
1

Dictionary Learning over Distributed Models
Jianshu Chen, Member, IEEE, Zaid J. Towfic, Member, IEEE, and Ali H. Sayed, Fellow, IEEE

Abstract—In this paper, we consider learning dictionary mod-
els over a network of agents, where each agent is only in charge
of a portion of the dictionary elements. This formulation is
relevant in Big Data scenarios where large dictionary models
may be spread over different spatial locations and it is not
feasible to aggregate all dictionaries in one location due to
communication and privacy considerations. We first show that
the dual function of the inference problem is an aggregation of
individual cost functions associated with different agents, which
can then be minimized efficiently by means of diffusion strategies.
The collaborative inference step generates dual variables that
are used by the agents to update their dictionaries without the
need to share these dictionaries or even the coefficient models
for the training data. This is a powerful property that leads to
an effective distributed procedure for learning dictionaries over
large networks (e.g., hundreds of agents in our experiments).
Furthermore, the proposed learning strategy operates in an
online manner and is able to respond to streaming data, where
each data sample is presented to the network once.

Index Terms—Dictionary learning, distributed model, diffusion
strategies, dual decomposition, conjugate functions, image denois-
ing, novel document detection, topic modeling, bi-clustering.

I. INTRODUCTION AND RELATED WORK

Dictionary learning is a useful procedure by which depen-
dencies among input features can be represented in terms of
suitable bases [2]–[11]. It has found applications in many ma-
chine learning and inference tasks including image denoising
[5], [6], dimensionality-reduction [7], [8], bi-clustering [9],
feature-extraction and classification [10], and novel document
detection [11]. Dictionary learning usually alternates between
two steps: (i) an inference (sparse coding) step and (ii) a dic-
tionary update step. The first step finds a sparse representation
for the input data using the existing dictionary by solving, for
example, a regularized regression problem, while the second
step usually employs a gradient descent iteration to update the
dictionary entries.

With the increasing complexity of various learning tasks, it
is not uncommon for the size of the learning dictionaries to be
demanding in terms of memory and computing requirements.
It is therefore important to study scenarios where the dictio-
nary is not necessarily available in a single central location but
its components are possibly spread out over multiple locations.
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This is particularly true in Big Data scenarios where large
dictionary components may already be available at separate
locations and it is not feasible to aggregate all dictionaries in
one location due to communication and privacy considerations.
This observation motivates us to examine how to learn a
dictionary model that is stored over a network of agents, where
each agent is in charge of only a portion of the dictionary
elements. Compared with other works, the problem we solve
in this article is how to learn a distributed dictionary model,
which is, for example, different from the useful work in [12]
where it is assumed instead that each agent maintains the entire
dictionary model.

In this paper, we first formulate a general dictionary learning
problem, where the residual error function and the regu-
larization function can assume different forms in different
applications. As we shall explain, this form turns out not to
be directly amenable to distributed implementations. However,
when the regularization is strongly convex, we will show
that the problem has a dual function that can be solved in a
distributed manner using diffusion strategies [13]–[16]. In this
solution, the agents will not need to share their (private) dic-
tionary elements but only the dual variable. Useful consensus
strategies [17]–[20] can also be used for the same purpose.
However, since it has been shown that diffusion strategies
have enhanced stability and learning abilities over consensus
strategies [21]–[23], we will continue our presentation by
focusing on diffusion strategies.

We will test our proposed algorithm on two important ap-
plications of dictionary learning: (i) novel document detection
[11], [24], [25], and (ii) bi-clustering on microarray data [9].
A third application related to image denoising is considered in
[1]. In the novel document detection problem [11], [24], [25],
each learner receives documents associated with certain topics,
and wishes to determine if an incoming document is associated
with a topic that has already been observed in previous
data. This application is useful, for example, in finance when
a company wishes to mine news streams for factors that
may impact stock prices. Another example is the mining of
social media streams for topics that may be unfavorable to
a company. In these applications, our algorithm is able to
perform distributed non-negative matrix factorization tasks,
with the residual metric chosen as the Huber loss function [26],
and is able to achieve a high area under the receiver operating
characteristic (ROC) curve. In the bi-clustering experiment,
our algorithm is used to learn relations between genes and
types of cancer. From the learned dictionary, the patients are
subsequently clustered into groups corresponding to different
manifestations of cancer. We show that our algorithm can
obtain similar clustering results to those in [9], which relies
instead on a batched (centralized) implementation.

The paper is organized as follows. In Section II, we intro-
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TABLE I
EXAMPLES OF TASKS SOLVED BY THE GENERAL FORMULATION (1)–(2). THE LOSS FUNCTIONS f(u) ARE ILLUSTRATED IN FIG. 2.

Tasks f(u) hy(y) hW (W ) Wk

Sparse SVD 1
2
‖u‖22 γ‖y‖1 + δ

2
‖y‖22 0 {Wk : ‖[Wk]:,q‖2 ≤ 1}

Bi-Clustering 1
2
‖u‖22 γ‖y‖1 + δ

2
‖y‖22 β · |||W |||1 a {Wk : ‖[Wk]:,q‖2 ≤ 1}

Nonnegative Matrix 1
2
‖u‖22 γ‖y‖1,+ + δ

2
‖y‖22 b 0 {Wk : ‖[Wk]:,q‖2 ≤ 1, Wk � 0}

Factorization
M∑
m=1

L(um) c γ‖y‖1,+ + δ
2
‖y‖22 0 {Wk : ‖[Wk]:,q‖2 ≤ 1, Wk � 0}

a The notation |||W |||1 is used to denote the sum of all absolute entries in the matrixW : |||W |||1 =
∑M
m=1

∑K
q=1 |Wmq |,

which is different from the conventional matrix 1−norm defined as the maximum absolute column sum: ‖W‖1 =
max1≤q≤K

∑M
m=1 |Wmq |.

b The notation ‖y‖1,+ is defined as ‖y‖1,+ = ‖y‖1 if y � 0 and ‖y‖1,+ = +∞ otherwise. It imposes infinite penalty
on any negative entry appearing in the vector y. Since negative entries are already penalized in ‖y‖1,+, there is no
need to penalize it again in the δ

2
‖y‖22 term.

c The scalar Huber loss function is defined as L(um) ,

{
1
2η
u2m, |um| < η

|um| − η
2
, otherwise

, where η is a positive parameter.

duce the dictionary learning problem over distributed mod-
els. In Section III, using the concepts of conjugate function
and dual decomposition, we transform the original dictionary
learning problem into a form that is amenable to distributed
optimization. In Section IV, we test our proposed algorithm
on two applications. In Section V we conclude the exposition.

