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Labeled Random Finite Sets and the Bayes

Multi-Target Tracking Filter
Ba-Ngu Vo∗, Ba-Tuong Vo†, Dinh Phung‡

Abstract—An analytic solution to the multi-target Bayes re-
cursion known as the δ-Generalized Labeled Multi-Bernoulli (δ-
GLMB) filter has been recently proposed in [1]. As a sequel
to [1], this paper details efficient implementations of the δ-
GLMB multi-target tracking filter. Each iteration of this filter
involves an update operation and a prediction operation, both of
which result in weighted sums of multi-target exponentials with
intractably large number of terms. To truncate these sums, the
ranked assignment and K-th shortest path algorithms are used
in the update and prediction, respectively, to determine the most
significant terms without exhaustively computing all of the terms.
In addition, using tools derived from the same framework, such
as probability hypothesis density filtering, we present inexpensive
(relative to the δ-GLMB filter) look-ahead strategies to reduce
the number of computations. Characterization of the L1-error in
the multi-target density arising from the truncation is presented.

Index Terms—Random finite set, marked point process, con-
jugate prior, Bayesian estimation, target tracking.

I. INTRODUCTION

Multi-target filtering involves the on-line estimation of an

unknown and time-varying number of targets and their individ-

ual states from a sequence of observations [2]–[4]. While the

term multi-target filtering is often used interchangeably with

multi-target tracking, there is a subtle difference. In multi-

target tracking we are also interested in the trajectories of

the targets (indeed, real multi-target tracking systems require

track labels). This work is concerned with a Bayesian multi-

target filtering solution that also provides estimates of target

trajectories, hence the name multi-target tracking filter.

The key challenges in multi-target filtering/tracking include

detection uncertainty, clutter, and data association uncer-

tainty. To date, three major approaches to multi-target track-

ing/filtering have emerged as the main solution paradigms.

These are, Multiple Hypotheses Tracking (MHT), [2], [5]–

[7], Joint Probabilistic Data Association (JPDA) [2], [4], and

Random Finite Set (RFS) [3].

The random finite set (RFS) approach provides an ele-

gant Bayesian formulation of the multi-target filtering/tracking

problem in which the collection of target states, referred to as
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the multi-target state, is treated as a finite set [3], [8]. The ra-

tionale behind this representation traces back to a fundamental

consideration in estimation theory–estimation error [9]. This

mathematical framework subsequently became a very popular

multi-target estimation method with applications in sonar [10],

computer vision [11], [12], [13], [14], field robotics [15], [16],

[17], [18], [19] traffic monitoring [20], [21], [22], cell biology

[23], [13], [24], sensor network and distributed estimation [25],

[26], [27], [28] etc.

The centerpiece of the RFS approach is the Bayes multi-

target filter [3], which recursively propagates the filtering

density of the multi-target state forward in time. This filter

is also a (multi-target) tracker when target identities or labels

are incorporated into individual target states. Due to the nu-

merical complexity of Bayes multi-target filter, the Probability

Hypothesis Density (PHD) [8], Cardinalized PHD (CPHD)

[29], and multi-Bernoulli filters [30], [9] have been developed

as approximations. These filters, in principle, are not multi-

target trackers because they rest on the premise that targets

are indistinguishable.

In [1], [31], the notion of labeled RFSs is introduced to

address target trajectories and their uniqueness. The key results

include conjugate priors that are closed under the Chapman-

Kolmogorov equation, and an analytic solution to the Bayes

multi-target tracking filter known as the δ-generalized labeled

multi-Bernoulli (δ-GLMB) filter. Although a simulation result

was presented to verify the solution, specific implementation

details were not given.

As a sequel to [1], the aim of this paper is to complement

its theoretical contributions with practical algorithms that will

facilitate the development of applications in signal processing

and related fields. In particular, we present an efficient and

highly parallelizable implementation of the δ-GLMB filter.

Each iteration of the δ-GLMB filter involves multi-target filter-

ing and prediction densities that are weighted sums of multi-

target exponentials. While these sums are expressible in closed

forms, the number of terms grows super-exponentially in time.

Furthermore, it is not tractable to exhaustively compute all the

terms of the multi-target densities first and then truncate by

discarding those deemed insignificant.

The key innovation is the truncation of the multi-target

densities without exhaustively computing all their components.

The multi-target filtering and prediction densities are truncated

using the ranked assignment and K-shortest paths algorithms,

respectively. Techniques such as PHD filtering are used as

inexpensive look-ahead strategies to drastically reduce the

number of calls to ranked assignment and K-shortest paths

algorithms. Moreover, we establish that truncation by discard-
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ing δ-GLMB components with small weights minimizes the

L1 error in the multi-target density. To our best knowledge,

this is the first result regarding the effect of truncation on the

multi-target probability law.

The paper is organized as follows. Background on labeled

RFS and the δ-GLMB filter is provided in section II. Section

III establishes the L1-distance between a δ-GLMB density

and its truncated version. Sections IV and V present efficient

implementations δ-GLMB filter update and prediction respec-

tively. Section VI details the multi-target state estimation, and

discusses look-ahead strategies to reduce the computational

load. Numerical results are presented in Section VII and

concluding remarks are given in Section VIII.

II. BACKGROUND

This section summarizes the labeled RFS formulation of

the multi-target tracking problem and the δ-GLMB filter pro-

posed in [1]. Labeled RFS is summarized in subsection II-A,

followed by Bayes multi-target filtering basics in subsections

II-B, II-C and II-D. The δ-GLMB multi-target density and

recursion are summarized in subsections II-E and II-F.

Throughout the paper, we use the standard inner product

notation 〈f, g〉 ,
∫

f(x)g(x)dx, and the following multi-

object exponential notation hX ,
∏

x∈X h(x), where h is

a real-valued function, with h∅ = 1 by convention. We denote

a generalization of the Kroneker delta that takes arbitrary

arguments such as sets, vectors, etc., by

δY (X) ,

{

1, if X = Y
0, otherwise

,

and the inclusion function, a generalization of the indicator

function, by

1Y (X) ,

{

1, if X ⊆ Y
0, otherwise

.

We also write 1Y (x) in place of 1Y ({x}) when X = {x}.

A. Labeled RFS

An RFS is simply a finite-set-valued random variable [32],

[33]. In this paper we use the Finite Set Statistics (FISST)

notion of integration/density to characterize RFSs [3], [8].

Treatments of RFS in the context of multi-target filtering can

be found in [3], [34], [35].

To incorporate target identity, each state x ∈ X is augmented

with a unique label ℓ ∈ L= {αi : i ∈ N}, where N denotes

the set of positive integers and the αi’s are distinct.

Let L : X×L → L be the projection L((x, ℓ)) = ℓ, then a

finite subset X of X×L has distinct labels if and only if X and

its labels L(X) = {L(x) :x∈X} have the same cardinality,

i.e. δ|X|(|L(X)|) = 1. The function ∆(X) , δ|X|(|L(X)|) is

called the distinct label indicator.

Definition 1 A labeled RFS with state space X and (discrete)

label space L is an RFS on X×L such that each realization

has distinct labels.

The unlabeled version of a labeled RFS is obtained by

simply discarding the labels. Consequently, the cardinality

distribution (the distribution of the number of objects) of a

labeled RFS is the same as its unlabeled version.

For the rest of the paper, single-object states are represented

by lowercase letters (e.g. x, x), while multi-object states are

represented by uppercase letters (e.g. X , X), symbols for

labeled states and their distributions are bolded to distinguish

them from unlabeled ones (e.g. x, X, π, etc.), spaces are

represented by blackboard bold (e.g. X, Z, L, N, etc.), and

the class of finite subsets of a space X is denoted by F(X).
The integral of a function f :X×L → R is given by

∫

f(x)dx =
∑

ℓ∈L

∫

X

f((x, ℓ))dx.

B. Bayesian Multi-target Filtering

To incorporate target tracks in the Bayes multi-target fil-

tering framework, targets are identified by an ordered pair

of integers ℓ = (k, i), where k is the time of birth, and

i ∈ N is a unique index to distinguish objects born at the

same time. Figure 1 illustrates the assignment of labels to

target trajectories. The label space for objects born at time

k, denoted as Lk, is then {k} × N. An object born at time

k, has state x ∈ X×Lk. The label space for targets at

time k (including those born prior to k), denoted as L0:k,

is constructed recursively by L0:k = L0:k−1 ∪ Lk. A multi-

object state X at time k, is a finite subset of X×L0:k. Note

that L0:k−1 and Lk are disjoint.

V
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Fig. 1. An example of label assignments. The two tracks born at time 1 are
given labels (1,1) and (1,2), while the only track born at time 4 is given label
(4,1). Notice also the difference between multi-target states and target tracks.

