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An Adaptive Observer-based Switched
Methodology for the Identification of a Perturbed

Sinusoidal Signal: Theory and Experiments
B. Chen, G. Pin, W. M. Ng, C. K. Lee, S. Y. R. Hui, and T. Parisini

Abstract—This paper deals with a novel adaptive observer-

based technique for estimating the amplitude, frequency and

phase of a single sinusoidal signal from a measurement affected

by structured and unstructured disturbances. The structured

disturbances are modelled as a time-polynomial so as to represent

bias and drift phenomena typically present in applications,

whereas the unstructured disturbances are modelled as bounded

noise signals. The proposed estimation technique exploits a

specific adaptive observer scheme equipped with a switching

criterion allowing to properly address in a stable way poor

excitation scenarios. The estimator’s stability properties are

analyzed by Input-to-State Stability arguments. The practical

characteristics of the proposed estimation approach are evaluated

and compared with other existing tools by extensive simulation

trials. Real experimental results are provided as well.

I. INTRODUCTION

The problem of estimating the amplitude, frequency and
phase (AFP problem) of a single sinusoidal signal from
measurements corrupted by external disturbances appears in
a variety of engineering applications including active noise
cancellation, vibrations suppression (see [1] and the references
therein) and periodic disturbance rejection (see [2], [3], [4],
[5]), to mention a few. Recent research activities focused on
the robust sinusoid estimation problem in presence of both
structured and unstructured uncertainties (see, for example,
[6], [7], [8], [9], [10], [11] and [12] and the references cited
therein). Indeed, in the recent paper [13] the authors propose a
pre-filtering scheme that allows at the same time to deal with
structured disturbances and to generate additional variables
that are useful to generate a robust estimation of the sinusoid
parameters.

The ability of dealing with structured and unstructured un-
certainties has important practical implications in applications
scenarios in which bias and drift phenomena occur frequently.
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For example, in [9], an extension of the adaptive notch-filtering
(ANF) scheme for the biased sinusoid estimation problem
has been proposed in order to remove the limitation of the
conventional ANF that is natively applicable for unbiased
measurement. On the other hand, the class of Phase-Locked-
Loop (PLL) methodology is also commonly exploited for
constructing nonlinear estimation methods that are capable to
provide reliable estimates in a noisy environment (see [14],
[15]). However, conventional PLL-based approaches suffer
from a low-frequency ripple in presence of a dc bias. A
modified method which consists of the enhanced phase-locked
loop [14] and an extra estimator for the dc component is
introduced in [16] to overcome such a drawback. In [8],
a recursive method, relying on second-order generalized in-
tegrators is presented to reconstruct the unbiased sinusoid
from a biased measurement. Moreover, another fourth-order
frequency estimator that can cope with bias is proposed in
[7]: by adopting a switching strategy, this algorithm provides
extra attenuation of high-frequency noise in steady state.
However, the switching algorithm has to be reset if the nominal
frequency changes.

Adaptive observers represent a valid alternative to the afore-
mentioned methods offering simultaneous estimation of states
and parameters. Adaptive observer have been extensively
characterized from a control-theoretical perspective, being able
to achieve global or semi-global stability. In this framework,
the frequency of the periodic signal is often modelled as
an unknown parameter to be identified through an adaptive
observer algorithm (see, for instance, [17] and [18], and
the references cited therein). A notable feature of adaptive
observer schemes is the possibility of carrying out multi-
sinusoidal estimation by expanding the dynamic model with
a suitable system transformation (see, for example, [19], [10],
[11], and the very recent paper [20]). The flexibility of being
able to address more general scenarios that include more than
one sinusoid and also that allow simultaneous estimation of
sinusoids parameters and state variables is an advantage of
observer-based AFP schemes.

Based on some recent preliminary results presented in
[21], this paper deals with a “dual-mode” estimation scheme,
incorporating a switching algorithm (depending on the real-
time excitation level) into an adaptive observer-based sinu-
soidal estimator. In comparison with the traditional adaptive
estimators that rely on an integral type persistency of ex-
citation condition, the devised method allows to check the
excitation level in real-time thus avoiding the need for on-line
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approximate computation of integrals. The stability properties
of the devised method are analyzed in terms of Input-to-
State Stability (ISS) arguments thus coping with bounded
measurement noise.

The paper is organized as follows: Section II introduces
several useful notations and basic definitions; the problem
formulation is given in Section III. In Section IV, the robust es-
timation algorithm based on an adaptive observer is proposed.
Then, the ISS analysis of the proposed technique is dealt with
in Section V. Finally, simulation and real experimental results
showing the effectiveness of the algorithm dealt with in the
paper are given in Section VII.