II. PROBLEM FORMULATION

A. General Dictionary Learning Problem

We seek to solve the following general form of a global
dictionary learning problem over a network of N agents
connected by a topology:

min
W

E
[
f(xt −Wyot ) + hy(yot )

]
+ hW (W ) (1)

s.t. W ∈ W (2)

where E[·] denotes the expectation operator, xt is the M × 1
input data vector at time t (we use boldface letters to represent
random quantities), yot is a K×1 coding vector defined further
ahead as the solution to (7), and W is an M ×K dictionary
matrix. Moreover, the q-th column of W , denoted by [W ]:,q ,
is called the q-th dictionary element (or atom), f(u) in (1)
denotes a differentiable convex loss function for the residual
error, hy(y) and hW (W ) are convex (but not necessarily
differentiable) regularization terms on y and W , respectively,
andW denotes the convex constraint set on W . Depending on
the application problem of interest, there are different choices
for f(u), hy(y), hW (W ) and W . Table I lists some typical
tasks and the corresponding choices for these functions. In
regular dictionary learning [6], the constraint set W is

W = {W : ‖[W ]:,q‖2 ≤ 1, ∀q} (3)

and in applications of nonnegative matrix factorization [6] and
novel document detection (topic modeling) [11], it is

W = {W : ‖[W ]:,q‖2 ≤ 1, W � 0, ∀q} (4)

where the notation W � 0 means each entry of the matrix W
is nonnegative. We note that if there is a constraint on y, it can

be absorbed into the regularization factor hy(y), by including
an indicator function of the constraint into this regularization
term. For example, if y is required to satisfy y ∈ Y = {y : 0 �
y � 1}, where 1 denotes the all-one vector, we can modify the
original regularization hy(y) by adding an additional indicator
function:

hy(y)← hy(y) + IY(y) (5)

where the indicator function IY(y) for Y is defined as

IY(y) ,

{
0, if 0 � y � 1

+∞, otherwise
(6)

The vector yot in (1) is the solution to the following general
inference problem for each input data sample xt at time t for
a given W (the regular font for xt and yot denotes realizations
for the random quantities xt and yot ):

yot , arg min
y

[f(xt −Wy) + hy(y)] (7)

Note that dictionary learning consists of two steps: the infer-
ence step (sparse coding) for xt at each time t in (7), and the
dictionary update step (learning) in (1)–(2).

B. Dictionary Learning over Networked Agents

Let the matrix W and the vector y be partitioned in the
following block forms:

W =
[
W1 · · · WN

]
, y = col{y1, . . . , yN} (8)

where Wk is an M ×Nk sub-dictionary matrix and yk is an
Nk× 1 sub-vector. Note that the sizes of the sub-dictionaries
add up to the total size of the dictionary, K, i.e.,

N1 + · · ·+NN = K (9)

Furthermore, we assume the regularization terms hy(y) and
hW (W ) admit the following decompositions:

hy(y) =

N∑
k=1

hyk(yk), hW (W ) =

N∑
k=1

hWk
(Wk) (10)
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Fig. 1. The data sample xt at time t is available to a subset NI of agents
in the network (e.g., agents 3 and 6 in the figure), and each agent k is in
charge of one sub-dictionary, Wk , and the corresponding optimal sub-vector
of coefficients estimated at time t, yok,t. Each agent k can only exchange
information with its immediate neighbors (e.g., agents 5, 2 and 6 in the figure
and k itself). We use Nk to denote the set of neighbors of agent k.

Then, the objective function of the inference step (7) can be
written as

Q(W, y;xt) , f
(
xt −

N∑
k=1

Wkyk

)
+

N∑
k=1

hyk(yk) (11)

We observe from (11) that the sub-dictionary matrices {Wk}
are linearly combined to represent the input data xt. By
minimizing Q(W, y;xt) over y, the first term in (11) helps
ensure that the representation error for xt is small. The second
term in (11), which usually involves a combination of `1 and
`2 measures, as indicated in Table I, helps ensure that each of
the resulting combination coefficients {yk} is sparse and small.
We will make the following assumption regarding hyk(yk)
throughout the paper

Assumption 1 (Strongly convex regularization). The regular-
ization terms hyk(yk) are assumed to be strongly convex for
k = 1, . . . , N . �

This assumption will allow us to develop a fully distributed
strategy that enables the sub-dictionaries {Wk} and the cor-
responding coefficients {yk} to be stored and learned in a
distributed manner over the network; each agent k will infer
its own yk and update its own sub-dictionary Wk with limited
interaction with its neighboring agents. Requiring {hyk(yk)}
to be strongly convex is not restrictive since we can always
add a small `2 regularization term to make it strongly convex.
For example, in Table I, we add an `2 term to `1 regularization
so that the resulting hyk(yk) ends up amounting to elastic net
regularization, in the manner advanced in [7].

Figure 1 shows the assumed configuration of the knowledge
and data distribution over the network. The sub-dictionaries
{Wk} can be interpreted as the “wisdom” that is distributed
over the network, and which we wish to combine in a
distributed manner to form a greater “intelligence” for inter-
preting the data xt. Observe that we are allowing xt to be
observed by only a subset, NI , of the agents. By having the
dictionary distributed over the agents, we would then like to
develop a procedure that enables these networked agents to
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Fig. 2. Illustration of the loss functions, and the elastic net regularization.

find the global solutions to both the inference problem (7) and
the learning problem (1)–(2) with interactions that are limited
to their neighborhoods.

C. Relation to Prior Work

1) Model Distributed vs. Data Distributed: The problem
we are solving in this paper is different from the useful work
[12], [27] on distributed dictionary learning and from the
traditional distributed learning setting [13], [14], [16], [28],
where it is assumed that the entire dictionary W is maintained
by each agent or that individual data samples generated by
the same distribution, denoted by xk,t, are observed by the
agents at each time t. That is, these previous works study data
distributed formulations. What we are studying in this paper
is to find a distributed solution where each agent is only in
charge of a portion of the dictionary (Wk for each agent k)
and where the incoming data, xt, is observed by only a subset
of the agents. This scenario corresponds to a model distributed
(or dictionary-distributed) formulation. A different formulation
is also considered in [29] in the context of distributed deep
neural network (DNN) models over computer networks. In
these models, each computer is in charge of a portion of
neurons in the DNN, and the computing nodes exchange
their private activation signals. As we will see further ahead,
our distributed model requires exchanging neither the private
combination coefficients {yk} nor the sub-dictionaries {Wk}.

