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Abstract

In this paper, we tackle for the first time the problem of maximum likelihood (ML) estimation of the signal-to-noise

ratio (SNR) parameter over time-varying single-input multiple-output (SIMO) channels. Both the data-aided (DA) and

the non-data-aided (NDA) schemes are investigated. Unlikeclassical techniques where the channel is assumed to be

slowly time-varying and, therefore, considered as constant over the entire observation period, we address the more

challenging problem ofinstantaneous(i.e., short-term or local) SNR estimation over fast time-varying channels. The

channel variations are tracked locally using a polynomial-in-time expansion. First, we derive in closed-form expressions

the DA ML estimator and its bias. The latter is subsequently subtracted in order to obtain a new unbiased DA estimator

whose variance and the corresponding Cramér-Rao lower bound (CRLB) are also derived in closed form. Due to the

extreme nonlinearity of the log-likelihood function (LLF)in the NDA case, we resort to the expectation-maximization

(EM) technique to iteratively obtain the exact NDA ML SNR estimates within very few iterations. Most remarkably,

the new EM-based NDA estimator is applicable to any linearly-modulated signal and provides sufficiently accurate

soft estimates (i.e.,soft detection) for each of the unknown transmitted symbols. Therefore,hard detectioncan be

easily embedded in the iteration loop in order to improve itsperformance at low to moderate SNR levels. We show by

extensive computer simulations that the new estimators areable to accurately estimate theinstantaneousper-antenna

SNRs as they coincide with the DA CRLB over a wide range of practical SNRs. Moreover, the new EM-based

NDA ML solution exhibits substantial performance improvements against the SIMO-extended version of the estimator

developed by Wiesel et al, referred to hereafter as WGM, the only benchmark of the same class (i.e., NDA ML)

suitable for proper comparisons.
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is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to pubs-

permissions@ieee.org. Work supported by a Canada ResearchChair in Wireless Communications and by the Discovery Grants Program of

NSERC. Work accepted for publication, in part, in IEEE ICASSP 2014. [1].
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I. I NTRODUCTION

Over the recent years, there has been an increasing demand for the a priori knowledge of the propagation

environment conditions, fueled by an increasing thirst fortaking advantage of any optimization opportunity that would

enhance the system capacity. In essence, almost all the necessary information about these propagation conditions can

be captured by estimating various channel parameters. In particular, the SNR is considered to be a key parameter

whosea priori knowledge can be exploited at both the receiver and the transmitter (through feedback), in order to

reach the desired enhanced/optimal performance using various adaptive schemes. As examples, just to name a few,

the SNR is required in all power control strategies, adaptive modulation and coding, turbo decoding, and handoff

schemes [2-4]. SNR estimators can be broadly divided into two major categories: i) data-aided (DA) techniques in

which the estimation process relies on a perfectly known (pilot) transmitted sequence, and ii) non-data-aided (NDA)

techniques where the estimation process is applied with noa priori knowledge about the transmitted symbols (but

possibly the transmit constellation).

DA approaches often provide sufficiently accurate estimates for constant or quasi-constant parameters, even by

using a reduced number of pilot symbols. However, in fast changing wireless channels, they require larger pilot

sequences in order to track the time variations of the unknown parameter. Indeed, when estimating the (time-varying)

instantaneousSNR from far-apart inserted pilot symbols, the DA approaches are unable to reflect the actual channel

quality. This is because the receiver cannot accurately capture the details of the channel between the pilot positions.

In principle, this problem can be dealt with by inserting more pilot symbols. Unfortunately, this remedy results in

an excessive overhead that entails severe losses in system capacity. To circumvent this problem, NDA approaches

are often considered instead for their ability to exploit both pilot and non-pilot received samples to estimate the

channel coefficients. Consequently, they can provide the receiver with more refined channel tracking capabilities

without impinging on the whole throughput of the system.

Historically, the problem of SNR estimation was first formulated and tackled in the context of single-input single-

output (SISO) systems underconstantchannels [5, 6]. These two early estimators, the well-knownM2M4 technique

among them, are moment-based ones. During the last decade, there has been a surge of interest in investigating

this problem more intensively and many estimators tailoredtoward constantSISO channels were introduced [7-
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15]. More recently, SNR estimation has also been addressed under different types of diversity. In particular, a

moment-based SNR estimator that exploits the across-antennae fourth-order moments inconstantSIMO channels

(i.e., spatial diversity) was proposed in [16, 17]. ML SNR estimation has also been investigated in [18, 19] and

[20] under constantSIMO and MIMO channels, respectively. Yet, current and future generation multi-antennae

systems such as long-term-evolution (LTE), LTE-Advanced (LTE-A) and beyond (LTE-B) are expected to support

reliable communications at very high velocities reaching500 Km/h [21]. For such systems, classical assumptions

of constantchannels no longer hold and consequently all the aforementioned SNR estimators shall suffer from

severe performance loss. Therefore, one needs to explicitly incorporate the channel time-variations in the estimation

process and, so far, very few works have been reported on thissubject. In fact, ML SNR estimation under SISO

time-varyingchannels was investigated in [22, 23] and [24] for the DA and NDA modes, respectively. Under SIMO

time-varyingchannels, however, the only work that is available from the open literature is based on a least-squares

(LS) approach [25, 26].

Motivated by all these facts, we tackle in this paper the problem of ML instantaneousSNR estimation overtime-

varying SIMO channels, for both the DA and NDA schemes. Our proposed method is based on a piece-wise

polynomial-in-time approximation for the channel processwith very few unknown coefficients. In the DA scenario

where the receiver has access to a pilot sequence from which the SNR is obtained, the ML estimator is derived in

closed form. Whereas in the NDA case where the transmitted sequence is partially unknown and random, the LLF

becomes very complicated and its maximization is analytically intractable. Therefore, we resort to a more elaborate

solution using the EM concept [27] and we develop thereby an iterative technique that is able to converge within

very few iterations (i.e., in the range of 10). We also solve the challenging problem of local convergence that is

inherent to all iterative techniques. In fact, we propose anappropriate initialization procedure that guarantees the

convergence of the new EM-based estimator to the global maximum of the LLF which is indeedmultimodalunder

complex time-varying channels (in contrast to real channels). Most interestingly, the new EM-based SNR estimator

is applicable for linearly-modulated signals in general (i.e., PSK, PAM, or QAM) and provides sufficiently accurate

estimates [i.e.,soft detection(SD)] for the unknown transmitted symbols. Therefore,hard detection(HD) can be

easily embedded in the iterative loop to further improve itsperformance over the low-SNR region. Moreover, we

develop a bias-correction procedure that is applicable in both the DA and NDA cases and which allows, over a

wide practical SNR range, the new estimators to coincide with the DA CRLB. Simulation results show the distinct
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performance advantage offered by fully exploiting the antennaediversity and gain in terms of instantaneous SNR

estimation. In particular, the new NDA estimator (either with SD or HD) shows overly superior performance against

the most recent NDA ML technique1 both in its original SISO version [24] and even in its SIMO-extended version

developed here to further exploit the antennaegain.

The remainder of this paper is structured as follows. In section II, we introduce the system model that will be used

throughout the article. In section III, we derive in closed form the new DA estimator with its bias and variance

along with the corresponding CRLB. In section IV, we developthe new NDA EM-based ML estimator along with

its appropriate initialization procedure. In section V, wepresent and analyze the simulation results before drawing

out some concluding remarks in section VI.

We mention beforehand that some of the common notations are adopted in this paper. Indeed, vectors and matrices

are represented in lower- and upper-case bold fonts, respectively. Moreover,{.}T and {.}H denote the transpose

and the Hermitian (transpose conjugate) operators, respectively. The operatorsℜ{.} andℑ{.} return, respectively,

the real and imaginary parts of any complex scalar or vector whereas{.}∗ returns its conjugate. We also use0K×L

to denote a(K × L) zero matrix and0L wheneverK = L.

II. SYSTEM MODEL

Consider a digital transmission of aM−ary linearly-modulated signal over a SIMO communication system under

time-varying flat-fading channels. Assuming an ideal receiver with perfect time synchronization, and after matched

filtering, the sampled baseband received signal over theith antenna element, fori = 1, 2, · · · , Nr, can be expressed

as:

yi(tn) = hi(tn)a(tn) + wi(tn), n = 1, 2, · · · , N (1)

where{tn = nTs}Nn=1 is the nth discrete-time instant,Ts is the sampling period which is equal to the symbol

period, andN is the size of the observation window. We denote bya(tn) the linearly-modulated (i.e., M-PSK,

M-PAM or M-QAM) transmitted symbol, byyi(tn) the corresponding received sample, and byhi(tn) the time-

varyingcomplexchannel gain, over eachith antenna branch. Note here that any carrier frequency offset(CFO) that

is due to the Doppler shift and/or any mismatch between the transmitter and receiver local oscillators is absorbed in

the complexchannel coefficients. The noise components,wi(tn), assumed to be temporally white and uncorrelated

between antenna elements, are realizations of zero-mean complex circular Gaussian processes, with independent

1It is worth mentioning here that the very first EM-based ML SNRestimator was developed in [13], but forconstantchannels.
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real and imaginary parts, each of varianceσ2 (i.e., with overall noise powerN0 = 2σ2). We assume that the same

noise power is experienced over all the antenna branches (i.e., uniform noise).

