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Abstract

In this paper, we tackle for the first time the problem of maximlikelihood (ML) estimation of the signal-to-noise
ratio (SNR) parameter over time-varying single-input nplét-output (SIMO) channels. Both the data-aided (DA) and
the non-data-aided (NDA) schemes are investigated. Ulikssical techniques where the channel is assumed to be
slowly time-varying and, therefore, considered as constaer the entire observation period, we address the more
challenging problem oinstantaneousi.e., short-term or local) SNR estimation over fast tinaeying channels. The
channel variations are tracked locally using a polynorimigime expansion. First, we derive in closed-form expic@ss
the DA ML estimator and its bias. The latter is subsequenthtracted in order to obtain a new unbiased DA estimator
whose variance and the corresponding Cramér-Rao lowercbZiRLB) are also derived in closed form. Due to the
extreme nonlinearity of the log-likelihood function (LLKF) the NDA case, we resort to the expectation-maximization
(EM) technique to iteratively obtain the exact NDA ML SNRigsites within very few iterations. Most remarkably,
the new EM-based NDA estimator is applicable to any lineartydulated signal and provides sufficiently accurate
soft estimates (i.esoft detectioh for each of the unknown transmitted symbols. Thereftiad detectioncan be
easily embedded in the iteration loop in order to improvepédgormance at low to moderate SNR levels. We show by
extensive computer simulations that the new estimatorslale to accurately estimate thestantaneougper-antenna
SNRs as they coincide with the DA CRLB over a wide range of fitat SNRs. Moreover, the new EM-based
NDA ML solution exhibits substantial performance improwants against the SIMO-extended version of the estimator
developed by Wiesel et al, referred to hereafter as WGM, tilg benchmark of the same class (i.e., NDA ML)

suitable for proper comparisons.
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|. INTRODUCTION

Over the recent years, there has been an increasing demaritdefa priori knowledge of the propagation
environment conditions, fueled by an increasing thirstééing advantage of any optimization opportunity that vaoul
enhance the system capacity. In essence, almost all thesawgenformation about these propagation conditions can
be captured by estimating various channel parameters.rticgar, the SNR is considered to be a key parameter
whosea priori knowledge can be exploited at both the receiver and thertrites (through feedback), in order to
reach the desired enhanced/optimal performance usingugaddaptive schemes. As examples, just to name a few,
the SNR is required in all power control strategies, adapthodulation and coding, turbo decoding, and handoff
schemes[J214]. SNR estimators can be broadly divided intorivajor categories: i) data-aided (DA) techniques in
which the estimation process relies on a perfectly knowtot)piransmitted sequence, and ii) non-data-aided (NDA)
techniques where the estimation process is applied with paori knowledge about the transmitted symbols (but
possibly the transmit constellation).

DA approaches often provide sufficiently accurate estimdte constant or quasi-constant parameters, even by
using a reduced number of pilot symbols. However, in fasihghey wireless channels, they require larger pilot
sequences in order to track the time variations of the unknmavameter. Indeed, when estimating the (time-varying)
instantaneou$NR from far-apart inserted pilot symbols, the DA approacire unable to reflect the actual channel
quality. This is because the receiver cannot accurateljuoaphe details of the channel between the pilot positions.
In principle, this problem can be dealt with by inserting m@ilot symbols. Unfortunately, this remedy results in
an excessive overhead that entails severe losses in sysfgwity. To circumvent this problem, NDA approaches
are often considered instead for their ability to exploittbpilot and non-pilot received samples to estimate the
channel coefficients. Consequently, they can provide tkheiver with more refined channel tracking capabilities
without impinging on the whole throughput of the system.

Historically, the problem of SNR estimation was first forateld and tackled in the context of single-input single-
output (SISO) systems undeonstantchannels[[B16]. These two early estimators, the well-knd@M4 technique
among them, are moment-based ones. During the last dedaaie, Has been a surge of interest in investigating

this problem more intensively and many estimators taildmudard constantSISO channels were introducdd [7-



[I5]. More recently, SNR estimation has also been addressddruifferent types of diversity. In particular, a
moment-based SNR estimator that exploits the across+aaefourth-order moments iconstantSIMO channels
(i.e., spatial diversity) was proposed in J16] 17]. ML SNRimstion has also been investigated [n][[8] 19] and
[20] underconstantSIMO and MIMO channels, respectively. Yet, current and fetgeneration multi-antennae
systems such as long-term-evolution (LTE), LTE-AdvandetE-A) and beyond (LTE-B) are expected to support
reliable communications at very high velocities reachii®g Km/h [21]. For such systems, classical assumptions
of constantchannels no longer hold and consequently all the aforeedi SNR estimators shall suffer from
severe performance loss. Therefore, one needs to explivdbrporate the channel time-variations in the estinmtio
process and, so far, very few works have been reported orstifiect. In fact, ML SNR estimation under SISO
time-varyingchannels was investigated []22] 23] ahdl [24] for the DA am@PNmodes, respectively. Under SIMO
time-varyingchannels, however, the only work that is available from theroliterature is based on a least-squares
(LS) approach[25,26].

Motivated by all these facts, we tackle in this paper the fmwbof ML instantaneousSNR estimation ovetime-
varying SIMO channels, for both the DA and NDA schemes. Our proposethod is based on a piece-wise
polynomial-in-time approximation for the channel procesth very few unknown coefficients. In the DA scenario
where the receiver has access to a pilot sequence from winécBNR is obtained, the ML estimator is derived in
closed form. Whereas in the NDA case where the transmittgdesee is partially unknown and random, the LLF
becomes very complicated and its maximization is analiyi¢gatractable. Therefore, we resort to a more elaborate
solution using the EM conceft [27] and we develop therebytarative technique that is able to converge within
very few iterations (i.e., in the range of 10). We also solve thallenging problem of local convergence that is
inherent to all iterative techniques. In fact, we proposeappropriate initialization procedure that guarantees the
convergence of the new EM-based estimator to the globalmaxi of the LLF which is indeednhultimodalunder
complex time-varying channels (in contrast to real chagin@llost interestingly, the new EM-based SNR estimator
is applicable for linearly-modulated signals in genera.(iPSK, PAM, or QAM) and provides sufficiently accurate
estimates [i.e.soft detection(SD)] for the unknown transmitted symbols. Therefdnard detection(HD) can be
easily embedded in the iterative loop to further improvepgsformance over the low-SNR region. Moreover, we
develop a bias-correction procedure that is applicableoit bhe DA and NDA cases and which allows, over a

wide practical SNR range, the new estimators to coincidé wie DA CRLB. Simulation results show the distinct



performance advantage offered by fully exploiting the ansediversity and gain in terms of instantaneous SNR
estimation. In particular, the new NDA estimator (eithethaD or HD) shows overly superior performance against
the most recent NDA ML techniqueboth in its original SISO version [24] and even in its SIMCtanded version
developed here to further exploit the antenga@.

The remainder of this paper is structured as follows. Inisedt, we introduce the system model that will be used
throughout the article. In section Ill, we derive in closextni the new DA estimator with its bias and variance
along with the corresponding CRLB. In section IV, we devellop new NDA EM-based ML estimator along with
its appropriate initialization procedure. In section V, pi@sent and analyze the simulation results before drawing
out some concluding remarks in section VI.

We mention beforehand that some of the common notationsdameted in this paper. Indeed, vectors and matrices
are represented in lower- and upper-case bold fonts, rtéaglgc Moreover,{.}7 and {.} denote the transpose
and the Hermitian (transpose conjugate) operators, régplyc The operatordt{.} and<3{.} return, respectively,
the real and imaginary parts of any complex scalar or vectmreas{.}* returns its conjugate. We also u8g .

to denote & K x L) zero matrix and);, wheneverK = L.

Il. SYSTEM MODEL

Consider a digital transmission ofd —ary linearly-modulated signal over a SIMO communicatiosteyn under
time-varying flat-fading channels. Assuming an ideal negewith perfect time synchronization, and after matched
filtering, the sampled baseband received signal ovei'thantenna element, far= 1,2, --- , N,, can be expressed
as:

yi(tn) = hi(tn)a(ty,) + wi(t,), n=1,2,--- N Q)

where {t,, = nT,}N_, is the n'" discrete-time instant], is the sampling period which is equal to the symbol
period, andN is the size of the observation window. We denotedgy,,) the linearly-modulated (i.e., M-PSK,
M-PAM or M-QAM) transmitted symbol, by;(¢,,) the corresponding received sample, andibyt,,) the time-
varying complexchannel gain, over eadl* antenna branch. Note here that any carrier frequency dffe®) that

is due to the Doppler shift and/or any mismatch between #nestnitter and receiver local oscillators is absorbed in
the complexchannel coefficients. The noise componentgt,, ), assumed to be temporally white and uncorrelated

between antenna elements, are realizations of zero-meaplew circular Gaussian processes, with independent

1it is worth mentioning here that the very first EM-based ML SE&imator was developed in [13], but foonstantchannels.



real and imaginary parts, each of variance(i.e., with overall noise poweN, = 202). We assume that the same
noise power is experienced over all the antenna branchesufiiform noise).

