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Rao-Blackwellized Particle Filters with
Out-of-Sequence Measurement Processing

Karl Berntorp*, Anders Robertsson, and Karl-Erik Årzén

Abstract—This paper addresses the out-of-sequence measure-
ment (OOSM) problem for mixed linear/nonlinear state-space
models, which is a class of nonlinear models with a tractable, con-
ditionally linear substructure. We develop two novel algorithms
that utilize the linear substructure. The first algorithm effectively
employs the Rao-Blackwellized particle filtering framework for
updating with the OOSMs, and is based on storing only a
subset of the particles and their weights over an arbitrary,
predefined interval. The second algorithm adapts a backward
simulation approach to update with the delayed (out-of-sequence)
measurements, resulting in superior tracking performance. Ex-
tensive simulation studies show the efficacy of our approaches
in terms of computation time and tracking performance. Both
algorithms yield estimation improvements when compared with
recent particle filter algorithms for OOSM processing; in the
considered examples they achieve up to 10% enhancements in
estimation accuracy. In some cases the proposed algorithms even
deliver accuracy that is similar to the lower performance bounds.
Because the considered setup is common in various estimation
scenarios, the developed algorithms enable improvements in
different types of filtering applications.

Index Terms—Tracking, particle filtering, out-of-sequence
measurement (OOSM), Rao-Blackwellization

I. INTRODUCTION

OUT-of-sequence measurements (OOSMs) are measure-
ments that arrive after more recent measurements have

already been processed. Since the amount of sensors used
in tracking is increasing, and since tracking is frequently
performed using distributed sensor platforms, tracking systems
increasingly often encounter OOSMs. Delayed measurements
occur for several reasons, for example: data preprocessing,
communication delays, and acoustic propagation resulting in
different sensors observing the current state of the target at
different times. An application where OOSMs are present
is from the automotive sector, where network links cause
transmission delays of radar sensors [1]. Another application
is tracking of autonomous vehicles, where cameras have
become increasingly important for giving spatial information.
When cameras are used, the processing times of the vision
algorithms often cause OOSMs, see [2], [3], [4]. Two papers
that treat OOSM algorithms in mobile robotics are [5], [6],
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and [7] discusses OOSMs in passive target tracking in sensor
networks. Neglecting the time delays of the measurements
seems to be a common choice [8], but this means discarding
information and may lead to inferior tracking performance.
However, to make efficient use of the OOSMs in nonlinear
tracking systems can be challenging.

This paper addresses the OOSM problem for a class of con-
ditionally linear Gaussian state-space (CLGSS) models, known
as mixed linear/nonlinear state-space models. In CLGSS mod-
els a linear Gaussian substructure is present. Hence, it is
possible to use the Rao-Blackwellized particle filter (RBPF)
for improved forward-filtering performance compared with the
standard particle filter (PF) [9]. Mixed linear/nonlinear state-
space models are common in, for example, target tracking,
positioning, and navigation [9], [10]. Two occurences are when
the system equations are almost linear and/or the measurement
equations are highly nonlinear, see [11], [12] for examples.

Previous work has provided the exact Bayesian inference
solution and its particle-filter implementation to the OOSM
problem, see [13]. The major contributions of this paper
are the Bayesian formulation when utilizing substructure in
nonlinear state-space models and two RBPF solutions to the
OOSM problem. In particular, by exploiting the conditionally
linear Gaussian substructure present in the model class, we are
able to provide improved tracking performance and favorable
computational demands compared with current state-of-the-art
OOSM algorithms. We present two alternative approaches. The
first algorithm (SERBPF) can be regarded as a generalization
of the storage-efficient particle filters reported in [14], with the
derivations adapted to the mixed linear/nonlinear setting. Ex-
cept for the measurements, the approach only stores a subset of
the particles over a predefined time interval. These particles are
then used in an additional forward filter to associate the current
estimates with the OOSMs. Because of its computational
simplicity, it is well suited for real-time applications. The
second algorithm (RBOOSMBS) instead adapts a backward-
simulation approach for the association task. This implies
that when the number of particles and smoothing trajectories
are sufficiently large, RBOOSMBS achieves close to optimal
tracking performance at the OOSM arrival times.

A. Relations to Previous Work and Outline
An earlier version of parts of this work has been presented

in [15]. This paper presents several extensions. Specifically, we
allow for crosscorrelation between the process noise acting on
the linear states and the process noise acting on the nonlinear
states, improve RBOOSMBS in terms of computational com-
plexity, and present a more complete and careful derivation
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of both algorithms. Moreover, the results contain a third
benchmark example in addition to an extensive evaluation and
in-depth analysis of all the obtained results.

Sec. II contains an overview of related work, whereas
Sec. III provides the problem statement and the notation.
Sec. IV briefly describes particle filters and smoothers, both
with and without utilizing substructure. We present the two
proposed algorithms in Sec. V and assess their performance
on three examples in Sec. VI. Sec. VII contains a discussion
of the results and the applicability of the algorithms. Finally,
we summarize and conclude the paper in Sec. VIII.

II. RELATED WORK

How to incorporate OOSMs for linear-Gaussian systems has
been thoroughly investigated during past decades. See [16] for
an overview of initial work spanning to the late 1990’s. Two
suboptimal algorithms are given in [17], [18]. An algorithm
that is optimal in the mean-square sense is found in [19].
However, the OOSM in [19] is assumed to be delayed less
than one sample (the 1-step lag problem). Several solutions to
the general l-step lag OOSM problem have been derived, see
[20], [21], [22], [23], [24]. The differences between the papers
are mainly the employed approaches and whether the OOSMs
arrive one by one or are interleaved with other OOSMs.

Several algorithms for processing OOSMs using particle
filters have been proposed. An approach where the measure-
ment equation is allowed to be nonlinear was outlined in
[25], [26]. The particle weights are first updated without the
OOSM. They are then modified utilizing the OOSM in a
Markov chain Monte Carlo smoothing step to overcome the
problem of degeneracy in the particle filter. This approach
stores the N particles for the last lmax time steps, where lmax

is the predetermined maximum delay. Unfortunately, it also
needs a linear state-transition model. Moreover, to retrodict
(predict backwards) the state vector back to the OOSM time,
[27] assumes an invertible state-transition matrix. The storage-
efficient particle filter (SEPF), which handles nonlinear state-
space models assuming white, Gaussian noise, was presented
in [14]. SEPF is computationally fast and memory efficient,
because it only stores and processes means and covariances
through an extended Kalman smoother to update with the
OOSMs. However, SEPF’s performance sometimes suffers
when the OOSMs introduce a large change in the estimated
filtering distribution. In [28], the approach in [14] was ex-
tended with an approximate method for separating between
informative and uninformative OOSMs, and this was further
elaborated in [29] with an optimization-based algorithm. In
[30], the algorithms from [14] and [23] were fused to enhance
performance and further reduce storage requirements. An exact
Bayesian solution and its corresponding particle-filter imple-
mentation, denoted A-PF, were derived in [13] for nonlinear
models with white noise. One drawback with A-PF is that it is
computationally expensive; for OOSMs that have larger delays
than one sample, its complexity is O((l − 1)N3 +N2).