The narrowband model in (1) is well justified in practice by its wide adoption in current and next-generation

multicarrier communication systems, such as LTE, LTE-A and LTE-B systems. In fact, it is well known that OFDM

systems transform a multipath frequency-selective channel in the time domain into a frequency-flat (i.e., narrowband)

channel over each subcarrier as modeled by (1). Actually, multicarrier technologies were primarily designed to combat

the multipath effects in high-data-rate communications bybringing back the per-carrier propagation channel to the

simple flat-fading case [28, 29]. Yet, even over traditionalsingle-carrier systems, the narrowband model in (1) could

still be valid in practice when the symbol duration is smaller than the delay spread of the channel. As mentioned

in section I, however, most of the available techniques are based on the assumption that the channels are constant

during the observation period, i.e.,hi(tn) = hi for n = 1, 2, · · · , N . But since in most real-world situations this

assumption does not hold, one must incorporate the channel time variations in the SNR estimation process. Actually,

all real-life channels have an essentially finite number of degrees of freedom due to restrictions on time duration

or bandwidth (i.e., bandlimited). Consequently, their time variations can be efficiently captured throught−power

series models [30]. In fact, owing to the well-known Taylor’s theorem, the time-varying channel coefficients can be

locally tracked through a polynomial-in-time expansion oforder (L− 1) as follows:

hi(tn) =

L−1∑

l=0

c
(l)
i tln +R

(i)
L (n), i = 1, 2, · · · , Nr (2)

wherec(l)i is the lth coefficient of the channel polynomial approximation over the ith branch amongNr receiving

antennae. The termR(i)
L (n) refers to the remainder of the Taylor series expansion. Thisremainder can be driven to

zero under mild conditions such as i) a sufficiently high approximation order(L−1), or ii) a sufficiently small ratio

N̄FD/Fs whereFs = 1/Ts is the sampling rate,FD is the maximum Doppler frequency shift, and̄N is the size of

the local approximation window. Choosing a high approximation order (i.e., first condition) may result in numerical

instabilities due to badly conditioned matrices (depending on the value of the sampling rate). The second condition,

however, can be easily fulfilled by choosing small-size local approximation windows (i.e., by appropriately selecting

N̄ ). By doing so, the remainderR(i)
L (n) can be neglected thereby yielding the accurate approximation:

hi(tn) =

L−1∑

l=0

c
(l)
i tln, i = 1, 2, · · · , Nr. (3)
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Given all the received samples{yi(n)}Nn=1, for i = 1, 2, · · · , Nr, and the statistical noise model, our goal is to

continuously estimate theinstantaneous2 per-antenna SNRs which are defined for each {ith}Nr

i=1 as follows:

ρi =

∑N
n=1

∣∣hi(tn)|2|a(tn)|2
N(2σ2)

(4)

=

∑N
n=1

(
|a(tn)|2

∣∣∣
∑L−1

l=0 c
(l)
i tln

∣∣∣
2
)

N(2σ2)
. (5)

Note here that we do not make any other assumption about the channel coefficients than being unknown and

deterministic. Of course, they might be random in practice.However, we want to avoid anya priori knowledge

about the statistical model of the channel. The motivation behind this choice is twofold: i) the statistical models

are after all theoretical ones and as such they may not reflectthe true behavior of real-world channels, and ii) the

fading conditions (for instance the presence/absence of a line-of-sight component) might change in real time as users

move from one location to another. In light of the above reasons, the new estimator is hence well geared toward

any type of fading, a quite precious degree of freedom in practice. It is worth mentioning, though, that estimators

that capitalize on the statistical model of the fading channel, including the correlation in time between adjacent

approximation windows, will generally perform better thanthose who do not. Although this research path sounds

interesting, it falls beyond the scope of this paper and may be treated in a future work.

Besides, the main advantage of local tracking is its abilityto capture the unpredictable time variations of the channel

gains using very few coefficients. Thus, we split up the entire observation window (of sizeN ) into multiple local

approximationwindows of sizeN̄ (whereN is an integer multiple ofN̄ ). Then, after acquiring all the locally-

estimated polynomial coefficients{ĉ(l)i,k}
N/N̄
k=1 , wherek is the index of each local approximation window, and after

averaging the local estimates of the single-sided noise power3, {σ̂2
k}

N/N̄
k=1 , the estimated SNRs are ultimately obtained

for i = 1, 2, · · · , Nr as follows:

ρ̂i =

∑N/N̄
k=1

∑N̄
n=1 |âk(tn)|

2
∣∣∣
∑L−1

l=0 ĉ
(l)
i,kt

l
n

∣∣∣
2

N
(

N̄
N

∑N/N̄
k=1 2σ̂2

k

) . (6)

where, in the NDA case,
{
âk(tn)

}N̄
n=1

are estimates of the unknown transmitted symbols corresponding to eachkth

local approximation window. Indeed, it will be seen in Section IV that our NDA estimator is able to demodulate

the transmitted symbols for any linearly-modulated signal. In the DA case, however,
{
âk(tn)

}N̄
n=1

are equal to the

known transmitted symbols, i.e.,
{
âk(tn) = ak(tn)

}N̄
n=1

.

2By “ instantaneous” SNR, we mean the “local” or “ short-term” SNR that can be estimated from short observation windows.
3These are indeed multiple estimates of the same constant butunknown parameterσ2 .
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III. D ERIVATION OF THE DA ML SNR ESTIMATOR AND THE DA CRLB

In this section, we begin by deriving in closed-form expression the DA ML estimator for the SNR over each

antenna element. Then, we will derive its bias revealing thereby that the derived estimator is actually biased due to

the neglected remainder of the Taylor’s series and the use ofshort observation windows. This will afterward allow

us to obtain an unbiased version of the DA estimator by removing this bias during the estimation process. We will

also derive the closed-form expressions for the corresponding variance and CRLB.

A. Formulation of the DA ML SNR estimator

In most real-world applications, some known pilot symbols are usually inserted to perform different synchroniza-

tion tasks. The DA ML estimator can thus rely on these pilot symbols to estimate theinstantaneousSNR or at

least to give a head start for an iterative algorithm (as willbe derived in section IV) by providing a good initial

guess about all the unknown parameters. Assume, therefore,thatN ′ such pilot or known symbols (out ofN pilot

and non-pilot symbols) are periodically transmitted everyT ′
s = NpTs whereNp ≥ 1 is an integer quantifying the

normalized (byTs) time period between any two consecutive pilot positions. Here, we denote the size of the local

approximation windows as̄NDA (we shall later usēN = N̄NDA in the NDA case). To begin with, we consider each

antenna element,i, and gather the corresponding received pilot samples within eachkth approximation window

in a column vectory′(k)
i,DA = [y

(k)
i (t′1), y

(k)
i (t′2), · · · , y(k)i (t′

N̄
′

DA

)]T , wheret′n = n T ′
s for n = 1, 2, · · · , N̄ ′

DA. Here,

N̄
′

DA = N̄DA/Np is the number of pilot symbols in each approximation window which coversN̄DA pilot and non-

pilot received samples. Note also thatN̄DA is a design parameter that can always be freely chosen as an integer

multiple of Np (see section V for more details about the appropriate choiceof N̄DA). The channel coefficients at

each pilot position,t′n, are also obtained from (3) as follows:

hi,k(t
′
n) =

L−1∑

l=0

c
(l)
i,kt

′l
n, i = 1, 2, · · · , Nr. (7)

For mathematical convenience, we define the following vectors:

h′
i,k = [hi,k(t

′
1), hi,k(t

′
2), · · · , hi,k(t

′
N̄

′

DA
)]T (8)

w′
i,k = [wi,k(t

′
1), wi,k(t

′
2), · · · , wi,k(t

′
N̄

′

DA
)]T (9)

ci,k = [c
(0)
i,k , c

(1)
i,k , · · · , c

(L−1)
i,k ]T . (10)

Over theith antenna branch and the local approximation windowk, h′
i,k contains thecomplexchannel coefficients

at pilot positions only andw′
i,k is the corresponding noise vector. The vectorci,k contains the coefficients of the



8

local polynomial expansion. Then, using (7), we can rewritethe channel approximation model in a more compact

form as follows:

h′
i,k = T′ci,k, i = 1, 2, · · · , Nr, (11)

where

T′ =




1 t′1 · · · t′1
L−1

1 t′2 · · · t′2
L−1

...
...

. . .
...

1 t′
N̄

′

DA

· · · t′
L−1

N̄
′

DA




. (12)

Note thatT′ is a Vandermonde matrix with linearly-independent columns. Consequently, it is full-rank meaning that

the pseudo-inverse that will appear in the sequel is always well defined. We further defineA′
k = diag

{
ak(t

′
1), ak(t

′
2), · · · , ak(t′N̄ ′

DA

)
}

to be the(N̄
′

DA×N̄
′

DA) diagonal matrix that contains all the known symbols transmitted within thekth approximation

window. Then, we can rewrite the corresponding received samples (over each antenna elementi) in a N̄
′

DA-

dimensional column vector as follows:

y
′(k)
i,DA = A′

kT
′ci,k +w′

i,k = Φ′
kci,k +w′

i,k, (13)

whereΦ′
k = A′

kT
′ is a known(N̄ ′

DA ×L) matrix. We further stack all these per-antenna local observation vectors,

{y′(k)
i,DA}Nr

i=1, one below another into a single vectory′(k)
DA = [y

′(k)T
1,DA y

′(k)T
2,DA · · · y

′(k)T
Nr,DA ]

T . By doing so, all the

space-time received samples corresponding to thekth approximation window can be written in a more succinct

vector/matrix form as follows:

y
′(k)
DA = B′

kck +w′
k, (14)

where ck = [cT1,k cT2,k · · · cTNr,k
]T and w′

k = [w′T
1,k w′T

2,k · · · w′T
Nr,k

]T are, respectively,LNr- and N̄ ′
DANr-

dimensional column vectors vectorized in the same way andB′
k = blkdiag{Φ′

k,Φ
′
k, ...,Φ

′
k} is a (N̄

′

DANr × LNr)

block-diagonal matrix. The model in (14) is a well-known linear model in estimation theory for which the ML

estimator along with its bias and variance can be derived in closed form [35]. In fact, the probability density

function (pdf) of the locally-observed vectors,y′(k)
DA , conditioned onB′

k and parameterized byθk = [cTk , σ
2]T (a

vector that contains all the unknown parameters over thekth approximation window) is given by:

p(y
(k)
DA ; θk

∣∣Bk) =
1

(2πσ2)N̄
′

DANr

×

exp

{
− 1

2σ2
[y

(k)
DA −Bkck]

H [y
(k)
DA −Bkck]

}
. (15)
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The natural logarithm of (15) yields the DA LLF of the system as follows:

LDA(θk) = −N̄
′

DANr ln(2π)− N̄
′

DANr ln(σ
2)−

1

2σ2
[y

(k)
DA −Bkck]

H [y
(k)
DA −Bkck]. (16)

By differentiating (16) with respect to the vectorck and setting the result to zero, we obtain the ML estimate of

the local polynomial coefficients over all the receiving antenna branches as follows:

ĉk,DA =
(
B′

k
H
B′

k

)−1

B′
k
H
y
′(k)
DA , (17)

whereT′ and A′
k are known matrices, and so isB′

k consequently. This is also the well-known least squares

(LS) estimator which coincides with the ML estimator due to the linearity of the observation model (14) and the

Gaussianity of the noise [35]. Note also thatB′
k
H
B′

k is a block-diagonal matrix and thus its inverse can be easily

obtained by computing the inverses of its small-size diagonal blocks separately. To estimate the noise variance, we

first find the partial derivative of (16) with respect toσ2. Then after setting it to zero and substitutingck by ĉk,DA

obtained in (17), the ML estimate for the noise variance is derived as follows:

σ̂2
k,DA =

1

2N̄
′

DANr
[y

(k)
DA −Bkĉk,DA ]

H [y
(k)
DA −Bkĉk,DA ]. (18)

Actually, combining (17) and (18), it can be further shown that:

σ̂2
k,DA =

1

2N̄
′

DANr

[
y
′(k)
DA

H
(I−Pk)y

′(k)
DA

]
,

=
1

2N̄
′

DANr

[
y
′(k)
DA

H
P⊥

k y
′(k)
DA

]
, (19)

in which Pk = B′
k

(
B′

k
H
B′

k

)−1

B′
k
H and P⊥

k = I − Pk are, respectively, the projection matrices onto the

column space ofB′
k (i.e., signal subspace) and its orthogonal complement (i.e., noise subspace). In order to obtain

the estimated SNRs over the entire observation window for a given ith antenna element, we begin by extracting

the locally-estimated polynomial coefficients,{ĉ(k)i,DA}k. Then the channel coefficients4 corresponding to the pilot

positions over each approximation window are obtained as{ĥ′(k)
i,DA = T′ĉ

(k)
i,DA}k. The latter are then stacked into a

single vector̂h′
i,DA =

[
ĥ
′(1)
i,DA , ĥ

′(2)
i,DA , · · · , ĥ

′(N/N̄DA)
i,DA

]T
. On the other hand, the local estimates for the noise variance

are averaged over all the local approximation windows:

σ̂2
DA =

N̄DA

N

N/N̄DA∑

k=1

σ̂2
k,DA , (20)

4The DA SNR estimator is able to implicitly identify the time-varying channel coefficients and estimate the noise power. Yet study and

assessment of these capabilities or functionalities fall beyond the scope of this paper.
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to finally obtain the DA ML SNR estimator over each antenna element as follows:

ρ̂i,DA =

∣∣∣∣A′ĥ′
i,DA

∣∣∣∣2
N
Np

(2σ̂2
DA)

, i = 1, 2, , · · · , Nr (21)

with A′ = blkdiag
{
A′

1,A
′
2 · · · ,A′

N/N̄DA

}
being a known (N/Np × N/Np) diagonal matrix that contains all the

pilot symbols transmitted over the whole observation window.

B. Derivation of the exact bias and variance for the DA ML SNR estimator

To improve the accuracy of the DA ML SNR estimator, we calculate and remove its bias. After doing so, we will

derive the exact expression for the variance of the resulting unbiased estimator. Here, for reasons that shall become

clear later in sections IV and V, we are interested in assessing the performance of the “completely DA” estimator

for which all theN transmitted symbols are assumed to be pilots, i.e.,N̄
′

DA = N̄DA
(
or equivalentlyNp = 1 and

henceN ′ = N
)
. In a nutshell, our ultimate goal is to develop a bias-correction procedure that is also valid for

the NDA estimator to be derived in the next section. As will beseen there, the NDA estimator is able to correctly

demodulate all the transmitted symbols which can then be treated (all) as pilots by the receiver. Thus, the same

bias-correction procedure developed hereafter can also beapplied in order to obtain anunbiasedversion of the

biasedNDA estimator. To begin with, recall from (6) that the ML DA SNR estimates are given in the “completely

DA” scenario by:

ρ̂i,DA =

∑N/N̄DA

k=1

∑N̄DA

n=1

(
|ak(tn)|2

∣∣∣
∑L−1

l=0 ĉ
(l)
i,kt

l
n

∣∣∣
2
)

N
(

N̄DA
N

∑N/N̄DA

k=1 2σ̂2
k,DA

) , (22)

from which we show in Appendix A the following theorem:

Theorem 1: the DA ML SNR estimator in (22) is a scaled noncentralF distributed random variable, i.e:

(N − N
N̄DA

L)
N
N̄DA

L
ρ̂i,DA = Fv1,v2(λ), (23)

whereFv1,v2(λ) is the noncentralF distribution with a noncentrality parameterλ = Nρi and degrees of freedom

v1 = N
N̄DA

L andv2 = Nr(N − N
N̄DA

L).

Proof: see Appendix A.

Hence, the mean and the variance of the new DA ML SNR estimatorfollow immediately from the following two

expressions:

E{F} =
v2(v1 + λ)

v1(v2 − 2)
, v2 > 2, (24)

Var{F} = 2

(
v2
v1

)2
(v1 + λ)2 + (v1 + 2λ)(v2 − 2)

(v2 − 2)2(v2 − 4)
, v2 > 4. (25)
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Indeed, using (23) through (25) and denotingǫ = L/N̄DA, we show in Appendix B the following two identities:

E{ρ̂i,DA} =
NrN

NrN(1− ǫ)− 1

(
ρi +

ǫ

2

)
, (26)

Var{ρ̂i,DA} =

(NrN)2
[
ρ2i + ρi

(
2Nr(1− ǫ) + ǫ− 2

N

)
+

(
Nr

2
− 1

2N

)
ǫ−

(
Nr

2
− 1

4

)
ǫ2
]

(
NrN(1− ǫ)− 1

)2(
NrN(1− ǫ)− 2

) . (27)

Now, using (26) we can derive the exact bias for the DA estimator as follows:

Bias{ρ̂i,DA} = ρi

(
NrN

NrN(1− ǫ)− 1
− 1

)
+

NrNǫ

2NrN(1− ǫ)− 1
,

which is not identically zero meaning that the estimator is biased. Actually, this bias is in part due to the use of a

limited number of received samples during the estimation process and in part due to dropping the Taylor’s remainder

in the channel approximation model. Yet, an unbiased version of this DA estimator
(
i.e., E{ρ̂ UB

i,DA} = ρi
)

can be

straightforwardly obtained from (26) as follows:

ρ̂ UB
i,DA =

NrN(1− ǫ)− 1

NrN
ρ̂i,DA − ǫ

2
. (28)

Therefore, by combining (27) and (28), it follows that:

Var{ρ̂ UB
i,DA} =

1

NNr(1− ǫ)− 2

[
ρ2i + ρi

(
2Nr(1− ǫ) + ǫ− 2

N

)

+

(
Nr

2
− 1

2N

)
ǫ−

(
Nr

2
− 1

4

)
ǫ2
]
.

In practice, the variance of unbiased estimators is usuallycompared to the so-called Cramér-Rao lower bound

(CRLB) which is a fundamental benchmark that reflects the best achievable performance ever. Therefore, as detailed

in Appendix C, we also derive the CRLB for DA SNR estimation over time-varying channels as follows:

CRLBDA(ρi) =
ρi
N

(
2 +

ρi
Nr

)
. (29)

Now, by closely inspecting (29), it can be verified that the mean square error (or the variance) of the unbiased

estimator MSE{ρ̂ UB
i,DA} = E{

(
ρ̂ UB
i,DA − ρi

)2} tends asymptotically5, i.e., whenN ≫ 1 andN̄DA ≫ L (or equivalently

ǫ ≪ 1), to the aforementioned CRLB, i.e.:

MSE{ρ̂ UB
i,DA} = Var{ρ̂ UB

i,DA} −→ CRLBDA(ρi), (30)

5It should be mentioned here that the second asymptotic condition, N̄DA ≫ L, must indeed be taken into account. This is because the

estimates of the channel coefficients, over each approximation window, are obtained from thēNDA samples received over that window only.

Their accuracy does not depend, therefore, on how many samples are received outside the considered approximation window (the rest of the

observation interval). Yet, the size of the whole observation window,N , will ultimately affect the performance of the SNR estimator through

the noise variance estimate that is indeed obtained from allthe received samples.
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Therefore, our unbiased DA ML estimator is asymptotically efficient and attains the theoretical optimal performance

as will be validated by computer simulations in section V. Inaddition, even though the CRLB in (29) was primarily

derived for the DA scenario, it will also hold in the NDA case6 for moderate to high SNR values. This is hardly

surprising since the NDA algorithm developed in the next section is able to perfectly estimate/detect all the unknown

transmitted symbols over this SNR region, reaching therebythe ideal DA performance. In other words, the new

NDA ML estimator derived next will be able to reach the performance achievable in ideal conditions (i.e., perfect

knowledge about all the transmitted symbols).

IV. D ERIVATION OF THE NEW EM-BASED ML SNR ESTIMATOR

In this section, we derive the new NDA ML SNR estimator where partial or noa priori knowledge about the

transmitted symbols is assumed at the receiver. The constellation type and order, however, are assumed to be known

to the receiver.

A. Formulation of the new NDA ML SNR estimator

To begin with, we mention that the problem formulation adopted in the DA case is problematic in the NDA

scenario. In fact, as will be seen shortly, the EM algorithm averages the likelihood function, at each iteration, over

all the possible values of the unknown transmitted symbols.Consequently, by adopting the same formulation of

section III, the EM algorithm would average over all the possible realizations of the matrixB that contains the

whole transmitted sequence. This results in a combinatorial problem with prohibitive (i.e., exponentially increasing)

complexity. Typically, its complexity would be of orderO(MN ) whereM is the modulation order andN is the size

of the observation window. In the DA scenario, this was feasible since the matrixB (or the transmitted sequence) is

a priori known to the receiver and no averaging was required. Thus, wereformulate our system differently so that

the EM algorithm averages over theelementarysymbols transmitted at separate time instants instead of averaging

over the whole transmitted sequence. In this way, the complexity of the algorithm becomes only linear with the

modulation order and the observation window size.

To that end, we define7 the vectort(n) = [1, tn, t
2
n, · · · , tL−1

n ]T which is thenth row (transposed to a column

6Note here that the derivation of NDA CRLBs (especially thestochasticones) are extremely challenging in presence of linearly-modulated

signals, in general, and that they usually deserve stand-alone contributions even in the very basic case ofconstantSISO channels [31, 32], 33
7For the sake of simplifying notations in what follows, we shall use t(n) instead oft(nTs) and keep droppingTs in all similar quantities.
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vector) of the Vandermonde time matrix,TN̄NDA
, defined as:

TN̄NDA
=




1 t1 · · · t1
L−1

1 t2 · · · t2
L−1

...
...

. . .
...