The distributed-model setting we are studying is important
in practice because agents tend to be limited in their memory
and computing power and they may not be able to store large
dictionaries locally. Even if the agents were powerful enough,
different agents may still have access to different databases
and different sources of information. Rather than aggregate
the information in the form of large dictionaries at every
single location, it is often more advantageous to keep the
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information distributed due to costs in exchanging large dataset
and dictionary models, and also due to privacy considerations
where agents may not be in favor of sharing their private
information.

2) Distributed Basis Pursuit: Other useful related works
appear in the studies [30]–[32] on distributed basis pursuit,
which also rely on dual decomposition arguments. However,
there are some key differences in problem formulation, gen-
erality, and technique, as explained in [33]. For example, the
works [30]–[32] do not deal with dictionary learning problems
and focus instead on the solution of special cases of the
inference problem (7). Specifically, the problem formulations
in [30]–[32] focus on determining sparse solutions to (under-
determined) linear systems of equations, which can be inter-
preted as corresponding to scenarios where the dictionaries
are static and not learned from data. In comparison, in this
article, we show how the inference and learning problems
(7) and (1)–(2) can be jointly integrated into a common
framework. Furthermore, our proposed distributed dictionary
learning strategy is an online algorithm, which updates the
dictionaries sequentially in response to streaming data. We also
only require the data sample xt to be available to a subset of
the agents (e.g., one agent) while it is assumed in [30]–[32]
that all agents have access to the same data xt.

For instance, one of the problems studied in [30] is the
following inference problem (compare with (7)):

yot , arg min
y

N∑
k=1

[
γ‖yk‖1 +

δ

2
‖yk‖22

]
(12a)

s.t.

N∑
k=1

Wkyk = xt (12b)

This formulation can be recast as a special case of (7) by
selecting:

hyk(yk) = γ‖yk‖1 +
δ

2
‖yk‖22 (13a)

f(xt −Wy) = IB
(
xt −

N∑
k=1

Wkyk

)
(13b)

where IB(·) is the indicator function defined by:

IB(u) =

{
0, u ∈ B
∞, u /∈ B (14)

where B , {0M} is a set consisting of the zero vector in RM .
Equality constraints of the form (12b), or a residual function
of the form (13b), are generally problematic for problems
that require both learning and inference since modeling and
measurement errors usually seep into the data and the {Wk}
may not be able to represent the xt accurately with a precise
equality as in (12b). To handle the modeling error, the work
[31] considered instead:

yot , arg min
y

N∑
k=1

[
γ‖yk‖1 +

δ

2
‖yk‖22

]
(15a)

s.t.
∥∥∥ N∑
k=1

Wkyk − xt
∥∥∥
2
≤ σ (15b)

for some σ ≥ 0, which again can be viewed as a special case
of problem (7) for the same hyk(·) from (13a) and with the
indicator function in (13b) replaced by IC(u) relative to the
set

C ,
{
u ∈ RM×1 : ‖u‖2 ≤ σ

}
(16)

An alternative problem formulation that removes the indicator
functions is considered in [31], [34], namely,

yot , arg min
y

[
1

2
‖xt −Wy‖2 + γ‖y‖1

]
(17)

Here, we now have hy(y) = γ‖y‖1 and f(u) = 1
2‖u‖2.

However, for problem (17), the dictionary elements as well as
the entries of xt, were partitioned in [31], [34] by rows across
the network as opposed to our column-wise partitioning in (8):

W = [UT1 , . . . , U
T
N ]T (18)

In this case, it is straightforward to rewrite problem (17) in
the form

yot , arg min
y

N∑
k=1

[
1

2
‖xk,t − Uky‖2 +

γ

N
‖y‖1

]
(19)

which is naturally in a “sum-of-costs” form; such forms are
directly amenable to distributed optimization and do not re-
quire transformations — see (20) further ahead. However, the
more challenging problem where the matrix W is partitioned
column-wise as in (8), which leads to the “cost-of-sum” form
showed earlier in (11), was not examined in [31], [34].

In summary, we will solve the more challenging problem
of joint inference and dictionary learning (instead of inference
alone under static dictionaries) under the column-wise parti-
tioning of W (rather than row-wise partitioning) and general
penalty functions f(·) and {hyk(·)} (instead of the special
indicator choices in (14) and (16)).

III. LEARNING OVER DISTRIBUTED MODELS

A. “Cost-of-Sum” vs. “Sum-of-Costs”

We thus start by observing that the cost function (11)
is a regularized “cost-of-sum”; it consists of two terms: the
first term has a sum of quantities associated with different
agents appearing as an argument for the function f(·) and the
second term is a collection of separable regularization terms
{hyk(yk)}. This formulation is different from the classical
“sum-of-costs” problem, which usually seeks to minimize
a global cost function, Jglob(w), that is expressed as the
aggregate sum of individual costs {Jk(w)}, say, as:

Jglob(w) =

N∑
k=1

Jk(w) (20)

The “sum-of-costs” problem (20) is amenable to distributed
implementations [13]–[21]. In comparison, minimizing the
regularized “cost-of-sum” problem in (11) directly would re-
quire knowledge of all sub-dictionaries {Wk} and coefficients
{yk}. Therefore, this formulation is not directly amenable to
the distributed techniques from [13]–[21]. In [35], the authors
proposed a useful consensus-based primal-dual perturbation
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method to solve a similar constrained “cost-of-sum” problem
for smart grid control. In their method, an averaging consensus
step was used to compute the sum inside the cost. We follow
a different route and arrive at a more efficient distributed
strategy by transforming the original optimization problem
into a dual problem that has the same form as (20) — see
(30a)–(30b) further ahead, and which can then be solved
efficiently by means of diffusion strategies. There will be no
need to exchange any information among the agents beyond
the dual variable, or to employ a separate consensus step to
evaluate the sum inside the cost in order to update their own
sub-dictionaries.