The narrowband model irf](1) is well justified in practice bg Wwide adoption in current and next-generation
multicarrier communication systems, such as LTE, LTE-A and LTE-B systémfact, it is well known that OFDM
systems transform a multipath frequency-selective chanrike time domain into a frequency-flat (i.e., narrowband)
channel over each subcarrier as modeledby (1). Actuallitjcatrier technologies were primarily designed to combat
the multipath effects in high-data-rate communicationdlipging back the per-carrier propagation channel to the
simple flat-fading casé [28. P9]. Yet, even over traditiosiafle-carrier systems, the narrowband model in (1) could
still be valid in practice when the symbol duration is smatlean the delay spread of the channel. As mentioned
in section I, however, most of the available techniques ase=t on the assumption that the channels are constant
during the observation period, i.€:;(t,) = h; for n = 1,2,--- | N. But since in most real-world situations this
assumption does not hold, one must incorporate the chanmehariations in the SNR estimation process. Actually,
all real-life channels have an essentially finite number edrdes of freedom due to restrictions on time duration
or bandwidth (i.e., bandlimited). Consequently, theirdiwvariations can be efficiently captured throughpower
series modelg [30]. In fact, owing to the well-known Taysotheorem, the time-varying channel coefficients can be

locally tracked through a polynomial-in-time expansionoodler (L — 1) as follows:

Z l)tl+Rl) )7i:1327"'aNT (2)
=0

wherecgl) is the I*" coefficient of the channel polynomial approximation oves tff* branch amongV, receiving
antennae. The terrR(Li) (n) refers to the remainder of the Taylor series expansion. feémginder can be driven to
zero under mild conditions such as i) a sufficiently high agpnation order( L — 1), or ii) a sufficiently small ratio
NFp/F, whereF, = 1/T, is the sampling ratel’, is the maximum Doppler frequency shift, andis the size of
the local approximation window. Choosing a high approxiorabrder (i.e., first condition) may result in numerical
instabilities due to badly conditioned matrices (depegdin the value of the sampling rate). The second condition,
however, can be easily fulfilled by choosing small-size l@aggoroximation windows (i.e., by appropriately selecting

N). By doing so, the remainde‘E(Li) (n) can be neglected thereby yielding the accurate approomati

Z El) i:1327"'aNr- (3)



Given all the received samplgy;(n)}Y_,, for i = 1,2,---, N,, and the statistical noise model, our goal is to

continuously estimate thiastantaneousper-antenna SNRs which are defined for eagh )", as follows:

n 1 ’h | |a( |2
pi N(202) (4)
ZN ( HZL 1 (z )
- N(20?) ' ®)

Note here that we do not make any other assumption about theneh coefficients than being unknown and
deterministic. Of course, they might be random in practidewever, we want to avoid ang priori knowledge
about the statistical model of the channel. The motivatiehilhd this choice is twofold: i) the statistical models
are after all theoretical ones and as such they may not réfledrue behavior of real-world channels, and ii) the
fading conditions (for instance the presence/absenceinéaof-sight component) might change in real time as users
move from one location to another. In light of the above reasthe new estimator is hence well geared toward
any type of fading, a quite precious degree of freedom intmmclt is worth mentioning, though, that estimators
that capitalize on the statistical model of the fading clenimcluding the correlation in time between adjacent
approximation windows, will generally perform better thdwose who do not. Although this research path sounds
interesting, it falls beyond the scope of this paper and nayréated in a future work.

Besides, the main advantage of local tracking is its abititgapture the unpredictable time variations of the channel
gains using very few coefficients. Thus, we split up the entibservation window (of siz&/) into multiple local
approximationwindows of sizeN (where N is an integer multiple ofV). Then, after acquiring all the locally-
estimated polynomial coef‘ficiem{s?gf,)C ff:/iv wherek is the index of each local approximation window, and after

averaging the local estimates of the single-sided noises \Nyk Pl 1 , the estimated SNRs are ultimately obtained

fori=1,2,---, N, as follows:

N/N L— l
OB SN CHUS b wrarce A
Pi =
N (%2 207)

(6)

where, in the NDA case{ak(tn)}:]:l are estimates of the unknown transmitted symbols correipgrio eachi'”
local approximation window. Indeed, it will be seen in SeuwtiV that our NDA estimator is able to demodulate

the transmitted symbols for any linearly-modulated sigiralthe DA case, howevel{,ak(tn)}f:1 are equal to the

N

n=1"

known transmitted symbols, i.e{7y(t,) = ax(tn)}

2By “instantaneousSNR, we mean thelbcal” or “short-terni SNR that can be estimated from short observation windows.
3These are indeed multiple estimates of the same constaninknbwn parametes?.



IIl. DERIVATION OF THE DA ML SNR ESTIMATOR AND THE DA CRLB

In this section, we begin by deriving in closed-form expi@sshe DA ML estimator for the SNR over each
antenna element. Then, we will derive its bias revealingethy that the derived estimator is actually biased due to
the neglected remainder of the Taylor’s series and the usbat observation windows. This will afterward allow
us to obtain an unbiased version of the DA estimator by rengthis bias during the estimation process. We will

also derive the closed-form expressions for the correspgneéariance and CRLB.

A. Formulation of the DA ML SNR estimator

In most real-world applications, some known pilot symbats asually inserted to perform different synchroniza-
tion tasks. The DA ML estimator can thus rely on these pilahkgls to estimate thinstantaneousSNR or at
least to give a head start for an iterative algorithm (as bdlderived in section IV) by providing a good initial
guess about all the unknown parameters. Assume, theréf@tely’ such pilot or known symbols (out o¥ pilot
and non-pilot symbols) are periodically transmitted evéfy= N, T, where N, > 1 is an integer quantifying the
normalized (by7) time period between any two consecutive pilot positionsre;lwe denote the size of the local
approximation windows ad’pa (we shall later uséV = Nypa in the NDA case). To begin with, we consider each
antenna element, and gather the corresponding received pilot samples nwighichk!" approximation window
in a column vectory' 5k = [ (1), 4 (85), - ’y§k)(t3ng)]T' wheret!, = n T! for n = 1,2,---, Np,. Here,
N,'DA = Npa/N, is the number of pilot symbols in each approximation windohicki coversNpa pilot and non-
pilot received samples. Note also thib, is a design parameter that can always be freely chosen aseein

multiple of N,, (see section V for more details about the appropriate choiic®pa). The channel coefficients at

each pilot position{/,, are also obtained froni](3) as follows:

L—-1
hlk(t%) = Cg,l])gt;iv 1= 1327 7Nr- (7)
=0

For mathematical convenience, we define the following wscto

ir = [har(th), hig(ts), - ,hm(t’NéA)]T (8)
W;k = [wi,k(tll)v wi,k(tIQ)v T 7wi,k(t/]\7éA )]T (9)
Cik — [Cz(',ok)vcz(',l]g)v e 701('5;_1)]1-" (10)

Over thei?” antenna branch and the local approximation windovh; , contains thecomplexchannel coefficients

at pilot positions only andv; , is the corresponding noise vector. The veatgy contains the coefficients of the



local polynomial expansion. Then, usirg (7), we can rewtti® channel approximation model in a more compact

form as follows:

;,k:T/Ci,kv i=1,2,---, Ny, (112)
where
L—1
1t t
1oty e R
T = (12)
1t pEl
NDA NDA

Note thatT’ is a Vandermonde matrix with linearly-independent colun@mnsequently, it is full-rank meaning that

the pseudo-inverse that will appear in the sequel is alwafkdefined. We further defind = diag{a(t}), ar(t5), - , ar(t’

to be the( N, x Np,) diagonal matrix that contains all the known symbols tratigmiwithin thek!" approximation
window. Then, we can rewrite the corresponding receivedpsesn(over each antenna elemeitin a N,;A-

dimensional column vector as follows:
yz(DA = A/ T/Cz kT Wz k= ‘I)kcz E+ W (13)

where®) = A, T is a known(Nj, x L) matrix. We further stack all these per-antenna local olatEmn vectors,
{yl DA}z 1, one below another into a single vecty:éA yl(’E,)A y;('E,)AT yg\(,'f)gA]T. By doing so, all the
space-time received samples corresponding toktfieapproximation window can be written in a more succinct

vector/matrix form as follows:

(k) _ n /
Yoa = Bick +wy, (14)
whereci = [cf, ¢, - ¢} J" andw = [w{l wif - wi ,]" are, respectivelyLN,- and Np, N,-

dimensional column vectors vectorized in the same way Bfié= blkdiag{®,, ®/,, ..., ®, } is a (Npp N, x LN,)
block-diagonal matrix. The model ih_(114) is a well-knowndar model in estimation theory for which the ML
estimator along with its bias and variance can be derivedldsed form [35]. In fact, the probability density
function (pdf) of the locally-observed vectorﬁﬁ,A , conditioned onBj, and parameterized b§, = [ci,0?]" (a
vector that contains all the unknown parameters overktfieapproximation window) is given by:

1
—— X
(27T02)N5A N,

1
e {5yl ~ Bued Iyl - Brea . 15

(YDA 5 Ok‘Bk



The natural logarithm of{(15) yields the DA LLF of the systemfallows:

Loa(8r) = —Npa N, In(27) — Npp N, In(o?) —
1
ﬁ[yé’i\’ ~ Brcr) Tyl — Brewl. (16)