Suppose that at time k, there are N(k) target states

xk,1, . . . ,xk,N(k), each taking values in the (labeled) state

space X× L, and M(k) measurements zk,1, . . . , zk,M(k) each

taking values in an observation space Z. In the random finite

set formulation, the set of targets and observations, at time k,

[3], [8] are treated as the multi-target state and multi-target

observation, respectively

Xk = {xk,1, . . . ,xk,N(k)},

Zk = {zk,1, . . . , zk,M(k)}.

The multi-target posterior density captures all information

on the set of target trajectories conditioned on the measure-

ment history Z0:k = (Z0, ..., Zk), and is given recursively for

k ≥ 1 by

π0:k(X0:k|Z0:k)

∝ gk(Zk|Xk)fk|k−1(Xk|Xk−1)π0:k−1(X0:k−1|Z0:k−1),
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where X0:k = (X0, ...,Xk), gk(·|·) is the multi-target likeli-

hood function at time k, fk|k−1(·|·) is the multi-target tran-

sition density to time k. The multi-target likelihood function

encapsulates the underlying models for detections and false

alarms while the multi-target transition density encapsulates

the underlying models of target motions, births and deaths.

Multi-target filtering is concerned with the marginal of

the multi-target posterior density, at the current time. Let

πk(·|Zk) denote the multi-target filtering density at time k,

and πk+1|k denote the multi-target prediction density to time

k+1 (formally πk and πk+1|k should be written respectively

as πk(·|Z0:k), and πk+1|k(·|Z0:k), but for simplicity we omit

the dependence on past measurements). Then, the multi-target

Bayes filter propagates πk in time [3], [8] according to the

following update and prediction

πk(Xk|Zk) =
gk(Zk|Xk)πk|k−1(Xk)
∫

gk(Zk|X)πk|k−1(X)δX
, (1)

πk+1|k(Xk+1) =

∫

fk+1|k(Xk+1|Xk)πk(Xk|Zk)δXk, (2)

where the integral is a set integral defined for any function

f : F(X×L) → R by

∫

f(X)δX =

∞
∑

i=0

1

i!

∫

f({x1, ...,xi})d(x1, ...,xi).

The multi-target filtering density captures all information on

the multi-target state, such as the number of targets and their

states, at the current time.

For convenience, in what follows we omit explicit references

to the time index k, and denote L , L0:k, B , Lk+1, L+, L∪
B, π,πk, π+,πk+1|k, g,gk, f,fk+1|k.

C. Measurement likelihood function

For a given multi-target state X, at time k, each state

(x, ℓ) ∈ X is either detected with probability pD (x, ℓ)
and generates a point z with likelihood g(z|x, ℓ), or missed

with probability 1 − pD(x, ℓ). The multi-object observation

Z = {z1, ..., z|Z|} is the superposition of the detected points

and Poisson clutter with intensity function κ.

Definition 2 An association map (for the current time) is a

function θ : L → {0, 1, ..., |Z|} such that θ(i) = θ(i′) >
0 implies i = i′. The set Θ of all such association maps is

called the association map space. The subset of association

maps with domain I is denoted by Θ(I).

An association map describes which tracks generated which

measurements, i.e. track ℓ generates measurement zθ(ℓ) ∈ Z ,

with undetected tracks assigned to 0. The condition θ(i) =
θ(i′) > 0 implies i = i′, means that a track can generate at

most one measurement at any point in time.

Assuming that, conditional on X, detections are indepen-

dent, and that clutter is independent of the detections, the

multi-object likelihood is given by

g(Z|X) = e−〈κ,1〉κZ
∑

θ∈Θ(L(X))

[ψZ(·; θ)]
X

(3)

where

ψZ(x, ℓ; θ) =

{

pD(x,ℓ)g(zθ(ℓ)|x,ℓ)

κ(zθ(ℓ))
, if θ(ℓ) > 0

1− pD(x, ℓ), if θ(ℓ) = 0
(4)

Equation (3) is equivalent to the likelihood function given by

(54) in [1], and is more convenient for implementation.

D. Multi-target transition kernel

Given the current multi-object state X, each state (x, ℓ) ∈ X

either continues to exist at the next time step with probability

pS(x, ℓ) and evolves to a new state (x+, ℓ+) with probability

density f(x+|x, ℓ)δℓ(ℓ+), or dies with probability 1−pS(x, ℓ).
The set of new targets born at the next time step is distributed

according to

fB(Y) = ∆(Y)wB(L(Y)) [pB]
Y

(5)

where wB and pB are given parameters of the multi-target

birth density fB , defined on X×B. Note that fB(Y) = 0 if Y

contains any element y with L(y) /∈ B. The birth model (5)

covers both labeled Poisson and labeled multi-Bernoulli [1].

The multi-target state at the next time X+ is the superposi-

tion of surviving targets and new born targets. Assuming that

targets evolve independently of each other and that births are

independent of surviving targets, it was shown in [1] that the

multi-target transition kernel is given by

f (X+|X) = fS(X+ ∩ (X× L)|X)fB(X+ − (X× L)) (6)

where

fS(W|X) = ∆(W)∆(X)1L(X)(L(W)) [Φ(W; ·)]X (7)

Φ(W;x, ℓ) =

{

pS(x, ℓ)f(x+|x, ℓ), if (x+, ℓ) ∈ W

1− pS(x, ℓ), if ℓ /∈ L(W)
.(8)

E. Delta-Generalized Labeled Multi-Bernoulli

The δ-generalized labeled multi-Bernoulli filter is a solu-

tion to the Bayes multi-target filter based on the family of

generalized labeled multi-Bernoulli (GLMB) distributions

π(X) = ∆(X)
∑

ξ∈Ξ

w(ξ)(L(X))
[

p(ξ)
]X

,

where Ξ is a discrete space, each p(ξ)(·, ℓ) is a prob-

ability density, and each w(ξ)(I) is non-negative with
∑

(I,ξ)∈F(L)×Ξw
(ξ)(I) = 1. A GLMB can be interpreted as

a mixture of multi-target exponentials [1]. While this family

is closed under the Bayes recursion [1], it is not clear how

numerical implementation can be accomplished. Fortunately,

an alternative form of the GLMB, known as δ-GLMB

π(X) = ∆(X)
∑

(I,ξ)∈F(L)×Ξ

ω(I,ξ)δI(L(X))
[

p(ξ)
]X

, (9)

where ω(I,ξ) = w(ξ)(I), provides a representation that facil-

itates numerical implementation. Note that the δ-GLMB can

be obtained from the GLMB by using the identity w(ξ)(J) =
∑

I∈F(L)w
(ξ)(I)δI(J), since the summand is non-zero if and

only if I = J .

In the δ-GLMB initial multi-target prior

π0(X) = ∆(X)
∑

I∈F(L0)

ω
(I)
0 δI(L(X))pX0 , (10)
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each I ∈ F(L0) represents a set of tracks labels born at time

0, ω
(I)
0 represents the weight of the hypothesis that I is the set

of track labels at time 0, and p0(·, ℓ) is the probability density

of the kinematic state of track ℓ ∈ I . For example, suppose

that there are 2 possibilities:

1) 0.3 chance of 1 target with label (0, 2), and density

p0(·, (0, 2)) = N (·;m,P2),
2) 0.7 chance of 2 targets with labels (0, 1), (0, 2)

and respective densities p0(·, (0, 1)) = N (·; 0, P1),
p0(·, (0, 2)) = N (·;m,P2).

Then the δ-GLMB representation is

π0(X)=0.3δ{(0,2)}(L(X))pX0 + 0.7δ{(0,1),(0,2)}(L(X))pX0 .

Note that the initial prior (10) is a δ-GLMB with Ξ = ∅. For δ-

GLMB filtering and prediction densities that are conditioned

on measurements up to time k, the discrete space Ξ is the

space of association map histories Θ0:k , Θ0×...×Θk, where

Θt denotes the association map space at time t. In particular,

as shown in [1], for each k ≥ 0 the filtering and prediction

densities are δ-GLMB densities:

πk(X|Zk)=∆(X)
∑

(I,ξ)∈F(L0:k)×Θ0:k

ω
(I,ξ)
k δI(L(X))

[

p
(ξ)
k (·|Zk)

]X

(11)

πk+1|k(X) =∆(X)
∑

(I,ξ)∈F(L0:k+1)×Θ0:k

ω
(I,ξ)
k+1|kδI(L(X))

[

p
(ξ)
k+1|k

]X

(12)

Each I ∈ F(L0:k) represents a set of track labels at time

k, and each ξ = (θ0, ..., θk) ∈ Θ0:k represents a history

of association maps up to time k, which also contains the

history of target labels encapsulating both births and deaths.

The pair (I, ξ) ∈ F(L0:k)×Θ0:k is called a hypothesis, and its

associated weight ω
(I,ξ)
k can be interpreted as the probability

of the hypothesis. Similarly the pair (I, ξ) ∈ F(L0:k+1)×Θ0:k

is called a prediction hypothesis, with probability ω
(I,ξ)
k+1|k.