III. PROBLEM FORMULATION

Throughout, p(xk|ym:k) denotes the conditional probability
density function of the variable x at time tk ∈ R conditioned
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Fig. 1. An illustration of the l-step lag OOSM problem, where the circles
denote OOSMs and squares refer to the in-sequence measurements. Measure-
ments y0:k have arrived and been used in the estimation process to calculate
xk . Then, an OOSM yτ arising from time tτ arrives at time tk , and is
subsequently utilized to calculate an updated xk .

on the variable y from time tm to time tk. We assume that
the state vector xk ∈ Rnx can be partitioned into a linear part
zk and a nonlinear part ηk as xk =

(
zT
k ηT

k

)T
. Given mean

vector µ and covariance matrix Υ, N (µ,Υ) and N (x|µ,Υ)
stand for the Gaussian distribution and probability density
function, respectively. The considered models are on the form

zk+1 = f(ηk) +A(ηk)zk + vzk(ηk), (1a)
ηk+1 = g(ηk) +B(ηk)zk + vηk(ηk), (1b)
yk = h(ηk) + C(ηk)zk + ek(ηk), (1c)

where the process noise vk(ηk) =
(
(vzk(ηk)T vηk(ηk)T

)T
and

the measurement noise ek(ηk) are mutually independent,
white, and Gaussian distributed according to

vk(ηk) ∼ N
((

0
0

)
,

(
Qzk(ηk) Qzηk (ηk)
Qzηk (ηk)T Qηk(ηk)

))
(2)

and ek(ηk) ∼ N (0, Rk(ηk)), with Qηk(ηk) and Rk(ηk) invert-
ible. Further, f(ηk), g(ηk), h(ηk), the system matrices A(ηk),
B(ηk), C(ηk), and the covariance matrices all have a, possibly
nonlinear, dependence on ηk. In the following, fk means f(ηk)
for any of these. Note that (1a) is linear (affine) given ηk. For
the OOSM filtering task, Yk denotes the set of in-sequence
measurements generated in the interval [0, k]. The symbol Zk
indicates the set of OOSMs generated in the interval [0, k]
available at time index k. Moreover, y0:k represents the set
Yk ∪ Zk−1. We discard measurements delayed more than
lmax time steps, with lmax predefined, and assume that all
sensors give detection of the correct targets each time. Hence,
data association and clutter are beyond the scope of this
paper [8], [31]. Further, ẑk|k = ẑk|k(η0:k) is the linear state
estimate given the trajectory η0:k and measurements y0:k, and
Pk|k = Pk|k(η0:k) is its associated covariance.

Suppose that an estimate of the filtering posterior
p(zk, ηk|y0:k) exists at time tk, where zk is conditioned
on η0:k. Assume that an OOSM yτ ∈ Zk with times-
tamp tτ ∈ [tk−l, tk−l+1) arrives, see Fig. 1. The Rao-
Blackwellized OOSM filtering task is to update the particle
weights and linear estimates at time tk with yτ , that is, to
obtain p(xk|y0:k, yτ ) = p(zk, ηk|y0:k, yτ ).



3

IV. BACKGROUND

This section briefly discusses particle filtering and smooth-
ing, both for pure nonlinear and mixed linear/nonlinear state-
space models. First, consider a standard Markov-process with
the dynamics and measurement equation as

xk+1 = f(xk) + vk, (3a)
yk = h(xk) + ek, (3b)

where f(·) and h(·) in general are nonlinear functions and vk,
ek have known densities.

A. Particle Filtering
The Bayesian approach to filtering is to compute the poste-

rior density p(x0:k|y0:k). When (3a)–(3b) are linear with Gaus-
sian noise, the solution is analytic and given by the Kalman
filter [32]. Most often, however, numerical approximations are
required. Particle filters are sequential Monte-Carlo methods
that represent the posterior density with a set of weighted
particles [33], [34], [35], [36]. Each particle represents a state
trajectory x0:k, which results in the approximation

p(x0:k|y0:k) ≈
N∑
i=1

wikδxi0:k(x0:k). (4)

Here, δ(·) is the Dirac delta function and wik is the associated
weight for the ith particle given the measurements y0:k. The
particle weights are typically updated as wik ∝ p(yk|xik)wik−1.
An approximation to the marginal (filtering) density is given
by discarding x0:k−1, yielding p(xk|y0:k). To avoid having a
significant dependence on a few particles with large weights
(i.e., particle depletion), a crucial resampling step is carried
out, which provides an equally-weighted distribution.

To decrease the number of particles and the variance of the
estimates, it is advantageous to exploit model structure. This is
the idea behind Rao-Blackwellization, where the subset of the
state space that allows for analytic expressions is marginalized
out. The sampled state space is then smaller and it is therefore
possible to use fewer particles [34]. If (3) has the same
structure as (1), a Rao-Blackwellized particle filter (RBPF)
can be used [9]. The enabler for this is the key factorization

p(zk, η0:k|y0:k) = p(zk|η0:k, y0:k)p(η0:k|y0:k). (5)

The second distribution in (5) is approximated by the particle
filter. Given the nonlinear state trajectory, the first part in (5)
is linear Gaussian. Thus, it can be estimated with constrained
Kalman filters, one for each particle. The main difference com-
pared with the standard Kalman filter consists of performing
an extra measurement update using ηk. This implies that

p(zk|η0:k, y0:k) = N (zk|ẑk|k, Pk|k). (6)

By combining (4) and (6), an approximation to (5) is given
by the Gaussian mixture

p(zk, η0:k|y0:k) ≈
N∑
i=1

wikN (zk|ẑik|k, P ik|k)δηi0:k(η0:k), (7)

where the weight update resembles that of the standard particle
filter. The filtering posterior p(zk, ηk|y0:k) can be found by
marginalization of (7).

B. Particle Smoothing

Particle smoothers are used to form approximate solutions to
the smoothing density p(x0:T |y0:T ). The marginal and fixed-
interval smoothing densities can be found by marginalization.
Particle filters (4) can also be used as an approximation to
the smoothing density [37]. However, because of the inherent
depletion problem in PFs, this estimate is often degenerate
for large time lags. Hence, particle smoothing is frequently
approached with other algorithms, such as the forward fil-
ter/backward simulator (FFBS) [38]. The FFBS utilizes the
sequential factorization

p(x0:T |y0:T ) = p(xT |y0:T )

T−1∏
k=0

p(xk|xk+1:T , y0:T ). (8)

Starting by sampling a state x′T from the filtering approxima-
tion p(xT |y0:T ) at time index T , the Markov property

p(xk|xk+1:T , y0:T ) ∝ p(xk+1|xk)p(xk|y0:k) (9)

is utilized to form the approximation

p(xT−1|x′T , y0:T ) ≈
N∑
i=1

wiT−1|T δxi0:T−1
(x0:T−1),

where wiT−1|T ∝ wiT−1p(x
′
T |xiT−1). Iterating backward,

xT−1 is generated by sampling from the filtering distribution
at time index T −1 with probability wiT−1|T . This recursion is
performed until k = 0 is reached, whereby an approximation
to (8) can be created. For a more diverse approximation, the
algorithm is repeated M times to yield

p(x0:T |y0:T ) ≈ 1

M

M∑
j=1

δxj0:T
(x0:T ). (10)

In Rao-Blackwellized particle smoothing (RBPS) [39], the
density p(zk, ηk|y0:T ) , k < T , is approximated by

p(zk, ηk|y0:T ) ≈ 1

M

M∑
j=1

N (zk|ẑjk|T , P
j
k|T )δηjk

(ηk). (11)

Conditionally linear state-space models such as (1) do not have
the Markov property (9). Whole trajectories must therefore be
sampled from the RBPF, to preserve Gaussianity. To compute
(11), the RBPS draws one of the RBPF particles {ηi0:k}Ni=1

with probability wik|T , and by discarding ηi0:k−1 the trajectory
is appended, yielding {ηik, η′k+1:T }. This procedure is repeated
for each k = T − 1, . . . , 0, resulting in a backward trajectory
that can be used to approximate p(η0:T |y0:T ). Using Bayes
rule on (9) gives that the backward kernel is approximated as

p(η0:k|ηk+1:T , y0:T ) ≈
N∑
i=1

wik|T δηi0:k(η0:k).