B. Inference over Distributed Models: A Dual Formulation
To begin with, we first transform the minimization of

(11) into the following equivalent optimization problem by
introducing a splitting variable z:

min
{yk},z

f(xt − z) +

N∑
k=1

hyk(yk) (21a)

s.t. z =

N∑
k=1

Wkyk (21b)

Note that the above problem is convex over both {yk} and
z since the objective is convex and the equality constraint is
linear. Problem (21a)–(21b) is a convex optimization problem
with linear constraints so that strong duality holds [36, p.514],
meaning that the optimal solution to (21a)–(21b) can be found
by solving its corresponding dual problem (see (22) below)
and then recovering the optimal primal variables {yk} and z
(to be discussed in Sec. III-E):

max
ν

g(ν;xt) (22)

where g(ν;xt) is the dual function associated with the opti-
mization problem (21a)–(21b), and is defined as follows. First,
the Lagrangian L({yk}, z, ν;xt) over the primal variables
{yk} and z is given by

L({yk}, z, ν;xt)

= f(xt − z) + νT z +

N∑
k=1

[
hyk(yk)− νTWkyk

]
(23)

Then, the dual function g(ν;xt) can be expressed as:

g(ν;xt)

, inf
{yk},z

L({yk}, z, ν;xt)

= inf
z

[
f(xt−z)+νT z

]
+

N∑
k=1

inf
yk

[
hyk(yk)−νTWkyk

]
(24)

(a)
= inf

u

[
f(u)−νTu+νTxt

]
+

N∑
k=1

inf
yk

[
hyk(yk)−νTWkyk

]
= −sup

u

[
νTu−f(u)

]
+νTxt−

N∑
k=1

sup
yk

[
νTWkyk−hyk(yk)

]
= −f?(ν) + νTxt −

N∑
k=1

h?yk(WT
k ν) (25)

ν ∈ Vf ∩ Vhy1 ∩ · · · ∩ VhyN
where in step (a) we introduced u , xt − z, and f?(·)
and h?yk(·) are the conjugate functions of f(·) and hyk(·),
respectively, with the corresponding domains denoted by Vf
and Vhyk , respectively. We note that the conjugate function (or
Legendre-Fenchel transform [37, p.37]), r?(ν), for a function
r(x) is defined as [38, pp.90-95]:

r?(ν) , sup
x

[
νTx− r(x)

]
, ν ∈ Vr (26)

where the domain Vr is defined as the set of ν where the
above supremum is finite. The conjugate function r?(ν) and
its domain Vr are convex regardless of whether r(x) is convex
or not [36, p.530] [38, p.91]. In particular, it holds that Vr =
RM if r(x) is strongly convex [37, p.82]. Now since hyk(·) is
assumed in Assumption 1 to be strongly convex, its domain
Vhyk is the entire RM . If f(u) happens to be strongly convex
(rather than only convex, e.g., if f(u) = 1

2‖u‖22), then Vf
would also be RM , otherwise it is a convex subset of RM .
Therefore, the dual function in (25) becomes

g(ν;xt) = −f?(ν) + νTxt −
N∑
k=1

h?yk(WT
k ν), ν ∈ Vf (27)

Now, maximizing g(ν;xt) is equivalent to minimizing
−g(ν;xt) so that the dual problem (22) is equivalent to

min
ν

− g(ν;xt) = f?(ν)− νTxt +

N∑
k=1

h?yk(WT
k ν) (28a)

s.t. ν ∈ Vf (28b)

Note that the objective function in the above optimization
problem is an aggregation of (i) individual costs associated
with sub-dictionaries at different agents (last term in (28a)),
(ii) a term associated with the data sample xt (second term
in (28a)), and (iii) a term that is the conjugate function of
the residual cost (first term in (28a)). In contrast to (11), the
cost function in (28a) is now in a form that is amenable to
distributed processing. In particular, diffusion strategies [14],
[21], [39], consensus strategies [17]–[20], or ADMM strategies
[30], [31], [33], [40]–[42] can now be applied to obtain the
optimal dual variable νot in a distributed manner at the various
agents.

To arrive at the distributed solution, we proceed as follows.
We denote the set of agents that observe the data sample xt
by NI . Motivated by (28a), with each agent k, we associate
the local cost function:

Jk(ν;xt) ,

{
−νT xt|NI | +

1
N f

?(ν)+h?yk(WT
k ν), k ∈ NI

1
N f

?(ν)+h?yk(WT
k ν), k /∈ NI

(29)

where |NI | denotes the cardinality of NI . Then, the optimiza-
tion problem (28a)–(28b) can be rewritten as

min
ν

N∑
k=1

Jk(ν;xt) (30a)

s.t. ν ∈ Vf (30b)

In Sections III-C and III-D, we will first discuss the solution of
(30a)–(30b) for the optimal dual variable, νot , in a distributed
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manner. And then in Sec. III-E, we will reveal how to recover
the optimal primal variables yok,t and zot from νot .

C. Inference over Distributed Models: Diffusion Strategies

Note that the new equivalent form (30a) is an aggregation
of individual costs associated with different agents; each cost
Jk(ν;xt) only requires knowledge of Wk. Consider first the
case in which f(u) is strongly convex. Then, it holds that
Vf = RM and problem (30a)–(30b) becomes an unconstrained
optimization problem of the same general form as problems
studied in [15], [16]. Therefore, we can directly apply the
diffusion strategies developed in these works to solve (30a)–
(30b) in a fully distributed manner. The adapt-then-combine
(ATC) implementation of the diffusion algorithm then takes
the following form:

ψk,i = νk,i−1 − µ · ∇νJk(νk,i−1;xt) (31a)

νk,i =
∑
`∈Nk

a`kψ`,i (31b)

where νk,i denotes the estimate of the optimal νot at agent
k at iteration i (we will use i to denote the i-th iteration of
the inference, and use t to denote the t-th data sample), ψk,i
is an intermediate variable, Nk denotes the neighborhood of
agent k, µ is the step-size parameter chosen to be a small
positive number, and a`k is the combination coefficient that
agent k assigns to the information received from agent ` and
it satisfies∑
`∈Nk

a`k = 1, a`k > 0 if ` ∈ Nk, a`k = 0 if ` /∈ Nk (32)

Let A denote the N×N matrix that collects a`k as its (`, k)-th
entry. Then, it is shown in [16] that as long as the matrix A
is doubly-stochastic (i.e., satisfies A1 = AT1 = 1) and µ is
selected such that

0 < µ < min
1≤k≤N

1

σk
(33)

where σk is the Lipschitz constant1 of the gradient of
Jk(ν;xt):

‖∇νJk(ν1;xt)−∇νJk(ν2;xt)‖ ≤ σk · ‖ν1 − ν2‖ (34)

then algorithm (31a)–(31b) converges to a fixed point that is
O(µ2) away from the optimal solution of (30a) in squared
Euclidean distance. We remark that a doubly-stochastic matrix
is one that satisfies A1 = AT1 = 1.

Consider now the case in which the constraint set Vf is
not equal to RM but is still known to all agents. This is
a reasonable requirement. In general, we need to solve the
supremum in (26) with r(x) = f(x) to derive the expression
for f?(ν) and determine the set Vf that makes the supremum
in (26) finite. Fortunately, this step can be pursued in closed-
form for many typical choices of f(u). We list in Table II the
results that will be used in Sec. IV; part of these results are
derived in Appendix A and the rest is from [38, pp.90-95].