The densities p
(ξ)
k (·, ℓ) and p

(ξ)
k+1|k(·, ℓ) are the filtering and

prediction densities of the kinematic state of track ℓ for

association map history ξ.

F. Delta Generalized Labeled Multi-Bernoulli Recursion

The δ-GLMB filter recursively propagates a δ-GLMB fil-

tering density forward in time via the Bayes update and

prediction equations (2) and (1). Closed form solutions to the

update and prediction of the δ-GLMB filter are given by the

following results [1].

Proposition 3 If the current multi-target prediction density

is a δ-GLMB of the form (9), then the multi-target filtering

density is a δ-GLMB given by

π(X|Z) = ∆(X)
∑

(I,ξ)∈F(L)×Ξ

∑

θ∈Θ(I)

ω(I,ξ,θ)(Z)δI(L(X))
[

p(ξ,θ)(·|Z)
]X

(13)

where Θ(I) denotes the subset of current association maps

with domain I ,

ω(I,ξ,θ)(Z) ∝ ω(I,ξ)[η
(ξ,θ)
Z ]I , (14)

η
(ξ,θ)
Z (ℓ) =

〈

p(ξ)(·, ℓ), ψZ(·, ℓ; θ)
〉

, (15)

p(ξ,θ)(x, ℓ|Z) =
p(ξ)(x, ℓ)ψZ(x, ℓ; θ)

η
(ξ,θ)
Z (ℓ)

, (16)

Proposition 4 If the current multi-target filtering density is a

δ-GLMB of the form (9), then the multi-target prediction to

the next time is a δ-GLMB given by

π+(X+) = ∆(X+)
∑

(I+,ξ)∈F(L+)×Ξ

ω
(I+,ξ)
+ δI+(L(X+))

[

p
(ξ)
+

]X+

(17)

where

ω
(I+,ξ)
+ = ω

(ξ)
S (I+ ∩ L)wB(I+ ∩ B) (18)

ω
(ξ)
S (L) = [η

(ξ)
S ]L

∑

I⊇L

[1− η
(ξ)
S ]I−Lω(I,ξ) (19)

η
(ξ)
S (ℓ) =

〈

pS(·, ℓ), p
(ξ)(·, ℓ)

〉

(20)

p
(ξ)
+ (x, ℓ) = 1L(ℓ)p

(ξ)
S (x, ℓ) + 1B(ℓ)pB(x, ℓ) (21)

p
(ξ)
S (x, ℓ) =

〈

pS(·, ℓ)f(x|·, ℓ), p(ξ)(·, ℓ)
〉

η
(ξ)
S (ℓ)

(22)

Note from Propositions 3 and 4 that the actual value of the

association history ξ is not used in the calculations, it is used

merely as an indexing variable. On the other hand, the value

of the label set I is used in the calculations.

III. CHARACTERIZING TRUNCATION ERROR

A δ-GLMB is completely characterized by the set of param-

eters {(ω(I,ξ), p(ξ)) : (I, ξ) ∈ F(L)×Ξ}. For implementation

it is convenient to consider the set of δ-GLMB parameters

as an enumeration of all hypotheses (with positive weight)

together with their associated weights and track densities

{(I(h), ξ(h), ω(h), p(h))}Hh=1, as shown in Figure 2, where

ω(h) , ω(I(h),ξ(h)) and p(h) , p(ξ
(h)). Implementing the δ-

GLMB filter then amounts to recursively propagating the set

of δ-GLMB parameters forward in time.

I(1) = I(2) =
. . .

I(h) =
. . .

{ℓ
(1)
1 , . . . , ℓ

(1)

|I(1)|
} {ℓ

(2)
1 , . . . , ℓ

(2)

|I(2)|
} {ℓ

(h)
1 , . . . , ℓ

(h)

|I(h)|
}

ξ(1) ξ(2) . . . ξ(h) . . .

ω(1) ω(2) . . . ω(h) . . .

p(1)(·, ℓ
(1)
1 ) p(2)(·, ℓ

(2)
1 ) p(h)(·, ℓ

(h)
1 )

...
... . . .

... . . .

p(1)(·, ℓ
(1)

|I(1)|
) p(2)(·, ℓ

(2)

|I(2)|
) p(h)(·, ℓ

(h)

|I(h)|
)

Fig. 2. An enumeration of a δ-GLMB parameter set with each component

indexed by an integer h. The hypothesis for component h is (I(h), ξ(h)) while

its weight and associated track densities are ω(h) and p(h)(·, ℓ), ℓ ∈ I(h).

Since the number of hypotheses grows super-exponentially

with time, it is necessary to reduce the number of components

in the δ-GLMB parameter set, at each time step. A simple

solution is to truncate the δ-GLMB density by discarding

“insignificant” hypotheses.

The effect of truncation on the probability law of the

multi-target state has not been characterized even though

this truncation is widely used in MHT and JPDA. In the

RFS approach the probability law of the multi-target state is
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completely captured in the multi-target density. Consequently,

the effect of discarding hypotheses in a δ-GLMB density can

be characterized by the difference/dissimilarity between the

untruncated and truncated δ-GLMB densities. The following

result establishes the L1-error between a δ-GLMB density and

its truncated version.

Proposition 5 Let ‖f‖1 ,
∫

|f(X)| δX denote the L1-norm

of f : F(X×L) → R, and for a given H ⊆F(L)× Ξ let

fH(X) = ∆(X)
∑

(I,ξ)∈H

ω(I,ξ)δI(L(X))
[

p(ξ)
]X

be an unnormalized δ-GLMB density (i.e. does not necessarily

integrate to 1). If T ⊆ H then

||fH − fT||1 =
∑

(I,ξ)∈H−T

ω(I,ξ),

∥

∥

∥

∥

fH

||fH||1
−

fT

||fT||1

∥

∥

∥

∥

1

≤ 2
||fH||1 − ||fT||1

||fH||1
,

Proof:

‖fH − fT‖1

=

∫

∣

∣

∣

∣

∣

∣

∆(X)
∑

(I,ξ)∈H−T

ω(I,ξ)δI(L(X))
[

p(ξ)
]X

∣

∣

∣

∣

∣

∣

δX

=
∑

(I,ξ)∈H−T

ω(I,ξ)

∫

∆(X)δI(L(X))
[

p(ξ)
]X

δX

=
∑

(I,ξ)∈H−T

ω(I,ξ)
∑

L⊆L

δI(L), (by Lemma 3 of [1])

=
∑

(I,ξ)∈H−T

ω(I,ξ).

Now note that ‖fH − fT‖1 = ||fH||1 − ||fT||1, moreover,
∥

∥

∥

∥

fH

||fH||1
−

fT

||fT||1

∥

∥

∥

∥

1

≤

∫

∣

∣

∣

∣

∣

∣

∆(X)
∑

(I,ξ)∈T

(

ω(I,ξ)

||fH||1
−
ω(I,ξ)

||fT||1

)

δI(L(X))
[

p(ξ)
]X

∣

∣

∣

∣

∣

∣

δX

+

∫

∣

∣

∣

∣

∣

∣

∆(X)
∑

(I,ξ)∈H−T

ω(I,ξ)

||fH||1
δI(L(X))

[

p(ξ)
]X

∣

∣

∣

∣

∣

∣

δX

=
∑

(I,ξ)∈T

∣

∣

∣

∣

ω(I,ξ)

||fH||1
−
ω(I,ξ)

||fT||1

∣

∣

∣

∣

+
∑

(I,ξ)∈H−T

ω(I,ξ)

||fH||1

= 1−
||fT||1
||fH||1

+
||fH||1 − ||fT||1

||fH||1

= 2
||fH||1 − ||fT||1

||fH||1
.�

It follows from the above result that the intuitive strategy of

keeping δ-GLMB components with high weights and discard-

ing those with the smallest weights minimizes the L1-error in

the truncated multi-target density.

In the δ-GLMB recursion, it is not tractable to exhaustively

compute all the components first and then discard those with

small weights. The trick is to perform the truncation without

having to propagate all the components.

IV. DELTA-GLMB UPDATE

This section presents a tractable implementation of the δ-

GLMB update by truncating the multi-target filtering density

without computing all the hypotheses and their weights, via

the ranked assignment algorithm. Subsection IV-A summarizes

the ranked assignment problem in the context of truncating the

δ-GLMB filtering density. Subsection IV-B details the compu-

tation of the updated δ-GLMB parameters and subsection IV-C

presents the δ-GLMB update algorithm.

