance is random as well. The estimation error covariance matrix is related to

the prediction error covariance matrix with a simple transform. The prediction error covariance matrix

propagates through a Riccati equation studied extensivelyin the literature. With the channel matrices

being random, the prediction error covariance matrices then constitute a well-known stochastic process

referred to as the random Riccati equation (RRE) [13]. Whilewe focus on the estimation error quality as

we are interested in the signal reconstruction, others especially in the control literature have focused on

the prediction error covariance matrix because it is used directly in the controller design in many cases.

We review some of those works in the following.

In [14], stability of RRE is studied and it is shown that undermild assumptions on the random

observability Gramian matrix, it is bothLr and exponentially stable. In [15], the peak covariance stability

of the RRE resulting from Kalman filtering with random observation losses is studied. Boundedness of

the covariance matrix in the usual sense is also considered in the same work. In [16], an adaptive filtering

scheme based on the Riccati equation is proposed for state estimation in network control systems subject

to delays, packet drops and missing measurements. In [17], it was shown that sequence of random

covariance matrices converges in probability when observations are sent over a packet erasure channel

where the erasure event is a Bernoulli i.i.d process. The stationary distributions for infinitely large random

matrices with good approximations for dimensions around 10-20 were also found in [18] and [19] for two
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classes of random Riccati and Lyapunov equations. Also in [20] bounds on the mean of the instantaneous

covariance matrices in the RRE formulation are obtained.

In this paper, we study the case when measurements of a scalarGauss-Markov process are sent over a

fading channel with i.i.d. channel realizations. This model best suits e.g. low-cost sensor networks with

processing at the fusion center. The samples are sent over the channel using continuous-valued uncoded

(also known as analog [21]) transmission after they are obtained, to avoid processing at the sensor or

block coding and the consequent delays. It is assumed that the full channel knowledge is available at the

receiver at the time of the observation. The optimum MMSE filter, i.e. the Kalman filter is then random

and the exact value of the instantaneous estimation error variance (IEV) cannot be obtained in advance.

For that reason, we are in particular interested in statistical characterization of the resulting estimation

error.

In the spirit of outage in fading channels, we utilize estimation error outage as a criterion for estimation

performance assessment. A similar property, namely distortion outage was proposed in [22] for MIMO

block fading channels from an information theoretical point of view. There, it is mentioned that as for

our case, distortion outage measures are useful when delay is of concern. Outage is defined as the event

where the IEV exceeds a certain threshold. From a more practical viewpoint, this measure could be used

as a design parameter for a control or monitoring system which observes the process. While [22] finds

expressions for the distortion outage diversity order and proves achievability, we are interested in the

practical case of the Kalman filter and its behavior. We try tofind the estimation error outage probability

and find out how it is related to average channel SNR under certain channel statistics. We show for

instance that in the scalar case and for the i.i.d. Rayleigh fading channel, the outage measure takes on

a simple form in the high SNR regime, which we believe is insightful for design purposes and further

development.

In the rest of the paper and after introducing the system model in details, we first show that forany

i.i.d. fading channel, the first order probability density function (pdf) may be obtained through a recursive

integral equation. We then select the case of Rayleigh fading channel and provide upper and lower bounds

for the outage probability. Next, we show that the bounds aretight for the high SNR regime. Finally,

we show that the outage probability decreases linearly withinverse of the channel SNR in the high

SNR regime. This could for instance be used a rule of thumb method for estimation quality assessment

under settings discussed in this paper. The high SNR analysis enables us to perform diversity analysis

for the Kalman estimator as well. A shorter version of this work without high SNR analysis appears in

[23]. The current work also provides a different and more straightforward proof for the integral equation

October 23, 2018 DRAFT



3

characterizing the pdf of the IEV.

II. SYSTEM MODEL AND PROBLEM DEFINITION

Consider the following scalar complex Gauss-Markov signalmodel

x(n) = ρx(n− 1) + u(n), n ≥ 1, x(0) ∼ CN (0,M(0))

y(n) = h(n)x(n) + v(n), (1)

with u(n) and v(n) as white circularly symmetric complex Gaussian random variables with variances

σ2
u > 0 andσ2

v > 0, respectively. Considerh(n) to be i.i.d. samples of a random variable (starting from

Sec. III-B, we will assume that channel is Rayleigh fading).We also assume thath(n) cannot be equal to

zero for alln (non-existent channel is not included). This signal model characterizes e.g. measurements

of a first-order Gauss-Markov process sent over a fading channel. It is assumed that perfect knowledge

of the random channelh(n) is available at the receiver andh(n) are also independent ofu(n) andv(n).

For further development in Sec. III-A, we require thath(1) 6= 0 andρ 6= 0. The objective at the receiver

is optimal estimation of the signalx(n), given the channel outputs.