By differentiating [I6) with respect to the vectof and setting the result to zero, we obtain the ML estimate of

the local polynomial coefficients over all the receivingeama branches as follows:
ChpA = (B%HBk)_ B, yon | (17)

where T’ and A}, are known matrices, and so B) consequently. This is also the well-known least squares
(LS) estimator which coincides with the ML estimator due he finearity of the observation modé[{14) and the
Gaussianity of the noisé [35]. Note also ttBt;HB;C is a block-diagonal matrix and thus its inverse can be easily
obtained by computing the inverses of its small-size diafjbiocks separately. To estimate the noise variance, we
first find the partial derivative of (16) with respect4d. Then after setting it to zero and substitutiag by ¢ pa

obtained in[(II7), the ML estimate for the noise variance isved as follows:

= ,1[<k>

~ k ~
0% DA = m YDA — Bka,DA]H[ygA) — BCrpal- (18)

Actually, combining [IFV) and(18), it can be further showatth

-5 1 (k) 1(k)
o%kpA = ———— {y (I—Py)y
SNLN, | oA DA
1 { i Ho 1 /(k)}
= ——=—— |Yoa PiYoa'|- (19)
SNLN, | oA DA

in which P, = B, (B;HB;)AB;H and P{ = I — P, are, respectively, the projection matrices onto the

column space oBj, (i.e., signal subspace) and its orthogonal complement (ic@se subspace). In order to obtain

the estimated SNRs over the entire observation window foivang’" antenna element, we begin by extracting

the locally-estimated polynomial coefficient@?%A}k. Then the channel coeﬁicieutsorresponding to the pilot

positions over each approximation window are obtaine({fé%}k = T’E%A}k. The latter are then stacked into a
(2 b/ (N/Noa)

~ T
single vectorhl DA = h;fél, hipas - By pa } . On the other hand, the local estimates for the noise vagianc

are averaged over all the local approximation windows:

_ N/Noa
Tiop = T Z on. (20)

4The DA SNR estimator is able to implicitly identify the tinvarying channel coefficients and estimate the noise powet.s¥idy and

assessment of these capabilities or functionalities f&jlobd the scope of this paper.
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to finally obtain the DA ML SNR estimator over each antennanelet as follows:

A'h
ﬁ’i,DA HNiDAHv 7;:17275"' 7N’I“ (21)
N, (202pp)
with A’ = bIkdiag{A’l,A’2 A’N/N } being a known /N, x N/N,) diagonal matrix that contains all the

pilot symbols transmitted over the whole observation wimdo

B. Derivation of the exact bias and variance for the DA ML SNRneator

To improve the accuracy of the DA ML SNR estimator, we caltaind remove its bias. After doing so, we will
derive the exact expression for the variance of the reguliimbiased estimator. Here, for reasons that shall become
clear later in sections IV and V, we are interested in assgd$ie performance of thecbmpletely DA estimator
for which all the N transmitted symbols are assumed to be pilots, J\_/'%,q = Npa (or equivalentlyN, = 1 and
henceN’ = N). In a nutshell, our ultimate goal is to develop a bias-cdmacprocedure that is also valid for
the NDA estimator to be derived in the next section. As willdeen there, the NDA estimator is able to correctly
demodulate all the transmitted symbols which can then kegede(all) as pilots by the receiver. Thus, the same
bias-correction procedure developed hereafter can alsapped in order to obtain annbiasedversion of the

biasedNDA estimator. To begin with, recall fronil](6) that the ML DA R\estimates are given in thedmpletely

)

DA” scenario by:
N/ N N L—-1 1)
S 8 (lante)? [ 0
(NDA ZN/NDA 202, DA)

from which we show in Appendix A the following theorem:

Z)\i,DA - ’ (22)

Theorem 1: the DA ML SNR estimator in[{22) is a scaled noncentfatlistributed random variable, i.e:

(N - L)
— 7 PioA = Fur e (V), (23)
NDA

where F,, ,, () is the noncentraF distribution with a noncentrality parametgr= Np; and degrees of freedom
v = j-L andvy = N, (N — 5= L).

Proof: see Appendix A.
Hence, the mean and the variance of the new DA ML SNR estinfatlow immediately from the following two

expressions:
U2 (1)1 + )\)
U1 (Ug — 2) ’

{02\ (01 + AN+ (01 + 2)) (02 — 2)
Var{F} =2 <v—1) (o —2)%(s = 1) , v >4 (25)

E{F} = vy > 2, (24)
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Indeed, using[(23) through(25) and denoting L/Npa, we show in Appendix B the following two identities:

~ NN €
E{pipat = NN(I—e -1 (Pz + 5) ) (26)

ovarfpenfovn-ove- e (- ) (5-1)
<NTN(1 —e)— 1>2 (NTN(l —e)— 2) |

Now, using [26) we can derive the exact bias for the DA estimas follows:

Var{ﬁinA} =

. N,N N, Ne
Bias{7ion} = pi o —1 i ,
1as{pi.on} p(NTN(l—e)—l )+2NTN(1—6)—1

which is not identically zero meaning that the estimatorigsed. Actually, this bias is in part due to the use of a
limited number of received samples during the estimati@tgss and in part due to dropping the Taylor's remainder
in the channel approximation model. Yet, an unbiased versfothis DA estimator(i.e., E{p, A} = p:) can be
straightforwardly obtained froni_(26) as follows:

N N.N(1—¢)—1_ €
uB T . i
PiDA = N, N Pi,DA 9 (28)

Therefore, by combinind_(27) and{28), it follows that:

1 2
Var{p, 8} = ———————|p? + pi (2N, (1 — - =
{Pipat NNT(1—6)—2{”Z+” I-e)+e-%
(N LY (N 1Y
2 a2n) 2 T1)° )
In practice, the variance of unbiased estimators is usuadiypared to the so-called Cramér-Rao lower bound

(CRLB) which is a fundamental benchmark that reflects the¢ delsievable performance ever. Therefore, as detailed

in Appendix C, we also derive the CRLB for DA SNR estimatioreptime-varying channels as follows:

N Pi Pi
CRLBpa(p;) = N (2+ Nr) . (29)

Now, by closely inspecting (29), it can be verified that theamesquare error (or the variance) of the unbiased
estimator MSEp, %3} = E{ (7, %A — pi)z} tends asymptoticaﬂ/ i.e., whenN > 1 and Npa >> L (or equivalently

€ < 1), to the aforementioned CRLB, i.e.:

MSE{@,%E/:} = Var{ﬁi,tIJ)BA} — CRLBpa(p:), (30)
51t should be mentioned here that the second asymptotic tondiNpa > L, must indeed be taken into account. This is because the
estimates of the channel coefficients, over each approkimatindow, are obtained from th&/ps samples received over that window only.
Their accuracy does not depend, therefore, on how many sanapé received outside the considered approximation wir(tiee rest of the
observation interval). Yet, the size of the whole obseovativindow, /N, will ultimately affect the performance of the SNR estintatbrough

the noise variance estimate that is indeed obtained frorthalfeceived samples.
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Therefore, our unbiased DA ML estimator is asymptoticafficeent and attains the theoretical optimal performance
as will be validated by computer simulations in section Vatfdition, even though the CRLB ia_(29) was primarily
derived for the DA scenario, it will also hold in the NDA cgs&»r moderate to high SNR values. This is hardly
surprising since the NDA algorithm developed in the nextisads able to perfectly estimate/detect all the unknown
transmitted symbols over this SNR region, reaching thertékyideal DA performance. In other words, the new
NDA ML estimator derived next will be able to reach the penfi@nce achievable in ideal conditions (i.e., perfect

knowledge about all the transmitted symbols).

IV. DERIVATION OF THE NEWEM-BASED ML SNR ESTIMATOR

In this section, we derive the new NDA ML SNR estimator wheegtipl or noa priori knowledge about the
transmitted symbols is assumed at the receiver. The ctaigialtype and order, however, are assumed to be known

to the receiver.

A. Formulation of the new NDA ML SNR estimator

To begin with, we mention that the problem formulation a@opin the DA case is problematic in the NDA
scenario. In fact, as will be seen shortly, the EM algorithrarages the likelihood function, at each iteration, over
all the possible values of the unknown transmitted symhbGtmsequently, by adopting the same formulation of
section Ill, the EM algorithm would average over all the polesrealizations of the matriB that contains the
whole transmitted sequence. This results in a combinadtargdlem with prohibitive (i.e., exponentially increagin
complexity. Typically, its complexity would be of ordé¥(M™Y) where M is the modulation order an¥ is the size

of the observation window. In the DA scenario, this was felassince the matriB (or the transmitted sequence) is
a priori known to the receiver and no averaging was required. Thugefeemulate our system differently so that
the EM algorithm averages over tliegementarysymbols transmitted at separate time instants instead eviging
over the whole transmitted sequence. In this way, the catitplef the algorithm becomes only linear with the
modulation order and the observation window size.