1 tN̄NDA
· · · tL−1

N̄NDA




, (31)

and rewrite the channel model as follows:

hi,k(tn) =
L−1∑

l=0

c
(l)
i,kt

l
n = cTi,kt(n). (32)

At each time instantn (within thekth approximation window of size8 N̄ = N̄NDA), we stack all the received samples

at the output of the antennae array,{yi,k(n)}Nr

i=1, known assnapshotin array signal processing terminology, into a

single vector,yk(n) = [y1,k(n), y2,k(n), · · · , yNr,k(n)]
T , which can be expressed as:

yk(n) = ak(n)Ckt(n) +wk(n), (33)

in which ak(n) is the corresponding unknown transmitted symbol,Ck = [c1,k, c2,k, · · · , cNr ,k]
T and wk(n) =

[w1,k(n), w2,k(n), ..., wNr ,k(n)]
T . Note that the vectorsci,k were defined previously in (10). From (33), the pdf of

the received vector,yk(n), conditioned on the transmitted symbolak(n), can be expressed as the product of its

element-wise pdfs as follows:

p
(
yk(n); θk|ak(n) = am

)
=

1

(2πσ2)
Nr

×

exp

{
− 1

2σ2

Nr∑

i=1

∣∣yi,k(n)− amcTi,kt(n)
∣∣2
}
, (34)

in which am is thehypotheticallytransmitted symbol that is randomly drawn from theM -ary constellation alphabet

C = {a1, a2, · · · , aM}. Now, averaging (34) over this alphabet and assuming the transmitted symbols to be equally

likely, i.e., P [am] = 1/M for m = 1, 2, · · · ,M , the pdf of the received vector is obtained as:

p
(
yk(n); θk

)
=

1

M

M∑

m=1

p
(
yk(n); θk|ak(n) = am

)

=

∑M
m=1 exp

{
− 1

2σ2

∑Nr

i=1

∣∣yi,k(n)− amcTi,kt(n)
∣∣2
}

M (2πσ2)
Nr

. (35)

By inspecting (35), it becomes clear that a joint maximization of the likelihood function with respect toσ2 and

{ci,k}Nr

i=1 is analytically intractable. Yet, this multidimensional optimization problem can be efficiently tackled

using the EM concept after defining the rightincompleteandcompletedata sets. In fact, we define at a per-snapshot

8Note that the local approximation windows in the DA and NDA scenarios might have different sizes̄NDA and N̄NDA , respectively.
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basis (in array signal processing terminology) multiple “incomplete” data sets each of which containing theNr

samples received at a given time instantnTs [i.e., yk(n)]. Each of these “incomplete” data sets is completed by

the single unknown symbol,ak(n), corresponding to the same snapshot. Then, the LLF,L(θk|ak(n) = am) ,

ln
(
p(yk(n); θk

∣∣ak(n) = am)
)
, of yk(n) conditioned on the transmitted symbolak(n) is given by:

L(θk|ak(n) = am) = −Nr ln(2πσ
2)−

1

2σ2

Nr∑

i=1

∣∣yi,k(n)− amcTi,kt(n)
∣∣2

= −Nr ln(2πσ
2)− 1

2σ2

Nr∑

i=1

(
|yi,k(n)|2 +

|am|2
∣∣cTi,kt(n)

∣∣2−2ℜ
{
y∗i,k(n)amcTi,kt(n)

})
. (36)

The new EM-based algorithm runs in two main steps. During the“expectation step” (E-step), the expected value

of the above likelihood function with respect to all the possible transmitted symbols{am}Mm=1 is computed. Then,

during the “maximization-step” (M-step), the output of theE-step is maximized with respect to all the unknown

parameters. The E-step is established as follows: startingfrom an initial guess9, θ̂k

(0)
, of the unknown parameter

vector, the objective function is updated iteratively according to:

Q

(
θk|θ̂k

(q−1)
)
=

N̄NDA∑

n=1

Eam

{
L
(
θk|a(n) = am

)∣∣∣∣θ̂
(q−1)
k ,yk(n)

}
,

(37)

whereEam
{.} is the expectation over all the possible transmitted symbols, {am}Mm=1, andθ̂k

(q−1)
is the estimated

parameter vector at the(q − 1)th iteration. After some algebraic manipulations, it can be shown that:

Q

(
θk|θ̂k

(q−1)
)

= −N̄NDANr ln(2πσ
2)− 1

2σ2

Nr∑

i=1

(
M

(i)
2,k +

N̄NDA∑

n=1

α
(q−1)
n,k

∣∣cTi,kt(n)
∣∣2− 2β

(q−1)
i,n,k (ci,k)

)
, (38)

9Initialization is critical to the convergence of the new iterative NDA algorithm. It will be discussed in more details insection IV-B.
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whereM (i)
2,k = E{|yi,k(n)|2} is the second-order moment of the received samples over theith receiving antenna

element and:

α
(q−1)
n,k = Eam

{
|am|2

∣∣∣∣θ̂k

(q−1)
,yk(n)

}
(39)

=

M∑

m=1

P
(q−1)
m,n,k |am|2, (40)

β
(q−1)
i,n,k (ci,k) = Eam

{
ℜ
{
y∗i,k(n)amtT (n)ci,k

}∣∣∣∣θ̂k

(q−1)
,yk(n)

}

=
M∑

m=1

P
(q−1)
m,n,kℜ

{
y∗i,k(n)amtT (n)ci,k

}
. (41)

In (39) and (41),P (q−1)
m,n,k = P

(
am|yk(n); θ̂k

(q−1)
)

is thea posterioriprobability ofam at iteration(q− 1) which

can be computed using the Bayes formula as follows:

P
(q−1)
m,n,k =

P [am]P

(
yk(n)

∣∣am; θ̂k

(q−1)
)

P

(
yk(n); θ̂k

(q−1)
) . (42)

Since the transmitted symbols are equally likely, we haveP [am] = 1/M , and thus:

P

(
yk(n); θ̂k

(q−1)
)

=
1

M

M∑

m=1

P

(
yk(n)

∣∣am; θ̂k

(q−1)
)
. (43)

For normalized-energy constant-envelope constellations(such as MPSK), we have|am|2 = 1 for all am ∈ C and,

therefore,α(q−1)
k (n) reduces simply to one (for alln) and does not need to be computed. Now, the M-step can be

fulfilled by determining the parameters that maximize the output of the E-step, obtained in (38):

θ̂k

(q)
= argmax

θk

Q

(
θk

∣∣θ̂k

(q−1)
)
. (44)

At this stage, in order to avoid the cumbersome differentiation of the underlying objective function with respect

to the complex vectors,{ci,k}Nr

i=1, we split them intoci,k = ℜ{ci,k} + jℑ{ci,k}. We then maximize instead

Q

(
θk

∣∣θ̂k

(q−1)
)

with respect toℜ{ci,k} andℑ{ci,k} yielding thereby, at the convergence of the iterative algorithm,

their respective ML estimatesℜ{ĉi,k} andℑ{ĉi,k}. By the invariance principle of the ML estimator, we easily obtain

the NDA ML estimate ofci,k asĉi,k = ℜ{ĉi,k}+jℑ{ĉi,k}. Therefore, using the fact thatt(n)T
(
ℜ{ci,k}ℑ{ci,k}T −

ℑ{ci,k}ℜ{ci,k}T
)
t(n) = 0 ∀ ci,k ∈ CL and after some algebraic manipulations, it can be shown that:

Q

(
θk|θ̂k

(q−1)
)

= −N̄NDANr ln(2πσ
2)− 1

2σ2

Nr∑

i=1

[
M

(i)
2,k+

N̄NDA∑

n=1

(
tT (n)Ci,kt(n)−2

M∑

m=1

P
(q−1)
m,n,k c̃

(m)T
i,k t(n)

)]
. (45)
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whereCi,k and c̃
(m)
i,k are, respectively, a matrix and a column vector that are explicitly constructed from the real

and imaginary parts ofci,k as follows:

Ci,k = ℜ{ci,k}ℜ{ci,k}T + ℑ{ci,k}ℑ{ci,k}T , (46)

c̃
(m)
i,k = ℜ{y∗i,k(n)am}ℜ{ci,k}+ ℑ{y∗i,k(n)am}ℑ{ci,k}. (47)

After differentiating (45) with respect toℜ{ci,k} andℑ{ci,k} and setting the resulting equations to zero, we obtain

the NDA estimates of the real and imaginary parts ofci,k, at theqth iteration, as follows:

ℜ{ĉ(q)i,k}=




N̄NDA∑

n=1

t(n)tT(n)



−1


N̄NDA∑

n=1

M∑

m=1

P
(q−1)
m,n,kℜ{y∗i,k(n)am}t(n)


 ,

(48)

and

ℑ{ĉ(q)i,k}=




N̄NDA∑

n=1

t(n)tT(n)



−1


N̄NDA∑

n=1

M∑

m=1

P
(q−1)
m,n,kℑ{y∗i,k(n)am}t(n)


 .

(49)

Then, using the identitŷc(q)i,k = ℜ{ĉ(q)i,k}+ jℑ{ĉ(q)i,k} and after some simplifications, we derive the expression ofĉ
(q)
i,k

as follows:

ĉ
(q)
i,k =




N̄NDA∑

n=1

t(n)tT (n)




−1


N̄NDA∑

n=1

λ
(q−1)
i,n,k t(n)


 , (50)

in which λ
(q−1)
i,n,k is given by:

λ
(q−1)
i,n,k = [â

(q−1)
k (n)]∗yi,k(n) (51)

where

â
(q−1)
k (n) =

M∑

m=1

P
(q−1)
m,n,kam, (52)

is the previoussoft estimate for the unknown transmitted symbol,ak(n), involved in (33). Lastly, by differentiating

(45) with respect toσ2, setting the resulting equation to zero, and replacing therein ci,k by ĉ
(q−1)
i,k , we obtain a new

estimate of the noise power at theqth iteration as follows:

2σ̂2
(q)

k =

∑Nr

i=1

(
M

(i)
2,k + η

(q−1)
i,k

)

N̄NDANr
, (53)
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where:

η
(q−1)
i,k =

N̄NDA∑

n=1

[
tT (n)

(
ĉ
(q−1)
i,k

)∗ (
ĉ
(q−1)
i,k

)T
t(n) +

α
(q−1)
n,k − 2β

(q−1)
i,n,k

(
ĉ
(q−1)
i,k

)]

=

N̄NDA∑

n=1

[∣∣tT (n)ĉ(q−1)
i,k

∣∣2 + α
(q−1)
n,k − 2β

(q−1)
i,n,k

(
ĉ
(q−1)
i,k

)]
.

(54)

After few iterations (i.e., in the range of 10) and with careful initialization, the EM algorithm converges over each

kth approximation window to the exact NDA ML estimatesĉ(k)i,NDA and σ̂2
k ,NDA. The latter is then averaged over all

the local approximation windows to obtain a more refined estimate as follows:

σ̂2
NDA =

N̄NDA

N

N/N̄NDA∑

k=1

σ̂2
k,NDA . (55)

Finally, given (50) and (55), and taking into account all theapproximation windows of sizēNNDA within the same

observation window of sizeN , the NDA ML SNR estimator is obtained as:

ρ̂i,NDA =

∑N/N̄NDA

k=1

∑N̄NDA

n=1 |âk(n)|2
∣∣tT (n)ĉ(k)i,NDA

∣∣2

N
(
2σ̂2

NDA

) , (56)

whereâk(n) is the final (i.e., at the convergence)soft estimate of thenth transmitted symbol,ak(n), within thekth

approximation window.