Given the previous assumptions, and withh(n) independent ofu(n) and v(n), the optimal MMSE

estimator ofx(n) based on the observationsy(n) is the well-known Kalman filter [24] with the following

steps

x̂(n|n− 1) = ρx̂(n− 1|n− 1) (2)

P (n) = ρ2M(n− 1) + σ2
u (3)

K(n) = P (n)h∗(n)[σ2
v + |h(n)|2P (n)]−1 (4)

x̂(n|n) = x̂(n|n− 1) +K(n)(y(n)− h(n)x̂(n|n− 1)) (5)

M(n) = (1−K(n)h(n))P (n). (6)

Concisely stated, eq. (2) is the prediction of the current state based on the previous estimated state (a

priori estimate) using the system model and eq. (3) is the instantaneous expected (with respect to noise)

prediction error. Equation (4) is the corresponding Kalmangain equation and eq. (5) is the correction

equation based on the Kalman gain update (a posteriori estimate). Finally eq. (6) provides us with the

instantaneous estimation error variance.

It is straightforward to show that both theP (n), i.e. the prediction error variance andM(n), i.e. the

estimation error variance may be written recursively in terms of their previous values and current value
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of h(n), where one is a deterministic function of the other. The statistical properties of the one may then

be acquired using the statistical properties of the other. In the rest of this paper, we studyM(n).

The recursion forM(n) is obtained as follows

M(n) = (1−K(n)h(n))P (n)

=

(

1−
P (n)|h(n)|2

σ2
v + |h(n)|2P (n)

)

P (n)

= P (n)−
P 2(n)|h(n)|2

σ2
v + |h(n)|2P (n)

=
P (n)σ2

v

σ2
v + |h(n)|2P (n)

=
P (n)

1 + |h(n)|2P (n)/σ2
v

(a)
=

ρ2M(n − 1) + σ2
u

1 + γ(n) (ρ2M(n− 1) + σ2
u)
, (7)

where in(a) we have setγ(n) = |h(n)|2/σ2
v to simplify representation of the functions which depend

on the channel. With this notation,γ(n) corresponds to the instantaneous SNR at the receiver side.

In order to characterize the random estimation outage event, we define estimation error outage proba-

bility (EOP) as

Pn
out(Mth) = Pr(M(n) ≥ Mth) (8)

and in particular the asymptotic EOP which is of interest, inorder to characterize the steady-state

distributions, i.e.

Pout(Mth) = lim
n→∞

Pn
out(Mth) = lim

n→∞

Pr(M(n) ≥ Mth). (9)

ClearlyPn
out(Mth) = 1−FM(n)(Mth) andPout(Mth) = 1−FM (Mth), whereFM(n)(M) (FM (M)) is the

(steady state) cumulative distribution function (cdf) ofM(n).

III. STATISTICAL PROPERTIES OFINSTANTANEOUS ESTIMATION ERROR VARIANCE

In this section, we study the asymptotic probability density function of the IEV. BecauseFM (M) and

fM (M) are related with a linear operation (derivative), we begin to studyfM(M). After that, the EOP

will readily be obtained with one integration operation.
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A. Asymptotic Pdf of The Instantaneous Estimation Error Variance

Given (7), it is easy to verify that for any arbitrary positive real numberM , M(n) 6 M leads to

γ(n) >
1

M
−

1

ρ2M(n− 1) + σ2
u

.

Also, we have thatγ(n) > 0 and0 < M(n) < Mmax, whereMmax, the upper limit forM(n) is obtained

from

Mmax =







∞, |ρ| > 1

σ2
u

1−ρ2 , |ρ| < 1.
(10)

Mmax is effectively the estimation error variance for the worst channel, i.e.γ(n) = 0 with probability 1.

In that case, the best estimator is the average mean, i.e.x̂(n) = E(x(n)) = 0 and therefore the estimation

error variance is equal toMmax. Also note that the case|ρ| > 1 is of little practical importance in our

case, because for a divergent signal, continuous-amplitude uncoded transmission would not be practical.

It is however included in the definition ofMmax to show that the analysis does not depend on the value

of ρ.

Given the above limits and conditions forγ(n) andM(n) and according to [25], it is possible to get

the cdf ofM(n), i.e. FM(n)(M) as follows.