The smoothing weights wik|T are given by

wik|T ∝ wikp(yk+1:T , η
′
k+1:T |ηi0:k, y0:k), (12)

where (12) is found by propagating zero, first, and second or-
der moments {Zk, λk,Ωk}, dependent on ηk but independent
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of zk, backward in time as the nonlinear trajectory is drawn.
Given {Zk, λk,Ωk}, the predictive density in (12) is

p(yk+1:T , η
′
k+1:T |ηi0:k, y0:k) ∝ Zkdet(Λk)−1/2e(−

1
2 ζk),

(13)
In (13), det(Λk) is the determinant of Λk and

ζk = ‖ẑk|k‖2Ωk − 2λT
k ẑk|k − ‖ΓT

k (λk − Ωkẑk|k)‖2Λ−1 ,

Λk = ΓT
kΩkΓk + I,

ΓkΓT
k = Pk|k, with ‖µ‖2Ω = µTΩµ.

When the full backward trajectory η′0:T has been found,
the algorithm is typically repeated M times to give a set
of backward trajectories {ηj0:T }Mj=1 analogous to (10). Note
that (13) is computed for all N particles, yielding the com-
plexity O(TMN). To find smoothed estimates of the linear
states for each nonlinear trajectory, different constrained linear
smoothers can be employed. This finally gives the approxi-
mated smoothing density as in (11). See [39] for more details.

V. RAO-BLACKWELLIZED PARTICLE FILTERS WITH
OUT-OF-SEQUENCE MEASUREMENT PROCESSING

As described in Sec. III, the aim is to estimate the density

p(zk, ηk|y0:k, yτ ). (14)

To utilize the linear structure in (1), factorize (14) as

p(zk, ηk|y0:k, yτ ) = p(zk|ηk, y0:k, yτ )p(ηk|y0:k, yτ ). (15)

Using Bayes’ rule on the second factor of (15) gives

p(ηk|y0:k, yτ ) ∝ p(yτ |ηk, y0:k)p(ηk|y0:k). (16)

With the RBPF approximating p(ηk|y0:k), (16) transforms to

p(ηk|y0:k, yτ ) ≈
N∑
i=1

wik|k,τδηik(ηk), (17a)

wik|k,τ ∝ wikp(yτ |ηik, y0:k). (17b)

Moreover, it holds that

p(yτ |ηik, y0:k) =

∫
p(yτ |zik, ηik, y0:k)p(zik|ηik, y0:k) dzik. (18)

Thus, to update the posterior p(ηk|y0:k) with yτ to form
(17a), the likelihoods {p(yτ |zik, ηik, y0:k)}Ni=1 are needed. To
incorporate the OOSM yτ in the first factor on the right-hand
side in (15), recast it as

p(zk|ηk, y0:k, yτ ) =
p(yτ |zk, ηk, y0:k)p(zk|ηk, y0:k)∫
p(yτ |zk, ηk, y0:k)p(zk|ηk, y0:k) dzk

.

(19)
The RBPF (6) can be used to approximate the second factor in
the numerator of (19). The first term in the numerator equals
the first term on the right-hand side of (18). Hence, what
remains is to evaluate the densities {p(yτ |zik, ηik, y0:k)}Ni=1. In
the following, we present two different approaches for com-
puting p(yτ |xik, y0:k) = p(yτ |zik, ηik, y0:k) and thus performing
the PF and Kalman filter OOSM updates.

t

Filtered

Smoothed

Density

Trajectory

Fig. 2. Filtered and smoothed trajectories (solid) and the corresponding
estimated densities (dashed). Since smoothing utilizes more information it
typically suppresses the impact of a possibly dominant multimodal behavior
in the posterior. Thus, the smoothing density in general needs fewer particles.

A. OOSM Processing with Supporting RBPF

For the first algorithm (SERBPF), the focus is on finding a
computationally efficient method that approximately computes
p(yτ |xik, y0:k), by explicitly utilizing the linear substructure
(1a). Start with computing p(yτ |xik, y0:k) as

p(yτ |xik, y0:k) =

∫
p(yτ |zτ , η0:τ )p(zτ , η0:τ |xik, y0:k) dzτdη0:τ .

(20)
The density p(zτ , η0:τ |xik, y0:k) in (20) is a smoothing density,
which is rewritten as

p(zτ , η0:τ |xik, y0:k) ∝ p(xik, yk−l+1:k−1|zτ , η0:τ )

× p(zτ , η0:τ |y0:k−l), (21)

where yk is removed since xik is given. Furthermore,
p(zτ , η0:τ |y0:k−l) in (21) is approximated by the RBPF (5) us-
ing a prediction to time tτ . The first density on the right-hand
side in (21) is a measurement update using both yk−l+1:k−1

and xik as measurements. We therefore need to propagate the
past, {zτ , η0:τ}, to update with {xik, yk−l+1:k−1}.

As discussed in Sec. IV-B, the PF (or RBPF) also pro-
duces an approximate solution to the smoothing problem.
Consequently, we apply a supporting (additional) RBPF to
find (21). With this approach, we efficiently find both the
smoothing weights and the linear smoothing estimates in one
forward sweep as follows: Initialize an additional RBPF from
time index k − l. Because (21) is a smoothing density, it
can be represented by fewer particles than for the original
RBPF. Fig. 2 illustrates the idea. Therefore, start with sampling
MFF � N estimates {ẑjk−l|k−l, η

j
k−l}MFF

j=1 from the filtering
density at time index k−l. Note that performing this sampling
already in the original forward RBPF at each time step reduces
the storage requirements. Predict the estimates up to time index
τ , and augment the linear state vector and initialize:

ζjm =
(
(zjm)T (zjτ )T

)T
ζjτ =

(
ẑjτ |k−l
ẑjτ |k−l

)
, P̄ jτ =

(
P jτ |k−l P jτ |k−l
P jτ |k−l P jτ |k−l

)
.

(22)
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Then, for each m = k−l+1, . . . , k−1, execute the supporting
RBPF with resampling as usual, where the lower part of ζjm
is the linear smoothing estimate, the lower right block in P̄ jm
gives the smoothing covariance, and the upper right block in
P̄m gives the crosscovariance P jm,τ |m between the states at
time index m and τ . At time tk, use {ẑik|k, ηik}Ni=1 as mea-
surements. Thus, at the end of the recursion an approximation
to the smoothing density (21) is given by the Gaussian mixture

p(zτ , η0:τ |xik, y0:k) ≈
MFF∑
j=1

qjτ |k,iN (zτ |ẑjτ |k,i, P
j
τ |k,i)δηj0:τ (η0:τ ),

(23)
where qjτ |k,i are the smoothing weights given measurements
up to time tk−1 and state estimate i at time tk. Given (23), an
approximation to (20) is

p(yτ |xik, y0:k) ≈
MFF∑
j=1

qjτ |k,ip(yτ |ẑ
j
τ |k,i, η

j
0:τ ), (24)

where the measurement likelihood is given by

p(yτ |zjτ |k,i, η
j
0:τ ) = N (yτ |ŷjτ |k,i,Σ

j
τ |k,i), (25)

and the mean and covariance are

ŷjτ |k,i = hjτ + Cjτ ẑ
j
τ |k,i

Σjτ |k,i = CjτP
j
τ |k,i(C

j
τ )T +Rjτ .

With (24) inserted into (18), the particle weights (17b) become

wik|k,τ ∝ wik
MFF∑
j=1

qjτ |k,ip(yτ |ẑ
j
τ |k,i, η

j
0:τ ). (26)

To find (19) (i.e., the density for the linear states), we utilize
Proposition 1, which is given next.

Proposition 1. Given (24), for each i ∈ {1, . . . , N}, (19) is
given by

p(zik|ηik, y0:k, yτ ) = N (zk|ẑik|k,τ , P ik|k,τ ),

where

ẑik|k,τ = ẑik|k + Ei

P ik|k,τ = P ik|k +

MFF∑
j=1

qjτ |k,i

(
(Ej,i − Ei)(Ej,i − Ei)T

−W j,i
k,τΣjτ |k,i(W

j,i
k,τ )T

)
Ei =

MFF∑
j=1

qjτ |k,iW
j,i
k,τe

j,i
τ

Ej,i = W j,i
k,τe

j,i
τ

ej,iτ = yτ − ŷjτ |k,i
W j,i
k,τ = P jk,τ |k,i(C

j
τ )T(Σjτ |k,i)

−1.