B. Appropriate initialization of the iterative EM algorithm using the DA estimator

Recall that the EM algorithm is iterative in nature and, therefore, its performance is closely tied to the initial

guessθ̂k

(0)
within each approximation window. We will see in the next section that when it is not appropriately

initialized, its performance is indeed severely affected,especially at high SNR levels. This is actually a serious

problem inherent to any iterative algorithm whose objective function is not convex (i.e., multimodal). That is, it

may settle on any local maximum if it happens that the algorithm is accidentally initialized close to it. Fortunately,

an appropriate initial guess about the polynomial coefficients, ĉ(0)i,k , and the noise variance,̂σ2
(0)

, can be locally

acquired using very few pilot symbols by applying the DA ML estimator developed in the previous section.

In order to initialize the EM algorithm with the DA estimates, we proceed as follows. Using the pilot symbols only,

we begin by estimating the local polynomial coefficients,{ĉ(k)i,DA}k, using the DA estimator over approximation

windows of sizeN̄DA (possibly different fromN̄NDA). In Section III, ĉ(k)i,DA was multiplied by the matrixT′ in
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order to obtain, over eachkth approximation window, the DA estimates for the channel coefficients,ĥ′(k)
i,DA , at pilot

positions only
(
i.e., ĥ′(k)

i,DA = T′ĉ
(k)
i,DA

)
. Yet, they can also be multiplied by another matrixTN̄DA

in order to obtain the

pilot-based estimates for the channel coefficients at both pilot and non-pilot positions over each DA approximation

window
(
i.e., ĥ(k)

i,DA = TN̄DA
ĉ
(k)
i,DA

)
. The underlying time matrixTN̄DA

is equivalent toTN̄NDA
in (31) except the

fact that it containsN̄DA instead ofN̄NDA rows. Then, over eachith antenna element, the obtained pilot-based

estimates,
{
ĥ
(k)
i,DA

}
k
, are stacked together to form a single vector,ĥi,DA , that contains all the pilot-based estimates

of the channel coefficients over the entire observation window. The latter is again divided into several adjacent and

disjoint blocks,ĥ(k)
i,DA , each of which is now of sizēNNDA

(
instead ofN̄DA in the DA scenario

)
. Then, according

to (32), the initial guess about the polynomial coefficients— within eachkth local NDA approximation window

— is obtained from thekth block using:

ĉ
(0)
i,k =

(
TT

N̄NDA
TN̄NDA

)−1

TT
N̄NDA

ĥ
(k)
i,DA

for k = 1, 2, · · · , N/N̄NDA. (57)

The initial guess about the noise variance is simplyσ̂2
(0)

= σ̂2
DA obtained in (20). In the following, we will use

two different designations for the new EM-based estimator depending on the initialization procedure. We shall refer

to it as “completely-NDA” if initialized arbitrarily and as “hybrid” when initialized appropriatelyusing the DA

estimator. We will also use two different designations for the DA estimator. We shall refer to it as “pilot-only DA”

when applied using the pilot symbols only (which areN/Np out of theN transmitted symbols withNp > 1); and

as “completely DA” when applied in another scenario in which all theN transmitted symbols are assumed to be

perfectly known, i.e.,Np = 1. This scenario is encountered in many modern communicationsystems which have

a small CRC (at the PHY layer) serving as a stopping criterionfor turbo code detection. This means that at the

end of the decoding process, the system can recognize whether the bits were detected correctly or not (i.e., if the

CRC matches or not). Thus, at the output of the decoder, one has access to the transmitted information bits from

which all the transmitted channel symbols can be easily obtained. These decoded symbols are then used as pilots

for the DA estimator in a “completely DA” mode. Moreover, in some radio interface technologies suchas CDMA,

a code-multiplexed pilot channel is considered with a completely known data sequence. In OFDM transmissions,

as well, some carriers might bear completely known data sequences.
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C. EM-based ML SNR estimation with hard symbol detection

The EM-based SNR estimator developed in section IV-A relieson the soft detection(SD) of the transmitted

symbols as seen from (52). In fact, at each time instantn, all the constellation points are scanned and the

correspondinga posterioriprobabilities (APPs),Pm,n,k, are updated from one iteration to another. With a properly

selected setup10, thehybrid EM-based estimator always converges to the global maximum of the LLF for moderate-

to-high SNR values. Therefore, over that SNR region and at the convergence of the algorithm, the APPs of the

wrong symbols arealmostequal to zero. As such, the weighted sum involved in (52) returns a very accuratesoft

estimate,̂ak(n), of the actualnth transmitted symbol (over eachkth local approximation window). This makes the

“hybrid” EM-based SNR estimator equivalent in performance to the “completely DA” biasedestimator. Therefore,

the same bias-correction procedure highlighted earlier in(28) can be exploited here usingǫ = L/N̄NDA. To be more

specific, we will further refer to the “completely-NDA” and “hybrid” EM-based estimators as “completely-NDA-SD”

and “hybrid-SD” when they are applied withsoft detection (SD) using (52).

Yet, for low SNR values,soft detection may not be optimal and hence both the “completely-NDA-SD” and “hybrid-

SD” EM-based estimators are expected to depart from the “completely DA” estimator. Therefore, one may resort

to hard detection (HD) in order to bridge such performance gap. In a nutshell, HD is a separate task that may be

applied iteratively (i.e., at eachqth iteration) by taking each of the soft estimates,â
(q)
k (n), in (52) as input to return

its closest symbol,̄a(q)k (n), in the constellation alphabet:

ā
(q)
k (n) = argmin

am∈C

∣∣∣am − â
(q−1)
k (n)

∣∣∣
2

. (58)

Then,ā(q)k (n) is used in (51) instead of̂a(q)k (n). When applied with iterative hard detection (IHD), the “completely-

NDA” and “hybrid” EM-based estimators are referred to as “completely-NDA-IHD” and “hybrid-IHD”, respectively.

One other option would be to apply the HD task only once at the convergence of the algorithm [i.e., finalhard

detection (FHD)]. In this case, (58) is applied on thesoft symbols’ estimates obtained at the very last iteration only.

Hence, we drop the iteration indexq in the output,̄ak(n), of (58) which is reinjected instead of̂ak(n) obtained at

the convergence. When applied with FHD, the two versions of the EM-based estimator are designated, respectively,

as “completely-NDA-FHD” and “hybrid-FHD”. Finally, the multiple capabilities of the proposed NDA MLSNR

10This amounts to carefully choosing the local approximationwindow sizes (̄NNDA and N̄DA ) pertaining, respectively, to the “hybrid” SNR

estimator and the DA version used to initialize it; choices that both depend on the normalized Doppler frequencyFDTs as established and

reported in table I at the end of the next section.
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Figure 1. Data and pilot symbols layout with four and two DA and NDA local approximation windows, respectively, withN = 112, N̄DA = 56,

and N̄NDA = 28.

estimator to implicitly and simultaneously i) identify thetime-varying channel coefficients, ii) estimate the noise

power, and iii) detect or demodulate the transmitted symbols owe to be underlined. Yet study and assessment of

these capabilities or functionalities (i.e., channel identifier, noise power estimator, and data demodulator or detector)

fall beyond the scope of this paper.

V. SIMULATION RESULTS

In this section, we assess the performance of our new DA and NDA ML instantaneousSNR estimators. All the

presented results are obtained by running extensive Monte-Carlo simulations over5000 realizations. The estimators’

performance is evaluated in terms of the normalized (by the average SNR) mean square error (NMSE) and compared

to the normalized CRLB (NCRLB) defined as:

NMSE(ρ̂i) =
E{(ρi − ρ̂i)

2}
γ2

, NCRLB(ρi) =
CRLB(ρi)

γ2
,

whereγ = E{|a(n)|2}/(2σ2) is the average SNR per symbol. Since the constellation energy is assumed to be

normalized to one, i.e.,E{|a(n)|2} = 1, γ is simply given byγ = 1/(2σ2). For the sake of complying with a

practical and timely scenario, all the simulations are conducted in the specific context of uplink LTE [37]. According

to its signalling standard specifications, two pilot OFDM symbols are inserted at the fourth and eleventh positions

within the time-frequency grid of each subframe (consisting of 14 OFDM symbols). In this way a pilot symbol is

transmitted every seven OFDM symbols corresponding toNp = 7. In Fig. 1, we illustrate the data/pilot symbols

layout adopted over each carrier considering an observation window of eight consecutive subframes (i.e.,N = 112),

with typical choices of the DA and NDA local approximation window sizesN̄DA = 56 andN̄NDA = 28.

In the sequel, the “instantaneous” SNR estimation results are presented for the first subcarrier only, but they actually
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Figure 2. NMSE (empirical) and normalized variance (analytical) of the unbiasedDA ML estimator vs. the average SNRγ, with Nr = 2,

N = 112, N̄DA = 112, N̄NDA = N/2 = 56, FDTs = 7× 10−3 andL = 4, 16-QAM.

hold the same irrespectively of the subcarrier index. Moreover, all the results are obtained forcomplexchannels

since, in practice, the baseband-equivalent representation of the channel coefficients in the discrete model (1) is

always complex. We will also consider QPSK and 16-QAM as representative examples for constant-envelope and

non-constant-envelope constellations, respectively. First, we verify from Fig. 2 that the analytical variance of the

unbiasedML DA estimator which we developed in (29) coincides with itsNMSE computed empirically using

Monte-Carlo computer simulations. The small discrepancies between them is due to lack of averaging.

In Fig. 3, we plot the NMSE for the “completely-NDA” and “hybrid” EM-based estimators (both with SD, IHD and

FHD) and compare them to the “pilot-only DA” and “completely DA” estimators.

First, by closely inspecting Fig. 3(a), as expected intuitively due to the fast time variations of the channel, the “pilot-

only DA” estimator is not able to accurately estimate the SNR by relying solely on the pilot symbols. Therefore,

the received samples at non-pilot positions must be exploited as well in order to account for the channel variations

between the pilot positions. The “completely-NDA” EM-based estimator does so and as such is able to provide

substantial performance gains at low-to-medium SNR valuesagainst the “pilot-only DA” method. Yet, its performance

deteriorates severely at high SNR levels due to its initialization issues. This is where the “pilot-only DA” estimator

actually becomes extremely useful even though its overall performance is not satisfactory. Indeed, its estimates

are accurate enough to serve as initial guesses for the “hybrid” EM-based algorithm to make it converge to the

global maximum of the LLF reaching thereby the CRLB as seen from Fig. 3(b). To clearly show the effect of
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Figure 3. NMSE of (a): “completely-NDA” and (b): “hybrid” EM-based estimators against benchmarks vs. the average SNR γ, with Nr = 2,

N = 112, N̄DA = 112, N̄NDA = N/2 = 56, FDTs = 7× 10−3 andL = 4, 16-QAM.
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Figure 4. True vs. estimated channel magnitude for the EM-based algorithm when initialized (a) arbitrarily with ones, and (b) appropriately

with the “pilot-only DA” estimates, forFDTs = 3.5× 10−2, N = 112, N̄DA = 28, N̄NDA = 14, andL = 4.

both arbitrary andappropriateinitializations on the EM-based algorithm
(

i.e., the “completely-NDA” and “hybrid”

estimators, respectively
)

, we plot in Fig. 4 the corresponding true and estimated channel coefficients at an average

SNR γ = 20 dB.