FM(n)(M) =

∫ Mmax

0

∫

∞

1

M
−

1

ρ2M(n−1)+σ2
u

fγ(n),M(n−1) (γ(n),M(n − 1)) dγ(n) dM(n − 1), (11)

wherefγ(n),M(n−1) (γ(n),M(n − 1)) is the joint pdf ofγ(n) andM(n− 1). The pdf forM(n) is then

obtained by simply applyingfM(n)(M) = ∂
∂M

FM(n)(M). That leads to

fM(n)(M) =

∫ Mmax

0

∂

∂M

∫

∞

1

M
−

1

ρ2M(n−1)+σ2
u

fγ(n),M(n−1) (γ(n),M(n − 1)) dγ(n) dM(n− 1)

=

∫ Mmax

0

1

M2
fγ(n),M(n−1)

(

1

M
−

1

ρ2M(n− 1) + σ2
u

,M(n − 1)

)

dM(n − 1), (12)

or with some change of notation,

fM(n)(M) =

∫ Mmax

0

1

M2
fγ(n),M(n−1)

(

1

M
−

1

ρ2m+ σ2
u

,m

)

dm. (13)

Now if we assume thatγ(n) is independent ofM(n− 1)
(

γ(n) ⊥⊥ M(n− 1)
)

, we may rewrite (13) as

fM(n)(M) =
1

M2

∫ Mmax

0
fγ(n)

(

1

M
−

1

ρ2m+ σ2
u

)

fM(n−1)(m) dm. (14)

Note that as we have assumed i.i.d. channels, then we have that γ(n) ⊥⊥ γ(i) for i < n. We can simply

assume thatγ(i) ⊥⊥ M(0) (M(0) is a constant). As a result, we obtain thatγ(n) ⊥⊥ M(n− 1) because

M(n− 1) is a function ofM(0) andγ(1), γ(2), · · · , γ(n− 1) only. Thus i.i.d. channel assumption is a
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sufficient condition to get the main result in (14). As we haveassumed an i.i.d. channel, allγ(n) have

the same pdf, i.e.fγ(n)(γ(n)) = fγ(γ(n)). Therefore, we rewrite (14) to obtain

fM(n)(M) =
1

M2

∫ Mmax

0
fγ

(

1

M
−

1

ρ2m+ σ2
u

)

fM(n−1)(m) dm. (15)

Equation (15) may be used to findfM(n)(M) for any n by starting fromfM(0)(M) = δ(M − M(0))

and iterating overn. However, the objective of this paper is outage analysis andfor that purpose, we

need the steady-state distribution. In the following, we present Theorem 1 which proves the existence of

a steady-state distribution forM(n), namelyfM (M) and outlines how it can be obtained.

Theorem 1. The random processM(n) converges in law and has a steady-state distribution, namely

fM (M) which satisfies the following equality

fM (M) =
1

M2

∫ Mmax

0
fγ

(

1

M
−

1

ρ2m+ σ2
u

)

fM(m) dm. (16)

Proof: See Appendix A.

After stating Theorem 1, we will utilize (16) for the rest of the analysis in order to characterizefM(M).

To be more specific with (16), we use the fact thatγ(n) > 0. That necessitates that the argument of the

function fγ() should always be positive. Clearly, ifM 6 σ2
u, the term 1

M
− 1

ρ2m+σ2
u

is always positive.

However forM > σ2
u, the integral should be taken over the range ofγ where 1

M
− 1

ρ2m+σ2
u

> 0, i.e.

for m >
M−σ2

u

ρ2 . With this background, we can finally provide the following lemma that describes the

asymptotic pdf ofM(n), i.e. fM (M) in terms of itself integrated with a kernel which is a function of

the instantaneous channel SNR. Solving this equation leadsto fM(M) and with one integration toPout,

which is the target.

Lemma 1. Asymptotic pdf ofM(n), i.e. fM (M) can be obtained from the following equation

fM (M) =











1
M2

∫Mmax

0 fγ

(

1
M

− 1
ρ2m+σ2

u

)

fM (m) dm, M 6 σ2
u

1
M2

∫Mmax
M−σ2

u

ρ2

fγ

(

1
M

− 1
ρ2m+σ2

u

)

fM(m) dm, M > σ2
u.

(17)

The solution is general and is explicitly given in terms of instantaneous channel SNR pdf and system

parameters. Though (17) can be solved numerically if needed, the general closed-form solution does

not seem to be readily attainable. In the following, we have focused on the important case of Rayleigh

fading channels wherefγ(γ) = λe−λγU(γ)
(

U() is the unit step function
)

. Note that with this definition,

λ = 1/E(γ(n)) = σ2
v/E(|h(n)|2), i.e. stronger channels yield smaller values forλ and vice versa.
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Fig. 1. Asymptotic pdf ofM(n) for σ2

u = σ2

v = 1, ρ = 0.95, λ = 1, 0.5, 0.25 (SNR = 0, 3, 6 dB respectively). Note the

break point atM = σ2

u.