(27)

The algorithm is denoted by SERBPF and is summarized
in Algorithm 1. The storage requirements of the algorithm
are {{ẑjm|m, P

j
m|m, η

j
m}k−1

m=k−lmax
, {ym}k−1

m=k−lmax+1
}MFF
j=1 .

Because the RBPF has computational complexity O(N) [40],
the algorithm has complexity O(lMFF +MFFN).

Algorithm 1. SERBPF

Input: {xjk−l, P
j
k−l|k−l, x

i
k, P

i
k|k, w

i
k, yk−l+1:k−1}MFF

j=1

1: Predict up to time tτ , yielding p(zjτ , η
j
0:τ |y0:k−l).

2: Initialize smoothing weights as qjτ |k−l = 1/MFF .
3: Augment the state vector and initialize using (22).
4: for m = k − l + 1 to k − 1 do
5: Perform RBPF prediction to time tm.
6: Perform weight update according to forward-filter mea-

surement likelihood.
7: if (

∑
(qjm)2)−1 < Neff then

8: Resample MFF new particles with replacement. Keep
track of {ηj0:τ}MFF

j=1 and equalize weights, qjτ |m = 1/MFF.
9: end if

10: Perform augmented Kalman-filter measurement update.
11: end for
12: Perform RBPF prediction to time tk.
13: Use {ẑik|k, ηik}Ni=1 as measurements with (1a) and (1b) as

measurement likelihoods.
14: Update weights as in (26).
15: Update linear estimates by applying (27).
Output: {ẑik|k,τ , P ik|k,τ , wik|k,τ}Ni=1

B. OOSM Processing with Backward Simulation

Algorithm 1 is computationally efficient, but the generated
smoothing density may, especially for large delays, suffer from
degeneracy. Accordingly, the estimate of the measurement
likelihood used to associate the current estimate with the
OOSM may be inaccurate. To avoid this and thus to improve
estimation accuracy, we instead rewrite p(yτ |xik, y0:k) as

p(yτ |xik, y0:k) =

∫
p(yτ |zτ , η0:τ )

· p(zτ , ητ , η0:k−1|xik, y0:k)dzτdητdη0:k−1 (28)

for updating the weights using (18), where

p(zτ , ητ , η0:k−1|xik, y0:k) = p(zτ |η0:τ , ηk−l:k−1, x
i
k, y0:k)

· p(η0:τ |ηk−l:k−1, x
i
k, y0:k)p(ηk−l:k−1|xik, y0:k).

For later use in the update of the linear states (19), we write

p(yτ |xik, y0:k) =

∫
p(yτ |zτ , ητ )

· p(zτ , ητ , ηk−l:k−1|xik, y0:k)dzτdητdηk−l:k−1 (29)

where

p(zτ , ητ , ηk−l:k−1|xik, y0:k) = p(zτ |ητ , ηk−l:k−1, x
i
k, y0:k)

· p(ητ |ηk−l:k−1, x
i
k, y0:k)p(ηk−l:k−1|xik, y0:k).

In both (28) and (29), p(ηk−l:k−1|xik, y0:k) factorizes in the
same manner as the sequential factorization (8):

p(ηk−l:k−1|xik, y0:k) = p(ηk−1|xik, y0:k)

·
k−2∏

m=k−l
p(ηm|ηm+1:k−1, x

i
k, y0:k). (30)

The smoothing density (30) can be solved for similar to the
RBPS described in Sec. IV-B. However, the smoother derived
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in [39] assumes that the covariance matrix in (2) is diagonal
(i.e., vzk and vηk are mutually independent). We take this restric-
tion into account by decorrelating the noise in the same manner
as in [9], which yields a modifed system. The modified system
can then be used in the derivations in [39], which amounts
to replacing fk with f̄k = fk +Qzηk (Qηk)−1(ηk+1 − gk), Ak
with Āk = Ak −Qzηk (Qηk)−1Bk, and the covariance matrix
for the process noise acting on the linear states, Qzk, with
Q̄zk = Qzk −Qzηk (Qηk)−1(Qzη)T in the derivations. Also, we
make adaptations for the smoother to be applicable to the
OOSM scenario and take a computationally efficient rejection-
sampling approach for finding the backward trajectories, in-
stead of computing the smoothing weights for each particle in
each time step. How to find (30) is described next.

1) Finding the Nonlinear Backward Trajectories: First, at
time tk, instead of drawing η′k = ηjk with probability wjk
for j ∈ {1, . . . ,MBS}, giving the starting point for MBS

backward trajectories, we must choose η′k = ηik for each
of the N forward particles to associate the filtered estimates
with the OOSM. Thus, in total MBS backward trajectories are
associated with each forward particle. Second, if (12) was to be
computed for all particles in each time step for appending the
trajectories, the complexity would be O(N2MBS) in each time
step. However, by again using the assumption that smoothing
densities are less complex than filtering densities, see Fig. 2,
we may sample D ≤ N particles instead in each time step to
form D smoothing weights. The validity of this assumption is
analyzed and discussed in Secs. VI and VII.

There exist computationally efficient particle smoothers
that create backward trajectories without explicitly computing
the smoothing weights, with sustained algorithm behavior
[41]. As will be clear later, we only need the smoothing
weights at time step k − l. Thus, the approach in [41] can
be adapted to our mixed linear/nonlinear model setting for
m = k − 1, . . . , k − l + 1: The aim is to sample from the dis-
tribution formed by {wj,dm|k}Dd=1, without actually computing
the smoothing weights. Here, we use the forward weights
{wdm}Dd=1 as proposal distribution, which is already known.
By noting that the transition density in (13) is bounded from
above as p(ym+1:k, η

j
m+1:k−1, η

i
k|ηd0:m, y0:m) ≤ σjm where

σjm = max
d=1,...,D

Zj,dm det(Λj,dm )−1/2,

we can perform rejection sampling to extend each backward
trajectory as {ηJm, ηjm+1:k−1, η

i
k}. Algorithm 2 outlines the

procedure.
Algorithm 2. Rejection Sampling

1: L = {1, . . . ,MBS}.
2: while L is not empty do
3: Set n = size(L).
4: Sample {I(j)}nj=1 independently with probabilities pro-

portional to wI(j)m .
5: Sample {U(j)}nj=1 independently and uniformly over

[0, 1].
6: for j = 1 to n do
7: if U(j) ≤ p(ym+1:k, η

L(j)
m+1:k−1, η

i
k|η

I(j)
0:m , y0:m)/σ

L(j)
m

then
8: Set J(L(j)) = I(j).

9: Set L = L \ L(j).
10: end if
11: end for
12: end while
13: return indices {J(j)}MBS

j=1 .

There is no upper bound on the number of executions of the
while-loop in Algorithm 2. Hence, a threshold Cmax for the
maximum number of iterations in the while-loop is set. If L is
still empty after Cmax iterations, an index is sampled from the
smoothing weights (12) by computing the transition densities
for the indices that have not already been selected. Although
Algorithm 2 occasionally does not succeed in finding an index,
on average it provides a noticeable speedup compared with
[15]. Note that for MBS = D and D large, Algorithm 2 has
close to linear computational complexity in N .

At (the last) time step k − l, for each trajectory, draw
D forward particles {ηd0:k−l}Dd=1 with probability wdk−l and
compute the right-hand side of (13) for these D particles. This
implies that (30) at time tk−l approximates to

p(ηk−l:k−1|xik, y0:k)

≈ 1

MBS

MBS∑
j=1

D∑
d=1

wj,dk−l|k,iδηd0:k−l(η0:k−l). (31)

By drawing a particle ηk−l with probability wj,dk−l|k,i for each
j, an approximation to (30) based on the mean of the full
backward trajectories is

p(ηk−l:k−1|xik, y0:k) ≈ 1

MBS

MBS∑
j=1

δηjk−l:k−1
(ηk−l:k−1). (32)

2) Updating the Weights and Linear Estimates: To update
the particle weights with the OOSM, insert (31) into (28):

p(yτ |xik, y0:k) ≈ 1

MBS

MBS∑
j=1

D∑
d=1

wj,dτ |k,ip(yτ |ẑdτ |k−l, ηd0:τ ).