To that end, we defiHethe vectort(n) = [1,t,,t2, - ,t2=1T which is then'" row (transposed to a column

nsy “no
6Note here that the derivation of NDA CRLBs (especially stechasticones) are extremely challenging in presence of linearlguraied

signals, in general, and that they usually deserve stamkatontributions even in the very basic caseafistantSISO channeld [31_32[ B3
"For the sake of simplifying notations in what follows, we khee t(n) instead oft(nTs) and keep dropping’s in all similar quantities.
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vector) of the Vandermonde time matriX,y, ,, defined as:
1 t o tlLfl
1 to P
T Non = ; (31)
_ L—1
1 tNNDA Nnpa
and rewrite the channel model as follows:
L—1
l
hi(tn) = >t = elit(n). (32)

At each time instant (within the *" approximation window of siZeN = Nypa), We stack all the received samples

at the output of the antennae arréyi,k(n)}ﬁiq, known assnapshoin array signal processing terminology, into a

single vectory(n) = [y1.k(n), y2.£(n), - -+ ,yn, x(n)]T, which can be expressed as:
yi(n) = ar(n)Crt(n) + wi(n), (33)
in which ax(n) is the corresponding unknown transmitted symi®}, = [ci s, c24, - ,cn, x]T and wy(n) =

[wy k(n), w2 k(n),...,wn, 1 (n)]T. Note that the vectors; , were defined previously il (10). Frofi(33), the pdf of
the received vectoly(n), conditioned on the transmitted symhol(n), can be expressed as the product of its

element-wise pdfs as follows:

p(yx(n); Orlar(n) = am) = (2%%)1\/
N,
exp {—% > [yin(n) amcfkt(")f} ’ (34)
=1

in which a,,, is thehypotheticallytransmitted symbol that is randomly drawn from thieary constellation alphabet
C ={ai,as, -+ ,ap}. Now, averaging[(34) over this alphabet and assuming tmesinitted symbols to be equally

likely, i.e., Pla,,] = 1/M for m =1,2,---, M, the pdf of the received vector is obtained as:

M
p(yr(n); 0x) = % > p(ye(n); Oklak(n) = am)
m=1

. 2
Snyexp {—gk S i () — amel it ()]} e
B M (2mo2)™ ' (33)

By inspecting [(3b), it becomes clear that a joint maximimatof the likelihood function with respect @ and
{c@k}ﬁ\gl is analytically intractable. Yet, this multidimensiongbtonization problem can be efficiently tackled

using the EM concept after defining the rightompleteandcompletedata sets. In fact, we define at a per-snapshot

8Note that the local approximation windows in the DA and NDArsarios might have different sizé¥pa and Nypa, respectively.



14

basis (in array signal processing terminology) multiplecbmpleté data sets each of which containing thRé.
samples received at a given time instarTt; [i.e., yx(n)]. Each of these ihcompleté data sets is completed by
the single unknown symboly(n), corresponding to the same snapshot. Then, the LB |ax(n) = a,,) =

In (p(yx(n); Ok |ar(n) = am)), of yx(n) conditioned on the transmitted symhol(n) is given by:
L(8|ar(n) = am) = —N, In(2n0?) —

N
1 r
202 Z |yz,k(n) - amczkt(n)f
=1
N,

1
= —N, In(2r0?)— 552 (|yi,k(n)|2 +
i=1

|am| ’cz wt(n ‘ —2%R {ylk amczkt(n)}). (36)
The new EM-based algorithm runs in two main steps. During“txpectation step” (E-step), the expected value
of the above likelihood function with respect to all the gbkstransmitted symbol$a,, }2_, is computed. Then,
during the “maximization-step” (M-step), the output of tRestep is maximized with respect to all the unknown
parameters. The E-step is established as follows: staftomg an initial gue ?);(0), of the unknown parameter

vector, the objective function is updated iteratively adag to:

a—1) Nnpa
<0k|0k > ZEam{ 0k|a ) m)

8y, <n>} ,
(37)

—~(g—1
whereE, {.} is the expectation over all the possible transmitted sys)Hal,, }*_,, andek(q ) is the estimated

parameter vector at th@ — 1)*" iteration. After some algebraic manipulations, it can bevah that:

N.
——(g-1) _ 1 i
Q <0k|0k ! ) = —NnpaN; In(2707) — 252 <M2(I)c +

1=1
Nnpa
Za“ Vleliem)] - 2@12’((:1-,;@)), (38)

®Initialization is critical to the convergence of the newrdtive NDA algorithm. It will be discussed in more detailssaction IV-B.
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WhereMz(i,)C = E{|yix(n)|?} is the second-order moment of the received samples ovei*theceiving antenna

element and:
otV = E, { 6. l)aYk(n)} (39)
= Z 1(r;1n1k)|am|27 (40)
B9 o) =Eam{%{yzk<n>amt% s} |yt
= Z 1(r;1n1k) {ka(”)amtT(n)Ci,k}- (41)

In 39) and [@1),P 1) = P (amb’k(n);é;(ql)) is thea posterioriprobability of a,, at iteration(g — 1) which

mnk_

can be computed using the Bayes formula as follows:

—(g—1
P[am]P<yk |am70k(q ))

Pl = = (42)
n, (g
P (i)
Since the transmitted symbols are equally likely, we h&ye,,] = 1/M, and thus:
M
—~(g—1) 1 (g—1)
P( W) B )—MZP(yk Vam: 02 ) (43)

m=1

For normalized-energy constant-envelope constellatisnsh as MPSK), we havi,,|? = 1 for all a,, € C and,
therefore,a,(f’l)(n) reduces simply to one (for all) and does not need to be computed. Now, the M-step can be

fulfilled by determining the parameters that maximize thgatiof the E-step, obtained i (38):

—~(

o = — argmax Q (0k|ok ” 1)) . (44)

At this stage, in order to avoid the cumbersome differeiotiabf the underlying objective function with respect
to the complex vectors{ciyk}fvgl, we split them intoc; , = R{c;r} + jS{cir}. We then maximize instead
Q (Hk\é;(ql)) with respect tdR{c; 1, } and{c; x } yielding thereby, at the convergence of the iterative ailgor,
their respective ML estimatés{c; , } and3{c; « }. By the invariance principle of the ML estimator, we easibtain
the NDA ML estimate ot; j, as¢; x = R{¢; x}+jS{Ci . }. Therefore, using the fact thagn)” (R{c; x} S{cip}’ —

S{ci7k}§)‘%{ci7k}T)t(n) =0V c;, € CF and after some algebraic manipulations, it can be shown that

—~(g—1
Q<0k|0k(q )) = —NuwpaN, In( 27r0 Z

=1

NNDA
z(w zpssnlk~sﬂ,z >)] as)

n=1
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whereC; ;, and EZ(.’Z) are, respectively, a matrix and a column vector that arei@iplconstructed from the real

and imaginary parts of; , as follows:
Cir = R{cipR{cir}’ + S{cir}SH{ein}?, (46)
e = Ryl mam}R{cir} + S (m)am}S{ein}- (47)

After differentiating [45) with respect t&®{c; .} and3{c; r} and setting the resulting equations to zero, we obtain

the NDA estimates of the real and imaginary parts;p;t at theq?" iteration, as follows:

Nnpa \ NNDA M
R = Dot [ 0 D PR ) ant(n)] |
n=1 n=1m=1
(48)
and
Nnpa ! Nnoa M
SE )= Dot | 3o D P RS mant(n)] -
n=1 n=1m=1
(49)

Then, using the identltﬁz(q,z = %{E(Q)} —l—j\Y{C(q)} and after some simplifications, we derive the expressioﬁff’@f

as follows:
Nnpa B Nnpa
e = > tmt"(n) Z A Dt(n) | (50)
n=1
in which )\Z(qn_,i) is given by:
N = [V )] yan(n) (51)
where
M
~(g—1 1
g Vm) = > P Va,, (52)
m=1

is the previoussoft estimate for the unknown transmitted symhbgl(n), involved in [33). Lastly, by differentiating

71)

(@5) with respect tar?, setting the resulting equation to zero, and replacingeiher; ,, by Equ , we obtain a new

estimate of the noise power at th& iteration as follows:

N,. 7 —1
0 _ > (M2(/)€ + m(qk ))
7 Nnpa N, ’

(53)
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where:

Nnpa

i = ) (657) (€57) el +
o7V _ 9p=D (quk‘””
@

- DtT el VI af ) — 2600 (A kl))}

2 I

3
Il
-

(54)

After few iterations (i.e., in the range of 10) and with caitahitialization, the EM algorithm converges over each
kt" approximation window to the exact NDA ML estimaténgA andgg npa- The latter is then averaged over all

the local approximation windows to obtain a more refinedneste as follows:

N N/NNDA

) NDA

NDA - T Z o-k NDA" (55)
k=1

Finally, given [B0) and[(35), and taking into account all #pproximation windows of sizé/ypa within the same

observation window of sizéV, the NDA ML SNR estimator is obtained as:
N/Nnpa <= Nnoa T (k) 2
- 1 |ak t
Zk_l anl | | ‘ 7, NDA 7 (56)
N (202NDA)

whereay,(n) is the final (i.e., at the convergena®ft estimate of the:*” transmitted symbolg (n), within the k%"

Pi,NDA =

approximation window.

B. Appropriate initialization of the iterative EM algorith using the DA estimator

Recall that the EM algorithm is iterative in nature and, #fere, its performance is closely tied to the initial
guessé;(o) within each approximation window. We will see in the nexttgmt that when it is not appropriately
initialized, its performance is indeed severely affecteshecially at high SNR levels. This is actually a serious
problem inherent to any iterative algorithm whose objexfiunction is not convex (i.e., multimodal). That is, it
may settle on any local maximum if it happens that the algorits accidentally initialized close to it. Fortunately,
an appropriate initial guess about the polynomial coeﬂlmsc , and the noise vananceQ(O), can be locally
acquired using very few pilot symbols by applying the DA MLiegtor developed in the previous section.