B. Pdf of The Instantaneous Estimation Error Variance UnderRayleigh Fading

We can rewrite (17) given that channel is i.i.d. Rayleigh fading. Using that we obtain

fM(M) =
λ

M2
exp(

−λ

M
)











∫Mmax

0 exp
(

λ
ρ2m+σ2

u

)

fM(m) dm, M 6 σ2
u

∫Mmax
M−σ2

u

ρ2

exp
(

λ
ρ2m+σ2

u

)

fM (m) dm, M > σ2
u,

(18)

which in order to get more insight and with some algebraic manipulation, can also be written as

fM (M) =
λ

M2
exp(

−λ

M
)











κ, M 6 σ2
u

κ−
∫

M−σ2
u

ρ2

0 exp
(

λ
ρ2m+σ2

u

)

fM(m) dm, M > σ2
u,

(19)

where

κ =

∫ Mmax

0
exp

(

λ

ρ2m+ σ2
u

)

fM(m) dm. (20)

Though in generalκ depends on the pdf itself, (19) is insightful in the sense that it shows the exact

shape of the pdf for the first part whereM 6 σ2
u.

Typical shapes of such pdf’s which are obtained through Monte-Carlo simulations are depicted in Fig.

1 to further highlight the points mentioned. For Fig. 1, it isassumed thatσ2
u = σ2

v = 1, λ = 1, 0.5, 0.25

(SNR = 0, 3, 6 dB respectively), andρ = 0.95. Note that the pdf support is theoretically bounded in

this case at pointMmax = σ2
u/(1 − ρ2) ≈ 10.26 (not shown in the figure due to its insignificance). Also

note that the break point,M = σ2
u where the pdf changes shape is quite visible in Fig. 1. Also, from
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Fig. 2. Asymptotic pdf ofM(n) and its approximates using upper and lower bounds forκ given thatσ2

u = σ2

v = 1, ρ = 0.95,

λ = 0.25 (SNR = 6 dB).

(19), it is easily verified that the pdf has an extremum point at M = λ/2 for the given SNR values. This

extremum point is only a function of the average channel SNR,i.e. E(γ(n)) = 1/λ.

The break pointM = σ2
u corresponds to the steady-state variance of the signal whenthere is no

correlation (ρ = 0), whereas the pointMmax = σ2
u/(1−ρ2) corresponds to the upper limit for the support

of fM (M) (maximum value for the IEV) for the worst channel (γ(n) = 0) when no information gets

passed the channel and the estimator is equal tox̂(n) = E(x(n)) = 0. It is quite visible and theoretically

verifiable that the pdf tail vanishes rapidly after the breakpoint if the SNR increases. Also that the higher

the threshold, the lower the outage probability would be. Asa result, getting bounds on the first part

helps with understanding the pdf behavior better and at the same time get approximate values and bounds

for Pout(Mth). Using (19) and (20), we find upper and lower bounds forκ, approximations for the pdf

and upper and lower bounds for the outage for the first part (M 6 σ2
u). Another insight from (20) is that

the pdf shape is independent of whether the system is stable (ρ < 1) or unstable (ρ > 1), though the

value ofκ depends onρ.

Though the pdf is given by the equationfM(M) = κλ
M2 exp(−λ

M
) (M 6 σ2

u), the exact value ofκ

depends on the whole pdf and cannot be known without solving (19). However, it is possible to obtain

the following bounds forκ, namelyκl < κ < κu, which later on are used to characterize two functions

P l
out(Mth) andP u

out(Mth) for which P l
out(Mth) < Pout(Mth) < P u

out(Mth) for all M 6 σ2
u.
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Lemma 2. For all M 6 σ2
u, we haveκl < κ < κu, where

κu =
1

(

aκexp
(

−λ
σ2
u(1+ρ2)

)

+ exp(− λ
σ2
u

)
) (21)

κl =
1

(

aκexp( −λ
ρ2Mmax+σ2

u

) + exp(− λ
σ2
u

)
) , (22)

where we have defined

aκ = 1−

∫ σ2
u

0
exp(

λ

ρ2m+ σ2
u

)(
λ

m2
)exp(

−λ

m
) dm. (23)

Proof: See Appendix B.

Note that for stable systems,Mmax =
σ2
u

1−ρ2 and not surprisinglyρ2Mmax+ σ2
u = Mmax. Then we get

κbl =
1

(

aκexp( −λ
Mmax

) + exp(− λ
σ2
u

)
) (24)

For unstable systems we haveMmax → ∞, and as a result

κ∞l =
1

(

aκ + exp(− λ
σ2
u

)
) (25)

To show how tight the bounds are, we have plotted the simulated pdf and two approximates using the

bounds forκ in Fig. 2, given thatσ2
u = σ2

v = 1, λ = 0.25 (SNR = 6dB), andρ = 0.95.

With Lemma 2 at hand, we are now ready to present the bounds forPout(Mth). We then show that the

bounds are tight for the high SNR regime, i.e.λ → 0. This is discussed in the next section.

IV. B OUNDS ONOUTAGE PROBABILITY FOR HIGH SNR

In this section, we get upper and lower bounds forPout(Mth). We show that for a given non-zeroMth,

EOP decreases with inverse of average channel SNR. We then show that the bounds are tight for the

high SNR regime.