(33)
Here, wj,dτ |k,i = wj,dk−l|k,i since only a time update differs
between tτ and tk−l. Plugging (33) into (18) and using (17b)
gives the weights after processing the l-step lag OOSM as

wik|k,τ ∝ wik
MBS∑
j=1

D∑
d=1

wj,dτ |k,ip(yτ |ẑdτ |k−l, ηdτ ), (34)

where p(yτ |ẑdτ |k−l, ηdτ ) is computed similarly to (25).
To update the linear density p(zk|ηk, y0:k, yτ ) (i.e., (19)),

the measurement update step (29) needs the smoothing density
p(zτ |ητ , ηjk−l:k−1, x

i
k, y0:k), for which we can resort to differ-

ent linear smoothers (conditioned on the generated backward
trajectories (32) and the measurements). Here we choose
an RTS-smoother [42], which for the mixed linear/nonlinear
model class is given by Proposition 2:

Proposition 2. Given the model (1), the filtering density
p(zk|η0:k, y0:k), and the trajectory ηm:k, the marginal smooth-
ing density for zm is given by

p(zm|ηm:k, y0:k) = N (zm|ẑm|k, Pm|k),
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where

ẑm|k = ẑ∗m|m +Hm(ẑm+1|k − ẑm+1|m)

Pm|k = P ∗m|m +Hm(Pm+1|k − Pm+1|m)

Pm,k|m = Pm+1,k|m+1H
T
m

Hm = P ∗m|mA
T
mP
−1
m+1|m

ẑm+1|m = f̄m + Āmẑ
∗
m|m

Pm+1|m = ĀmP
∗
m|mĀ

T
m + Q̄zm

f̄m = fm +Qzηm (Qηm)−1(ηm+1 − gm)

Ām = Am −Qzηm (Qηm)−1Bm

Q̄zm = Qzm −Qzηm (Qηm)−1(Qzη)T

ẑ∗m|m = ẑm|m + Lm(ηm+1 − gm −Amẑm|m)

P ∗m|m = Pm|m − LmNmLT
m

Lm = Pm|mBmN
−1
m

Nm = BmPm|mB
T
m +Qηm.

(35)

By using Proposition 2 to iterate back from tk to tk−l and
then performing a time update to tτ ,

p(zτ |ητ , ηjk−l:k−1, x
i
k, y0:k) = N (zτ |ẑjτ |k,i, P

j
τ |k,i). (36)

With (32) and (36) inserted in (29),

p(yτ |xik, y0:k) ≈ 1

MBS

MBS∑
j=1

p(yτ |ηjτ , ẑjτ |k,i) (37)

where, again, the measurement likelihood is computed sim-
ilarly to (25). Finally, we update the linear estimates and
the associated covariances, and thereby find (19) for each
i = 1, . . . , N , using the measurement update (37) as

ẑik|k,τ = ẑik|k +
1

MBS

MBS∑
j=1

W j,i
k,τe

j,i
τ

P ik|k,τ = P ik|k −
1

MBS

MBS∑
j=1

W j,i
k,τΣjτ |k,i(W

j,i
k,τ )T

W j,i
k,τ = P jk,τ |k,i(C

j,i
τ )T(Σjτ |k,i)

−1

Σjτ |k,i = Cj,iτ P jτ |k,i(C
j,i
τ )T +Rτ

ej,iτ = yτ − hj,iτ − Cj,iτ ẑjτ |k,i.

(38)

The update (38) is given in [23] for the purely linear-
Gaussian setting, and the extension is straightforward. The
algorithm is denoted by RBOOSMBS and is summarized in
Algorithm 3. The storage requirements of the algorithm are
{ẑjm|m, P

j
m|m, η

j
m, w

j
m, ym}Dj=1 for m = k − lmax, . . . , k − 1.

Without using rejection sampling, Algorithm 3 has com-
putational complexity O(lNMBSD). This complexity is
most often reduced when utilizing Algorithm 2, and should
be compared with O(lMFF + MFFN) for SERBPF and
O((l − 1)N3 +N2) for A-PF in [13].

Algorithm 3. RBOOSMBS

Input: k−1
m=k−l {xdm|m, P dm|m, wdm, xik, P ik|k, wik, ym}Dd=1

1: for i = 1 to N do
2: Set ηjk = ηik for j = 1, . . . ,MBS.
3: for m = k − 1 to k − l do

D � N

x

p D ≈ N

x

p

Fig. 3. The density to the left illustrates an example where it may suffice with
only using a subset of the available particles for approximating the density
well. To the right is an example where a larger amount of particles is needed.

4: if m > k − l then
5: Execute Algorithm 2.
6: else
7: for j = 1 to MBS do
8: for d = 1 to D do
9: Draw ηdm with probability wdm.

10: Compute wj,dm|k,i using (12) and (13).
11: end for

12: Normalize: wj,dm|k,i = wj,dm|k,i

(
D∑
d=1

wj,dm|k,i

)−1

.

13: Set J(j) = d with probability wj,dm|k,i.
14: end for
15: end if
16: Set ηjm:k = {ηJ(j)

m , ηjm+1:k} for j = 1, . . . ,MBS.
17: Perform a backward RTS step using (35).
18: end for
19: Update weight wik using (34).
20: Update mean and covariance using (38).
21: end for
Output: {ẑik|k,τ , P ik|k,τ , wik|k,τ}Ni=1

Remark 1. By using D ≤ N particles in Algorithm 3, it is
possible to trade tracking performance against computation
requirements; for example, for sharp densities it may suffice
with using D � N particles to get adequate performance,
thus saving processing time. See Fig. 3 for an illustration. D
can also be used as a tradeoff with the number of smoothing
iterations MBS, because sometimes it may be advantageous
to perform the smoothing iterations many times instead of
utilizing all N particles in each smoothing step.

Remark 2. If the measurements are stored it is theoretically
possible to reorder and reprocess the measurements when
an OOSM arrives. However, reprocessing includes redoing
the data association, which in itself can be challenging [13].
Furthermore, SERBPF has lower computational complexity
than reordering and reprocessing for MFF � N .

VI. NUMERICAL RESULTS

The proposed algorithms are evaluated on three examples
by comparing their performance against four other particle
filters. For a fair comparison of the algorithms’ abilities to
process the OOSMs, all filters use identical bootstrap RBPFs
in the forward direction [9]. The simulations are conducted in
MATLAB. The root-mean square error (RMSE) of the weighted
mean at each time step and the time average of it are used as
performance measures. The time-averaged RMSE is found by
taking the mean of the RMSE. The compared methods are
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RBPFDISC: An RBPF that discards all OOSMs and thus
only processes measurements with zero delay.
RBPF: An offline, idealized RBPF that collects all measure-
ments from both sensors with zero delay. This filter serves
as a performance benchmark.
A-PF: The exact Bayesian inference solution in [13].
SEPFFPS: The SEPF in [30], which uses an augmented-
state extended Kalman smoother for processing the OOSMs.
SERBPF: The first method proposed in this paper, described
in Sec. V-A and summarized in Algorithm 1.
RBOOSMBS: The backward-simulation based method de-
scribed in Sec. V-B and summarized in Algorithm 3.