In order to initialize the EM algorithm with the DA estimatage proceed as follows. Using the pilot symbols only,
we begin by estimating the local polynomial coeﬁicien@’s\%A}k, using the DA estimator over approximation

windows of sizeNpa (possibly different fromNypa). In Section lIl, Az(kgA was multiplied by the matrixI’ in
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order to obtain, over eack’” approximation window, the DA estimates for the channel ﬁmiehts,ﬁ;fg%, at pilot
positions only(i.e., ﬁ;f’;,; = T’GE%A). Yet, they can also be multiplied by another maffix;, in order to obtain the
pilot-based estimates for the channel coefficients at bidth @nd non-pilot positions over each DA approximation
window (i.e., EEFD)A = TNDAGE,]T))A)- The underlying time matrixT' ., is equivalent toTy, ., in 1) except the
fact that it containsNpa instead of Nypa rows. Then, over eacki” antenna element, the obtained pilot-based
estimates,{ﬁl(.gA}k, are stacked together to form a single vecfQ[DA, that contains all the pilot-based estimates
of the channel coefficients over the entire observation mindrhe latter is again divided into several adjacent and
disjoint bIocks,ﬁfBA, each of which is now of siz&/npa (instead ofNpa in the DA scenarip. Then, according

to (32), the initial guess about the polynomial coefficieatswithin eachkt” local NDA approximation window

— is obtained from the:*" block using:

~0)  _ T _ N ()
Ci,k - (TNNDATNNDA) TNNDA hl,DA
for k=1,2,--- ,N/NNDA- (57)

The initial guess about the noise variance is sinﬁﬂ;)(/o) = EEDA obtained in[(2D). In the following, we will use
two different designations for the new EM-based estimaggethding on the initialization procedure. We shall refer
to it as ‘completely-NDA if initialized arbitrarily and as hybrid” when initialized appropriately using the DA
estimator. We will also use two different designations fog DA estimator. We shall refer to it apifot-only DA’
when applied using the pilot symbols only (which @@#N,, out of the N transmitted symbols witlv,, > 1); and

as ‘completely DA when applied in another scenario in which all thé transmitted symbols are assumed to be
perfectly known, i.e., NV, = 1. This scenario is encountered in many modern communicatystems which have

a small CRC (at the PHY layer) serving as a stopping critefmnturbo code detection. This means that at the
end of the decoding process, the system can recognize whathdits were detected correctly or not (i.e., if the
CRC matches or not). Thus, at the output of the decoder, os@beess to the transmitted information bits from
which all the transmitted channel symbols can be easilyingta These decoded symbols are then used as pilots
for the DA estimator in a completely DA mode. Moreover, in some radio interface technologies aEiCDMA,

a code-multiplexed pilot channel is considered with a catghy known data sequence. In OFDM transmissions,

as well, some carriers might bear completely known data exezps.
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C. EM-based ML SNR estimation with hard symbol detection

The EM-based SNR estimator developed in section IV-A retiesthe soft detection(SD) of the transmitted
symbols as seen froni_(52). In fact, at each time instantll the constellation points are scanned and the
corresponding posterioriprobabilities (APPS) P, ,, ,, are updated from one iteration to another. With a properly
selected setjj, the hybrid EM-based estimator always converges to the global maximiuitmeoLLF for moderate-
to-high SNR values. Therefore, over that SNR region and atcttnvergence of the algorithm, the APPs of the
wrong symbols ar@lmostequal to zero. As such, the weighted sum involveddd (52)rnsta very accuratsoft
estimatezy, (n), of the actualh'* transmitted symbol (over eadi” local approximation window). This makes the
“hybrid” EM-based SNR estimator equivalent in performance to ttaipletely DA biasedestimator. Therefore,
the same bias-correction procedure highlighted earligZ®) can be exploited here usiag= L/ Nnpa. To be more
specific, we will further refer to thecompletely-NDAand “hybrid” EM-based estimators az6mpletely-NDA-SD
and ‘hybrid-SD when they are applied witlsoft detection (SD) usind (52).

Yet, for low SNR valuessoft detection may not be optimal and hence both tbenipletely-NDA-SDand “hybrid-
SD’ EM-based estimators are expected to depart from tmripletely DA estimator. Therefore, one may resort
to hard detection (HD) in order to bridge such performance gap. Inuthell, HD is a separate task that may be

applied iteratively (i.e., at eagi” iteration) by taking each of the soft estimat?e\%“,) (n), in (52) as input to return

its closest symbolagf) (n), in the constellation alphabet:

—(q)

a,’ (n) = argmin
am€C

am — a0 (n)

2
| (58)

Then,d,(f) (n) is used in[(5lL) instead @q) (n). When applied with iterative hard detection (IHD), theofnpletely-
NDA’ and “hybrid” EM-based estimators are referred to asrhpletely-NDA-IHD and “hybrid-IHD", respectively.
One other option would be to apply the HD task only once at thevergence of the algorithm [i.e., finhard
detection (FHD)]. In this casd,_(b8) is applied on #udt symbols’ estimates obtained at the very last iteration.only
Hence, we drop the iteration indexin the outputax(n), of (88) which is reinjected instead @f,(n) obtained at
the convergence. When applied with FHD, the two versionfiefEM-based estimator are designated, respectively,

as ‘completely-NDA-FHD and “hybrid-FHD". Finally, the multiple capabilities of the proposed NDA M&NR
10This amounts to carefully choosing the local approximatidndow sizes Vypa and Npa) pertaining, respectively, to thehybrid” SNR
estimator and the DA version used to initialize it; choickattboth depend on the normalized Doppler frequehgyT’s as established and

reported in table | at the end of the next section.
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Full observation window

First DA approximation window —pi¢— Second DA approximation window |

1¥ NDA approximation ‘ 2" NDA approximation 3" NDA approximation ;‘_4"' NDA approximation I

window window window window >

Legend

—e— pilot position

2" subframe

i 1¥ subframe
—o0— data position

Figure 1. Data and pilot symbols layout with four and two DAI&DA local approximation windows, respectively, witfi = 112, Npp = 56,

and NNDA = 28.

estimator to implicitly and simultaneously i) identify thigne-varying channel coefficients, ii) estimate the noise
power, and iii) detect or demodulate the transmitted syslogle to be underlined. Yet study and assessment of
these capabilities or functionalities (i.e., channel idf&r, noise power estimator, and data demodulator or tietec

fall beyond the scope of this paper.

V. SIMULATION RESULTS

In this section, we assess the performance of our new DA andl MD instantaneou$SNR estimators. All the
presented results are obtained by running extensive MOaté simulations ove5000 realizations. The estimators’
performance is evaluated in terms of the normalized (by eeage SNR) mean square error (NMSE) and compared

to the normalized CRLB (NCRLB) defined as:

E{(p; — pi)?}

CRLB(p:)
72 2

NMSE(p;) = , NCRLB(p;) =

3

wherey = E{|a(n)|?}/(20?) is the average SNR per symbol. Since the constellation grisrgssumed to be
normalized to one, i.e.E{|a(n)|?} = 1, v is simply given byy = 1/(202). For the sake of complying with a
practical and timely scenario, all the simulations are cmbed in the specific context of uplink LTE[37]. According
to its signalling standard specifications, two pilot OFDMmols are inserted at the fourth and eleventh positions
within the time-frequency grid of each subframe (consgstifi 14 OFDM symbols). In this way a pilot symbol is
transmitted every seven OFDM symbols corresponding/fo= 7. In Fig.[d, we illustrate the data/pilot symbols
layout adopted over each carrier considering an observatiodow of eight consecutive subframes (i.&.= 112),

with typical choices of the DA and NDA local approximationngiow sizesNpa = 56 and Nypa = 28.

In the sequel, theifistantaneousSNR estimation results are presented for the first submaonly, but they actually
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10°
= ¥ = NMSE (empirical)

——@— normalized variance (analytical)
NCRLB

NMSE, normalized variance
=
o
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7 [dB]

Figure 2. NMSE (empirical) and normalized variance (anedy}t of the unbiasedDA ML estimator vs. the average SNRR with N, = 2,

N =112, Npa = 112, Nypa = N/2 =56, FpTs = 7 x 1073 and L = 4, 16-QAM.

hold the same irrespectively of the subcarrier index. Meegoall the results are obtained foomplexchannels
since, in practice, the baseband-equivalent representafi the channel coefficients in the discrete modeél (1) is
always complex. We will also consider QPSK and 16-QAM asesentative examples for constant-envelope and
non-constant-envelope constellations, respectivehgt,Five verify from Fig[R that the analytical variance of the
unbiasedML DA estimator which we developed in {R9) coincides with KMSE computed empirically using
Monte-Carlo computer simulations. The small discrepanbietween them is due to lack of averaging.

In Fig.[3, we plot the NMSE for thecompletely-NDAand “hybrid” EM-based estimators (both with SD, IHD and
FHD) and compare them to theifot-only DA’ and “completely DA estimators.