Clearly, when initialized with the “pilot-only DA” estimates11, the iterative algorithm is able to track the channel

variations more accurately. Therefore, as clearly seen from Fig. 3(b), the “hybrid” EM-based SNR estimator exhibits

paramount performance improvements especially for moderate to high SNR levels. Fig. 3(b) also highlights the

advantage of performing IHD since the “hybrid-IHD” EM-based estimator is almost equivalent, over the entire

11See section IV-B for more details about the pilot-assisted initialization process.
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SNR range, to the “completely DA” estimator which assumes all the symbols to be perfectly known. Even more,

both estimators ultimately coincide with the CRLB which quantifies theoretically the best achievable performance

ever. Fig. 3(b) also reveals that IHD yields more accurate SNR estimates than FHD and, therefore, the latter will

not be considered in the remaining simulations. The “completely-NDA” EM-based estimator with SD, IHD, and

FHD was also included in Fig. 3(a) to have these preliminary comparisons exhaustive and to motivate the use of

the “pilot-only” DA estimates in initialization. Thus, in the remaining simulations we will focus on the “hybrid”

EM-based estimator with SD and IHD only. Yet, we will keep using the “completely DA” estimator and the CRLB

as ideal benchmarks.

Now, we will compare our new “hybrid” estimator against the only reported work12 on EM-based ML SNR estimation

over time-varying channels introduced by A. Wieselet al. in [24]. Using the initials of its authors’ names, we

will henceforth designate it as “WGM”. This estimator was originally derived for single-input single output (SISO)

systems. Thus, it can be directly applied at the output of each antenna element in order to estimate theinstantaneous

SNR in SIMO configurations. Yet, it can also be easily modifiedto take advantage of the antenna gain offered by

SIMO systems experiencinguniform noise. In fact, over eachith antenna branch, the SISO WGM algorithm yields

two estimates; one for the signal power,P̂i, and the other for the noise power,̂N (i)
0 . The individual estimates

{N̂ (i)
0 }Nr

i=1 can be averaged over theNr receiving antenna elements to provide a more refined estimate, N̂0, for the

unknown noise power. The SIMO-enhanced WGM estimator over each antenna branch, referred to hereafter as the

“WGM-SIMO” estimator, is then redefined aŝρi = P̂i/N̂0.

In Fig. 5, we compare our “hybrid” EM-based estimator (withNr = 1, i.e., SISO) against WGM in terms of

complexchannel tracking capabilities and noise variance estimation accuracy over 5000 Monte-Carlo runs (i.e.,

5000 consecutive observation windows each of sizeN = 112). The reason behind considering such a very large

number of observation windows — although it does not allow one to distinguish the true channel from its estimates

— is to show that our estimator always converges to the globalmaximum. This can be, in fact, easily deduced by

inspecting the noise variance estimates in the same figure. In plain English, undercomplextime-varying channels,

the multidimensional LLF has many local maxima (i.e., multimodal) and the WGM estimator gets trapped into

one of them due to its initialization issues. Therefore, as seen from Fig. 5(c), it is not able to estimate the noise

12Note also that, using exhaustive computer simulations, we have demonstrated the clear superiority of our new ML estimators against other

state-of-the-art techniques developed for constant channels [6, 16, 17] and time-varying channels [22, 25]. The results were not included in this

paper due to lack of space.
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Figure 6. Comparison of our new SNR estimators with WGM over SISO systems, i.e.,Nr = 1 with FDTs = 7× 10−3, QPSK.

variance overalmost all the observation windows. Owing to our newproper initialization procedure, however, our

“hybrid” EM-based estimator enjoys guaranteed global optimality and thus returns very accurate noise variance

estimates overall the observation windows. Consequently, in contrast to WGM,it achieves the DA CRLB as shown

in Fig. 6. Most remarkably, the “hybrid” algorithm is able to do so with86 % of the transmitted symbols being

completely unknown (corresponding to a pilot insertion rate of 1/Np = 1/7 as advocated by the signalling standard

specifications of the LTE uplink).
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and (c)Nr = 8, with FDTs = 7× 10−3, N = 112, N̄DA = 112, andN̄NDA = 56, L = 4, QPSK.

Fig. 7 depicts the performance of WGM-SIMO and the differentversions of our estimator over three SIMO

configurations (i.e.,Nr = 2, 4, and8). First, by inspecting the behaviour of the WGM estimator across the three

subfigures, it is seen that the performance of its SIMO-enhanced version improves remarkably with the number of

receiving antenna elements. For instance, at the typical value of the average SNRγ = 30 dB, it is seen from Figs.

7(a) and (b) that the variance of this estimator is reduced bya factor of1/5 when the number of antennae is doubled

from Nr = 2 to Nr = 4. The same improvements hold — although with a slightly smaller factor of1/4 — by

further doubling the array size fromNr = 4 to Nr = 8. Such improvements are actually due to the antennaegain

only. Indeed, since WGM-SIMO is not able to exploit the antenna diversity, it is substantially outperformed even

by our “completely-NDA-SD” estimator, for low-to-medium SNR levels. Here, we make a clear difference between

the two concepts of antennaegain anddiversity. The former is actually inherent to all SIMO systems experiencing

uniform noise across the antenna elements
(
under correlated or uncorrelated channels

)
. In this case, averaging the

Nr independent estimates of the same noise power produces a newestimate whose variance is always shrunk by a

factor of 1/Nr, improving thereby the final estimates of the per-antenna SNRs.

Antennae diversity, however, is another more interesting feature of SIMO systems. Fully exploiting the antennae

diversity consists in optimally combining the multiple independently-fading copies of the received signal in order to

detect each of the transmitted symbols correctly. By solving the ML criterion, our “hybrid-SD”
(
or “hybrid-IHD”

)
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Figure 8. NMSE for the “hybrid” EM-based and the “completely DA” unbiased estimators vs. the average SNR withN = 112 andNr = 2

for: (a) FDTs = 7× 10−3, N̄DA = 112, N̄NDA = 56, (b) FDTs = 2× 10−2, N̄DA = 28, N̄NDA = 28, (c) FDTs = 3.5× 10−2, N̄DA = 28,

N̄NDA = 14 and (d)FDTs = 5× 10−2, N̄DA = 14, N̄NDA = 7, 16-QAM.

EM-based estimator takes indeed advantage of the availablespatial diversity to accurately estimate (or detect) the

unknown transmitted symbols. For these reasons and owing toour proper initialization procedure, the “hybrid”

EM-based algorithm (with SD or IHD) outperforms by far WGM-SIMO over the entire SNR range. From another

perspective, the performance improvements that are obtained by fully exploiting the antennaegain together with

the antennaediversity offered by SIMO over SISO systems can be easily appreciated by comparing Figs. 7 and 6.

For instance, at the typical average SNR value ofγ = 30 dB, the NMSE of the “hybrid” EM-based estimator is

substantially reduced by a factor as high as2500 using8 antenna branches compared to SISO.

So far, all the simulations where conducted under a normalized Doppler frequency ofFDTs = 7×10−3 corresponding

to a maximum Doppler shiftFD ≈ 100 Hz with the sampling rate of LTE systemsTs = 71.42 µs. This translates

into a medium user velocityv = FD

Fc
c ≈ 50 Km/h at a carrier frequencyFc = 2 GHz with c = 3 × 108 m/s

being the speed of light. Therefore, we plot in Fig. 8 the performance of the newly derived ML estimator for higher

normalized Doppler frequencies.
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It is seen from this figure that both the “completely DA” and “hybrid” estimators succeed in accurately estimating

the SNR reaching thereby the DA CRLB even at high Doppler frequencies. In Fig. 8(d), for instance, the normalized

Doppler frequency is as high asFDTs = 5 × 10−2 corresponding to a maximum Doppler frequency of700 Hz

(translating to a user velocity as high asv = 380 Km/h at Fc = 2 GHz). Within the same context, we emphasize

the fact that the sizes of the local approximation windows,N̄NDA andN̄DA , for both the “hybrid” estimator and the

“pilot-only DA” that is used to initialize it should be properly selected according to the Doppler range as shown in

Table I. In practice, the Doppler frequency can be estimatedfrom the samples received at the pilot positions and the

Table I

LOCAL ESTIMATION CONFIGURATIONS FOR DIFFERENT RANGES OFFDTs .

N̄DA N̄NDA LDA LNDA

FDTs ≤ 7× 10−3 112 56 4 4

7× 10−3 ≤ FDTs ≤ 2× 10−2 28 28 4 4

2× 10−2 ≤ FDTs ≤ 3.5× 10−2 28 14 4 4

FDTs ≥ 5× 10−2 14 7 2 4

approximation window sizes are then selected accordingly.When designing these Doppler-dependent configurations,

our primary goal was to obtain the lowest possible polynomial ordersLDA andLNDA which define the sizes of the

two matrices that need to be inverted. Yet, it should be mentioned that these small-size matrices are predefined

ones. Hence, in practice, they can be computed and inverted offline once for all, stored in memory, and then used

in online estimation at no extra computational cost.

VI. CONCLUSION

In this paper, we formulated and derived ML estimators for the instantaneousSNR over time-varying SIMO

channels using local polynomial-in-time expansions. In the DA scenario, the ML estimator was derived in closed

form, and so were its bias, its variance and the DA CRLB. In theNDA case, however, we proposed a ML solution

that is based on the iterative EM concept and that is able to converge to the global maximum within very few

iterations. Appropriate initialization is indeed guaranteed by applying the DA estimator over periodically inserted

pilot symbols. Furthermore, the new estimator is applicable to any channel fading type over a relatively large Doppler

range and for any linearly-modulated signal (i.e., PSK, PAM, QAM). Finally, it is able to reach the CRLB over a

wide SNR range and outperforms by far the new SIMO-extended version of the only work published so far, to the

best of our knowledge, on EM-based ML SNR estimation over SISO time-varying channels.



28

APPENDIX A

PROOF OFTHEOREM 1

To begin with we define,̃Pk, as the orthogonal projector on the signal subspace (of eachith antenna element)

corresponding to thekth local DA approximation window (of sizēNDA) as follows:

P̃k = Φk(Φ
H
k Φk)

−1ΦH
k , (59)

whereΦk , AkT andAk is a diagonal matrix that contains the known transmitted symbols on its main diagonal,

i.e.,Ak = diag
{
ak(t1), ak(t2), · · · , ak(tN̄DA

)
}

. Note here that̃Pk is different fromPk that is defined earlier right

after (19) as the orthogonal projector over the signal subspace (of the whole antennae array) corresponding to the

kth local DA approximation window. We associate tõPk the operatorP̃⊥
k = I − P̃k as the projector onto the

orthogonal complement of the corresponding signal subspace.