A. Example 1

This example considers the fourth-order system

zk+1 =

1 0.3 0
0 0.92 −0.3
0 0.3 0.92

 zk + vzk,

ηk+1 = arctan(ηk) + (1 0 0)zk + vηk ,

yk =

(
0.1η2

ksign(ηk)
0

)
+

(
0 0 0
1 −1 1

)
zk + ek,

(39)

where sign(·) is the signum function. The noise is mutually
independent, white, and Gaussian distributed according to
vk ∼ N (0, 0.01I4×4) and ek ∼ N (0, 0.1I2×2), where In×n
is the identity matrix of dimension n × n. Model (39) has
previously been used in several papers, for example [43].
In this setup, the second sensor (i.e., the second element in
yk) has communication issues:1 A measurement arrives with
probability 0.5 and is delayed according to a discrete-valued
uniform distribution in the interval [1, 4] samples, with the
sampling period Ts = 1 s. This should be interpreted as that
50% of the packets of the second sensor are lost on their
way to the communication center, and those that arrive are
delayed between one and four seconds. Since only 50% of the
measurements arrive on average, the performance of RBPF is
impossible to reproduce with any of the other methods. The
initial estimate x0 and covariance matrix P0 for all filters are

x0 =
(
0 0 0 0

)T
, P0 = diag(0, 0, 0, 1),

where diag(·) is the diagonal matrix.
The following results are for 20000 Monte-Carlo simula-

tions with T = 50 time steps in each simulation. Fig. 4 shows
the RMSE for all four states using N = 100 particles in
the forward filters. SERBPF uses MFF = N particles in the
supporting RBPF. The choice MFF = N is only made to
give an indication of the performance possible to achieve; in
practice one should choose MFF � N to save computation
time. RBOOSMBS uses MBS = 1, D = N . Clearly, RBOOSMBS
performs better than the other methods in terms of RMSE,
followed by SERBPF. We expect the performance difference
between RBOOSMBS and SERBPF to increase when the delay
increases. At first glance, the performance differences might

1We also performed simulations where the first sensor had communication
issues. This resulted in that all filters had similar performance. The reason is
that the second measurement contains more information; consequently, in the
following we only present results where the second sensor delivers OOSMs.

20 40
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r
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2 k
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]

SEPFFPS

A-PF

SERBPF

RBOOSMBS

RERUN

Fig. 5. A close-up of the RMSEs for z2k , corresponding to Fig. 4. RBOOSMBS
(and to some extent SERBPF) is close to optimal.

seem minor. To give an indication of how close the proposed
algorithms are to the lower performance bounds and to show
that the improvements are indeed significant, Fig. 5 presents
a close-up of the RMSE for z2 when also comparing with a
particle filter that reorders and reprocesses the measurements
when an OOSM arrives (i.e., an optimal approach given
the information). This filter is denoted by RERUN in the
figure. As seen, RBOOSMBS is very close (approximately
1.5%) to the performance of RERUN when compared with
the other filters. Moreover, RBOOSMBS outperforms SERBPF
with approximately 6% and A-PF with roughly 10%. Fig. 5
also indicates that the relative performance of RBOOSMBS is
far superior to both SERBPF and A-PF. We obtained similar
results for the other linear states. For z1 and η, also SERBPF
performed similarly to RERUN. The relatively low performance
of A-PF is related to that 100 particles is not enough to
reliably associate the estimates with the OOSMs when the
model structure in (39) is unexploited.

Table I displays time-averaged RMSEs for N = 100 and
N = 200 particles. We have added the results when using
MFF = 0.1N in SERBPF, because MFF � N in practical
applications. Also added is the results for RBOOSMBS when
using D = 0.25N . Using MFF = 0.1N instead of MFF = N
in SERBPF gives almost no decrease in estimation accuracy,
but much lower computational complexity. Likewise, using
D = 0.25N in RBOOSMBS gives an insignificant change in
RMSE but considerably reduced computation time.

The average computation time of 100 Monte-Carlo execu-
tions as function of N for A-PF, SERBPF, and RBOOSMBS are
shown in Fig. 6 when the delay is fixed to l = 3. The im-
plementation was performed in MATLAB, and no measures to
code optimization have been taken. The computation time for
one set of particles is language and implementation dependent.
Nevertheless, Fig. 6 indicates the respective complexity in-
crease when increasing N . For N = 200, setting D = 0.25N
in RBOOSMBS gives a reduction in computation time with 75%
compared with D = N , whereas MFF = 0.1N gives a 87.5%
decrease compared with MFF = N .

B. Example 2

This evaluation uses a fifth-order mixed linear/nonlinear
system, with the nonlinear part given by

ηk+1 = 0.5ηk + θk
ηk

1 + η2
k

+ 8 cos (1.2k) + vηk ,

yk = 0.05η2
k + ek,

(40)
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Fig. 4. RMSEs of the four states in Sec. VI-A numbered row-wise from the top left with the nonlinear state in the second row, second column, for 20000
Monte-Carlo simulations with the number of particles set to N = 100. Moreover, SERBPF uses MFF = N particles in the supporting RBPF and RBOOSMBS
uses MBS = 1 backward trajectory, something that is enough in most cases for the considered lags.

TABLE I
TIME-AVERAGED RMSE VALUES CORRESPONDING TO FIG. 4. FOR THE ALGORITHMS ACCOUNTING FOR OOSMS, THE SMALLEST ERRORS ARE SHOWN

IN BOLDFACE FONT. IN THIS EXAMPLE, IT IS POSSIBLE TO DRASTICALLY REDUCE BOTH MFF AND D WHILE RETAINING ESTIMATION ACCURACY.

N = 100 N = 200
Algorithm z1 z2 z3 η z1 z2 z3 η

RBPFDISC 0.391 0.281 0.270 0.756 0.389 0.280 0.269 0.752
SEPFFPS 0.418 0.273 0.269 0.747 0.414 0.271 0.267 0.740
A-PF 0.403 0.253 0.248 0.734 0.400 0.250 0.245 0.728
SERBPF, MFF = 0.1N 0.378 0.246 0.245 0.707 0.374 0.244 0.242 0.693
SERBPF, MFF = N 0.376 0.244 0.243 0.696 0.373 0.243 0.241 0.689
RBOOSMBS, D = 0.25N 0.371 0.232 0.236 0.690 0.369 0.231 0.235 0.686
RBOOSMBS, D = N 0.370 0.231 0.236 0.687 0.368 0.231 0.235 0.684
RBPF 0.279 0.206 0.170 0.494 0.278 0.205 0.170 0.490
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Fig. 6. Average computation times of 100 Monte-Carlo executions for varying
number of forward particles for l = 3 and MFF = N , MBS = 1, and
D = N . A decrease to MFF = 0.1N for SERBPF gives a speedup factor
of eight for N = 200. Similarly, setting D = 0.25N in RBOOSMBS gives a
speedup factor of four. The computation times include the computation time
of the RBPF used in the forward filtering.

where ek ∼ N (0, 0.1) and vηk ∼ N (0, 0.005). The case with
θk = 25 has been used in several papers, among them [13].