II. NOTATION AND BASIC DEFINITIONS

Let R, R�0 and R
>0 denote the real, the non-negative

real and the strict positive real sets of numbers, respectively.
Given a vector x 2 Rn, we will denote as |x| the Eu-
clidean norm of x. Given a time-varying vector x(t) 2 Rn,
t 2 R�0 we will denote as kxk1 the quantity kxk1 =

sup

t�0|x(t)|. Given a matrix A 2 Rn⇥n, then ||A|| will
denote max

x2Rn\0{|Ax|/|x|}.
The notions of functions of class K, class K1, and class

KL are used to characterize stability properties. A function
↵ : R�0 ! R�0 belongs to the class K if it is continuous,
strictly increasing and ↵(0) = 0. If, in addition lim

s!1 = 1
then it belongs to the class K1. A continuous function
� : R�0 ⇥ R�0 ! R�0 belongs to the class KL if, for
any fixed t 2 R�0, the function �(·, t) is a K-function with
respect to the first argument and if, for any fixed s 2 R�0,
the function �(s, t) is monotonically decreasing with respect
to t and lim

t!1 �(s, t) = 0. Given an i-times differentiable
vector of signals u(t) 2 Rn, 8t 2 R�0, we denote by d

i

dt

iu(t)
the vector of i-th derivative signals.

Consider the following dynamical system

˙

x = f(x,u) (1)

with x 2 Rn, u 2 Rm, f(0, 0) = 0 and f(x,u) locally
Lipschitz in Rn ⇥ Rm.

Definition 2.1 (ISS): The system (1) is ISS (Input-to-State
Stable) if there exist a KL-function �(·, ·) and a class K-
function such that, for any input u 2 Rm and any initial
condition x0 2 Rn, the trajectory of the system verifies

|x(t)|  �(|x0|, t) + �(kuk1) (2)

Definition 2.2 (ISS-Lyapunov Function): A function V :

Rn ! R�0 of class C1 is an ISS-Lyapunov function for (1)
if there exist three K1-functions ↵(·), ↵(·), ↵(·) and a K-
function X (·) such that

↵(|x|)  V (x)  ↵(|x|), 8x 2 Rn (3)

and

|x|�X (|u|) ) @ V

@x
f(x, u)�↵(|x|), 8x2Rn, 8u2Rm

(4)
Theorem 2.1 ([22]): The system (1) is ISS if and only if it

admits an ISS-Lyapunov function. ⇤

III. PROBLEM STATEMENT AND PRE-FILTERING DESIGN

Consider a nominal sinusoidal signal described by
8
<

:

s(t) = A sin(#(t))
˙#(t) = !⇤

#0 = �
, t 2 R�0 . (5)

where A, !⇤, and # denote the amplitude, angular frequency
and phase, respectively.

The AFP estimation problem deals with estimating A, !⇤,
and # from the following perturbed measurement:

ŷ(t) = s(t) +

ndX

k=1

b
k

tk�1
+ d(t) , t 2 R�0 (6)

where the term
P

nd

k=1 bkt
k�1 represents a time-polynomial

structured perturbation, with b
k

unknown for any k 2
{1, . . . , n

d

}, and n
d

is chosen a-priori by the designer de-
pending on the expected type of structured perturbations. More
specifically, setting n

d

= 1 allows to cope with unknown bias
and offsets (for example, the ones typically affecting physical
transducers and A/D converters). Setting n

d

= 2 entails the
presence of drift phenomena (for instance, the ones affecting
several sensing devices that are sensitive to temperature vari-
ations)1. The term d(t) characterizes a bounded unstructured
measurement noise, that is, we assume

|d(t)|  ¯d , t 2 R�0 .

where ¯d is an a-priori known positive scalar. Moreover, we also
assume that a (possibly conservative) known upper bound !̄
on the angular frequency !⇤ is available, that is

!⇤  !̄ .

To deal with the structured perturbation term
P

nd

k=1 bkt
k�1

appearing in (6), we extend the pre-filtering strategy pro-
posed in [23], [13] (see also the alternative GPI observer
approach [24]). To this end, we address the AFP estimation
problem for the noise-free signal

y(t) = s(t) +

ndX

k=1

b
k

tk�1 , t 2 R�0 . (7)

In the simplified setting given by (7), the pre-filtering consists
in computing 1+n

d

auxiliary filtered signals x1(t), x2(t), . . .,
x1+nd(t), obtained as follows, and that will be used later on
in the adaptive observer-based estimator (see (14)):
8
<

:

ẋ1(t) = � (�y(t)� x1(t))

ẋ
k

(t) = � (�x
k�1(t)� x

k

(t)) , 8k 2 {2, . . . , 1 + n
d

}
,

(8)
where x

k

(0) = x
k0, k 2 {1, . . . , 1 + n

d

}; � and � are
positive design parameters to be selected by the designer. In
qualitative terms, � determines the cut-off frequency while
� 2 (0, 1] acts as a damping coefficient (see Section VII

1Note that the choice of nd is not unique. For instance, a bias can be
removed with all nd � 1. Therefore, in case of a sensing devise affected by
uncertain perturbations, a proper choice of nd has to be carried out depending
on the a-priori knowledge about the possible structured uncertainties in the
specific application.
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for more details). Defining x(t) , [x1(t), . . . , x1+nd(t)]
>,

a state-space realization of the filter evolving from arbitrary
initial conditions x0 2 R1+nd is

8
<

:

˙

x(t) = A

�,�

x(t) + b
�,�

y(t)

x1+nd(t) = c

>
x(t)

,

where

A

�,�

=

2

6666666664

�� 0 · · · · · · 0

�� ��
. . .