Now recall that the estimates of theith antenna’s channel coefficients corresponding to thekth local DA approxi-

mation window,ĥ(k)
i,DA = [ĥ

(k)
i,DA(t1), ĥ

(k)
i,DA(t2), · · · , ĥ

(k)
i,DA(tN̄DA

)]T , are obtained as:

ĥ
(k)
i,DA = Tĉ

(k)
i,DA , (60)

whereĉ(k)i,DA is obtained by extracting the correspondingkth block from ĉi,DA obtained in (17) to yield:

ĉ
(k)
i,DA = (ΦH

k Φk)
−1ΦH

k ŷ
(k)
i,DA . (61)

Therefore, by substituting (61) back into (60), it follows that:

ĥ
(k)
i,DA = T(ΦH

k Φk)
−1ΦH

k ŷ
(k)
i,DA . (62)

Moreover, from (60), we readily see that thenth component,̂h(k)
i,DA(tn), of ĥ(k)

i,DA is obtained as the inner product

between thenth row of T
(

i.e., the vectortn =
[
t0n, t

1
n, · · · , tL−1

n

]T)
and ĉ(k)i,DA = [ĉ

(0)
i,k , ĉ

(1)
i,k , · · · , ĉ

(L−1)
i,k ]T leading

to:

ĥ
(k)
i,DA(tn) = tTn ĉ

(k)
i,DA =

L−1∑

l=0

ĉ
(l)
i,kt

l
n. (63)

Now, recall from (22) that the estimated SNR in the DA mode is given:

ρ̂i,DA =

∑N/N̄DA

k=1

∑N̄DA

n=1

(
|ak(tn)|2

∣∣∣
∑L−1

l=0 ĉ
(l)
i,kt

l
n

∣∣∣
2
)

N
(

N̄DA
N

∑N/N̄DA

k=1 2σ̂2
k,DA

) , (64)

and owing to (63), the numerator of the estimated SNR in (64) (denoted herafter as “Num”) is expressed as follows:

Num =

N/N̄DA∑

k=1

N̄DA∑

n=1

(
|ak(tn)|2

∣∣ĥ(k)
i,DA(tn)

∣∣2
)
. (65)
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By further noticing that:

N̄DA∑

n=1

(
|ak(tn)|2

∣∣ĥ(k)
i,DA(tn)

∣∣2
)
=
∣∣∣
∣∣∣Akĥ

(k)
i,DA

∣∣∣
∣∣∣
2

, (66)

it follows that:

Num =

N/N̄DA∑

k=1

∣∣∣
∣∣∣Akĥ

(k)
i,DA

∣∣∣
∣∣∣
2

. (67)

Then, by using (62) and recalling the fact thatΦk , AkT, we have:

Akĥ
(k)
i,DA = AkT(ΦH

k Φk)
−1ΦH

k y
(k)
i,DA = P̃ky

(k)
i,DA . (68)

Then, by substituting (68) in (67), it follows that:

Num =

N/N̄DA∑

k=1

∣∣∣
∣∣∣P̃ky

(k)
i,DA

∣∣∣
∣∣∣
2

. (69)

On the other hand, the denominator of the SNR estimate in (64)is given by:

Denom = N


 N̄DA

N

N/N̄DA∑

k=1

2σ̂2
k,DA


 , (70)

and since2σ̂2
k,DA is obtained from (19) as:

2σ̂2
k,DA =

1

N̄DANr

[
y
(k)
DA

H
P⊥

k y
(k)
DA

]
, (71)

with Pk , Blkdiag
{
P̃1, P̃2, · · · , P̃N/N̄DA

}
, we obtain by substituting (71) back in (70) the following result:

Denom =
1

Nr

N/N̄DA∑

k=1

y
(k)
DA

H
P⊥

k y
(k)
DA =

1

Nr

N/N̄DA∑

k=1

∣∣∣
∣∣∣P⊥

k y
(k)
DA

∣∣∣
∣∣∣
2

. (72)

Raclling thaty(k)
DA ,

[
y
(1)T

i,DA y
(2)T

i,DA · · ·y(Nr)
T

i,DA

]T
, it can be easily shown that:

Denom =
1

Nr

N/N̄DA∑

k=1

Nr∑

i=1

y
(k)H

i,DA P̃⊥
k y

(k)
i,DA

=
1

Nr

Nr∑

i=1

N/N̄DA∑

k=1

y
(k)H

i,DA P̃⊥
k y

(k)
i,DA . (73)

Now, let yi,DA ,

[
y
(1)T

i,DA y
(2)T

i,DA · · ·y(N/N̄DA)
T

i,DA

]T
be a vector that contains all the received samples over theith

antenna elements. Thus, the SNR estimate at theith antenna element is obtained from (69) and (73) as follows:

ρ̂i,DA =
Num

Denom
=

yH
i,DAP̃yi,DA

1
Nr

∑Nr

i=1

∑N/N̄DA

k=1 y
(k)H

i,DA P̃⊥
k y

(k)
i,DA

. (74)

Next, in order to find the distribution of̂ρi,DA, we will first proceed to finding the distributions ofNum andDenom

separately. To that end, recall first from (13) that (whenNp = 1):

y
(k)
i,DA = Φkci,k +wi,k, (75)
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wherewi,k ∼ N
(
0, 2σ2IN̄DA

)
with IN̄DA

being theN̄DA × N̄DA identity matrix. Therefore, the mean and covariance

matrix of y(k)
i,DA are given by:

mi,k = Φkci,k, (76)

R
y
(k)
i,DAy

(k)
i,DA

= 2σ2IN̄DA
. (77)

Therefore, if we define the following transformed random vector:

ỹ
(k)
i,DA ,

1√
2σ2

y
(k)
i,DA , (78)

then we immediately havẽy(k)
i,DA ∼ N

(
1√
2σ2

mi,k, IN̄DA

)
. Now, sinceP̃k is a Hermetian matrix then it can be

diagonalized as follows:

P̃k = UkDUH
k , (79)

whereUk is a unitary matrix (i.e.,UkU
H
k = UH

k Uk = IN̄DA
) and D = diag

{
λ1, λ2, · · · , λN̄DA

}
is a diagonal

matrix that contains thēNDA eigenvalues of̃Pk (which are allpositive). Moreover, sincẽPkP̃
H
k = P̃k, we have:

UkD
2UH

k = UkDUH
k , (80)

which means thatD2 = D or equivalentlyλ2
n = λn for n = 1, 2, · · · N̄DA and, therefore,

{
λn = 0 or λn = 1 for

n = 1, 2, · · · N̄DA

}
. However, sinceT is a Vondermende matrix, it is of (full) rankL and sinceAk is a diagonal

matrix, it follows thatΦk is also of rankL. Consequently, the projection matrix̃Pk = Φk(Φ
H
k Φk)

−1ΦH
k is also

of rank L and, therefore, we have exactlyL eigenvalues that are equal to one and the others are exactly zero. In

the following we assume (without loss of generality) that the firstL eigenvalues are non-zero. That isλn = 1 for

n = 1, 2, · · · , L andλn = 0 for n = L+ 1, L+ 2, · · · , N̄DA , which means:

D = diag
{
1, 1 · · · , 1︸ ︷︷ ︸

L times

, 0, 0, · · · , 0
}

(N̄DA × N̄DA matrix)

(81)

Now, combining (78) and (79) and using the fact thatUk is a unitary matrix, it follows that:

∣∣∣
∣∣∣P̃ky

(k)
i,DA

∣∣∣
∣∣∣
2

=
1

2σ2

∣∣∣
∣∣∣UkDUH

k ỹ
(k)
i,DA

∣∣∣
∣∣∣
2

=
1

2σ2

∣∣∣
∣∣∣DUH

k ỹ
(k)
i,DA

∣∣∣
∣∣∣
2

. (82)

By further defining the transformed received vector:

z̄
(k)
i,DA , UH

k ỹ
(k)
i,DA , (83)
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and again using the fact thatUk is a unitary matrix, it follows thatz̄(k)i,DA ∼ N
(

1√
2σ2

UH
k mi,k, IN̄DA

)
and:

∣∣∣
∣∣∣P̃ky

(k)
i,DA

∣∣∣
∣∣∣
2

=
1

2σ2

∣∣∣
∣∣∣Dz̄

(k)
i,DA

∣∣∣
∣∣∣
2

=
1

2σ2

L∑

l=1

[
z̄
(k)
i,DA

]2
l
, (84)

in which
[
z̄
(k)
i,DA

]
l

is used to denote thelth element of the vector̄z(k)i,DA and where the last equality follows from

the fact that only the first diagonal entries ofD are non-zero and are all equal to one [see (81)]. By plugging (84)

back into (69), we obtain:

Num =
1

2σ2

N/N̄DA∑

k=1

L∑

l=1

[
z̄
(k)
i,DA

]2
l
. (85)

In addition, since the vector̄z(k)i,DA is Gaussian distributed according toz̄(k)i,DA ∼ N
(

1√
2σ2

UH
k mi,k, IN̄DA

)
, then its

elements
[
z̄
(k)
i,DA

]
l

are independent and Gaussian distributed according to:

[
z̄
(k)
i,DA

]
l
∼ N

(
1√
2σ2

[Uk]
H
:,lmi,k, 1

)
, (86)

where[Uk]:,l is used to denote thelth column of the matrixUk. Consequently,2σ2×Num is a sum of the squares

of NL/N̄DA independentGaussian random variables all having unit variance but non-zero means and, therefore, is

chi-square distributed withν1 = N
N̄DA

L degrees of freedomandnoncentrality parameter:

λ =

N/N̄DA∑

k=1

L∑

l=1

∣∣∣ 1√
2σ2

[Uk]
H
:,lmi,k

∣∣∣
2

,

=
1

2σ2

N/N̄DA∑

k=1

∣∣∣
∣∣∣DUH

k mi,k

∣∣∣
∣∣∣
2

(87)

where the last quality follows from the fact that the firstL diagonal entries ofD are equal to one and the remaining

N̄DA − L diagonal ones are all equal to zero. Furthermore, by recalling thatmi,k = Φkci,k and thatD2 = D, it
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follows that:

λ =
1

2σ2

N/N̄DA∑

k=1

∣∣∣
∣∣∣DUH

k mi,k

∣∣∣
∣∣∣
2

=
1

2σ2

N/N̄DA∑

k=1

mH
i,kUkDUH

k mi,k

=
1

2σ2

N/N̄DA∑

k=1

mH
i,kPkmi,k

=
1

2σ2

N/N̄DA∑

k=1

cHi,kΦ
H
k Φk(Φ

H
k Φk)

−1ΦH
k ΦH

k ci,k

=
1

2σ2

N/N̄DA∑

k=1

cHi,kΦ
H
k Φkci,k

=
1

2σ2

N/N̄DA∑

k=1

∣∣∣
∣∣∣Φkci,k

∣∣∣
∣∣∣
2

=
1

2σ2

N/N̄DA∑

k=1

∣∣∣∣hi,k

∣∣∣∣2

=

∣∣∣∣hi

∣∣∣∣2

2σ2

= Nρi (88)

In conclusion, we have2σ2 ×Num is a noncentralchi-distributed, i.e.:

2σ2Num ∼ χ2
ν1(λ), (89)

with ν1 = N
N̄DA

L degrees of freedomandnoncentrality parameterλ = Nρi.