First, by closely inspecting Fi@l 3(a), as expected intalti due to the fast time variations of the channel, thiot-
only DA’ estimator is not able to accurately estimate the SNR byimglgolely on the pilot symbols. Therefore,
the received samples at non-pilot positions must be exggias well in order to account for the channel variations
between the pilot positions. Thedmpletely-NDA EM-based estimator does so and as such is able to provide
substantial performance gains at low-to-medium SNR vadgeinst the filot-only DA’ method. Yet, its performance
deteriorates severely at high SNR levels due to its infi#ion issues. This is where thpilbt-only DA’ estimator
actually becomes extremely useful even though its ovemfopmance is not satisfactory. Indeed, its estimates
are accurate enough to serve as initial guesses for tigbrit” EM-based algorithm to make it converge to the

global maximum of the LLF reaching thereby the CRLB as seemfiFig.[3(b). To clearly show the effect of
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(a) (b)

10 10
= = =pilot-only DA = = =pilot-only DA
ok —3— completely-NDA-SD " —¢— hybrid-SD
N —e— completely-NDA-FHD N —— hybrid-FHD
. S . —e— completely-NDA-IHD . * s —e— hybrid-THD
10 hTe —a— completely DA 10 bt —a— completely DA

v [dB] v [dB]

Figure 3. NMSE of (a): tompletely-NDA and (b): “hybrid” EM-based estimators against benchmarks vs. the average$Mith N, = 2,

N =112, Npa = 112, Nypa = N/2 =56, FpTs = 7 x 1073 and L = 4, 16-QAM.

= * =true channel
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= & =true channel

estimated channel

|R(n)]

I I I
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Figure 4. True vs. estimated channel magnitude for the Es&dalgorithm when initialized (a) arbitrarily with onesida(b) appropriately

with the “pilot-only DA’ estimates, forFpTs = 3.5 x 1072, N = 112, Npa = 28, Nnpa = 14, and L = 4.

both arbitrary and appropriateinitializations on the EM-based algoriththe., the ‘tompletely-NDAand “hybrid”
estimators, respectivelywe plot in Fig.[4 the corresponding true and estimated oblacwefficients at an average
SNR~ = 20 dB.

Clearly, when initialized with the gilot-only DA’ estimate@, the iterative algorithm is able to track the channel
variations more accurately. Therefore, as clearly seen f@.[3(b), the hybrid” EM-based SNR estimator exhibits
paramount performance improvements especially for maeeldmahigh SNR levels. Fid.13(b) also highlights the

advantage of performing IHD since thé&ybrid-IHD” EM-based estimator is almost equivalent, over the entire

11see section IV-B for more details about the pilot-assistétialization process.
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SNR range, to thecompletely DA estimator which assumes all the symbols to be perfectlywmd=ven more,
both estimators ultimately coincide with the CRLB which gtifies theoretically the best achievable performance
ever. Fig[B(b) also reveals that IHD yields more accurat® @Ntimates than FHD and, therefore, the latter will
not be considered in the remaining simulations. Thenpletely-NDA EM-based estimator with SD, IHD, and
FHD was also included in Fidl] 3(a) to have these preliminamgarisons exhaustive and to motivate the use of
the “pilot-only” DA estimates in initialization. Thus, in the remaining sifations we will focus on the Hybrid”
EM-based estimator with SD and IHD only. Yet, we will keepngsthe ‘completely DA estimator and the CRLB
as ideal benchmarks.

Now, we will compare our newtfybrid” estimator against the only reported WQIOH EM-based ML SNR estimation
over time-varying channels introduced by A. Wiestlal. in [24]. Using the initials of its authors’ names, we
will henceforth designate it as “WGM”". This estimator wasggorally derived for single-input single output (SISO)
systems. Thus, it can be directly applied at the output ofi @atenna element in order to estimate itistantaneous
SNR in SIMO configurations. Yet, it can also be easily modifiedake advantage of the antenna gain offered by
SIMO systems experiencingniform noise. In fact, over each” antenna branch, the SISO WGM algorithm yields
two estimates; one for the signal poweﬁg, and the other for the noise powd%i). The individual estimates
{]Véi)}ﬁ\gl can be averaged over thé, receiving antenna elements to provide a more refined estjmat for the
unknown noise power. The SIMO-enhanced WGM estimator ogeh @ntenna branch, referred to hereafter as the
“WGM-SIMQO” estimator, is then redefined ag = ﬁi/ﬁo.

In Fig.[H, we compare ourhybrid” EM-based estimator (withV, = 1, i.e., SISO) against WGM in terms of
complexchannel tracking capabilities and noise variance estanagiccuracy over 5000 Monte-Carlo runs (i.e.,
5000 consecutive observation windows each of size- 112). The reason behind considering such a very large
number of observation windows — although it does not allow tmdistinguish the true channel from its estimates
— is to show that our estimator always converges to the glotmtimum. This can be, in fact, easily deduced by
inspecting the noise variance estimates in the same figanglain English, undecomplextime-varying channels,
the multidimensional LLF has many local maxima (i.e., nmtidal) and the WGM estimator gets trapped into

one of them due to its initialization issues. Therefore, @snsfrom Fig[b(c), it is not able to estimate the noise

12Note also that, using exhaustive computer simulations, aw filemonstrated the clear superiority of our new ML estinsaagainst other
state-of-the-art techniques developed for constant edarffl,[16[1¥] and time-varying channels][2Z] 25]. The tsswiere not included in this

paper due to lack of space.
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Figure 5. True and estimated channel amplitude and noisanear for: WGM estimator (left-hand side) and otwybrid” EM-based estimator

with N, = 1, i.e., SISO (right-hand side) at an average SINR: 20 dB (i.e., 02 = 0.005) and FpTs = 7 x 10~3, QPSK.

- - =WGM
—%— hybrid-SD
\ —e— hybrid-THD

\ —&— completely DA

NMSE

Figure 6. Comparison of our new SNR estimators with WGM ov&GBsystems, i.e.N,. = 1 with FpTs = 7 x 1073, QPSK.

variance ovemlmost allthe observation windows. Owing to our ngsoper initialization procedurehowever, our
“hybrid” EM-based estimator enjoys guaranteed global optimality ¢hus returns very accurate noise variance
estimates oveall the observation windows. Consequently, in contrast to W@schieves the DA CRLB as shown
in Fig.[8. Most remarkably, thehybrid’ algorithm is able to do so witl86 % of the transmitted symbols being

completely unknown (corresponding to a pilot insertiorerat1/N, = 1/7 as advocated by the signalling standard

specifications of the LTE uplink).
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(a) , (b)

= = =WGM-SIMO

—e— completely-NDA-SD
——hybrid-SD

—e— hybrid-THD
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Figure 7. Comparison of our estimators against WGM-SIMOdiffierent numbers of receiving antenna elements: Na)= 2, (b) N, = 4,

and (C) N, = 8, with FpTs =7 x 1073, N = 112, Npa = 112, and Nnpa = 56, L = 4, QPSK.

Fig. [ depicts the performance of WGM-SIMO and the differgatsions of our estimator over three SIMO
configurations (i.e.N,, = 2, 4, andg). First, by inspecting the behaviour of the WGM estimatarmas the three
subfigures, it is seen that the performance of its SIMO-eodé@dwersion improves remarkably with the number of
receiving antenna elements. For instance, at the typidaewef the average SNR = 30 dB, it is seen from Figs.
[74(a) and (b) that the variance of this estimator is reduced factor of1 /5 when the number of antennae is doubled
from N, = 2 to N, = 4. The same improvements hold — although with a slightly semdihctor of1/4 — by
further doubling the array size frolV,. = 4 to N,. = 8. Such improvements are actually due to the anteryzae
only. Indeed, since WGM-SIMO is not able to exploit the ami@diversity, it is substantially outperformed even
by our “completely-NDA-SD” estimator, for low-to-mediun\R levels. Here, we make a clear difference between
the two concepts of antenngain anddiversity. The former is actually inherent to all SIMO systems expesieg
uniform noise across the antenna eleme(mmsder correlated or uncorrelated chanmele this case, averaging the
N, independent estimates of the same noise power produces astiemate whose variance is always shrunk by a
factor of 1/N,., improving thereby the final estimates of the per-antennRSN

Antennae diversity, however, is another more interestegjure of SIMO systems. Fully exploiting the antennae
diversity consists in optimally combining the multiple gpkndently-fading copies of the received signal in order to

detect each of the transmitted symbols correctly. By sghthre ML criterion, our hybrid-SD (or “hybrid-IHD")
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(a)
—¥#— hybrid-SD
—e— hybrid-THD 1

—&— completely DA
—— NCRLB 1008

v =~ 150 km/h

v & 50 km/h

v~ 265 km/h

v~ 380 km/h

-10 0 10 20 30 -10 0 10 20 30
7 [dB] 7 [dB]

Figure 8. NMSE for the Hybrid” EM-based and thecompletely DA unbiased estimators vs. the average SNR with= 112 and N, = 2
for: (@) FpTs = 7x 1073, Npa = 112, Nnpa = 56, (b) FpTs = 2x 1072, Npa = 28, Nnpa = 28, (€) FpTs = 3.5 x 1072, Npa = 28,

NNDA = 14 and (d)FDTS =5x 1072, NDA = 14, NNDA =7, 16-QAM.

EM-based estimator takes indeed advantage of the avasphléal diversity to accurately estimate (or detect) the
unknown transmitted symbols. For these reasons and owiramuitgproper initialization procedure, théybrid”
EM-based algorithm (with SD or IHD) outperforms by far WGNM over the entire SNR range. From another
perspective, the performance improvements that are audy fully exploiting the antennagain together with
the antennadiversity offered by SIMO over SISO systems can be easily appreciatetbmparing Figsl]7 and 6.
For instance, at the typical average SNR valueyof 30 dB, the NMSE of the hybrid” EM-based estimator is
substantially reduced by a factor as high2a80 using8 antenna branches compared to SISO.