As defined before,Pout(Mth) is given by

Pout(Mth) =

∫ Mmax

Mth

fM(M) dM. (26)

For M 6 σ2
u, we get

Pout(Mth) =

∫ Mmax

Mth

κλ

M2
exp(

−λ

M
) dM = 1− κexp(

−λ

Mth
). (27)

As shown in the previous section,κl < κ < κu. As a result, we get

1− κuexp(
−λ

Mth
) < Pout(Mth) < 1− κlexp(

−λ

Mth
), (28)

October 23, 2018 DRAFT



10

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mth

P
o
u
t

 

 

−3dB

0dB

3dB

6dB

9dB

Simulation
Lower Bound
Upper Bound

Fig. 3. Pout(Mth) and its upper and lower bounds forσ2

u = σ2

v = 1, ρ = 0.95, λ = 2, 1, 0.5, 0.25, 0.125 (SNR =-3, 0, 3, 6, 9

dB).

which gives us an upper bound and a lower bound forPout(Mth). Figure 3 depicts the outage probability

and the bounds for the case whenσ2
u = σ2

v = 1, λ = 2, 1, 0.5, 0.25, 0.125 (SNR =-3, 0, 3, 6, 9 dB), and

ρ = 0.95 and forM 6 σ2
u.

As seen in Fig. 3, a smallerλ yields a smaller outage probability. It is interesting to see how the

increase in the SNR, i.e. a decrease in the value ofλ, will lead to a lower outage probability. Also, we

will show that the bounds are tight for high SNR, i.e.λ → 0.

Lemma 3. The upper and lower bounds forPout(Mth) are tight for λ → 0.

Proof: As shown in Appendix C, we have that

lim
λ→0

κ = lim
λ→0

κu = lim
λ→0

κl = 1, (29)

which proves the lemma, because then the outage probabilityand the bounds will have the same values

asκ, κu, κl converge to the same value.

It is also interesting to see how fastκ converges to 1 for small values ofλ and for which values ofλ,

the upper and lower bound are approximately equal. This is depicted in Fig. 4. Quite visibly, for values

of λ smaller than0.01 (SNR greater than 20dB) the upper and lower bounds forκ are very close. Due

to the fact that the bounds forκ are tight, the bounds forPout(Mth) are also tight. Even for the range

of medium SNR depicted in Fig. 3, it is quite visible that the upper and lower bounds for the outage
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Fig. 5. Pout as a function ofλ for σ2

u = σ2

v = 1, ρ = 0.95 and its linear approximation

probability are quite close to the one obtained from the simulation and that increasing the SNR improves

their accuracy. However, the bounds, especially the upper bound lose their accuracy in the low SNR

regime. This necessitates taking extra precautions if the bounds are to be used in applications prone to

low SNR’s. It is also quite visible from Fig. 4 that the linearapproximation obtained from the Taylor

series expansion ofκ as a function ofλ (see Appendix C) is acurate. At this point we are ready to
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present the asymptotic behavior of the outage probability for the high SNR regime. This is presented in

Lemma 4.

Lemma 4. For the high SNR regime,Pout(Mth) decreases approximately linearly withλ.

Proof: We can use the Taylor series expansion ofκ aroundλ = 0 from Appendix C to approximate

the outage probability for the high SNR regime. Using the Taylor series expansion forκ (from App. C)

and exp(−λ
Mth

), we obtain

Pout(Mth) = 1− κexp(
−λ

Mth
)

= 1− (1 +
λ

σ2
u

+O(λ2))(1 −
λ

Mth
+O(λ2))

= (
1

Mth
−

1

σ2
u

)λ+O(λ2) (30)

For smallλ, O(λ2) vanishes faster thanλ and as a result we could claimPout(Mth) is approximately

a linear function ofλ. The linear approximation is depicted in Fig. 5 forλ ∈ [0.001, 0.01] (SNR ∈

[20dB, 30dB]). The consequence of this linearity is that though increasing the channel SNR helps with

outage probability, it does not help significantly and it maybe beneficial to find a trade-off between

power consumption and required outage probability for the application at hand.

V. CONCLUSIONS

In this paper, a recursive integral equation approach was presented for finding the pdf of the instanta-

neous estimation error variance for MMSE estimation of scalar Gauss-Markov signals sent over fading

channels. We also utilized the notion of estimation error outage as a means of characterizing the estimation

accuracy. It was shown that the pdf can be written as a two-part function over the domain of instantaneous

estimation error variance values. The first part of the pdf, i.e. the range up to the Gauss-Markov process

variance also corresponding to higher outage probabilities, follows a closed-form non-recursive equation.

As a result and for the case of i.i.d. Rayleigh fading channels, the outage probability can be approximated

with a closed-form formula for the first part. Upper and lowerbounds on the estimation error outage

probability were also obtained to simplify characterization of estimation error outage. The presented

bounds were shown to be tight when the SNR grows unbounded. Inthe end, it was shown that the

outage decreases linearly with inverse of the SNR in the highSNR regime.
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APPENDIX A

PROOF OFTHEOREM 1

In order to prove Theorem 1, we refer to [5] which considers Kalman filtering with random coefficients.