Here, θk is the output from a linear system with dynamics
given by

zk+1 =


3 −1.691 0.849 −0.3201
2 0 0 0
0 1 0 0
0 0 0.5 0

 zk + vzk, (41)

θk = 25 + (0 0.04 0.044 0.008)zk, (42)

where vzk ∼ N (0, 0.01I4×4). Again, the noise is mutually
independent, white, and Gaussian distributed. The system
(40)–(42) has previously been used in, for example, [39].
Note that the nonlinear state is squared in the measurement
equation, leading to a bimodal posterior. The initial estimate
and covariance matrix for all filters are set to zero for all
states. The results are based on two data sets, both generated
by executing 20000 Monte-Carlo simulations twice, with 100
time steps in each simulation. The sampling period Ts is
set to Ts = 1 s. In both data sets N = 400. In the first
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TABLE II
TIME-AVERAGED RMSES AT THE OOSM ARRIVAL TIMES USING 20000
MONTE-CARLO EXECUTIONS FOR EXAMPLE 2. NOTE THAT THE ERRORS
BETWEEN l = 1 AND l = 2 ARE NOT COMPARABLE, BECAUSE THEY ARE

MEASURED AT DIFFERENT TIME STEPS.

l = 1 l = 2
Algorithm η θ η θ

RBPFDISC 0.453 0.954 0.514 0.895
A-PF 0.448 0.940 0.508 0.892
SERBPF, MFF = 0.4N 0.430 0.856 0.493 0.850
SERBPF, MFF = N 0.428 0.853 0.484 0.847
RBOOSMBS, D = 0.5N 0.445 0.950 0.496 0.892
RBOOSMBS, D = N 0.437 0.881 0.476 0.857
RBPF 0.414 0.844 0.443 0.839

data set every second measurement is delayed one time step
(i.e., l = 1), whereas in the second data set every third
measurement is delayed two time steps (i.e., l = 2). Note
that in this example all measurements arrive. Hence, at the
OOSM arrival times the performance of RBPF is attainable, for
a sufficiently large number of particles. Table II presents the
time-averaged RMSE values at the OOSM arrival times (i.e.,
k = 1, 3, . . . , 99 and k = 1, 4, . . . , 100, respectively) for ηk
and θk. SEPFFPS is omitted because of inadequate handling of
multimodal distributions. The tracking performance of SERBPF
is superior to both RBOOSMBS and A-PF for l = 1. This is
because for l = 1, the smoothing in SERBPF yields a better
approximation than only using MBS = 1 in RBOOSMBS. For
SERBPF, using MFF = 0.1N only gives a minor improvement
compared with discarding the OOSMs. However, increasing it
to MFF ≈ 0.4N renders similar performance as obtained for
MFF = N . It is interesting that SERBPF with MFF = 0.4N
performs better than RBOOSMBS with MBS = 1. In this exam-
ple, setting D < N in RBOOSMBS gives deficient performance.

For l = 2, RBOOSMBS and SERBPF have similar tracking
performance, both for ηk and θk. Fig. 7 gives a visualization
of the RMSE values for the filters. The zig-zag type shapes
occur because the delay is fixed. There are two reasons for
RBOOSMBS not consistently performing better than SERBPF.
The first is that the smoothing approach in SERBPF handles this
delay well. The second, and perhaps most important, reason is
that this is a demanding estimation problem where RBOOSMBS
benefits from using more than one backward trajectory per
forward particle. This is also indicated by both approaches
being more sensitive to the values of D and MFF. Note that for
the fifth-order model given by (40)–(42), N = 400 particles is
not enough to consistently approximate the (bimodal) filtering
posterior with high accuracy. Thus, the increased sensitivity
in D and MFF can partly be explained by this, both for
l = 1 and l = 2. Still, the estimation accuracy of SERBPF for
MFF = 0.4N is close to the performance for MFF = N , and
indicates that SERBPF is robust to increased OOSM delay.

C. Example 3

The third example deals with estimating the states of an air-
craft using a planar constant-acceleration process model [40].
The states of interest are the position pk ∈ R2, velocity
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Fig. 7. RMSE values using l = 2 in Example 2, corresponding to Table II.
All algorithms have distinct peaks in the RMSEs, which occur because of
lack of measurements at times when ηk changes sign.

vk ∈ R2, and acceleration ak ∈ R2, with the state vector

xk+1 =
(
pXk+1 pYk+1 vXk+1 vYk+1 aXk+1 aYk+1

)T
.

The measurements are the range rk and bearing φk from the
radar system to the aircraft. The nonlinearities only enter in
the measurement equations. With Ts = 1 s, the model is

xk+1 = Axk + v̄k,

yk =

(
rk
φk

)
=

√(pXk )2 + (pYk )2

arctan
(
pYk
pXk

) + ek.
(43)

The process noise v̄k ∈ R6 is white and Gaussian distributed
as v̄k ∼ N (0, Q), Q = BQv̄B

T, where the system matrix A
in (43) and B are given by

A =

I2×2 I2×2 0.5I2×2

02×2 I2×2 I2×2

02×2 02×2 I2×2

 , (44a)

B =

I2×2 0.5I2×2 0.17I2×2,
02×2 I2×2 0.5I2×2

02×2 02×2 I2×2

 , (44b)

where 02×2 is the 2 × 2 zero matrix. Furthermore,
Qv̄ = diag(4, 4, 4, 4, 0.01, 0.01). This model can be written on
the form (1), where the lines in (44) indicate the partition into
nonlinear and linear states. Note that the linear and nonlinear
states show up in reversed order compared with the standard
formulation (1). The structure of B in (44b) gives a cross-
correlation between the process noise acting on the linear
states and the nonlinear states, respectively—that is, Qzη in
(2) is nonzero. The measurement noise ek is distributed as
N (0, Rk), with Rk = diag(100, 10−6). The communication
with the bearing measurements (i.e., the second element of
yk) is corrupted. On average only 50% of the packets arrive,
and those packages that eventually arrive are delayed between
[0, 3] samples according to a discrete uniform distribution.
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Fig. 8. RMSE of the position pXk and velocity vXk for Example 3 using
5000 Monte-Carlo simulations, with same notation as in Fig. 4. All filters
use N = 200 particles and MFF is set to MFF = 0.2N , D = 0.25N , and
MBS = 1. The results for pYk and vYk are similar because of symmetry.

Fig. 8 shows the RMSE for the position pXk and velocity
vXk for 5000 Monte-Carlo simulations using 200 particles, with
initial estimate and covariance matrix for all filters set to

x0 =
(
2000 2000 10 10 0 0

)T
,

P0 = diag(4, 4, 16, 16, 0.01, 0.01).

Again, the proposed filters perform very well. Compared with
the other examples, the filter that associates the OOSMs
with the current states using an extended Kalman smoother,
SEPFFPS, is now closer in performance to the other filters.
This is unsurprising, given that the state dynamics is linear;
hence, the Kalman smoother will only be approximate in the
measurement-update steps. For this example, especially for
the position estimates, SERBPF with MFF = 0.2N performs
better than the rest of the OOSM filters. We have tried
various different noise settings in combination with different
initial estimates and number of particles, and although the
backward-simulation based approach (RBOOSMBS) most often
performs best, SERBPF often yields very similar performance.
A reason that RBOOSMBS does not consistently outperform
SERBPF is the linear process model; it is possible to use very
few particles for the smoother in SERBPF and still obtain
accurate estimation accuracy when compared with only using
one backward trajectory in RBOOSMBS.

The computation time for one time step when the OOSM
delay is l = 3 s is shown in Table IV. To reduce the effects
of memory management and operating-system intervention,
Table IV displays the minimum execution time, thus differing
to the approach used for the results in Fig. 6 where the
dependence on N was of interest. SEPFFPS is fastest, but the
computation time for SERBPF is competitive, especially con-

TABLE III
TIME-AVERAGED RMSE VALUES CORRESPONDING TO FIG. 8.

Algorithm pX pY vX vY

RBPFDISC 64.4 64.6 6.8 6.8
SEPFFPS 16.2 16.2 4.6 4.6
A-PF 15.6 15.8 4.5 4.5
SERBPF, MFF = 0.2N 15.5 15.6 4.4 4.4
RBOOSMBS, D = 0.25N 15.7 15.7 4.3 4.4
RBPF 5.5 5.5 3.1 3.1

TABLE IV
MINIMUM COMPUTATION TIME FOR ONE TIME STEP, USING SYSTEM (43)

WITH OOSM DELAY SET TO l = 3 S. IT IS INTERESTING TO COMBINE THE
COMPUTATION TIME WITH THE RMSES IN TABLE III AND FIG. 8.

N = 200
Algorithm Time [s]

A-PF 1.6
RBOOSMBS, D = N 0.6
SERBPF, MFF = 0.2N 3 · 10−3

SEPFFPS 6 · 10−4

sidering that the code is not optimized. In a real-time imple-
mentation, the improved tracking performance of SERBPF has
to be weighed against the lower execution time of SEPFFPS.