A. Ranked Assignment Problem

Note from the δ-GLMB weight update (14) that each

hypothesis (I, ξ) with weight ω(I,ξ) generates a new set of

hypotheses (I, (ξ, θ)), θ ∈ Θ(I), with weights ω(I,ξ,θ)(Z)

∝ ω(I,ξ)[η
(ξ,θ)
Z ]I . For a given hypothesis (I, ξ), if we can

generate the association maps θ ∈ Θ(I) in decreasing order

of [η
(ξ,θ)
Z ]I , then the highest weighted components can be se-

lected without exhaustively computing all the new hypothesis

and their weights. This can be accomplished by solving the

following ranked assignment problem.

Enumerating Z = {z1, ..., z|Z|}, I = {ℓ1, ..., ℓ|I|}, each

association map θ ∈ Θ(I) can be represented by an |I| × |Z|
assignment matrix S consisting of 0 or 1 entries with every

row and column summing to either 1 or 0. For i ∈ {1, ..., |I|},

j ∈ {1, ..., |Z|}, Si,j = 1 if and only if the jth measurement

is assigned to track ℓi, i.e. θ(ℓi) = j. An all-zero row i means

that track ℓi is misdetected while an all-zero column j means

that measurement zj is a false alarm. Conversion from S to θ

is given by θ(ℓi) =
∑|Z|

j=1 jδ1(Si,j).
The cost matrix of an optimal assignment problem is the

|I| × |Z| matrix:

C
(I,ξ)
Z =







C1,1 · · · C1,|Z|
...

. . .
...

C|I|,1 · · · C|I|,|Z|






(23)

where for i ∈ {1, ..., |I|}, j ∈ {1, ..., |Z|}

Ci,j = − ln

(

〈

p(ξ)(·, ℓi), pD(·, ℓi)g(zj |·, ℓi)
〉

〈

p(ξ)(·, ℓi), 1 − pD(·, ℓi)
〉

κ(zj)

)

(24)

is the cost of the assigning the jth measurement to track ℓi
(Subsection IV-B details the numerical computation of Ci,j ).

The cost of an assignment (matrix) S is the combined costs

of every measurement to target assignments, which can be

succinctly written as the Frobenius inner product

tr(STC
(I,ξ)
Z ) =

|I|
∑

i=1

|Z|
∑

j=1

Ci,jSi,j .

Substituting (4) into equation (15), it follows that the cost of

S (and the corresponding association map θ) is related to the

filtered hypothesis weight ω(I,ξ,θ)(Z) ∝ ω(I,ξ)[η
(ξ,θ)
Z ]I by

[

η
(ξ,θ)
Z

]I

= exp
(

−tr(STC
(I,ξ)
Z )

)

∏

ℓ∈I

〈

p(ξ)(·, ℓ), 1− pD(·, ℓ)
〉

.

The optimal assignment problem seeks an assignment ma-

trix S∗ (and corresponding association map θ∗) that minimizes

the cost tr(S∗TC
(I,ξ)
Z ) [36]. The ranked assignment problem
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seeks an enumeration of the least cost assignment matrices in

non-decreasing order [37]. Consequently, solving the ranked

optimal assignment problem with cost matrix C
(I,ξ)
Z generates,

starting from θ∗, an enumeration of association maps θ in

order of non-increasing [η
(ξ,θ)
Z ]I (and weights ω(I,ξ,θ)(Z) ∝

ω(I,ξ)[η
(ξ,θ)
Z ]I ).

Remark: The standard ranked assignment formulation in-

volves square cost and assignment matrices with rows and

columns of the assignment matrix summing to 1. Ranked

assignment problems with non-square matrices can be refor-

mulated with square matrices by introducing dummy variables.

The optimal assignment problem, is a well-known combi-

natorial problem, introduced by Kuhn [36], who also proposed

the Hungarian algorithm to solve it in polynomial time.

Munkres further observed that it is strongly polynomial [38].

The ranked assignment problem is a generalization to enumer-

ate the T least cost assignments, which was first solved by

Murty [37]. Murty’s algorithm needs an effective bipartite as-

signment algorithm such as Munkres [38] or Jonker-Volgenant

[39]. In the context of multi-target tracking, ranked assignment

algorithms with O(T |Z|4) complexity have been proposed

for MHT in [40], [41], [42]. More efficient algorithms with

O(T |Z|3) complexity have been proposed in [44], [45], [46],

with the latter showing better efficiency for large |Z|. For

further details on ranked assignment solutions in MHT, we

refer the reader to [2], [43].

B. Computing update parameters

We now detail the computation of the cost matrix C
(I,ξ)
Z

in (23) for the ranked assignment problem and the parameters

η
(ξ,θ)
Z (ℓ), p(ξ,θ)(·, ℓ|Z) of the updated δ-GLMB components.

1) Gaussian mixture: For a linear Gaussian multi-target

model, pD(x, ℓ) = pD, g(z|x, ℓ) = N (z;Hx,R), where

N (·;m,P ) denotes a Gaussian density with mean m and

covariance P , H is the observation matrix, and R is the obser-

vation noise covariance. The Gaussian mixture representation

provides the most general setting for linear Gaussian models.

Suppose that each single target density p(ξ)(·, ℓ) is a Gaussian

mixture of the form

J(ξ)(ℓ)
∑

i=1

w
(ξ)
i (ℓ)N (x;m

(ξ)
i (ℓ), P

(ξ)
i (ℓ)). (25)

Then

Ci,j = − ln

(

pD
∑J(ξ)(ℓi)

k=1 w
(ξ)
k (ℓi)q

(ξ)
k (zj ; ℓi)

(1− pD)κ(zj)

)

(26)

Moreover, for the updated association history (ξ, θ),

η
(ξ,θ)
Z (ℓ) =

J(ξ)(ℓ)
∑

i=1

w
(ξ,θ)
Z,i (ℓ) (27)

p(ξ,θ)(x, ℓ|Z) =

J(ξ)(ℓ)
∑

i=1

w
(ξ,θ)
Z,i (ℓ)

η
(ξ,θ)
Z (ℓ)

N(x;m
(ξ,θ)
Z,i (ℓ), P

(ξ,θ)
i (ℓ)) (28)

where

w
(ξ,θ)
Z,i (ℓ) = w

(ξ)
i (ℓ)

{

pDq
(ξ)
i (zθ(ℓ);ℓ)

κ(zθ(ℓ))
if θ(ℓ) > 0

(1− pD) if θ(ℓ) = 0

q
(ξ)
i (z; ℓ) = N(z;Hm

(ξ)
i (ℓ), HP

(ξ)
i (ℓ)HT +R)

m
(ξ,θ)
Z,i (ℓ) =

{

m
(ξ)
i (ℓ)+K

(ξ,θ)
i (ℓ)(zθ(ℓ)−Hm

(ξ)
i (ℓ)) if θ(ℓ) > 0

m
(ξ)
i (ℓ) if θ(ℓ) = 0

P
(ξ,θ)
i (ℓ) = [I −K

(ξ,θ)
i (ℓ)H ]P

(ξ)
i (ℓ),

K
(ξ,θ)
i (ℓ) =

{

P
(ξ)
i (ℓ)HT

[

HP
(ξ)
i (ℓ)HT +R

]−1

if θ(ℓ) > 0

0 if θ(ℓ) = 0
.

When the measurement model parameters depend on the label

ℓ, we simply substitute pD = pD(ℓ), H = H(ℓ), R = R(ℓ)
into the above equations.

2) Sequential Monte Carlo: For a sequential Monte Carlo

approximation, suppose that each of the single target den-

sity p(ξ)(·, ℓ) is represented as a set of weighted samples

{(w
(ξ)
n (ℓ), x

(ξ)
n (ℓ))}

J(ξ)(ℓ)
n=1 . Then

Ci,j = − ln











J(ξ)(ℓi)
∑

n=1
w

(ξ)
n (ℓi)pD(x

(ξ)
n (ℓi), ℓi)g(zj |x

(ξ)
n (ℓi), ℓi)

J(ξ)(ℓi)
∑

n=1
w

(ξ)
n (ℓi)(1 − pD(x

(ξ)
n (ℓi), ℓi))κ(zj)











.

(29)

Moreover, for a given updated association history (ξ, θ),

η
(ξ,θ)
Z (ℓ) =

J(ξ)(ℓ)
∑

n=1

w(ξ)
n (ℓ)ψZ(x

(ξ)
n (ℓ), ℓ; θ), (30)

and p(ξ,θ)(·, ℓ|Z) is represented by the following set of

weighted samples

{(

ψZ(x
(ξ)
n (ℓ), ℓ; θ)w

(ξ)
n (ℓ)

η
(ξ,θ)
Z (ℓ)

, x(ξ)n (ℓ)

)}J(ξ)(ℓ)

n=1

. (31)

C. Filtering Density Truncation

Given the δ-GLMB prediction density π with enumerated

parameter set {(I(h), ξ(h), ω(h), p(h))}Hh=1, the δ-GLMB filter-

ing density (13) can be written as

π(X|Z) =
H
∑

h=1

π
(h)(X|Z) (32)

where

π
(h)(X|Z) = ∆(X)

|Θ(I(h))|
∑

j=1

ω(h,j)δI(h)(L(X))
[

p(h,j)
]X

,

ω(h,j) , ω(I(h),ξ(h),θ(h,j))(Z),

p(h,j) , p(ξ
(h),θ(h,j))(·|Z).