In [5], a general vector state-space Kalman filter comprisesthe system model, which can be shown to

include our system model as well. There and based on a contraction property of the Kalman filter, it is

proven that the sequence of estimation error covariance matrices converges in law to a stationary process

[5, Theorem 2.4], given that some ergodicity conditions aremet. In the following, we show in Lemma

5 that those conditions are also met in our system model. As a result, the equivalent random variable in

our case, i.e.M(n) also converges in distribution and thereforefM (M) in fact exists. Then we prove in

Lemma 6 whyfM (M) can be obtained from (16).

Lemma 5. The instantaneous estimation error varianceM(n) converges in distribution.

Proof: According to [5, Theorem 2.4], three conditions are required for convergence of the estimation

error covariance matrix of the Kalman filter with stochasticsystem parameters. Firstly, a hypothesisH

(introduced in [5, Section 2]) should be satisfied. Secondly, it is required that the system is weakly

observable and weakly controllable as defined in [5]. Thirdly, certain (random) system parameters,

specified later, should be integrable.

For the first condition, it is mentioned in [5, Section 2] thata conditionally Gaussian system satisfies

hypothesisH. In our system,u(n) andv(n) are i.i.d. Gaussian random variables and also independent

of h(n). Therefore, our system is also conditionally Gaussian and satisfies the condition.

For the second condition, we must show that our system is weakly controllable and weakly observable.

Using the definition for weak controllability, we must show that

Pr
(

σ2
u + ρ2σ2

u + ρ4σ2
u + . . .+ ρ2nσ2

u 6= 0
)

> 0, (31)

which obviously holds as long asσ2
u > 0. For weak controllability, we must show that

Pr
(

ρ2γ(1) + ρ4γ(2) + . . .+ ρ2nγ(n) 6= 0
)

> 0. (32)

It is possible to show that (32) holds for all channel distributions apart from the non-existent channel

(h(n) = 0 for all n). Therefore, the second condition for convergence is also met.

For the third condition to hold, we must have that the (random) variableslog log+(ρ), log log+(ρ−1),

log log+(σ2
u) and log log+(h(1)) are integrable (wherelog+(x) = max (log(x), 0)), i.e. they have a

well-defined expectation value (see e.g. [26] Chapter 13 fora definition of integrable random variables).
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Obviously,ρ 6= 0 andσ2
u > 0 are deterministic variables. Therefore, they are integrable. log log+(h(1)),

is also integrable, given thath(n) is defined as in Sec. II. As a result, our system model satisfiesall

the prerequisites of Theorem 2.4 in [5]. The consequence of the aforementioned theorem is thatM(n)

converges in distribution (law) and thereforefM(M) exists.

Lemma 6. The steady-state distribution of the random processM(n) can be obtained from

fM (M) =
1

M2

∫ Mmax

0
fγ

(

1

M
−

1

ρ2m+ σ2
u

)

fM(m) dm. (33)

Proof: We use the fact thatM(n) is a Markov process. This is due to the fact thatM(n) is determined

by only M(n − 1) and γ(n). We have also shown in Lemma 5 thatM(n) converges in distribution.

From the theory of Markov processes in [27] and utilizing therelationship betweenfM(n−1)(M) and

fM(n)(M) in (15), we can verify thatM(n) has a transition probability measure (function) equal to

1
M2 fγ

(

1
M

− 1
ρ2m+σ2

u

)

. We can then refer to Theorem 2.3.5 (ii) in [27] and conclude that

fM (M) =
1

M2

∫ Mmax

0
fγ

(

1

M
−

1

ρ2m+ σ2
u

)

fM(m) dm, (34)

as stated in (16).

Proof of Theorem 1:We have shown in Lemma 5 thatM(n) converges in law. We have also shown

in Lemma 4 that the steady-state distribution, namelyfM(M) can be obtained from (34). The proof is

then complete.

APPENDIX B

UPPER AND LOWER BOUNDS FORκ

We begin to rewritefM(M) in the following manner for simplicity

fM(M) =







κλ
M2 exp(−λ

M
) M 6 σ2

u

g(M) M > σ2
u.

(35)

We have thatfM(M) is a pdf, therefore
∫Mmax

0 fM (M) dM = 1. As a result, we have that

1 =

∫ Mmax

0
fM (M) dM =

∫ σ2
u

0

κλ

M2
exp(

−λ

M
) +

∫ Mmax

σ2
u

g(M) dM

= κexp(
−λ

M
)

∣

∣

∣

∣

∣

σ2
u

0

+

∫ Mmax

σ2
u

g(M) dM

= κexp(
−λ

σ2
u

) +

∫ Mmax

σ2
u

g(M) dM, (36)
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which gives
∫ Mmax

σ2
u

g(M) dM = 1− κexp(
−λ

σ2
u

). (37)

Now we take

σ2
u < m < Mmax.