...

0

. . . . . . . . .
...

...
. . . . . . . . .

0

0 · · · 0 �� ��

3

7777777775

, b

�,�

=

2

6664

��
0

...
0

3

7775
,

and
c

>
=

⇥
0 · · · 0 1

⇤
.

Accordingly, we have

c

>
A

k

�,�

b

�,�

= 0, 8k 2 {0, . . . , n
d

� 1} .

Then, the time-derivatives ẋ1+nd(t), ẍ1+nd(t), · · · ,
d

1+nd

dt

1+nd
x1+nd(t) can be computed as follows:

dk

dtk
x1+nd(t) = c

>
A

k

�,�

x(t), 8k 2 {1, . . . , n
d

} ,

d1+nd

dt1+nd
x1+nd(t) = c

>
A

nd
�,�

(A

�,�

x(t) + b

�,�

y(t)) .

(9)

Now, we have

L[x
k

](s) = H
k

(s)L[y](s) with H
k

(s) =
�k�k

(s+ �)k
.

Then, neglecting the initial conditions of the internal filter’s
states, the auxiliary signal can be expressed as:

L[x1+nd ](s) = H1+nd(s)A
s sin(�) + !⇤

cos(�)

s2 + !⇤2

+ H1+nd(s)

ndX

k=1

b
k

(k � 1)!

1

sk

and hence

L

dndx1+nd

dtnd

�
(s) = H1+nd(s)A

s sin(�) + !⇤
cos(�)

s2 + !⇤2 snd

+ H1+nd(s)

ndX

k=1

b
k

(k � 1)!snd�k .

which infers that the time-polynominal perturbation vanishes
asymptotically after the derivative operations. For briefness, let
us now introduce the following vector of auxiliary derivatives:

z(t) =


z1(t)
z2(t)

�
,

2

64

dnd

dtnd
x1+nd(t)

d1+nd

dt1+nd
x1+nd(t)

3

75 .

Clearly, z(t) tends asymptotically to a sinusoidal regime

z̄(t) = [z̄1(t), z̄2(t)]
> given by

z̄1(t) =
dnd

dtnd
x̄1+nd(t) = A

z

sin(#
z

(t))

z̄2(t) = A
z

!⇤
cos(#

z

(t))
,

where
A

z

= A!⇤nd |H1+nd(j!
⇤
)|

#
z

(t) = #(t) + \H1+nd(j!
⇤
) +

⇡

2

n
d

. (10)

In view of (9), the auxiliary derivatives z(t) can be written in
a compact form z(t) = ⇤

⇥
y(t) , x(t)>

⇤>, with ⇤ given by

⇤ =

"
0 c

>
A

nd
�,�

c

>
A

nd
�,�

b

�,�

c

>
A

1+nd
�,�

#
.

As a final remark, it is immediate to see that the sinusoidal
regime ¯

z(t) can be described in terms of the following simple
state equations:

⇢
˙

z(t) = A

¯

z(t) + ⌦

⇤
A1¯z(t)

z̄1(t) = C

¯

z(t)
(11)

by setting the initial conditions as

¯

z(0) =


A

z

sin

�
#0 + \H1+nd(j!

⇤
) +

⇡

2nd

�

A
z

!⇤
cos

�
#0 + \H1+nd(j!

⇤
) +

⇡

2nd

�
�
,

and where ⌦

⇤
= !⇤2, A =


0 1

0 0

�
, A1 =


0 0

�1 0

�
,

and C =

⇥
1 0

⇤
.

IV. THE ADAPTIVE OBSERVER

Consider again the perturbed measurement signal ŷ(t) given
by (6). Let us denote by ˆ

x(t) the actual state vector of the
pre-filter, driven by the noisy signal ŷ(t) and evolving from
an arbitrary initial condition ˆ

x0 as follows:
⇢

˙

ˆ

x = A

�,�

x̂(t) + b

�,�

ŷ(t)

x̂1+nd(t) = c

>
ˆ

x(t),
, (12)

Now, let ˆ

z(t) be the vector of the computable perturbed
counterpart of z(t):

ˆ

z(t) = ⇤[ŷ(t) , ˆx(t)>]> . (13)

By introducing the estimated state ˆ

z(t) and the estimated
squared-frequency ˆ

⌦(t) = (!̂(t))2, the following adaptive
observer is proposed:
8
><

>:

˙

ˆ

z(t) = (A� LC)

ˆ

z(t) + LC

ˆ

z(t) +A1ˆz(t)ˆ⌦(t) + ⇠(t)
˙

ˆ

⌦(t)
˙⇠(t) = (A� LC)⇠(t) +A1ˆz(t)
˙

ˆ

⌦(t) = �µ⇠(t)>(ˆz(t)� ˆ

z(t))
(14)

where µ is an arbitrary positive constant and L is the observer
gain, obtained by assigning the eigenvalues of the observer
such that A� LC is Hurwitz.