Each δ-GLMB prediction component (indexed by) h generates
∣

∣Θ(I(h))
∣

∣ components for the δ-GLMB filtering density.

A simple and highly parallelizable strategy for truncating

the filtered δ-GLMB (32) is to truncate π
(h)(·|Z). For each

h = 1, ..., H , solving the ranked optimal assignment problem

with cost matrix C
(I(h),ξ(h))
Z discussed in subsection IV-A

yields θ(h,j), j = 1, ..., T (h), the T (h) hypotheses with highest
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I(1) = I(2) =
. . .

I(h) =
. . .

{ℓ
(1)
1 , . . . , ℓ

(1)

|I(1)|
} {ℓ

(2)
1 , . . . , ℓ

(2)

|I(2)|
} {ℓ

(h)
1 , . . . , ℓ

(h)

|I(h)|
}

ξ(1) ξ(2) . . . ξ(h) . . .

ω(1) ω(2) . . . ω(h) . . .

p(1)(·, ℓ
(1)
1 ) p(2)(·, ℓ

(2)
1 ) p(h)(·, ℓ

(h)
1 )

...
... . . .

... . . .

p(1)(·, ℓ
(1)

|I(1)|
) p(2)(·, ℓ(2)

|I(2)|
) p(h)(·, ℓ(h)

|I(h)|
)

�� ❅❅ �� ❅❅

✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭

✏✏✏✏✏✏✏✏✏✏✏

I(h) = I(h) =
. . .

I(h) =
. . .

{ℓ
(h)
1 , . . . , ℓ

(h)

|I(h)|
} {ℓ

(h)
1 , . . . , ℓ

(h)

|I(h)|
} {ℓ

(h)
1 , . . . , ℓ

(h)

|I(h)|
}

(ξ(h), θ(h,1)) (ξ(h), θ(h,2)) . . . (ξ(h), θ(h,j)) . . .

ω(h,1) ω(h,2) . . . ω(h,j) . . .

p(h,1)(·, ℓ
(h)
1 ) p(h,2)(·, ℓ

(h)
1 ) p(h,j)(·, ℓ

(h)
1 )

...
... . . .

... . . .

p(h,1)(·, ℓ
(h)

|I(h)|
) p(h,2)(·, ℓ

(h)

|I(h)|
) p(h,j)(·, ℓ

(h)

|I(h)|
)

Fig. 3. δ-GLMB update. Component h of the prior generates a (large) set of
posterior components. The ranked assignment algorithm determines the T (h)

components with highest weights ω(h,1) ≥ ω(h,2) ≥ ... ≥ ω(h,T (h)).

weights in non-increasing order, as illustrated in Figure 3.

Consequently, the truncated version of π(h)(·|Z) is

π̂
(h)(X|Z) = ∆(X)

T (h)
∑

j=1

ω(h,j)δI(h)(L(X))
[

p(h,j)
]X

.

It follows from Proposition 5 that the truncated density

π̂(·|Z) =
∑H

h=1 π̂
(h)(·|Z) minimizes the L1-distance from

the filtered δ-GLMB over all truncations with T (h) compo-

nents for each h = 1, ..., H . The truncated density, with a total

of T =
∑H

h=1 T
(h) components, is normalized (by the sum of

the weights) to give the truncated filtered δ-GLMB. Table 1

summarizes the update operation via pseudo code. Note that

both the outer and inner for-loops can be parallelized.

Specific values for the number of requested components

T (h) are generally user specified and application dependent. A

generic strategy is to choose T (h) =
⌈

ω(h)Jmax

⌉

where Jmax

is the desired overall number of hypotheses. The alternative

strategy of keeping the T = Jmax strongest components of

π(·|Z) would yield a smaller L1-error. However, in addition

to an H-fold increase in the dimension of the resulting ranked

assignment problem, parallelizability is lost.

V. DELTA-GLMB PREDICTION

This subsection presents an implementation of the δ-GLMB

prediction using the K-shortest path algorithm to truncate

the predicted δ-GLMB without computing all the prediction

hypotheses and their weights.

The prediction density given in Proposition 4 has a compact

form but is difficult to implement due to the sum over all

supersets of L in (19). We use an equivalent form for the

prediction, eq. (58) in [1]:

π+(X+) = ∆(X+)
∑

(I,ξ)∈F(L)×Ξ

ω(I,ξ)
∑

J∈F(I)

[η
(ξ)
S ]

J
[1− η

(ξ)
S ]I−J

Table 1. Update

• input: {(I(h), ξ(h), ω(h), p(h), T (h))}Hh=1, Z

• output: {(I(h,j), ξ(h,j), ω(h,j), p(h,j))}
(H,T (h))
(h,j)=(1,1)

for h = 1 : H
C

(h)
Z := C

(I(h),ξ(h))
Z according to (23), (26)/(29)

{θ(h,j)}T
(h)

j=1
:= ranked assignment(Z, I(h), C

(h)
Z , T (h))

for j = 1 : T (h)

η
(h,j)
Z := η

(ξ(h),θ(h,j))
Z according to (27)/(30)

p(h,j) := p(ξ
(h),θ(h,j))(·|Z) according to (28)/(31)

ω(h,j) := ω(h)
[

η
(h,j)
Z

]I(h)

I(h,j) := I(h)

ξ(h,j) := (ξ(h),θ(h,j))
end

end

normalize weights {ω(h,j)}
(H,T (h))
(h,j)=(1,1)

×
∑

L∈F(B)

wB(L)δJ∪L(L(X+))
[

p
(ξ)
+

]X+

, (33)

Note that analogous to the update, each current hypothesis

(I, ξ) with weight ω(I,ξ) generates a set of prediction hypothe-

ses (J ∪ L, ξ), J ⊆ I , L ⊆ B, with weights ω
(I,ξ)
S (J)wB(L),

where

ω
(I,ξ)
S (J) = ω(I,ξ)[η

(ξ)
S ]J [1− η

(ξ)
S ]I−J (34)

Intuitively, each predicted label set J ∪ L consists of a

surviving label set J with weight ω
(I,ξ)
S (J) and a birth label set

L with weight wB(L). The weight ω
(I,ξ)
S (J) can be interpreted

as the probability that the current label set is I , and the labels

in J survives to the next time while the remaining labels I−J
die. The birth label set L and the surviving label set J are

mutually exclusive since the space of new labels B cannot

contain any existing labels. Since the weight of J ∪ L is the

product ω
(I,ξ)
S (J)wB(L), we can truncate the double sum

over J and L by separately truncating the sum over J and the

sum over L.

Subsection V-A discusses the K-shortest paths problem in

the context of truncating the δ-GLMB prediction. Subsection

V-B details the computation of the prediction δ-GLMB pa-

rameters and subsection V-C presents the δ-GLMB prediction

algorithm.

A. K-Shortest Paths Problem

Consider a given hypothesis (I, ξ), and note that the weight

of a surviving label set J ⊆ I can be rewritten as

ω
(I,ξ)
S (J) = ω(I,ξ)[1− η

(ξ)
S ]I

[

η
(ξ)
S

1− η
(ξ)
S

]J

If we can generate the surviving label sets J ⊆ I in

non-increasing order of [η
(ξ)
S /(1 − η

(ξ)
S )]

J
, then the highest

weighted survival sets for hypothesis (I, ξ) can be selected

without exhaustively computing all the survival hypotheses

weights. This can be accomplished by solving the K-shortest

path problem in the directed graph of Figure 4.
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Fig. 4. A directed graph with nodes ℓ1,...,ℓ|I| ∈ I , and corresponding costs

C(I,ξ)(ℓ1),...,C(I,ξ)(ℓ|I|). S and E are the start and end nodes respectively.

Define a cost vector C(I,ξ) =
[

C(I,ξ)(ℓ1), ..., C
(I,ξ)(ℓ|I|)

]

,

where

C(I,ξ)(ℓj) = − ln

[

η
(ξ)
S (ℓj)

1− η
(ξ)
S (ℓj)

]

(35)

is the cost of node ℓj ∈ I (the numerical computation of

C(I,ξ)(ℓj) is detailed in Subsection V-B). The nodes are

ordered in non-decreasing costs and the distance from node

ℓj to ℓj′ is defined as

d(ℓj , ℓj′) =

{

C(I,ξ)(ℓj′), if j′ > j
∞, otherwise

Hence, a path from S to E which traverses the set of nodes

J ⊆ I accumulates a total distance of
∑

ℓ∈J

C(I,ξ)(ℓ) = −
∑

ℓ∈J

ln
(

η
(ξ)
S (ℓ)/(1− η

(ξ)
S (ℓ))

)

= − ln
(

[η
(ξ)
S (ℓ)/(1− η

(ξ)
S (ℓ)]J

)

.