1 If Jk(ν;xt) is twice-differentiable, then the Lipschitz gradient condition
(34) is equivalent to requiring an upper bound on the Hessian of Jk(ν;xt),
i.e., 0 ≤ ∇2

νJk(ν;xt) ≤ σkIM .

Usually, Vf for these typical choices of f(u) are simple sets
whose projection operators2 can be found in closed-form —
see also [43]. For example, the projection operator onto the
set

Vf = {ν : ‖ν‖∞ ≤ 1} = {ν : −1 � ν � 1} (35)

that is listed in the third row of Table II is given by

[ΠVf (ν)]m =


1 if νm > 1

νm if − 1 ≤ νm ≤ 1

−1 if νm < −1

(36)

where [x]m denotes the m-th entry of the vector x and νm
denotes the m-th entry of the vector ν. Once the constraint set
Vf is found, it can be enforced either by incorporating local
projections onto Vf into the combination step (31b) at each
agent [44] or by using the penalized diffusion method [45]. For
example, the projection-based strategy replaces (31a)–(31b)
by:

ψk,i = νk,i−1 − µ · ∇νJk(νk,i−1;xt) (37a)

νk,i = ΠVf

[∑
`∈Nk

a`kψ`,i

]
(37b)

where ΠVf [·] is the projection operator onto Vf .

D. Inference over Distributed Models: ADMM Strategies

An alternative approach to solving the dual inference prob-
lem (30a)–(30b) is the distributed alternating direction multi-
plier method (ADMM) [30], [31], [40], [41], [46]. Depend-
ing on the configuration of the network, there are different
variations of distributed ADMM strategies. For example, the
method proposed in [40] relies on a set of bridge nodes for the
distributed interactions among agents, and the method in [30],
[31] uses a graph coloring approach to partition the agents in
the network into different groups, and lets the optimization
process alternate between different groups with one group
of agents engaged at a time. In [41] and [46], the authors
developed ADMM strategies that adopt Jacobian style updates
with all agents engaged in the computation concurrently.
Below, we describe the Jacobian-ADMM strategies from [46,
p.356] and briefly compare them with the diffusion strategies.

The Jacobian-ADMM strategy solves (30a)–(30b) by first
transforming it into the following equivalent optimization
problem:

min
ν

N∑
k=1

[
Jk(νk;xt) + IVf (νk)

]
(38a)

s.t. νk = ν`, ` ∈ Nk\{k}, k = 1, . . . , N (38b)

where the cost function is decoupled among different {νk}
and the constraints are coupled through neighborhoods. Then,
the following recursion is used to solve (38a)–(38b):

νk,i = arg min
νk

N∑
k=1

{[
Jk(νk;xt) + IVf (νk)

]
2The projection operator onto the set Vf is defined as ΠVf (ν) ,

arg min
x∈Vf

‖x− ν‖2.
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TABLE II
CONJUGATE FUNCTIONS USED IN THIS PAPER FOR DIFFERENT TASKS

Tasks f(u) f?(ν) Vf zot hyk (yk) h?yk (WT
k ν) Vhyk yok,t

Sparse SVD 1
2
‖u‖22

1
2
‖ν‖22 RM xt − νot γ‖yk‖1 + δ

2
‖yk‖22 S γ

δ

(
WT
k ν

δ

)
b RM T γ

δ

(
WT
k ν

o
t

δ

)
a

Bi-Clustering 1
2
‖u‖22

1
2
‖ν‖22 RM xt − νot γ‖yk‖1 + δ

2
‖yk‖22 S γ

δ

(
WT
k ν

δ

)
RM T γ

δ

(
WT
k ν

o
t

δ

)
Nonnegative Matrix 1

2
‖u‖22

1
2
‖ν‖22 RM xt − νot γ‖yk‖1,+ + δ

2
‖yk‖22 S+γ

δ

(
WT
k ν

δ

)
d RM T +

γ
δ

(
WT
k ν

o
t

δ

)
c

Factorization
M∑
m=1

L(um) η
2
‖ν‖22 {ν : ‖ν‖∞ ≤ 1} ��� γ‖yk‖1,+ + δ

2
‖yk‖22 S+γ

δ

(
WT
k ν

δ

)
RM T +

γ
δ

(
WT
k ν

o
t

δ

)
a Tλ(x) denotes the entry-wise soft-thresholding operator on the vector x: [Tλ(x)]n , (|[x]n| − λ)+sgn([x]n), where (x)+ = max(x, 0).
b S γ

δ
(x) is the function defined by S γ

δ
(x) , − δ

2
·
∥∥T γ

δ
(x)
∥∥2
2
− γ ·

∥∥T γ
δ

(x)
∥∥
1

+ δ · xT T γ
δ

(x) for x ∈ RM .

c T +
λ (x) denotes the entry-wise one-side soft-thresholding operator on the vector x: [T +

λ (x)]n , ([x]n − λ)+.

d S+γ
δ

(x) is defined by S+γ
δ

(x) , − δ
2
·
∥∥T +

γ
δ

(x)
∥∥2
2
− γ ·

∥∥T +
γ
δ

(x)
∥∥
1

+ δ · xT T +
γ
δ

(x) for x ∈ RM .

e The functions Tλ(x), T +
λ (x), S γ

δ
(x), and S+γ

δ

(x) for the case of a scalar argument x are illustrated in Fig. 3.
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Fig. 3. Illustration of the functions Tλ(x), T +
λ (x), Sλ(x), and S+λ (x).

+

N∑
`=1

bk`

[
λTk`,i−1(ν`,i−1−νk)+‖ν`,i−1−νk‖22

]}
(39a)

λk`,i=λk`,i−1 + µ bk` · (νk,i − ν`,i) (39b)

where bk` is the (k, `)-th entry of the adjacency matrix B =
[bk`] of the network, which is defined as:

bk` = 1 if ` ∈ Nk\{k}, bk` = 0 otherwise (40)

From recursion (39a)–(39b), we observe that ADMM requires
solving a separate optimization problem (arg min) for each
ADMM step. This optimization problem generally requires
an iterative algorithm to solve when it cannot be solved in
closed-form, which adds a third time scale to the algorithm,
as explained in [33] in the context of dictionary learning. This
situation is illustrated in Fig. 4. The need for a third time-scale
usually translates into requiring faster processing at the agents

ELECTRICAL ENGINEERING DEPARTMENT 1

Time Scales

ADMM solution involves three time-scales:

Diffusion solution involves two time-scales:

Fig. 4. Comparison between the ADMM strategy and the diffusion strategy.
The diffusion strategy has two time scales and the ADMM strategy may have
three time scales. The first time scale is the dictionary update over the data
stream (see Sec. III-G), the second time scale is the iterative algorithm for
solving the inference problem for each data sample xt, and the third time
scale in ADMM is to solve the “argmin” in (39a).

between data arrivals, which can be a hindrance for adaptation
in real-time.