Given ˆ

⌦(t) and ˆ

z(t) and assuming, for the moment, that

ˆ

⌦(t) > 0, 8 t , (15)

then, the filtered regime amplitude and phase (A
z

,#
z

) defined

for the comment of reviewer 2
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in (10) are estimated on-line by

ˆA
z

(t) =

q
(

ˆ

⌦(t)ẑ1(t)2 + ẑ2(t)2)/ˆ⌦(t) , (16)

and
ˆ#
z

(t) = \ [ẑ2(t) + j!̂(t)ẑ1(t)] . (17)

Thanks to the availability of ˆA
z

, !̂, ˆ#
z

related to the auxiliary
signal z̄1(t), from (10), with the assumption (15), we obtain
the following estimates of the original parameters:

ˆA(t) =
ˆA
z

(t)

!̂(t)
nd

✓
1

|H1+nd(j!̂(t))|

◆
, (18)

and
ˆ#(t) = ˆ#

z

(t)� \H1+nd(j!̂(t))� n
d

⇡

2

. (19)

After some algebra, we finally get:

ˆA(t) =
ˆA
z

(t)

!̂(t)
nd

 
(�2 + !̂(t)

2
)

1
2

��

!1+nd

,

ˆ#(t) = ˆ#
z

(t) + (1 + n
d

) arctan

✓
!̂(t)

�

◆
� n

d

⇡

2

.

(20)

Assumption (15) is needed for (16) and (18) to be well-
posed at any time-instant t. Let us remove the need for (15)
by resorting to the following adaptive amplitude estimators. To
this end, note that (16) can be interpreted as a time-varying
constraint for A

z

(t), that depends on the frequency estimate
ˆ

⌦(t) and on the instantaneous values of the filtered signals
ẑ1(t) and ẑ2(t). Introducing the time-varying residual

R(

ˆA
z

(t), t) , ˆA
z

(t)!̂(t)�
q

ˆ

⌦(t)ẑ1(t)2 � ẑ1(t)2 ,

the following adaptation law can be designed

˙

ˆA
z

(t) = �µ
A

@R(

ˆA
z

, t)

@ ˆA
z

R(

ˆA
z

, t)

= �µ
A

!̂(t)

"
!̂(t) ˆA

z

(t)�
r⇣

ˆ

⌦(t)ẑ1(t)2 + ẑ2(t)2
⌘#

,

(21)

where ˆA
z

(0) = 0 and µ
A

2 R
>0 is a tuning gain set

by the designer to ensure the asymptotic convergence of
R(

ˆA
z

(t), t) to 0. Hence, the estimate of the filtered amplitude
ˆA
z

(t) can be computed through (21) without the need of
assuming (15). Using ˆA

z

(t) provided by (21), the following
adaptive algorithm can be finally used to estimate the original
amplitude:

˙

ˆA(t) = �µ
A

!̂nd

 
ˆA(t)!̂nd �

ˆA
z

(t)

|H1+nd(j!̂(t))|

!
, (22)

with ˆA(0) = 0. In Section VII, the amplitude estimate given
by (22) is evaluated in simulation.

V. ISS PROPERTY OF THE ADAPTIVE ESTIMATOR

Let us first analyze the stability of the filter’s dynamics.
Introducing the error vector with respect to ¯

x(t), which is
driven by a choice of the filter’s initial state ¯

x0 such that
the projection on the z subspace of the filtered state trajectory

¯

x(t) matches the stationary sinusoidal behaviour since the very
beginning,

˜

x(t) , ˆ

x(t)� ¯

x(t)

and noticing that d(t) = ŷ(t)�y(t), the dynamics of ˜x(t) can
be written as:

⇢
˙

˜

x(t) = A

�,�

˜

x(t) + b

�,�

d(t)
˜

x(0) =

ˆ

x0 � ¯

x0
, (23)

Being A

�,�

Hurwitz, it is well-known from standard linear
systems theory that the filter is ISS with respect to the additive
noise d(t). In particular, it can be shown that ISS asymptotic
gain of this filter is given by �

x

(s) =

a2
a1

X (s), in which
X (s) =

2 kPk |b�,� |
1�✏ s with s 2 R�0 and 0 < ✏ < 1, P is

a positive definite matrix that solves the Lyapunov equation
PA

�,�

+A

>
�,�

P = �I and a1, a2 are two positive scalars,
such that a1|˜x|2  ˜

x

>
P

˜

x  a2|˜x|2, 8˜x .
In view of the ISS property of the linear auxiliary filter

(23), for any arbitrary ⌫ 2 R
>0 and for any finite-norm initial

error ˜

x0, the error vector ˜x(t) enters in a closed ball of radius
�
x

(kdk1)+⌫  �
x

(d)+⌫ in finite time T
x̃0,⌫ . Thanks to (13),

the vector ˜z(t) , ˆ

z(t)�z(t) enters in finite-time T
�z = T

x̃0,⌫

(for the sake of simplifying the notation, we have dropped the
dependence of the reach-time T