The shortest path from S to E traverses the set of nodes

J∗ ⊆ I with the shortest distance
∑

ℓ∈J∗ C(I,ξ)(ℓ) and hence

largest [η
(ξ)
S /(1 − η

(ξ)
S )]J

∗

. The K-shortest paths problem

seeks K subsets of I with the shortest distances in non-

decreasing order. Consequently, solving the K-shortest path

problem generates, starting from J∗, an enumeration of subsets

J of I in order of non-increasing [η
(ξ)
S /(1− η

(ξ)
S )]J .

For the target births we use a labeled multi-Bernoulli birth

model where

wB(L) =
∏

ℓ∈B

(

1− r
(ℓ)
B

)

∏

ℓ∈L

1B(ℓ)r
(ℓ)
B

1− r
(ℓ)
B

,

pB(x, ℓ) = p
(ℓ)
B (x).

Thus, solving the K-shortest paths problem with cost vector

CB =
[

CB(ℓ1), ..., CB(ℓ|B|)
]

, where

CB(ℓj) = − ln
[

r
(ℓj)
B /(1− r

(ℓj)
B )

]

(36)

is the cost of node ℓj , yields the subsets of B with the best

birth weights.

Remark: It is possible to obtain the overall K best compo-

nents by extending the directed graphs to include birth nodes

with appropriate costs. However, our experience indicated that

since the birth weights wB(L) are quite small compared to

surviving weights ω
(I,ξ)
S (J), many components with births

will be discarded and new births may not detected by the

filter. To avoid dropping new tracks, a very large K is

required to retain hypothesis with births. On the other hand

the proposed separate truncation strategy ensures that there

are hypotheses with births to accommodate new tracks, and is

highly parallelizable.

The K-shortest paths algorithm is a well-known solution

to the combinatorial problem of finding the K paths with

minimum total cost from a given source to a given destination

in a weighted network [47]. This problem can be solved with

complexity O (|I| log(|I|) +K). In our case the nodes have

negative values, hence the Bellman-Ford algorithm [48], [49]

was employed. This problem can also be solved by ranked

assignment algorithms, however K-shortest paths algorithm is

much more efficient. Note that the ranking of the association

maps cannot be formulated as the K-shortest path problem,

due to the constraint that each target can only generate at most

one measurement.

B. Computing prediction parameters

This subsection details the computation of the parameters

η
(ξ)
S (ℓ) and p

(ξ)
+ (·, ℓ) of the prediction δ-GLMB components.

1) Gaussian mixture: For a linear Gaussian multi-target

model, pS(x, ℓ) = pS , f(x+|x, ℓ) = N (x+;Fx,Q), where F
is the state transition matrix, Q is the process noise covariance

and the birth density parameter p
(ℓ)
B (x) is a Gaussian mixture.

If the single target density p(ξ)(·, ℓ) is a Gaussian mixture of

the form (25). Then,

η
(ξ)
S (ℓ) = pS , (37)

p
(ξ)
+ (x, ℓ) = 1L(ℓ)

J(ξ)(ℓ)
∑

i=1

w
(ξ)
i (ℓ)N(x;m

(ξ)
S,i(ℓ), P

(ξ)
S,i (ℓ))+1B(ℓ)p

(ℓ)
B (x)

(38)

where

m
(ξ)
S,i(ℓ) = Fm

(ξ)
i (ℓ),

P
(ξ)
S,i (ℓ) = Q+ FP

(ξ)
i (ℓ)FT .

When the motion model parameters depend on the label ℓ,
we simply substitute pS = pS(ℓ), F = F (ℓ), Q = Q(ℓ)

into the above equations. With η
(ξ)
S (ℓ) evaluated, the node

cost C(I,ξ)(ℓ) for the K-shortest paths problem can then be

computed by (35).

2) Sequential Monte Carlo: For a sequential Monte

Carlo approximation, suppose that each single target den-

sity p(ξ)(·, ℓ) is represented as a set of weighted sample

{(w
(ξ)
i (ℓ), x

(ξ)
i (ℓ))}

J(ξ)(ℓ)
i=1 and that the birth density p

(ℓ)
B (·) is

represented by {(w
(ξ)
B,i(ℓ), x

(ξ)
B,i(ℓ))}

B(ξ)(ℓ)
i=1 . Then,

η
(ξ)
S (ℓ) =

J(ξ)(ℓ)
∑

i=1

w
(ξ)
i (ℓ)pS(x

(ξ)
i (ℓ), ℓ) (39)
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and p
(ξ)
+ (x, ℓ) is represented by

{

(1L(ℓ)w̃
(ξ)
S,i(ℓ), x

(ξ)
S,i(ℓ))

}J(ξ)(ℓ)

i=1
∪
{

(1B(ℓ)w
(ξ)
B,i(ℓ), x

(ξ)
B,i(ℓ))

}B(ξ)(ℓ)

i=1
,

(40)

where

x
(ξ)
S,i(ℓ) ∼ q(ξ)(·|x

(ξ)
i (ℓ), ℓ, Z), i = 1, ..., J (ξ)(ℓ),

w
(ξ)
S,i(ℓ) =

w
(ξ)
i (ℓ)f(x

(ξ)
S,i(ℓ)|x

(ξ)
i (ℓ))pS(x

(ξ)
i (ℓ), ℓ)

q(ξ)(x
(ξ)
S,i(ℓ)|x

(ξ)
i (ℓ), ℓ, Z)

,

w̃
(ξ)
S,i(ℓ) =

w
(ξ)
S,i(ℓ)

∑J(ξ)(ℓ)
i=1 w

(ξ)
S,i(ℓ)

,

and q(ξ)(·|x
(ξ)
i (ℓ), ℓ, Z) is a proposal density.

C. Prediction Density Truncation

Given the current δ-GLMB filtering density π(·|Z) with

enumerated parameter set {(I(h), ξ(h), ω(h), p(h))}Hh=1, then

the δ-GLMB prediction (33) becomes

π+(X+) =

H
∑

h=1

π
(h)
+ (X+),

where

π
(h)
+ (X+) =

∆(X+)
∑

J⊆I(h)

∑

L⊆B

ω
(I(h),ξ(h))
S (J)wB(L)δJ∪L(L(X+))

[

p
(ξ(h))
+

]X+

.

The δ-GLMB filtered component (indexed by) h generates

2|I
(h)|+|B|components for the δ-GLMB prediction.

I(1) = I(2) =
. . .

I(h) =
. . .

{ℓ
(1)
1 , . . . , ℓ

(1)

|I(1)|
} {ℓ

(2)
1 , . . . , ℓ

(2)

|I(2)|
} {ℓ

(h)
1 , . . . , ℓ

(h)

|I(h)|
}

ξ(1) ξ(2) . . . ξ(h) . . .

ω(1) ω(2) . . . ω(h) . . .

p(1)(·, ℓ
(1)
1 ) p(2)(·, ℓ

(2)
1 ) p(h)(·, ℓ

(h)
1 )

...
... . . .

... . . .

p(1)(·, ℓ
(1)

|I(1)|
) p(2)(·, ℓ(2)

|I(2)|
) p(h)(·, ℓ(h)

|I(h)|
)

�� ❅❅ �� ❅❅

✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

J (h,1) = J (h,2) =
. . .

J (h,j) =
. . .

{ℓ
(h,1)
1 , . . . , ℓ

(1)

|J(h,1)|
} {ℓ

(h,2)
1 , . . . , ℓ

(h,2)

|J(h,2)|
} {ℓ

(h,j)
1 , . . . , ℓ

(h,j)

|J(h,j)|
}

ξ(h) ξ(h) . . . ξ(h) . . .

ω
(h,1)
S ω

(h,2)
S

. . . ω
(h,j)
S

. . .

p
(h)
S (·, ℓ

(h,1)
1 ) p

(h)
S (·, ℓ

(h,2)
1 ) p

(h)
S (·, ℓ

(h,j)
1 )

...
... . . .

... . . .

p
(h)
S (·, ℓ

(h,1)

|J(h,1)|
) p

(h)
S (·, ℓ

(h,2)

|J(h,2)|
) p

(h)
S (·, ℓ

(h,j)

|J(h,j)|
)

Fig. 5. Prediction of survival components. Component h of the prior,

generates all subsets of I(h) , i.e. J(h,j), j = 1,..., 2|I
(h)| with weights

ω
(h,j)
S

, ω
(I(h),ξ(h))
S

(J(h,j)). The K-shortest paths algorithm determines

the K(h) subsets with largest weights ω
(h,1)
S

≥ ω
(h,2)
S

≥ ... ≥ ω
(h,K(h))
S

.