Fig. 9 presents the performance difference when comparing
RBOOSMBS that is derived in this paper with the version that
appeared in our preliminary conference-paper version [15].
Accounting for the cross-correlation between the linear and
nonlinear states gives increased tracking performance, and the
difference increases with time.

VII. DISCUSSION

For the considered examples and delays, it was often
sufficient to only use one backward trajectory per particle in
RBOOSMBS and still get excellent estimation accuracy. This
is most probably caused by the trajectories in the smoothing
iterations being fixed to the forward particle at the end
point, thus reducing the number of possible distinct backward
trajectories. The performance of RBOOSMBS also turned out to
be rather insensitive to the choice of D when compared with
having D = N . However, for some cases it is essential that
D ≈ N , for example, when the number of forward particles
is small and/or the posterior has a multimodal behavior, as is
the case for the example in Sec. VI-B.

From our experience the number of iterations in the while-
loop in Algorithm 2 depends heavily on the proposal distribu-
tion. If the proposal distribution mimics the target distribution
well, an index will often be found after a few iterations only.
Hence, in those cases it can be worthwhile to allow for a
large Cmax. However, if the proposal distribution differs a lot
from the target distribution, Cmax is preferably set to a small
value since the maximum number of iterations will probably
be reached anyway. In our simulations we, quite arbitrarily,
set the limit to Cmax = D/4, but the choice is problem
dependent. Although Cmax was reached in some cases, the
rejection sampling on average provided a noticeable speedup
compared with explicitly calculating all smoothing weights.
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Fig. 9. A comparison between the RMSE of our proposed RBOOSMBS and
the version that appeared in our previous paper [15].

A suitable number of particles in the supporting RBPF in
SERBPF considering the tradeoff between performance and
computation time, turned out to be 0.05N ≤ MFF ≤ 0.4N
depending on noise levels and the number of forward particles
used. When N is large the value of MFF can typically be cho-
sen relatively smaller. The reason is that the filter weights are
more accurate; hence, when sampling from the filter weights at
time index τ , more consistent samples are drawn. Although the
choice of MFF was more insensitive than the choice of D in
RBOOSMBS, sometimes the tracking performance deteriorated
for small MFF—for example, for the problem in Sec. VI-B.
Hence, the choice is therefore also dependent on the degree of
multimodality in the posterior. In many practical applications,
however, we believe that the number of particles used in the
smoothing iterations in both SERBPF and RBOOSMBS can be
drastically reduced without sacrificing estimation accuracy.
This is emphasized by the results in Sec. VI-A and Sec. VI-C,
where the model structure is similar to those that are used in
many tracking applications. Consequently, both algorithms are
feasible alternatives in online implementations, and we expect
that SERBPF can estimate full-scale problems online.

VIII. CONCLUSIONS

We derived and presented two new algorithms for OOSM
processing considering the class of mixed linear/nonlinear
state-space models. Both use Rao-Blackwellization to exploit
the conditionally linear Gaussian substructure in the model.
One of them yields fast execution and the other focuses on
estimation accuracy. Simulation examples showed that both
approaches yield improvements in terms of RMSE when
compared with recent particle-filter algorithms for OOSM pro-
cessing. In several examples the respective performance of the

proposed algorithms was similar to an optimal filter. SERBPF
is the most viable option when computation time is a concern.
If high-performance estimation is wanted, RBOOSMBS is the
preferred choice. Both out-of-sequence measurements and
the considered model class are common in target tracking,
positioning, and navigation scenarios. The developed algo-
rithms therefore enable performance improvements in relevant
filtering applications.

APPENDIX

Proof of Proposition 1. Follows by applying results in [9] of
how to compute expected means and covariances in RBPFs
and in [23] of how to update linear states with OOSMs.

Proof of Proposition 2. It holds that

p(zm|ηm:k, y0:k) =

∫
p(zm, zm+1|ηm:k, y0:k) dzm+1.

Now, by using Bayes’ rule and the Markov property of the
linear states, we end up with

p(zm|ηm:k, y0:k) = p(zm|ηm:m+1, y0:m)×∫
p(zm+1|zm, ηm:m+1)p(zm+1|ηm:k, y0:k)

p(zm+1|ηm:m+1, y0:m)
dzm+1.

The density p(zm+1|ηm:k, y0:k) is given by the previous
smoothing step. The rest is analogous to the constrained
Kalman-filter derivations for the RBPF in [9].
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[31] S. Särkkä, A. Vehtari, and J. Lampinen, “Rao-Blackwellized Monte
Carlo data association for multiple target tracking,” in 7th Int. Conf.
Information Fusion, Stockholm, Sweden, June 2004.

[32] B. D. O. Anderson and J. B. Moore, Optimal Filtering. Prentice Hall,
1979.

[33] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174–188, 2002.

[34] A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo
sampling methods for Bayesian filtering,” Statistics and Computing,
vol. 10, no. 3, pp. 197–208, 2000.

[35] F. Gustafsson, “Particle filter theory and practice with positioning
applications,” IEEE Aerosp. Electron. Syst. Mag., vol. 25, no. 7, pp.
53–82, 2010.

[36] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach
to nonlinear/non-Gaussian Bayesian state estimation,” Radar and Signal
Processing, IEE Proceedings F, vol. 140, no. 2, pp. 107–113, Apr. 1993.

[37] G. Kitagawa, “Monte Carlo filter and smoother for non-Gaussian non-
linear state space models,” J. of Computational and Graphical Statistics,
vol. 5, no. 1, pp. 1–25, 1996.

[38] S. J. Godsill, A. Doucet, and M. West, “Monte Carlo smoothing for non-
linear time series,” J. of the American Statistical Association, vol. 99,
pp. 156–168, 2004.

[39] F. Lindsten, P. Bunch, S. J. Godsill, and T. B. Schön, “Rao-Blackwellized
particle smoothers for mixed linear/nonlinear state-space models,” in
38th Int. Conf. Acoustics, Speech, and Signal Process., Vancouver,
Canada, May 2013.

[40] R. Karlsson, T. Schön, and F. Gustafsson, “Complexity analysis of
the marginalized particle filter,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 53, no. 11, pp. 4408–4411, 2005.

[41] R. Douc, A. Garivier, E. Moulines, and J. Olsson, “Sequential Monte
Carlo smoothing for general state space hidden Markov models,” Annals
of Applied Probability, vol. 21, pp. 2109–2145, 2012.

[42] H. E. Rauch, C. T. Striebel, and F. Tung, “Maximum likelihood estimates
of linear dynamic systems,” J. of the American Institute of Aeronautics
and Astronautics, vol. 3, no. 8, pp. 1445–1450, Aug. 1965.

[43] F. Lindsten and T. B. Schön, “Identification of mixed linear/nonlinear
state-space models,” in 49th IEEE Conf. Decision and Control, Grand
Wailea, Maui, Hawaii, Dec 2010.

Karl Berntorp received the M.Sc. degree in En-
gineering Physics in 2009 and the Ph.D. degree
in Automatic Control in 2014, both from Lund
University, Lund, Sweden. He is currently with
the Mechatronics group at Mitsubishi Electric Re-
search Laboratories in Cambridge, MA. His current
research interests are in nonlinear estimation and
control, path planning, motion control, and their
applications to automotive, robotics, and aerospace
systems.

Anders Robertsson received the M.Sc. degree in
Electrical Engineering and the Ph.D. degree in Au-
tomatic Control from LTH, Lund University, Lund,
Sweden, in 1992 and 1999, respectively. He was
appointed Docent in 2005 and Excellent Teaching
Practitioner in 2007. He is since January 2012 full
Professor at the Department of Automatic Control,
LTH, Lund University. His current research interests
are in nonlinear estimation and control, robotics
research on mobile and industrial manipulators, and
feedback control of computing systems such as

cloud infrastructures.
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