Now recall from (73) that the denominator is equal to:

Denom =
1

Nr

Nr∑

i=1

N/N̄DA∑

k=1

y
(k)H

i,DA P̃⊥
k y

(k)
i,DA . (90)

Similarly, by noticing thatP⊥
k is of rankN̄DA − L and recurring to equivalent manipulations, it can be shown that

the denominator can be rewritten in the following form:

Denom =
1

2σ2Nr

Nr∑

i=1

N/N̄DA∑

k=1

N̄DA−L∑

l=1

[
v̄
(k)
i,DA

]2
l
, (91)

where
[
v̄
(k)
i,DA

]2
l

are the components of another transformed observation vector which are Gaussian distributed with

zero mean and unit variance. Hence, the random variable2σ2Nr ×Denom follows a central chi-distribution [36],

i.e.:

2σ2NrDenom ∼ χ2
ν2 , (92)
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with ν2 = Nr
N
N̄DA

(N̄DA −L) = Nr(N− N
N̄DA

L) degrees of freedom. Moreover,Num andDenom involve projection

onto a signal subspace and its orthogonal complement, respectively, and hence the two chi-distributed random

variables are independent. In conclusion, we have:

ρ̂i,DA =
1

2σ2χ
2
ν1(λ)

1
2σ2Nr

χ2
ν2

, (93)

which implies that the scaled estimated SNR over eachith antenna element verfies:

ν2
ν1

1

Nr
ρ̂i,DA =

(N − N
N̄DA

L)
N
N̄DA

L
ρ̂i,DA =

χ2
ν1(λ)/ν1

χ2
ν2/ν2

= Fν1,ν2(λ), (94)

whereFν1,ν2(λ) is a noncentralF distribution with anoncentrality parameterλ = Nρi and degrees of freedom

ν1 = N
N̄DA

L andν2 = Nr(N − N
N̄DA

L).

APPENDIX B

DETAILS ABOUT THE DERIVATION OF THE BIAS AND THE VARIANCE

By usingǫ = L/N̄DA, it follows immediately from (23) that:

E{ρ̂i,DA} = E

{
ǫ

2(1− ǫ)
F

}
=

ǫ

2(1− ǫ)
E{F} . (95)

Moreover, by substitutingλ = 2Nρi, v1 = Nǫ andv2 = 2NrN(1− ǫ) in (24), it follows that:

E{F} =
2NrN(1− ǫ)(Nǫ + 2Nρi)

Nǫ
[
2NrN(1− ǫ)− 2

] . (96)

Then, by recognizing some easy simplifications, one obtains:

E{F} =
1− ǫ

ǫ

(
NrN(2ρi + ǫ)

NrN(1− ǫ)− 1

)
. (97)

Therefore, by using (97) in (95), it follows that:

E{ρ̂i,DA} =
NrN

NrN(1− ǫ)− 1

(
ρi +

ǫ

2

)
. (98)

Now, (27) is obtained in the same way, i.e., first by substituting λ = 2Nρi, v1 = Nǫ and v2 = 2NrN(1 − ǫ) in

(25) (with some easy simplifications) and then injecting theresult in the following identity:

Var{ρ̂i,DA} = Var

{
ǫ

2(1− ǫ)
F

}
=

(
ǫ

2(1− ǫ)

)2

Var{F} . (99)

The exact bias of̂ρi,DA , which is given by Bias{ρ̂i,DA} = E{ρ̂i,DA − ρi} = E{ρ̂i,DA} − ρi, is then easily obtained

from (98) as given by (28). Furthermore, it follows from (98)that:

E

{
NrN(1− ǫ)− 1

NrN
ρ̂i,DA−

ǫ

2

}
=

NrN(1− ǫ)− 1

NrN
E{ρ̂i,DA} −

ǫ

2

= ρi, (100)
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which simply implies that:

ρ̂ UB
i,DA =

NrN(1− ǫ)− 1

NrN
ρ̂i,DA − ǫ

2
, (101)

is indeed anunbiasedestimator of the per-antenna SNRs. By using the identity Var{aX + b} = a2Var{X} for any

random variableX and any real numbera, the variance of̂ρ UB
i,DA is given by:

Var{ρ̂ UB
i,DA} =

(
NrN(1− ǫ)− 1

NrN

)2

Var{ρ̂i,DA}, (102)

which is further simplified using (27) in order to obtain the result in (29).

APPENDIX C

DERIVATION OF THE DA CRLB

To assess the performance of the new unbiased DA ML estimator, we need to compare its variance to a theoretical

lower bound. Thus, we derive in this Appendix the corresponding DA CRLB. Here, for some reasons that are better

clarified in sections IV and V, we are interested in comparingour estimators against the lowest possible bound (i.e.,

the best achievable performance). Without loss of generality, we hence consider an ideal scenario where all the

transmitted symbols are assumed to be perfectly known (i.e., Np = 1 or equivalentlyN ′ = N ). Now, we define the

following parameter vector:

θ′ = [αT ,βT , σ2]T , (103)

whereα = ℜ{h} andβ = ℑ{h} denote the real and imaginary parts of the vectorh = [hT
1 ,h

T
2 , · · · ,hT

Nr
]T that

contains the true channel coefficients over all the receiving antenna elements and the entire observation window.

The CRLB for the DA SNR estimation over theith antenna is given by:

CRLBDA(ρi) =

(
∂ρi
∂θ′

)T

I−1
DA (θ

′)

(
∂ρi
∂θ′

)
, (104)

whereρi = (Ahi)
HAhi/N(2σ2) with A being a diagonal matrix containing theN ′ = N transmitted pilot symbols

and whereIDA(θ
′) denotes the Fisher information matrix (FIM) whose entries are defined as:

[
IDA(θ

′)
]
i,l

= −EyDA

{
∂2 ln

(
p(yDA ; θ

′)
)

∂θ′
i∂θ

′T
l

}
, (105)

where

p(yDA ; θ
′)=

exp

{
− 1

2σ2

Nr∑

i=1

(yi,DA−Ahi)
H(yi,DA−Ahi)

}

(2πσ2)NNr
.

(106)
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In (106),yi,DA ansyDA are given by:

yi,DA = [yi,DA(t1), yi,DA(t2), · · · , yi,DA(tN )]T ,

yDA = [yT
1,DA ,y

T
2,DA , · · · ,yT

Nr,DA ]
T ,

with tn = nTs for n = 1, 2, · · · , N . Starting from (106), we will now derive the analytical expression for the FIM.

In fact, by recalling thathi = αi + jβi whereαi andβi stand for the real and imaginary parts ofhi, respectively,

we can obtain the required partial derivatives in (105) as follows:

∂2 ln(P (yDA ; θ
′))

∂αi∂αT
i

=
∂2 ln(P (yDA ; θ

′))

∂βi∂βT
i

= − 1

σ2
AHA, (107)

∂2 ln(P (yDA ; θ
′))

∂σ2∂αT
i

=
1

2σ4

(
2αT

i A
HA− 2ℜ{yH

i,DAA}
)
, (108)

∂2 ln(P (yDA ; θ
′))

∂σ2∂βT
i

=
1

2σ4

(
2βT

i A
HA− 2ℑ{yH

i,DAA}
)
, (109)

and

∂2 ln(P (yDA ; θ
′))

∂σ22
=

NNr

σ4
−

1

σ6

Nr∑

i=1

(yi,DA −Ahi)
H(yi,DA −Ahi). (110)

Moreover, it is easy to verify that:

∂2 ln(P (yDA ; θ
′))

∂βi∂αT
i

=
∂2 ln(P (yDA ; θ

′))

∂αi∂αT
l

=
∂2 ln(P (yDA ; θ

′))

∂βi∂βT
l

= 0N , (111)

for 1 ≤ i ≤ Nr and 1 ≤ l ≤ Nr with i 6= l. Additionally, the expected values of the previously derived partial

derivatives with respect toyDA are given by:

EyDA

{
∂2 ln

(
P (yDA ; θ

′)
)

∂αi∂αT
i

}
= EyDA

{
∂2 ln

(
P (yDA ; θ

′)
)

∂βi∂βT
i

}

= − 1

σ2
AHA (112)

EyDA

{
∂2 ln(P (yDA ; θ

′))

∂σ22

}
= −NNr

σ4
, (113)

And it can be easily shown that:

EyDA

{
∂2 ln

(
P (yDA ; θ

′)
)

∂σ2∂αT
i

}
= EyDA

{
∂2 ln

(
P (yDA ; θ

′)
)

∂σ2∂βT
i

}

= 01×N . (114)
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Now using:

[
IDA(θ

′)
]
i,l

= −EyDA

{
∂2 ln

(
P (yDA ; θ

′)
)

∂θ′
i∂θ

′T
l

}
, (115)

we can finally derive the analytical expression for the FIM asfollows:

IDA(θ
′) =




AHA
σ2 0N · · · 0N 0N×1

0N
. . .

. . .
...

...

...
. . .

. . . 0N 0N×1

0N · · · 0N
AHA
σ2 0N×1

01×N · · · · · · 01×N
NNr

σ4




, (116)

which turns out to be a block-diagonal matrix whose inverse is straightforward. Moreover, by recalling thatρi =

(Ahi)
HAhi/N(2σ2) andhi = αi + jβi, it is easy to verify that:

ρi =
αT

i A
HAαi + βT

i A
HAβi

N(2σ2)
, (117)

from which it can be shown that [38]:

∂ρi
∂αi

=
AHAαi

Nσ2
,
∂ρi
∂βi

=
AHAβi

Nσ2
,

∂ρi
∂σ2

=
−(Ahi)

HAhi

2Nσ4
,

(118)

and ∂ρi/∂αl = ∂ρi/∂βl = 01×N for i 6= l. Finally, by using this result, injecting (116)-(118) in (104) and

after some algebraic manipulations, a simple closed-form expression for the CRLB of the DAinstantaneousSNR

estimates is obtained as follows:

CRLBDA(ρi) =
ρi
N

(
2 +

ρi
Nr

)
. (119)
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