A simple and highly parallelizable strategy for truncating

the prediction δ-GLMB π+ is to truncate each π
(h)
+ as follows.

For each h = 1, ..., H , we solve the K-shortest paths problem

Table 2. Prediction

• input: {(I(h), ξ(h), ω(h), p(h),K(h))}Hh=1

• input: KB, {(r
(ℓ)
B , p

(ℓ)
B )}ℓ∈B,

• output {(I
(h,j,b)
+ , ω

(h,j,b)
+ , p

(h)
+ )}

(H,K(h),KB)
(h,j,b)=(1,1,1)

compute CB according to (36)

{L(b)}KB

b=1 := k shortest path(B, CB ,KB)
for b = 1 : KB

ω
(b)
B :=

∏

ℓ∈L(b)

r
(ℓ)
B

∏

ℓ∈B−L(b)

[

1− r
(ℓ)
B

]

end

for h = 1 : H
η
(h)
S := η

(ξ(h))
S according to (37)/(39)

C(h) := C(I(h),ξ(h)) according to (35)

{J (h,j)}K
(h)

j=1
:= k shortest path(I(h), C(h),K(h))

for (j, b) = (1, 1) : (K(h),KB)

I
(h,j,b)
+ := J (h,j) ∪ L(b)

ω
(h,j,b)
+ := ω(h)

[

η
(h)
S

]J(h,j)
[

1− η
(h)
S

]I(h)−J(h,j)

ω
(b)
B

end

p
(h)
+ := p

(ξ(h))
+ according to (38)/(40)

end

normalize weights {ω
(h,j,b)
+ }

(H,K(h),KB)
(h,j,b)=(1,1,1)

with cost vector C(I(h),ξ(h)) to obtain J (h,j), j = 1, ...,K(h),
the K(h) subsets of I(h) with highest survival weights as

depicted in Figure 5. We also solve the K-shortest paths

problem with cost vector CB to obtain L(b), b = 1, ...,KB,

the KB birth subsets with highest birth weights. Consequently

for each h, the truncated version of π
(h)
+ is

π̂
(h)
+ (X+)=∆(X+)

K(h)
∑

j=1

KB
∑

b=1

ω
(h,j,b)
+ δJ(h,j)∪L(b)(L(X+))

[

p
(h)
+

]X+

,

where

ω
(h,j,b)
+ , ω

(I(h),ξ(h))
S (J (h,j))wB(L

(b))

p
(h)
+ , p

(ξ(h))
+ .

Since the weights of the (untruncated) prediction density

sum to 1, it follows from Proposition 5 that the resulting

truncated density π̂+ =
∑H

h=1 π̂
(h)
+ , which has a total of

T = KB

∑H

h=1K
(h) components, incurs an L1 truncation

error of

1−
H
∑

h=1

K(h)
∑

j=1

KB
∑

b=1

ω
(h,j,b)
+ .

Moreover, the truncated density minimizes the L1-distance

from the predicted δ-GLMB over all truncations with K(h)

components for each h = 1, ..., H , and KB components for the

births. The final expression for the approximation is obtained

by normalizing the truncated density. Table 2 shows the pseudo

code for the prediction operation. Note that all three for-loops

can be implemented in parallel.

Specific values for the number of requested components

K(h) and KB are generally user specified and application de-

pendent. A generic strategy is to choose K(h) =
⌈

ω(h)Jmax

⌉
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where Jmax is the desired overall number of hypotheses,

and to choose KB such that the resulting truncation captures

a desired proportion (say 99%) of the probability mass of

the birth density. The alternative strategy of keeping the

T = Jmax strongest components of π+ would yield a smaller

L1-error than the proposed strategy. However, in addition to

an (H +KB)-fold increase in the dimension of the resulting

problem, parallelizability is lost.

Remark: As noted previously, the actual value of the asso-

ciation history ξ(h) is not needed in the update and prediction

calculations, it is used merely as an index for the track density

p(ξ
(h)). Since the track density is now equivalently indexed by

h, i.e. p(h) , p(ξ
(h)), in practice it is not necessary to propagate

ξ(h). Nonetheless, for clarity of exposition we have retained

ξ(h) in the update and prediction pseudo codes.

VI. DELTA GLMB FILTER

The main steps of the δ-GLMB filter algorithm is summa-

rized in the following pseudo code:

Main Loop (Filter)

for k = 1 : K
Prediction

Update

Compute State Estimates

end

In Subsection VI-A we describe the multi-target state esti-

mation process in the “Compute State Estimate” module. Sub-

section VI-B presents look-ahead strategies to reduce number

of calls to the ranked optimal assignment and K-shortest paths

algorithms.

A. Multi-target state estimation

Given a multi-target filtering density, several multi-target

state estimators are available. The Joint Multi-object Estimator

and Marginal Multi-object Estimator are Bayes optimal, but

difficult to compute [3]. A simple and intuitive multi-target

estimator for a δ-GLMB density is the multi-Bernoulli esti-

mator, which selects the set of tracks or labels L ⊆ L with

existence probabilities above a certain threshold, and for the

states of the tracks, the maximum a posteriori (MAP) or the

mean estimates from the densities p(ξ)(·, ℓ), ℓ ∈ L. From [1],

the existence probability of track ℓ is given by the sum of the

weights of all hypotheses containing track ℓ :
∑

(I,ξ)∈F(L)×Ξ

ω(I,ξ)1I(ℓ).

An alternative multi-target estimate is the MAP or the mean

estimate of the states of the hypothesis with the highest weight.

In this work we use a suboptimal but tractable version

of the Marginal Multi-object Estimator by finding the MAP

cardinality estimate from the cardinality distribution [1]:

ρ(n) =
∑

(I,ξ)∈Fn(L)×Ξ

ω(I,ξ),

Table 3. Compute State Estimate

• input: Nmax, {(I(h,j), ξ(h,j), ω(h,j), p(h,j))}
(H,T (h))
(h,j)=(1,1)

• output: X̂

ρ(n) :=
∑H

h=1

∑T (h)

j=1 ω
(h,j)δn(|I(h,j)|) ; n = 0, ..., Nmax

N̂ := argmaxρ
(ĥ, ̂) := argmax(h,j) ω

(h,j)δ
N̂
(|I(h,j)|)

X̂ : = {(x, ℓ) : ℓ ∈ I(ĥ,̂), x =

∫

yp(ĥ,̂)(y, ℓ)dy}

where Fn(L) denotes the class of finite subsets of L with

exactly n elements. We then find the labels and the mean

estimates of the states from the highest weighted component

that has the same cardinality as the MAP cardinality estimate.

Table 3 shows the pseudo code for the multi-target state

estimation

B. PHD look-ahead

In this subsection we use the PHD/CPHD update and

prediction [8], [29], [50]–[52] to look-ahead and identify

the prediction/update components that generate significant

updated/predicted components. This is analogous to the idea

of using a measurement driven proposal in the particle filter,

to guide particles towards important areas of the state space

[53], [54].

Recall that each prediction component generates a set of

update components. Typically, more than 90% of the best

predicted components generate update components with neg-

ligible weights. Since updating is expensive, it is important to

minimize the number of prediction components to be updated

(and hence the number of calls to the ranked assignment

algorithm). Knowing in advance which prediction components

would generate significant update components will save sub-

stantial computations. Similarly, further saving in computa-

tions can be achieved by knowing in advance which update

components would generate significant prediction components.

The PHD/CPHD filter is a good approximation to the multi-

target Bayes filter and is inexpensive compared to the δ-GLMB

update. Moreover, integration of the PHD filter within the δ-

GLMB filter is seamless as both filters are developed from

the same RFS framework. Indeed, the PHD of (the unlabeled

version of) a δ-GLMB of the form (9) is given by [1]:

v(x) =
∑

(I,ξ)∈F(L)×Ξ

v(I,ξ)(x)

where

v(I,ξ)(x)=
∑

ℓ∈I

ω(I,ξ)p(ξ)(x, ℓ).

is the PHD of hypothesis (I, ξ). Assuming that the detection

probability and single measurement likelihood do not depend

on the labels, the updated PHD is given by (see [8], [50], [51])

v(x|Z) =
∑

(I,ξ)∈F(L)×Ξ

v̂(I,ξ)(x|Z),
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where the constituent updated PHD v̂(I,ξ)(·|Z) due to hypoth-

esis (I, ξ) is given by

v̂(I,ξ)(x|Z) = (1− pD(x))v(I,ξ)(x)

+
∑

z∈Z

pD(x)g(z|x)v(I,ξ)(x)

κ(z) +
∑

(I,ξ)∈F(L)×Ξ

〈

pDg(z|·), v(I,ξ)
〉 ,

Note that v̂(I,ξ)(·|Z) is not the same as the updated PHD of

v(I,ξ) given by

v(I,ξ)(x|Z) = (1− pD(x))v(I,ξ)(x)

+
∑

z∈Z

pD(x)g(z|x)v(I,ξ)(x)

κ(z) +
〈

pD(x)g(z|x), v(I,ξ)(x)
〉 .