�z on initial conditions) in a
closed ball of radius �

z

(

¯d) + �
z

centered at the origin, with

�
z

=

¯�⌫ ; �
z

(s) = ¯� (�
x

(s) + s), 8s 2 R�0, (24)

where � = k⇤k. Thus, the boundedness of ˆz(t) is justified due
to the boundedness of ¯z(t) and the equality ˆ

z(t) = ˜

z(t)+z(t).
Now, we address the stability of the adaptive observer. To

this end, let us introduce some instrumental error variables:
˜

z(t) , ˆ

z(t) � ¯

z(t), ˜

⌦(t) , ˆ

⌦(t) � ⌦

⇤, and  (t) , ˜

z(t) �
⇠(t)˜⌦(t). Then, we have:

˙

˜

z(t) = (A� LC)

˜

z(t) + (LC+ ⌦

⇤
A1)˜z(t) + ˜

⌦(t)A1ˆz(t)

+ ⇠(t)
˙

ˆ

⌦(t) ,

˙

˜

⌦(t) = �µ⇠(t)>⇠(t)˜⌦(t) + µ⇠(t)>
�
˜

z(t)�  (t)
�
, (25)

and

˙ (t) = (A� LC) (t) + (LC+ ⌦

⇤
A1)˜z(t) . (26)

The following assumption is needed to address the conver-
gence analysis of the estimator.

Assumption 1: The solution ⇠(t) of ˙⇠(t) = (A�LC)⇠(t)+
A1ˆ¯z(t) is instantaneously persistently exciting (IPE) in the
sense that there exist a positive constant ✏ such that

⇠(t)>⇠(t) > ✏, 8t > 0. (27)

It is worth noting that, instead of the typical integral type
of persistency of excitation condition (see, for instance, [7])
that requires on-line buffering by a moving time window,
the exploitation of the above IPE condition in the switching
algorithm presented in Section VI greatly enhances the on-line
implementation of the adaptive estimation technique.

Now, the following basic stability result is given and proved.

bc10
for the comment of reviewer 2
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Theorem 5.1 (ISS of the adaptive observer system):
Suppose that Assumption 1 holds. Then, given the sinusoidal
signal s(t) generated by (5) and the perturbed measurement
model (6), the adaptive observer as well as the frequency
estimator given by (12), (13) and (14) are ISS with respect to
any additive measurement perturbation such that |d(t)|  d .

⇤
Proof: Consider the candidate Lyapunov function

V
 

=  (t)>Q (t), where Q is a positive def-
inite matrix solving the linear Lyapunov’s equation:
Q(A� LC) + (A� LC)

>
Q = �I. In view of the dynamics

of  (t) obeying (26), the time-derivative of the Lyapunov
function verifies the inequality

@ V
 

@ 
˙ (t)  �| (t)|2 + 2||Q|| ||LC+ ⌦

⇤
A1|| |˜z(t)| | (t)| .

Hence, V
 

is an ISS-Lyapunov function for  (t) with respect
to the ˜

¯

z(t). Moreover, the dynamics of ˜¯z(t) is ISS with respect
to disturbance d(t), so that  (t) is, in turn, ISS with respect
to d(t) such that |d(t)|  ¯d. Now, let V⌦̃ =

1
2
˜

⌦(t)2 be
a candidate Lyapunov function of the frequency-estimation
subsystem. Then, the derivative of V⌦̃ verifies the inequality

@ V⌦̃

@ ˜⌦

˙

˜

⌦(t)  �µ|⇠(t)|2|˜⌦(t)|2 + µ|⇠(t)||˜z(t)�  (t)| |˜⌦(t)|
(28)

In view of (28), Assumption 1, and the boundedness of |⇠(t)|
(it is immediate to show that the dynamics of ⇠(t) is ISS with
respect to the bounded input ˆz), we have that ˜⌦(t) is ISS with
respect to  (t) and ˜

z(t), which are all proven to be ISS with
respect to d(t) such that |d(t)|  ¯d.

Finally, the identity ˜

z(t) =  (t)+ ⇠(t)˜⌦(t), and the bound-
edness of |⇠(t)| together imply that also the state-estimation
error ˜

z(t) is ISS with respect to d(t) such that |d(t)|  ¯d.

Next, we are going to establish the relationship between the
excitation condition and the observer poles location.

Lemma 5.1 (Observer Poles and Excitation): Assume that
in the noise-free mode of behaviour (that is, d(t) = 0), the
poles of A� LC are assigned to (p1, p2), where p1, p2 =

a± jb with a 2 R
<0, b 2 R, such that

a2 > b2, a 2 R
<0, b 2 R . (29)

Then, the PE condition (27) is verified for any t > 0 by any
sinusoidal signal.

Proof: In stationary conditions, by defining B

⇠

=

[0 � 1]

>, the dynamic equation of ⇠(t), in absence of noise
can be rewritten as

˙⇠(t) = (A� LC)⇠(t) +B

⇠

z̄1(t) .