E. Recovery of the Primal Variables

Returning to the diffusion solution (31a)–(31b) or (37a)–
(37a), once the optimal dual variable νot has been estimated by
the various agents, the optimal primal variables yok,t and zot can
now be recovered uniquely if f(u) and {hyk(yk)} are strongly
convex. In this case, the infimums in (24) can be attained and
become minima. As a result, optimal primal variables can be
recovered via

zot = arg min
z

{
f(xt − z) + (νot )T z

}
(a)
= xt − arg max

u

[
(νot )Tu− f(u)

]
(41)

yok,t = arg min
yk

{
hyk(yk)−(νot )TWkyk

}
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= arg max
yk

[
(WT

k ν
o
t )T yk − hyk(yk)

]
(42)

where step (a) performs the variable substitution u = xt −
z. By (41)–(42), we obtain the optimal solutions of (21a)–
(21b) (and also of the original inference problem (7)) after
first solving the dual problem (22). For many typical choices
of f(·) and hyk(·), the solutions of (41)–(42) can be expressed
in closed form in terms of νot . In Table II, we list the results
that will be used later in Sec. IV with the derivation given in
Appendix A.

The strong convexity of f(u) and {hyk(yk)} is needed if we
want to uniquely recover zot and {yok,t} from the dual problem
(22). As we will show further ahead in (56), the quantities
{yok,t} are always needed in the dictionary update. For this
reason, we assumed in Assumption 1 that the {hyk(yk)} are
strongly convex, which can always be satisfied by means of
elastic net regularization as explained earlier. On the other
hand, depending on the application, the recovery of zot is not
always needed and neither is the strong convexity of f(u) (in
these cases, it is sufficient to assume that f(u)) is convex). For
example, as explained in [1], the image denoising application
requires recovery of zot as the final reconstructed image. On the
other hand, the novel document detection application discussed
further ahead does not require recovery of zot but the maximum
value of the dual function, g(ν;xt), which, by strong duality,
is equal to the minimum value of the cost function (21a) and
that of (7).

F. Choice of Residual and Regularization Functions

In Tables I–II, we list several typical choices for the residual
function, f(u), and the regularization functions, {hyk(yk)}. In
general, a careful choice of f(u) and {hyk(yk)} can make the
dual cost (28a) better conditioned than in the primal cost (21a).
Recall that the primal cost (21a) may not be differentiable due
to the choice of hyk(yk) (e.g., the elastic net). However, if f(u)
is chosen to be strictly convex with Lipschitz gradients and the
{hyk(yk)} are chosen to be strongly convex (not necessarily
differentiable), then the conjugate function f?(·) will be a
differentiable strongly convex function with Lipschitz gradient
and the {h?yk(·)} will be differentiable convex functions with
Lipschitz gradients [37, pp.79–84]. Adding f?(·) and {h?yk(·)}
together in (28a) essentially transforms a non-differentiable
primal cost (21a) into a differentiable strongly convex dual cost
(28a) with Lipschitz gradients. As a result, the algorithms that
optimize the dual problem (28a)–(28b) can generally enjoy a
fast (geometric) convergence rate [16], [22], [47].

G. Distributed Dictionary Updates

Now that we have shown how the inference task (7) can
be solved in a distributed manner, we move on to explain
how the local sub-dictionaries Wk can be updated through the
solution of the stochastic optimization problem (1)–(2), which
is rewritten as:

min
W

EQ(W,yot ;xt) +

N∑
k=1

hWk
(Wk) (43a)

s.t. Wk ∈ Wk, k = 1, . . . , N (43b)

where the loss function Q(W,yot ;xt) is given in (11), yot ,
col{yo1,t, . . . ,yoN,t}, the decomposition for hW (W ) from (10)
is used, and we assume the constraint set W can be de-
composed into a set of constraints {Wk} on the individual
sub-dictionaries Wk; this condition usually holds for typical
dictionary learning applications — see Table I. Problem
(43a)–(43b) can also be written as the following unconstrained
optimization problem by introducing indicator functions for
the sets {Wk}:

min
W

EQ(W,yot ;xt)+

N∑
k=1

[
hWk

(Wk) + IWk
(Wk)

]
(44)

Note that the cost function in (44) consists of two parts, where
the first term is differentiable3 with respect to W while the sec-
ond term, if it exists, is non-differentiable but usually consists
of simple components — see Table I. A typical approach to
optimizing cost functions of this type is the proximal gradient
method [43], [48]–[50], which applies gradient descent to the
first differentiable part followed by a proximal operator to
the second non-differentiable part. This method is known to
converge faster than applying the subgradient descent method
to both parts. However, the proximal gradient methods in [43],
[48]–[50] are developed for deterministic optimization, where
the exact form of the objective function is known. In constrast,
our objective function in (44) assumes a stochastic form and
is unknown beforehand because the statistical distribution
of the data {xt} is not known. Therefore, our strategy is
to apply the proximal gradient method to the cost function
in (44) and remove the expectation operator to obtain an
instantaneous approximation to the true gradient; this is the
approach typically used in adaptation [21], [22], [51] and
stochastic approximation [52]:

Wk,t=proxµw·(hWk+IWk
)

{
Wk,t−1−µw∇Wk

Q(Wt−1, y
o
t ;xt)

}
(45)

Recursion (45) is effective as long as the proximal operator
of hWk

(Wk) + IWk
(Wk) can be solved easily in closed-

form. When this is not possible but the proximal operators
of hWk

(·) and IWk
(·) are simple, it is preferable to apply

a stochastic gradient descent step, followed by the proximal
operator of hWk

(·), and then the proximal operator of IWk
(·)

(equivalent to ΠWk
(·) [43], which is the projection onto Wk)

in an incremental manner [53], thus leading to the following
recursion:

Wk,t=ΠWk

{
proxµw·hWk

(
Wk,t−1−µw∇Wk

Q(Wt−1, y
o
t ;xt)

)}
(46)

where Wt−1 , [W1,t−1, · · · ,WN,t−1], and proxµw·hWk (·) de-
notes the proximal operator of µw ·hWk