Then we have

(ρ2 + 1)σ2
u < ρ2m+ σ2

u < ρ2Mmax+ σ2
u

and

exp

(

λ

ρ2Mmax+ σ2
u

)

< exp

(

λ

ρ2m+ σ2
u

)

< exp

(

λ

(ρ2 + 1)σ2
u

)

. (38)

Now we have that
∫ Mmax

σ2
u

exp

(

λ

ρ2m+ σ2
u

)

g(m) dm >

∫ Mmax

σ2
u

exp

(

λ

ρ2Mmax+ σ2
u

)

g(m) dm (39)

∫ Mmax

σ2
u

exp

(

λ

ρ2m+ σ2
u

)

g(m) dm <

∫ Mmax

σ2
u

exp

(

λ

(ρ2 + 1)σ2
u

)

g(m) dm. (40)

Next, if we use the definition offM(M) for M 6 σ2
u, we obtain the following

f(M) =
λ

M2
exp(

−λ

M
)

∫ Mmax

0
exp(

λ

ρ2m+ σ2
u

)fM (m) dm

=
κλ

M2
exp(

−λ

M
) (41)

=
λ

M2
exp(

−λ

M
)

(

∫ σ2
u

0
exp(

λ

ρ2m+ σ2
u

)

(

κλ

m2

)

exp(
−λ

m
) dm (42)

+

∫ Mmax

σ2
u

exp(
λ

ρ2m+ σ2
u

)g(m) dm

)

, (43)

from which by equating (41) and (43) and removing common terms on both sides, we deduce that

κ = κ

∫ σ2
u

0
exp(

λ

ρ2m+ σ2
u

)

(

λ

m2

)

exp(
−λ

m
) dm

+

∫ Mmax

σ2
u

exp(
λ

ρ2m+ σ2
u

)g(m) dm. (44)

And then we obtain

κ =

∫Mmax

σ2
u

exp( λ
ρ2m+σ2

u

)g(m) dm

1−
∫ σ2

u

0 exp( λ
ρ2m+σ2

u

)
(

λ
m2

)

exp(−λ
m
) dm

. (45)
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Now by letting

aκ = 1−

∫ σ2
u

0
exp(

λ

ρ2m+ σ2
u

)

(

λ

m2

)

exp(
−λ

m
) dm (46)

and combining (39) into (45) while using (37), we get

κaκ >

∫ Mmax

σ2
u

exp(
λ

ρ2Mmax+ σ2
u

)g(m) dm

> exp(
λ

ρ2Mmax+ σ2
u

)

∫ Mmax

σ2
u

g(m) dm (47)

> exp(
λ

ρ2Mmax+ σ2
u

)(1− κexp(
−λ

σ2
u

)), (48)

which leads to

κ >
1

(aκexp( −λ
ρ2Mmax+σ2

u

) + exp(−λ
σ2
u

))
. (49)

So, we finally get

κl =
1

(

aκexp
(

−λ
ρ2Mmax+σ2

u

)

+ exp(−λ
σ2
u

)
) . (50)

The same procedure also holds forκu by integrating (40) into (20) while using (37). We then get

κu =
1

(

aκexp
(

−λ
σ2
u(1+ρ2)

)

+ exp(− λ
σ2
u

)
) . (51)

APPENDIX C

HIGH SNR LIMITS FOR κ, κu, κl

In this section we show thatκ, κu, κl converge to 1 in the high SNR regime, i.e. in the limit ofλ → 0.

We also get the Taylor series expansion forκ to accommodate for the high SNR linear approximation

for the outage probability in Lemma 4.

We have

κu =
1

(

aκexp
(

−λ
σ2
u(1+ρ2)

)

+ exp(− λ
σ2
u

)
) . (52)

For finite σ2
u, the conditionλ → 0 can be extended toλ/σ2

u → 0. We make this assumption to simplify

the calculations. Assumeλ = ασ2
u, then

κu =
1

(

aκ(α)exp
(

−α
(1+ρ2)

)

+ exp(−α)
) . (53)
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For finite σ2
u, the conditionλ → 0 will be equal toα → 0. We can then see that

lim
α→0

κu(α) =
1

1 + limα→0 aκ(α)
. (54)

In the following, we show thatlimα→0 aκ(α) = 0. We have

aκ(α) = 1−

∫ σ2
u

0
exp(

λ

ρ2m+ σ2
u

)