Then, in the Laplace domain we have ⇠
k

(s) =

G
k

(s)z̄1(s), k 2 {1, 2}, where G
k

(s) = e

>
i

(sI � A +

LC)

�1
B

⇠

and e

i

denotes the i-th unit vector.
Now, letting p , p1+p2 and q , p1p2, by a simple algebra

we obtain

G1(s) = � 1

s2 � ps+ q
, G2(s) = � s� p

s2 � ps+ q
,

and

�
G1 = arctan

p!

q � !2
, �

G2 = arctan

p2! � q! + !3

pq
.

Owing to the structure of G1 and G2, the following inequality
holds

⇠>(t)⇠(t) �
2X

k=1

g2
k

A2
z

sin

2
(#

z

+ �
Gk),

where g
k

= |G
k

(j!̄)| and �
Gk represents the phase shift of

G
k

(s) at the frequency of the sinusoid.
Now, we show that �

G1(!) 6= �
G2(!), 8! > 0 by

contradiction. Let us assume that there exists ! > 0, such
that �

G1 = �
G2 . The hypothesis is verified if and only if

p

q � !2
=

p2 � q + !2

pq
,

which is equivalent to

!4
+ (p2 � 2q)!2

+ q2 = 0 . (30)

In view of (29), Eq. (30) does not admit positive roots in
the variable ! (since p2 � 2q = p21 + p22 > 0 and q2 > 0).
Therefore, we can conclude that �

G1 6= �
G2 , 8! > 0. Finally,

due to the phase separation property, the following inequality
is verified for all t > 0

⇠>(t)⇠(t) �
2X

k=1

g2
k

A2
z

sin

2
(#

z

+ �
Gk) > 0

and there always exist a constant ✏ 2 R
>0 that fulfils (27),

thus ending the proof.

VI. SWITCHING MECHANISM BASED ON EXCITATION
LEVEL

It is worth noting that the excitation condition (27) might
not be satisfied on certain time-instants, especially when the
magnitude of the sinusoidal signal (5) is small compared to
magnitude of disturbances and higher order harmonics. In
order to avoid the estimate drift phenomena, the adaptation
parameter µ is switched based on the following normalized
excitation level

�(t) =
�
⇠(t)>⇠(t) + ⇢

��1
⇠(t)>⇠(t) .

where ⇢ is a given positive scalar. We introduce a pre-defined
excitation threshold � so that

µ = 0 if �(t) < � (poor excitation) .

Notice that in [25] a different switching rule is given, in which
an hysteretic excitation-based switching algorithm is employed
to ensure a minimum finite duration between transitions.

Clearly, it is important to show that the estimation error
remains bounded even during the poor excitation scenarios.
This is carried out in the following

Lemma 6.1 (Boundedness in dis-excitation phase):
Assume that µ = 0, 8t � ¯t > 0, where ¯t denotes the
time-instant at which the adaptation is switched off. Then, the
dynamics of the adaptive observer-based sinusoidal estimator
given by (14) is ISS with respect to d(t) such that |d(t)|  ¯d
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and with respect to the value of the frequency estimation
error before the adaptation is switched off (that is, ˜

⌦(

¯t�)).
⇤

Proof: In the suppressed identification phase, ˙

ˆ

⌦(t) =

˙

˜

⌦(t) = 0, such that ˜

⌦(t) =

˜

⌦(

¯t�) and the error dynamics
˜

z(t),  (t) evolve according to the following differential equa-
tions:

˙

˜

z(t) = (A� LC)

˜

z(t) + (LC+ ⌦

⇤
A1)˜z(t) + ˜

⌦(t)A1ˆz(t) ,

˙ (t) = (A� LC) (t) + (LC+ ⌦

⇤
A1)˜z(t) .

Note that the ISS properties of ⇠(t) and  (t) are preserved
in this scenario. Due to the identity ˜

z(t) =  (t) + ⇠(t)˜⌦(t),
we conclude that the dynamics of ˜

z(t) admits a bound that
depends on the noise level ¯d and on the initial parametric
error ˜

⌦(

¯t�).
Remark 6.1 (Robustness during dynamic switching): It is

worth noting that the behaviour of the estimator under alternate
switches can be characterized by linking the Lyapunov bounds
in any two consecutive excitation and dis-excitation intervals.
Then, it is possible to determine a minimum time-duration of
the active identification phases that guarantees the asymptotic
ISS property of the discrete dynamics induced by the sampling
the estimator in correspondence to the transitions (see [25]).

VII. SIMULATION AND EXPERIMENTAL RESULTS

A. Simulation Results

In this subsection, some numerical examples are given to
illustrate the effectiveness of the proposed AFP methodology.
The Forward-Euler discretization method with sampling period
T
s

= 1ms is used in all simulations.
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µ=5 without switching

µ=5 with switching

µ=2 without switching

µ=2 with switching

switching transitions

Fig. 1. Estimated frequency obtained by using the proposed AFP method
with and without switching. The switching time-instants are shown by vertical
dotted lines.