(Wk). The expression
for the gradient µw∇Wk

Q(Wt−1, yot ;xt) will be given further
ahead in (53)–(56). We recall that the proximal operator of a
vector function h(u) is defined as [43, p.6]:

proxh(x) , arg min
u

(
h(u) +

1

2
‖u− x‖22

)
(47)

3Note from (11) that Q(·) depends on W via f(·), which is assumed to
be differentiable.
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Algorithm 1 Model-distributed diffusion strategy for dictionary
learning (Main algorithm)

Initialization: The sub-dictionaries {Wk} are randomly initialized
and then projected onto either the constraint (3) or (4), depending
on the task in Tab. I.
for each input data sample xt do

Compute νot by iterating (31a)-(31b) until convergence: νot ≈
νk,i. That is:

ψk,i = νk,i−1 − µ · ∇νJk(νk,i−1;xt)

νk,i = ΠVf

{ ∑
`∈Nk

a`kψ`,i
}

with initialization {νk,0 = 0, k = 1, . . . , N}.
for each agent k do

Compute coefficient yok,t using Table II or (42):

yok,t = arg max
yk

[
(WT

k ν
o
t )T yk − hyk (yk)

]
Adjust dictionary element Wk,t using (56):

Wk,t = ΠWk

{
proxµw·hWk

(
Wk,t−1 + µwν

o
t (yok,t)

T )}
end for

end for

For a matrix function h(U), the proximal operator assumes
the same form as (47) except that the Euclidean norm in (47)
is replaced by the Frobenius norm. The proximal operator for
µw ·hWk

(Wk) = µwβ ·|||Wk|||1 used in the bi-clustering task in
Table I is the entry-wise soft-thresholding function [43, p.191]:

proxµw·hWk (·) = proxµwβ·|||Wk|||(·) = Tµw·β(·) (48)

and the proximal operator for hWk
(Wk) = 0 for other cases in

Table I is the identity mapping: prox0(x) = x. With regards
to the projection operator used in (46), we provide some
examples of interest for the current work. If the constraint
set Wk is of the form:

Wk = {Wk : ‖[Wk]:,q‖2 ≤ 1} (49)

then the projection operator ΠWk
(·) is given by [43], [44]:

[ΠWk
(X)]:,n =

{
[X]:,n, ‖[X]:,n‖2 ≤ 1

[X]:,n
‖[X]:,n‖2 , ‖[X]:,n‖2 > 1

(50)

On the other hand, if the constraint set Wk is of the form:

Wk = {Wk : ‖[Wk]:,q‖2 ≤ 1, W � 0} (51)

then the projection operator ΠWk
(·) becomes

[ΠWk
(X)]:,n =


(
[X]:,n

)
+
, ‖

(
[X]:,n

)
+
‖2 ≤ 1(

[X]:,n
)
+

‖
(
[X]:,n

)
+
‖2
, ‖

(
[X]:,n

)
+
‖2 > 1

(52)

where (x)+ = max(x, 0), i.e., it replaces all the negative
entries of a vector x with zeros.

Now, we return to derive the expression for the gradient
∇Wk

Q(Wt−1, yot ;xt) in (46). By (11), we have

∇Wk
Q(Wt−1, y

o
t ;xt)=−f ′u

(
xt−

N∑
k=1

Wk,t−1y
o
k,t

)
(yok,t)

T (53)

where f ′u(u) denotes the gradient of f(u) with respect to the
residual u. On the face of it, expression (53) requires global
knowledge by agent k of all sub-dictionaries {Wk} across the
network, which goes against the desired objective of arriving
at a distributed implementation. However, we can develop a
distributed algorithm by exploiting the structure of the problem
as follows. Note from (23) that the optimal inference result
should satisfy:{

0 = ∇zL({yok,t}, zot , νot ;xt)

0 = ∇νL({yok,t}, zot , νot ;xt)
⇔


0 = −f ′u(xt−zot )+νot

zot =

N∑
k=1

Wk,t−1y
o
k,t

(54)

which leads to

0 = −f ′u
(
xt −

N∑
k=1

Wk,t−1y
o
k,t

)
+ νot

⇔ νot = f ′u
(
xt −

N∑
k=1

Wk,t−1y
o
k,t

)
(55)

In other words, we find that the optimal dual variable νot is
equal to the desired gradient vector. Substituting (55) into (53),
the dictionary learning update (46) becomes

Wk,t = ΠWk

{
proxµw·hWk

(
Wk,t−1 + µwν

o
t (yok,t)

T
)}

(56)

which is now in a fully-distributed form. At each agent k, the
above νot can be replaced by the estimate νk,i after a sufficient
number of inference iterations (large enough i). We note that
the dictionary learning update (56) has the following important
interpretation. Let

uot , xt −
N∑
k=1

Wk,t−1y
o
k,t (57)

which is the optimal prediction residual error using the entire
existing dictionary set {Wk,t−1}Nk=1. Observe from (55) that
νot is the gradient of the residual function f(u) at the optimal
uot . The update term for dictionary element k in (56) is
effectively the correlation between νot , the gradient of the
residual function f(uot ), and the coefficient yok,t (the activation)
at agent k. In the special case of f(u) = 1

2‖u‖22, expression
(55) implies that

νot = uot = xt −
N∑
k=1

Wk,t−1y
o
k,t (58)

In this case, νot has the interpretation of being equal to
the optimal prediction residual error, uot , using the entire
existing dictionary set {Wk,t−1}Nk=1. Then, the update term for
dictionary element k in (56) becomes the correlation between
the optimal prediction error νot = uot and the coefficient yok,t
at agent k. Furthermore, recursion (56) reveals that, for each
input data sample xt, after the dual variable νot is obtained
at each agent, there is no need to exchange any additional
information among agents in order to update their own sub-
dictionaries; the dual variable νot already provides sufficient
information to carry out the update. The fully distributed
algorithm for dictionary learning is listed in Algorithm 1 and
is also illustrated in Fig. 5.
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Fig. 5. The distributed inference step and the dictionary update step over
distributed models. In the inference step, after each data sample xt arrives
a subset of the agents in the network, all the agents find the corresponding
optimal dual variable νot by exchanging the estimates of νot with neighbors.
In the dictionary update step, agents update their sub-dictionaries locally on
their own using a step of proximal stochastic gradient descent as (56).

IV. IMPORTANT SPECIAL CASES AND EXPERIMENTS

In this section, we apply the dictionary learning algorithm
to two problems involving novel document/topic detection
and bi-clustering. A third application to image denoising is
considered in [1], [33].4 In our experiments below, we will
use the diffusion strategy (31a)–(31b) or (37a)–(37b) to solve
the dual inference problem (28a)–(28b).