(

λ

m2

)

exp(
−λ

m
) dm

= 1−

∫ 1

0
exp(

α

1 + ρ2v
)
( α

v2

)

exp(
−α

v
) dv, (55)

where we made the change of variablev = m
σ2
u

. Now takeaκ(α) = 1− I(α), where

I(α) =

∫ 1

0
exp(

α

1 + ρ2v
)
( α

v2

)

exp(
−α

v
) dv (56)

= exp(
α

1 + ρ2v
)exp(

−α

v
)

∣

∣

∣

∣

∣

1

0

−

∫ 1

0
exp(

−α

v
)exp(

α

1 + ρ2v
)

(

−αρ2

(1 + ρ2v)2

)

dv (57)

= exp(
α

1 + ρ2
)exp(−α)

+ ρ2α

∫ 1

0
exp(

−α

v
)exp(

α

1 + ρ2v
)

1

(1 + ρ2v)2
dv. (58)

Now, because all of the functions exp(−α
v
),exp( α

1+ρ2v
), 1

(1+ρ2v)2 are finite forv ∈ [0, 1], then the integral

term in (58) is also finite. As a result,limα→0 I(α) = 1 andlimα→0 κu(α) = 1. Similar results also hold

for κ∞l , κbl .

To get the limiting behavior forκ whenλ → 0, we use the original definition forκ, i.e.

κ =

∫ Mmax

0
exp(

λ

ρ2m+ σ2
u

)fM (m) dm (59)

to obtain the aforementioned limit. As a prerequisite for lemmas 3 and 4, we also need the Taylor series

expansion forκ around the pointλ = 0, which is done in the following.

We begin by first showing that the cdf of IEV, i.e.FM (M) approaches the step function whenλ → 0.

We have that

FM (M) = 1− Pout(M) = κexp(
−λ

M
). (60)

Now for anyM > 0, we have

lim
λ→0

FM (M) = lim
λ→0

κexp(
−λ

M
)

= lim
λ→0

κ. (61)
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Now we see that

lim
λ→0

κ = lim
λ→0

∫ Mmax

0
exp(

λ

ρ2m+ σ2
u

)fM (m) dm

= lim
λ→0

∫ Mmax

0

∞
∑

l=0

λl

l!

1

(ρ2m+ σ2
u)

l
fM(m) dm

= lim
λ→0

∫ Mmax

0
fM(m) dm

+ lim
λ→0

∫ Mmax

0

∞
∑

l=1

λl

l!

1

(ρ2m+ σ2
u)

l
fM(m) dm

= lim
λ→0

1 + lim
λ→0

∫ Mmax

0

∞
∑

l=1

λl

l!

1

(ρ2m+ σ2
u)

l
fM(m) dm

= 1 + lim
λ→0

∫ Mmax

0

∞
∑

l=1

λl

l!

1

(ρ2m+ σ2
u)

l
fM (m) dm,

(62)

but for m > 0, we have that 1
ρ2m+σ2

u

6
1
σ2
u

. As a result we get

lim
λ→0

∫ Mmax

0

∞
∑

l=1

λl

l!

1

(ρ2m+ σ2
u)

l
fM(m) dm 6

lim
λ→0

∞
∑

l=1

λl

l!

1

(σ2
u)

l

∫ Mmax

0
fM(m) dm, (63)

and thus

lim
λ→0

∫ Mmax

0

∞
∑

l=1

λl

l!

1

(ρ2m+ σ2
u)

l
fM(m) dm 6

lim
λ→0

∞
∑

l=1

λl

l!

1

(σ2
u)

l
, (64)

but

lim
λ→0

∞
∑

l=1

λl

l!

1

(σ2
u)

l
= lim

λ→0
(exp(

λ

σ2
u

)− 1) = 0, (65)

therefore

lim
λ→0

∫ Mmax

0

∞
∑

l=1

λl

l!

1

(ρ2m+ σ2
u)

l
fM (m) dm = 0, (66)

and finally, limλ→0 κ = 1 as claimed before. In addition and from (61), this result shows thatFM (M)

approaches the unit step function whenλ → 0 and as a resultfM (M) approaches the Dirac’s delta
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function whenλ → 0. With this assumption we have

κ =

∫ Mmax

0
exp

(

λ

ρ2m+ σ2
u

)

fM (m) dm

=

∫ Mmax

0

∞
∑

l=0

λl

l!

1

(ρ2m+ σ2
u)

l
fM(m) dm

=

∫ Mmax

0

∞
∑

l=0

λl

l!

1

(ρ2m+ σ2
u)

l
fM(m) dm

=

∞
∑

l=0

λl

l!

∫ Mmax

0

1

(ρ2m+ σ2
u)

l
fM(m) dm

=

∞
∑

l=0

λl

l!

∫ Mmax

0

1

(ρ2m+ σ2
u)

l
δ(m) dm

=

∞
∑

l=0

λl

l!

1

(σ2
u)

l
, (67)

which is the Taylor series expansion forκ aroundλ = 0 to be used in lemmas 3 and 4.
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