Example 1: Consider a biased sinusoidal measurement af-
fected by a high-order harmonic and random noise:

ŷ(t) = 1 +A(t) sin(3t) + ↵(t) sin 12t+ d(t),

where A(t) and ↵(t) are step-wise changing amplitudes of the
sinusoid and harmonic respectively: A(t) = 5,↵(t) = 0.5 for
t 2 [0, 15), A(t) = 0.5,↵(t) = 2 for t 2 [15, 30), A(t) =

5,↵(t) = 0.5 for t � 30, while d(t) is a unstructured noise

with uniform distribution in the interval [�0.5, 0.5]. With the
tuning parameters set: � = 2, � = 0.7, p1 = �4, p2 = �6,
the results for the algorithm without switching for µ = 5

and µ = 2 are depicted in Fig.1 (red and green dotted lines
respectively). For comparison, the estimates obtained in the
same situations with the switching rule characterized by ⇢ = 1

and � = 0.1, is plotted in the Fig.1 as well (blue and black
dotted lines respectively). In the figure, the switching time-
instants are enhanced by vertical dotted lines.

As expected, during the time-windows in which enough
excitation is present, the proposed AFP estimator is able to
provide reliable estimates. On the other hand, during poorly-
excited scenarios, the estimated frequency is frozen at the
value taken immediately before turning-off the adaptation
whereas, in case of no switching, the estimate shows a drift,
as expected. Moreover, it is also worth noting that larger
values of µ improve the convergence rate at the expense of
weaker noise attenuation (typical trade-off between asymptotic
accuracy and convergence speed). Finally, we observe that
the harmonic disturbance does not influence significantly the
estimation performance due to its relatively small amplitude.
Larger amplitudes clearly would have generated an attractive
different equilibrium regime for the estimator.

Let us now address two important aspects, namely, guide-
lines for the tuning of the parameters � and � and the effects
on the estimates of the discretization.

1) Tuning rules of � and �: Consider a signal ŷ(t) =

b1(t) + 3 sin 5t + d(t), where b1(t) = 2 for t 2 [0, 10),
b1(t) = 1 for t > 10, while d(t) is the measurement noise with
uniform distribution in the interval [�2.5, 2.5]. First, we apply
the nominal estimator with a constant µ = 5 (no adaptation),
and after we tune � and � with the constraint of keeping
constant products �� = 4 and �� = 4, respectively. The
results that have been obtained are shown in Fig. 2. For the
sake of comparison, the results obtained with the same election
of parameters but without noise are plotted as well.

As can be noticed from the plots given in Fig. 2, the
noise attenuation capabilities depend on the product of �
and �: smaller values of this product give rise to better
noise attenuation but worse convergence speed and vice versa.
Moreover, for a given value of the product of � and �, a
reduction of � typically yields better transient performance.

2) Estimation bias due to discretization: In the practical
digital implementation of the proposed continuous-time AFP
methodology a bias on the frequency estimate has to be
expected due to the discretization. In order to evaluate this
bias, let us assume that the filter equations (8) are discretized
by a Euler method with sampling-time T

s

. We immediately
get

X1+nd(z) =
(��T

s

)

1+nd

(z � 1 + �T
s

)

1+nd
Y (z) ,

where Y (z) represents the discretized measurement. After
discretization and some simple algebra, the Z-transforms of
the auxiliary derivatives z1, z2 are given by

Z1 = (��)1+ndT
s

(z � 1)

nd

(z � 1 + �T
s

)

1+nd
Y (z)

for the second comment of reviewer 3
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Fig. 2. Frequency tracking behavior based on the three sets of � and � for
a biased sinusoidal signal (top row:�� = 4, bottom row:�� = 6)

and
Z2 = (��)1+nd

(z � 1)

1+nd

(z � 1 + �T
s

)

1+nd
Y (z) .

Owing to the asymptotic sinusoidal steady-state behaviour, the
squared frequency after discretization is computed by

⌦discr , �z � 1

T
s

Z2

Z1
.

After some simple algebra, we get ⌦discr = � (z�1)2

T

2
s

and
then, for a given measurement with true frequency !⇤, we
have

⌦discr = �Re[(ej!
⇤
Ts
)

2
]

T 2
s

=

2 cos(!⇤T
s

)(1� cos(!⇤T
s

))

T 2
s

.

Thus, the steady-state value of the frequency after discretiza-
tion is

!discr =
p
2 cos(!⇤T

s

)(1� cos(!⇤T
s

))/T
s

. (31)

The relationship (31) may turn out to be useful in practice to
correct the effects of discretization after convergence of the
estimator. To get some more insight on this important aspect,
consider a noise-free signal y(t) = 2 + 3 sin!t and consider
increasing values of ! for a given value of the sampling-time
T
s

= 10ms. In Fig. 3 the corrected values generated by (31)
are compared with the true values.
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0.08

0.1
Estimated results vs calculated results

ω × Ts

ω
* ×

 T
s

 

 

adaptive observer frequency estimate

Discretization−corrected frequency estimate

Fig. 3. Plot of !Ts against !⇤Ts

Example 2: In this example, a biased signal with two fre-
quency steps is employed to compare the proposed AFP tech-
nique with two techniques available from the recent literature:
the AFP method presented in [8] and the PLL-based technique
in [16]. Let us assume that the signal that is perturbed by the
same noise d(t) as the one considered in the previous example:

ŷ(t) = �(t) + 3 sin(!(t)t) + d(t) ,

with

!(t) =

8
<

:

4, 0  t < 10

6, 10  t < 35

2 35  t < 50

, �(t) =

⇢
1, 0  t < 20

3 20  t < 50

.