The ratio of the constituent updated PHD mass
∫

v̂(I,ξ)(x|Z)dx to the total updated PHD mass
∫

v(x|Z)dx
can be thought of as a selection criteria and is a good indicator

of the significance of hypothesis (I, ξ) after the update. A

higher score indicates a greater significance. The proposed

look-ahead strategy selects prediction hypotheses with highest

constituent updated PHD masses that together makes up most

(say 95%) of the total updated PHD mass. These PHD masses

can be readily computed with O(|Z|) complexity, using SMC

[50] or Gaussian mixtures [51]. Further improvement can be

achieved by replacing the PHD update with the CPHD update

with O(|Z|3) complexity [29], [52]. Note that the δ-GLMB

update can reuse the computations in the PHD/CPHD update

such as the Kalman gain and other variables.

A similar strategy can be employed to identify updated com-

ponents that generates weak prediction hypotheses. Using the

constituent predicted PHD masses as the selection criterion,

we select updated hypotheses whose combined predicted PHD

mass makes up most of the total predicted PHD mass.

A parallelizable look-ahead strategy can be formulated

using the updated PHD v(I,ξ)(·|Z). The relative cardinality

error
∣

∣

∫

v(I,ξ)(x|Z)dx − |I|
∣

∣ /|I| of hypothesis (I, ξ) is a

measure of how well it explains the observed data Z , and

is a possible selection criterion. Additional selection criteria

are possible with the CPHD update since the cardinality

distribution is available. Consider the PHD v(I,ξ) of hypoth-

esis (I, ξ) and a Poisson cardinality distribution ρ(I,ξ) with

mean
∫

v(I,ξ)(x)dx. If hypothesis (I, ξ) explains the observed

data well, then the CPHD updated cardinality distribution

ρ(I,ξ)(·|Z) should be close to δ|I|. Hence, a possible se-

lection criterion is the Kullback-Leibler divergence between

ρ(I,ξ)(·|Z) and δ|I|. In both cases a lower score indicates a

greater significance for hypothesis (I, ξ) after the update.

Regardless of the particular look ahead strategy used, the

selection criterion yields an unnormalized score for each

hypothesis or component, which generally indicates how well

the component explains the observed data. Thus for implemen-

tation a normalized score for each component can be derived

such that a higher score indicates a better fit. A generic method

for setting T (h) is then to choose its value to be proportional

to the normalized score for component (I(h), ξ(h)) and the

desired overall number of components Jmax.

VII. NUMERICAL EXAMPLE

A non-linear example has been presented in [1]. In this

section, we compare the performance of the δ-GLMB and

CPHD filters with a linear Gaussian example and hence Gaus-

sian mixture implementation. A typical scenario is employed

to highlight the susceptibility of the CPHD filter to the so

called “spooky effect” [55]. The term spooky effect refers

to phenomenon where the CPHD filter encounters a missed

detection for a particular track and significantly reduces the

weight of the undetected track by shifting part of its mass to

other targets. The δ-GLMB filter is generally immune to the

spooky effect since it does not use an i.i.d. approximation of

the filtering density and hence cannot shift the probability mass

of individual tracks between each other. Furthermore the δ-

GLMB filter is generally able to correct for CPHD look ahead

errors, since the weights of the CPHD-generated hypotheses

are computed exactly from the δ-GLMB update.

Consider a set of multi-target trajectories on the two dimen-

sional region [−1000, 1000]m × [−1000, 1000]m, as shown

in Figure 6. The duration of the scenario is K = 100s. All

targets travel in straight paths and with different but constant

velocities. The number of targets is time varying due to births

and deaths. There is a crossing of 3 targets at the origin

at time k = 20, and a crossing of two pairs of targets at

position (±300, 0) at time k = 40. The targets also become

more dispersed as the time increases in order to elucidate the

estimation errors caused by the spooky effect.

-1000 -800 -600 -400 -200 0 200 400 600 800 1000
-1000

-800

-600

-400

-200

0

200

400

600

800

1000

x coordinate (m)

y 
co

or
di

na
te

 (
m

)

Fig. 6. Multiple trajectories in the xy plane. Start/Stop positions for each
track are shown with ◦/△. Targets become more dispersed with increasing
time.

The kinematic target state is a vector of planar position

and velocity xk = [ px,k, py,k, ṗx,k, ṗy,k ]T . Measurements are

noisy vectors of planar position only zk = [ zx,k, zy,k ]T . The

single-target state space model is linear Gaussian according

to transition density fk|k−1(xk|xk−1) = N (xk;Fkxk−1, Qk)
and likelihood gk(zk|xk) = N (zk;Hkxk, Rk) with parameters

Fk =

[

I2 ∆I2
02 I2

]

Qk = σ2
ν

[

∆4

4 I2
∆3

2 I2
∆3

2 I2 ∆2I2

]

Hk =
[

I2 02
]

Rk = σ2
εI2

where In and 0n denote the n× n identity and zero matrices

respectively, ∆ = 1s is the sampling period, σν = 5m/s2
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and σε = 10m are the standard deviations of the process

noise and measurement noise. The survival probability is

pS,k = 0.99 and the birth model is a Labeled Multi-Bernoulli

RFS with parameters πB = {r
(i)
B , p

(i)
B }3i=1 where r

(i)
B = 0.04

and p
(i)
B (x) = N (x;m

(i)
B , PB) with m

(1)
B = [ 0, 0, 100, 0 ]T ,

m
(2)
B = [ − 100, 0,−100, 0 ]T , m

(3)
B = [ 100, 0,−100, 0 ]T ,

PB = diag([ 10, 10, 10, 10 ]T )2. The detection probability

is pD,k = 0.88 and clutter follows a Poisson RFS with an

average intensity of λc = 1.65×10−5 m−2 giving an average

of 66 false alarms per scan.

The δ-GLMB filter is capped to 10000 components and is

coupled with the parallel CPHD look ahead strategy described

in the previous section. The CPHD filter is similarly capped to

10000 components through pruning and merging of mixture

components. Results are shown over 100 Monte Carlo trials.

Figures 7 and 8 show the mean and standard deviation of the

estimated cardinality versus time. Figures 9 and 10 show the

Optimal Sub-Pattern Assignment (OSPA) distance [56] and

its localization and cardinality components for c = 100m and

p = 1.

It can be seen that both filters estimate the target cardinal-

ity accurately, with the δ-GLMB exhibiting better estimated

cardinality variance. However the δ-GLMB filter significantly

outperforms the CPHD filter on the overall miss distance.

Examination of the localization and cardinality components

reveals that the δ-GLMB filter outperforms the CPHD filter

on both components. The improved cardinality performance is

attributed mainly due to a lower estimated cardinality variance.

The improved localization performance is attributed to two

factors: (a) the spooky effect causes CPHD filter to temporarily

drop tracks which are subjected to missed detections and to

declare multiple estimates for existing tracks in place of the

dropped tracks, and (b) the δ-GLMB filter is generally able to

better localize targets due to a more accurate propagation of

the filtering density.
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Fig. 7. Cardinality statistics for δ-GLMB filter (100 Monte Carlo trials)
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Fig. 8. Cardinality statistics for CPHD filter (100 Monte Carlo trials)

VIII. CONCLUDING REMARKS

This paper detailed the first implementation of the δ-GLMB

multi-target tracking filter that is general enough to accom-
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Fig. 9. OSPA distance for δ-GLMB and CPHD filters (100 Monte Carlo
trials)
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Fig. 10. OSPA components for δ-GLMB and CPHD filters (100 Monte Carlo
trials)

modate unknown and time-varying number of targets, non-

linear target dynamics, non-uniform probability of detection

and clutter intensity. A salient feature of this implementation

is the high parallelizability. The key innovation lies in the

truncation of δ-GLMB densities without exhaustive computa-

tion of all the components and the integration of PHD look-

ahead to reduce the number of computations. Furthermore, it is

established that truncation of a δ-GLMB density by keeping

the highest weighted components minimizes the L1-error in

the multi-target densities.

It is also of interest to examine information theoretic cri-

teria, such as the Kullback-Leibler divergence, for δ-GLMB

truncation/approximation. Implementations using other multi-

target filters (in place of the ranked assignment algorithm) to

generate the significant δ-GLMB components can be explored

to reduce numerical complexity. Approximation of δ-GLMB

by other families, for example the labeled multi-Bernoulli–a

GLMB with only one term [57]–is another venue for further

work.
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