So far, all the simulations where conducted under a nore@Ioppler frequency af p T, = 7x 103 corresponding
to a maximum Doppler shiff’p =~ 100 Hz with the sampling rate of LTE systemi§ = 71.42 us. This translates
into a medium user velocity = %c ~ 50 Km/h at a carrier frequency. = 2 GHz with ¢ = 3 x 10® m/s
being the speed of light. Therefore, we plot in Fify. 8 the pernfance of the newly derived ML estimator for higher

normalized Doppler frequencies.
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It is seen from this figure that both thedmpletely DA and “hybrid’ estimators succeed in accurately estimating
the SNR reaching thereby the DA CRLB even at high Dopplerdfeagies. In Fig18(d), for instance, the normalized
Doppler frequency is as high a@pT, = 5 x 10~2 corresponding to a maximum Doppler frequency76f Hz
(translating to a user velocity as high as= 380 Km/h at . = 2 GHz). Within the same context, we emphasize
the fact that the sizes of the local approximation windoNgpa and Npa, for both the hybrid” estimator and the
“pilot-only DA’ that is used to initialize it should be properly selectedading to the Doppler range as shown in

Table I. In practice, the Doppler frequency can be estimétad the samples received at the pilot positions and the
Table |

LOCAL ESTIMATION CONFIGURATIONS FOR DIFFERENT RANGES OF'pT%.

Noa | Nnoa | Loa | Lnoa

FpTs <7x 1073 112 56 4 4
7x107% < FpTs <2 x 1072 28 28 4 4
2x 1072 < FpTs <35x 1072 | 28 14 4 4
FpTs >5x 1072 14 7 2 4

approximation window sizes are then selected accordiighen designing these Doppler-dependent configurations,
our primary goal was to obtain the lowest possible polyndmiders Lpa and Lypa Which define the sizes of the
two matrices that need to be inverted. Yet, it should be meetl that these small-size matrices are predefined
ones. Hence, in practice, they can be computed and inveffiateamnce for all, stored in memory, and then used

in online estimation at no extra computational cost.

VI. CONCLUSION

In this paper, we formulated and derived ML estimators far ithstantaneousSNR over time-varying SIMO
channels using local polynomial-in-time expansions. le BA scenario, the ML estimator was derived in closed
form, and so were its bias, its variance and the DA CRLB. InNIA case, however, we proposed a ML solution
that is based on the iterative EM concept and that is able twerge to the global maximum within very few
iterations. Appropriate initialization is indeed guaeed by applying the DA estimator over periodically inserted
pilot symbols. Furthermore, the new estimator is applieablany channel fading type over a relatively large Doppler
range and for any linearly-modulated signal (i.e., PSK, RAMM). Finally, it is able to reach the CRLB over a
wide SNR range and outperforms by far the new SIMO-extendesian of the only work published so far, to the

best of our knowledge, on EM-based ML SNR estimation ovelCSlighe-varying channels.
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APPENDIXA

PROOF OFTHEOREM 1

To begin with we definePy, as the orthogonal projector on the signal subspace (of £acintenna element)

corresponding to thé!” local DA approximation window (of sizéVpa) as follows:
Pj, = &, (/@) '@/, (59)

where®;, £ A, T and A, is a diagonal matrix that contains the known transmittedtsylsion its main diagonal,
i.e., A = diag{ak(tl),ak(tz), _ ,ak(tNDA)}. Note here thaP,, is different fromP,, that is defined earlier right
after [I9) as the orthogonal projector over the signal sabsof the whole antennae array) corresponding to the
k' local DA approximation window. We associate R, the operatorf’kl = I-P, as the projector onto the
orthogonal complement of the corresponding signal sulespac

Now recall that the estimates of thi& antenna’s channel coefficients corresponding toktfielocal DA approxi-

mation window, h( DA = [h(k) (t1), hEkD)A( o), - vﬁ%A(tNDA)]T- are obtained as:
ﬁz(’,klgA = TE%Av (60)
wherec(k) is obtained by extracting the correspondir§ block frome; pa obtained in [(Il7) to yield:

EkD)A = (‘I’kHcI’k)fli’kHﬁkgA (61)
Therefore, by substituting (61) back in{o[60), it followsat:
hipa = T(®} ®:) ' 2[5 (D4 (62)

Moreover, from [[(6D), we readily see that th&" componenthl DA( n), Of E%A is obtained as the inner product

between the:"" row of T (i.e., the vectott,, = [t0,tL,- - ,tﬁ‘l]T) andep, = [@5. 2%, - @5V leading
to:

=N L—1

hz(,klgA(tn) = tZE%A = /C\El])ctil (63)

Now, recall from [2P) that the estimated SNR in the DA modeii®ig;
ZN/NDA ZNDA ( | ‘ZL 1A§z tl
N (G 51 2 )

and owing to[(6B), the numerator of the estimated SNRih (6éh¢ted herafter asVum”) is expressed as follows:

N/Npa Noa
Num = Z Z<|a -l ‘thA )‘2> (65)

k=1 n=1

) ; (64)

Pi,DA =
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By further noticing that:

NDA & 2
(|a |h§ D)A ) HAk i.DA| > (66)
n=1
it follows that:
Num = Z HAkh%AH . (67)
Then, by using[{82) and recalling the fact tht £ A, T, we have:
AL, = A T(@f @) '@ fly!)s = Pyl s (68)
Then, by substitutind (68) il (67), it follows that:
N/Npa
(k
Num = Z HP;CyZ D)AH (69)
On the other hand, the denominator of the SNR estimate_inig6given by:
]\7 N/ Npa
Denom = N | =22 Z 202k oA |, (70)
k=1
and since2§5k7DA is obtained from[{19) as:
o2 1 WAL k)
20 kE,DA = NDAN Ypa Pk Ypa (71)
with P, 2 BIkdiag{f’l, Ps,---, Py, N} we obtain by substituting (V1) back ii{70) the followingsué:
N 1 N/NDA 2
k k
Denom— Z DA é E,A) = Z HP,CLy,(DA?H . (72)
k=1 "ok=1
T
Raclling thatygjg £ [YEID)Z yEQD)Z -y%Q)T] , it can be easily shown that:
1 N/Npa N, .
Denom = — ZyEkD)A Pﬁyl( DA
Tok=1 =1
1 N, N/Noa i
= N yg DA Péyl( DA (73)
"i=1 k=1
N T
Now, let yipa £ [y%ﬁ YEQSA : ~-y§g£NDA)T] be a vector that contains all the received samples overi'the

antenna elements. Thus, the SNR estimate ai’thantenna element is obtained from](69) and (73) as follows:

=N Num YfIDAf’yz' DA (74)
Pi,DA = = .
’ 1 N, N/N (k)H (
Denom N, > * Yi,pA Pklyz DA

Next, in order to find the distribution gf; pa, we will first proceed to finding the distributions &fum and Denom

separately. To that end, recall first from]13) that (whén= 1):

yf EZA = ®pcip + Wik, (75)
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wherew; ;, ~ N (0,201, ) with Iy, being theNpa x Npa identity matrix. Therefore, the mean and covariance

matrix of yl DA are given by:

m;, = Prciy, (76)

Rw. w = 2UQINDA. (77)

i,DAY 7, DA

Therefore, if we define the following transformed randomteec

7o & v l% (78)

then we immediately havgfkgA N(\/Q_zmlk,INDA) Now, sinc:ef’,C is a Hermetian matrix then it can be

diagonalized as follows:
P, = U,DU, (79)

where U, is a unitary matrix (i.e., U,Ufy = UffU;, = Iy,,) andD = diag{A1, X2,--- , Ay, } is a diagonal

matrix that contains théVpa eigenvalues of’k (which are allpositivg. Moreover, sincdSkf’kH = f'k, we have:
U,D?U? = U, DU, (80)

which means thaD? = D or equivalently\2 = \,, for n = 1,2,- .- Npa and, therefore{)\n =0or\, =1 for
n=12,-- ~NDA}. However, sincel’ is a Vondermende matrix, it is of (full) rank and sinceAy, is a diagonal
matrix, it follows that®,, is also of rankL. Consequently, the projection matriX, = S, (PHP,) @M is also
of rank L and, therefore, we have exactly eigenvalues that are equal to one and the others are exacdy In
the following we assume (without loss of generality) thad fhist L. eigenvalues are non-zero. Thats = 1 for
n=1,2,---,Land\, =0forn=L+1,L+2,---, Npa, Which means:

D =diag{1,1---,1,0,0,--- ,0}  (Npa x Npa matrix)
———

L times

(81)
Now, combining [[7B) and(79) and using the fact th&t is a unitary matrix, it follows that:

“UkDUk y§’3AH DU, H (82)

~ k 2
[Prviaa]| = ped

202

By further defining the transformed received vector:

z\'on 2 Uy, (83)
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and again using the fact th&i; is a unitary matrix, it follows thatz ~ J\/(

Iy..) and:

~ k 2 (k 2 1 (k 2
[Potin]' - smalprtia] - 5> [z;gA}, )
=1

in which [ %AL is used to denote th&" element of the vectofaz(.,kgA and where the last equality follows from

the fact that only the first diagonal entries Of are non-zero and are all equal to one [§eé (81)]. By plugdBdy (

back into [69), we obtain:

N/NDA

_ 1 S
Num—ﬁ 2 ;{ ZDA} (85)