All the methods are initialized with the same initial condition
!̂(0) = 1. Method [16] is tuned with: µ0 = 1, µ1 =

1, µ2 = 3, µ3 = 0.8, while method [8] is tuned with:
K

s

= 1, � = 1, !
s

= 4, Q0 = (1/�)I. The adaptive
parameters of the proposed method are chosen as: � = 5, � =

0.7 , µ = 4, p1 = �4, p2 = �6. The simulation results are
shown in Fig.4.

As can be noticed, all methods are capable to track the
step-wise changing frequency with the similar response time
to the first frequency value, however the PLL method [16]
suffers from relatively larger overshoots for new values of the
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Fig. 4. Estimated Frequencies from a biased and noisy input signal

frequency and requires quite a long response time to deal with
the considerable frequency drop. The AFP method [8] shows
the best robustness against the noise at the cost of slowly
tracking the intermediate frequency. Meanwhile, [8] is more
sensitive to a bias variation. The proposed method shows the
best transient performance and satisfactory capability of noise
attenuation. In addition, it is worth noting that the PLL method
is likely to be more sensitive to the adjustments of the tuning
parameters than the other two methods.

For the sake of completeness, the behaviour of the amplitude
adaptation scheme (21) is compared in Fig.5 with the outcome
of the direct equation (16). The adaptive mechanism, besides
resolving the division by 0 issue of (16), significantly improves
the estimate in correspondence of the jumps in the frequency
estimates.
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Fig. 5. Comparison of the behaviors in terms of amplitude estimation with
adaptive mechanism (blue line) and unadapted algorithm(red line).

B. Experimental Results

Now, a practical implementation depicted in Fig.6 is con-
ducted in order to evaluate the response time and accuracy of
the proposed approach. Fig.7 shows a picture of the actual
setup based on the Lab-Volt wind power training system,
wherein the prime mover drives the wind turbine generator
with a transmission belt, thereby producing an ac voltage
across the generator windings. It is worth noting that the
rotational speed of the prime mover to maintain the gener-
ator output AC frequency of 50Hz is 665 rpm. During the
experiment, the speed of the prime mover is programmed to
emulate the intermittent nature of wind power. As a result,

!

Prime 
mover Rotor

Wind Turbine 
Generator

Electric Load

Ta
ch

om
et

er

dSpace Real 
Time Processor
DAC

ADC

Fig. 6. Experimental setup.

the generator output voltage and frequency are not constant.
Moreover, the resistive load is applied as the electrical load.
The instantaneous line voltage across the generator windings is
measured by an analog-to-digital-converter (ADC) with a sam-
pling frequency of 60kHz, while a digital-to-analog-converter
(DAC) is utilized to generate the estimated frequency. Such
estimates are iteratively produced by the proposed estimator,
which is integrated in a digital real time processor. Finally,
the measured prime mover rotational speed and the estimated
frequency are captured by an oscilloscope and recorded by
a high precision digital-multimeter (DMM) with 5 digits
resolution.

Fig. 7. Picture of the experimental setup based on Lab-Volt Wind power
training system.

The dynamic behaviour of the proposed AFP algorithm is
shown in Fig.8, where we observe that the estimated frequency
tracks the fluctuating rotational speed of the wind turbine
from 8Hz to 55Hz closely with almost identical profile. Fig. 9
shows the values of the identified frequency and prime mover
rotational speed. The subtle differences between the frequency
estimates and reading from tachometer (less than 0.25mV)
are due to the instrument tolerance and noise generated by
the prime mover drive. Therefore, these results show that the
accuracy of the proposed algorithm is limited by the resolution
of the measurement equipment. It is important to note that the
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proposed AFP algorithm achieves high precision frequency
estimation with an accuracy of 0.05Hz resolution in this setup.

!
Fig. 8. Experimental results. Ch1. (bule) Estimated frequency obtained by
using the proposed AFP method (20Hz/Div), Ch2. (pink) Output voltage from
the analog tachometer (500rpm/Div), Ch3. (yellow) line voltage across the
wind turbine generator (50V/Div). Time base: 5s/Div.

!
Fig. 9. Comparison of the estimated frequency obtained by using the
proposed AFP method and measured prime mover rotational speed.

VIII. CONCLUDING REMARKS

In this paper, a novel dual-mode ISS-stable adaptive
observer-based technique for estimation of the amplitude,
frequency and phase of sinusoidal signals from measurements
affected by structured and unstructured disturbances has been
presented and analyzed. The estimator embeds a switching
criterion that disables the adaptation in real-time under poor
excitation conditions. Extensive simulations and real experi-
ments have been carried out to show the effectiveness of the
proposed adaptive algorithm.

Future research efforts will be devoted to extend the
methodology to the case of multiple-frequencies estimation

and to a potentially larger class of structured measurement
uncertainties (some preliminary results have already been
obtained in [25], [20]).
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