In addition, since the vect(ﬂgf“D)A is Gaussian distributed according # f“D)A ~ N( Ufm,;, Iy, ), then its

1
V202

eIements{ Z([ZAL are independent and Gaussian distributed according to:

78]~ (G

where[Uy].; is used to denote thé" column of the matrixU,. Consequently2¢? x Num is a sum of the squares

[Uk] lml k> 1) N (86)

of NL/Npa independenGaussian random variables all having unit variance butzesn-means and, therefore, is

chi-square distributed witkr; = NLDAL degrees of freedorand noncentrality parameter

N/Noa L
A= Z Z‘ (U] m, g |
k=1 I=1
N/Noa
1 2
- S ot o
k=1

where the last quality follows from the fact that the fifstliagonal entries oD are equal to one and the remaining

Npa — L diagonal ones are all equal to zero. Furthermore, by recathatm; , = ®,c; , and thatD? = D, it
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follows that:

N/NDA
LS ot
k=1
N/ Npa
= — Y mfUDUm,,
k=1 ’
N/ Npa
= @ Z mkakmi_,k
k=1
N/Npa
= — Z ka‘I’kHi’k(‘I’kH‘I’k)il‘I’kH‘?kHCi_’k
k=1
N/Npa

E H §H
= — Ci,kék @kCi,k

= Np; (88)
In conclusion, we havés? x Num is a noncentralchi-distributed, i.e.:
202 Num ~ x5, (N), (89)

with vy = NJZ—AL degrees of freedorand noncentrality parametei = Np;.

Now recall from [ZB) that the denominator is equal to:

N, N/Npa
(k)
Denom = N ZZ Z yzDA éleA (90)

Similarly, by noticing thatP;- is of rank Npa — L and recurring to equivalent manipulations, it can be shdvar t

the denominator can be rewritten in the following form:

Denom = 202#1\/}; Z {VE%AL 5 (92)
(k)

where [v DAL are the components of another transformed observatiowvedtich are Gaussian distributed with
zero mean and unit variance. Hence, the random varizdiéV,. x Denom follows a central chi-distribution [36],

i.e.:

202N, Denom ~ X?,z, (92)
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with vy = NTNJZ_A(NDA —L)=N,(N— NJZ—AL) degrees of freedom. MoreoveY,um and Denom involve projection
onto a signal subspace and its orthogonal complement, atdgglg, and hence the two chi-distributed random

variables are independent. In conclusion, we have:

1 2
~ 552 Xv A
Pi,DA = 2 21 . (2 ) B (93)
202N, X
which implies that the scaled estimated SNR over e#thantenna element verfies:
_ N 2
vy 1 (N =5 L) Xi, (A) /11
——PDiDA = —x 72— PiDA = —5——— = Iy, 1, (N), 94
v Nrp ,DA N]\;AL Pi,DA ng/yz 1 2( ) (94)

where F,, ,,()\) is anoncentral F' distribution with anoncentrality paramete = Np; and degrees of freedom

v ==L andvy = N (N — #-L).

DA Nopa

APPENDIXB
DETAILS ABOUT THE DERIVATION OF THE BIAS AND THE VARIANCE

By usinge = L/Npa, it follows immediately from[(2B) that:

€ €

2(1 — e)F} T 21 —¢

Moreover, by substituting = 2N p;, v; = Ne andvy = 2N, N(1 — ¢) in 24), it follows that:

E(uon} = E{ E(F}. (95)

2N,.N(1—¢€)(Ne+2Np;)

E{F} = 96
7 Ne[2N,N(1 —¢) — 2] (%6)
Then, by recognizing some easy simplifications, one obtains
_l—e( N.N(2pi+e¢)
B{F} = € <NTN(1—6)—1). ©7)
Therefore, by usind (97) i (95), it follows that:
~ N, N €
E{pipa} = NN(I—¢ -1 (Pz + 5) . (98)

Now, (27) is obtained in the same way, i.e., first by substigyths = 2N p;, v; = Ne andvs = 2N, N(1 —¢€) in

(29) (with some easy simplifications) and then injecting tbgult in the following identity:

Var{p;pa} = Var{%%_e)F} = (ﬁ)z Var{F}. (99)

The exact bias ofy; pa, which is given by Bia§p; pa} = E{pi.pa — pi} = E{pipa} — pi, is then easily obtained
from (98) as given by[(28). Furthermore, it follows from28hat:

N,N(1—¢€)—1_ el N N1—¢)—1_ €
E{NT—Np“DA_ 5} = NN E{pipa} 5

= i, (100)
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which simply implies that:

. N,N(1—¢€)—1_ €
us _ 'r ] —

PiDA = NN Pi,DA 5 (101)
is indeed arunbiasedestimator of the per-antenna SNRs. By using the identity{ M&r+ b} = a?Var{ X} for any
random variableX and any real number, the variance of, 33 is given by:

N.N(1—e)—1\>.
Var{ﬂz DAJ = (%) Var{p; pa}, (102)

which is further simplified usind(27) in order to obtain tresult in [29).

APPENDIXC

DERIVATION OF THE DA CRLB

To assess the performance of the new unbiased DA ML estinve¢oneed to compare its variance to a theoretical
lower bound. Thus, we derive in this Appendix the correspop®A CRLB. Here, for some reasons that are better
clarified in sections IV and V, we are interested in compadng estimators against the lowest possible bound (i.e.,
the best achievable performance). Without loss of gertgralie hence consider an ideal scenario where all the
transmitted symbols are assumed to be perfectly known ¥,e= 1 or equivalentlyN’ = N). Now, we define the

following parameter vector:
o' =[a”, 8", 0", (103)
wherea = R{h} and3 = ${h} denote the real and imaginary parts of the vedtor [h{ hi,.-- h} ]* that

contains the true channel coefficients over all the recgidntenna elements and the entire observation window.

The CRLB for the DA SNR estimation over th& antenna is given by:

C o dpi T ~1 g/ Op; 0
RLBpa(pi) = 20 Ipa(6") 20" ) (104)
wherep; = (Ah;) Ah; /N (20?) with A being a diagonal matrix containing th¢ = N transmitted pilot symbols
and wherelpa (0’) denotes the Fisher information matrix (FIM) whose entries @efined as:

9?1In (p(yoa; "))
[IDA(O/)} il _EYDA{ 80;60;T }a

(105)

where

N
;M
eXp{—z—Z (Yi,0A—Ah;) (Yi,DA_Ahi)}

(210 2)N N

p(yoa; ') =

(106)
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In (I08),y:pa ansypa are given by:

yioa = [yioa(t1), vipa(t2), -+, vipaltn)]”,

_ T T T T
YoA = [YLDAvYQ.,DAv"'ayNT,DA]

3

with ¢, = nT, forn =1,2,--- , N. Starting from [[(Z06), we will now derive the analytical egpsion for the FIM.
In fact, by recalling thah; = «; + j3; wherea; and3; stand for the real and imaginary partslgf respectively,

we can obtain the required partial derivatives[in {105) dlevis:

9*In(P(ypa; 0'))  9°In(P(ypa;6")) 1
da; 0o N 2808} N _ﬁAHA’ (107)
9% 1n(P 10’ 1
502%’3’} ) o1 (20 ATA = 20 {y[baA}), (108)
0% In(P 10 1
éaz(gg? ) _ 5.1 (28 A" A - 25{y[paA}), (109)
and
(92 ln(P(yDA; 0')) - NNT
do2? oot
1 "
-6 (yipn — Ah;)7 (yipa — Ahy). (110)
=1
Moreover, it is easy to verify that:
(92 ln(P(yDA; 0/)) - (92 ln(P(yDA; 0/))
B0 - da;0af
2 .0/
- ThiPlosi@)) . (111)

9B:08]
for1 <i < N, and1 <[ < N, with ¢ # [. Additionally, the expected values of the previously dedipartial
derivatives with respect tgpa are given by:

Eym{aQ In (P(ypa;0")) } 9?In (P(yoa;0"))

- y““{ 0B3:087 }

da;0at
1 H
= —SA"A (112)
0% In(P(yoa; 0")) NN,
EYDA{ (90'22 } - ] ) (113)

And it can be easily shown that:
(92 In (P(yDA; 0')) (92 In (P(yDA; 0'))
vl T 002007 = B 902087
= O1xn- (114)




36

Now using:

[Toa(6")]; , = —Eyos { I (g;gy(zy %) } (115)
we can finally derive the analytical expression for the FIMf@ows:
A;A Oy -+ Oy Onx:
Oy
Ipa(0') = : L. 0y Onsg | (116)
Oy -+ Opn A:QA Onx1
O1xn -+ - Oixn ]\;_{\[

which turns out to be a block-diagonal matrix whose invessstiaightforward. Moreover, by recalling that =
(Ah;)? Ah;/N(26?%) andh; = a; + j3;, it is easy to verify that:

ol AP Aa; + BTATAB;

pi = N(20?) ’ 1)
from which it can be shown that [38]:
do;  No2 ' 98;  No2 ' 902 2N g4 ’
(118)

and dp; /0a; = 9p;/0B; = 01xn for i # [. Finally, by using this result, injecting (11 6)-(118) in04) and
after some algebraic manipulations, a simple closed-forpression for the CRLB of the DAnstantaneousSNR

estimates is obtained as follows:

CRLBoa (p;) = % <2 + Jff—) . (119)
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