A. Tuning of the parameters

In the following experiments, it is necessary to select
properly the step-size µ for the diffusion algorithm (31a)–
(31b) to ensure that the estimate for νot converges sufficiently
close to it after a reasonable number of iterations. Table III
lists the step-size conditions that guarantee the convergence
of the diffusion algorithm for different applications, which are
derived from the general condition (33). Note that as long
as the agents know the regularization parameter δ and the
maximum number, Nmax, of dictionary atoms that are allowed
at each agent, the agents can select the step-size in a distributed
manner.

For the convenience of the experiments in this section and
only to get an idea about how many iterations are typically
needed for the inference step, we choose a data sample x from
the training dataset, and use a non-distributed optimization
package such as CVX [54] to compute the optimal solution
yo , col{yo1, . . . , yoN} and its respective dual variable νo

as the ground truth for the inference problem (21a)–(21b).
We plot the signal-to-noise measures ‖yo‖2/‖yi − yo‖2 and
‖νo‖2/‖νk,i − νo‖2 against the iteration number i in Fig. 6.
The value νk,i is obtained from the distributed algorithm (see
(31b) or (37b)) at each iteration i and yi , col{y1,i, . . . , yN,i}
is calculated at each iteration according to:

yk,i = arg max
yk

[
(WT

k νk,i)
T yk − hyk(yk)

]
(59)

4The software code for the experiments in this manuscript is available
online at http://www.ee.ucla.edu/asl

TABLE III
CONDITIONS OF THE STEP-SIZE PARAMETER µ FOR INFERENCE STEP.

f(u) hyk (yk) Step-size condition

1
2
‖u‖22 γ‖yk‖1 + δ

2
‖yk‖22 0 < µ < 1

1+Nmax/δ

1
2
‖u‖22 γ‖yk‖1,+ + δ

2
‖yk‖22 0 < µ < 1

1+Nmax/δ

Huber loss γ‖yk‖1,+ + δ
2
‖yk‖22 0 < µ < 1

η+Nmax/δ

a Nmax , max1≤k≤N Nk is the maximum number of the
dictionary atoms that are allowed at each agent.
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Fig. 6. Learning curve for the Huber document detection example described
by Alg. 2 with µ = 0.5.

Observe from Fig. 6 that in order to achieve satisfactory
SNR values (e.g., 40-50dB) for both y and ν, the required
number of diffusion iterations is about 500. Also note that the
primal variable y generally reaches a high SNR value before
the dual variable ν, but both are required to be found with
reasonable accuracy for the dictionary update step (see (56)).
Furthermore, although the number of iterations by diffusion
seems to be large for solving the inference problem, the actual
wall-clock time it takes is short because of the relatively low
complexity per step.

We further note that there was no restriction imposed on
the size of the network. In our experiments, network consists
of N = 196 nodes in the image denoising example [1] and
employs from N = 10 to N = 80 nodes in the novel document
detection example. In the bi-clustering example, the network
size, N , is three because of the application setup and the nature
of the data from [9], where the rank of the data matrix is low
so that three dictionary atoms are sufficient to represent the
data.

B. Novel Document Detection via Dictionary Learning

In the novel document detection application [11], [24], [25],
a stream of documents arrives in blocks at the network, and
the task is to detect which of the documents in the incoming
batch are associated with topics that have not been observed
previously, and to incorporate the new block of data into the
knowledge database to detect new topics/documents in future
incoming batches. We refer to each such step as a “time-step”
and we use xst to denote the tth data sample in the sth time-
step, where 1 ≤ t ≤ Ts with Ts being the number of samples
in the sth time-step (Ts = 1000 for all s in this example),
and 1 ≤ s ≤ 8 since our dataset only contains enough
data for eight time-steps. We simulate our dictionary learning

http://www.ee.ucla.edu/asl
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algorithm using the Huber cost function as the residual metric.
We compare our algorithm performance to that proposed in
[11] under the same setup proposed there. The data is from the
TDT2 dataset, which contains news documents associated with
their dominant topics collected over the first 27 weeks of 1998.
The data is compiled into a term frequency-inverse document
frequency (TF-IDF) matrix X ∈ RM×T , where M = 19527
and T = 9394. The documents have been processed so that
only the most frequent 30 topics (and documents associated
with them) are preserved. In this experiment, we allow all
agents in the network to observe the incoming data. The key
observation is that if a document belongs to a topic that has
been observed previously, then it is expected that the objective
value of the optimization problem (21a)–(21b) will be “small”
since the document should be well modeled by the available
dictionary. On the other hand, when the objective value is
“large,” then this is an indication that the document is not
well modeled by the available dictionary.

In this application, we let f(u) =
∑M
m=1 L(um), where

L(um) is chosen to be the scalar Huber function defined in
Table I. We choose Huber loss for the following reasons.
The work [11] points out that some of the coefficients of the
representation error u = xt −Wy in text documents contain
large, impulsive values. For this reason, the work [11] adopts
the `1 loss f(u) = ‖u‖1 because this loss grows only linearly
for large u and is less sensitive to large outliers. However, `1
loss is not differentiable and has a conjugate function of zero
with domain Vf = {ν : ‖ν‖∞ ≤ 1}. In comparison, the Huber
loss, while preserving the linear growth for large u, is smooth
and has Lipschitz gradients, which gives a quadratic conjugate
function (see Tab. II and Sec. III-F) that naturally regularizes
the dual cost (28a) to make it strongly convex. In this way,
we end up with a better conditioned optimization problem,
which allows first-order methods (e.g., diffusion) to achieve
relatively fast convergence and satisfactory performance on the
dual inference problem (28a)–(28b). The setup is the same as
in [11],5 except that we start with only ten dictionary atoms,
and add ten additional atoms after each time-step. We simulate
the last line of the non-negative matrix factorization setup in
Table I. We compare our algorithm to the one proposed in [11],
which simulates the setup where f(u) = ‖u‖1, hy(y) = ‖y‖1,
and Wk = {w : ‖w‖1 ≤ 1}. Therefore, the choice of the
penalty function f(u) is also slightly different, as we use
Huber loss while [11] uses `1 loss.

For the simulation of the diffusion algorithm, the data are
normalized so that ‖xst‖2 = 1. In contrast, when testing on the
centralized ADMM-based algorithm from [11], the data are
normalized so that ‖xst‖1 = 1 in keeping with the proposed
simulation setup there. The constraint set for W for the
diffusion-based algorithm is {W : ‖[W ]:,q‖2 ≤ 1, W � 0},
while the constraint set for the ADMM-based algorithm from
[11] is {W : ‖[W ]:,q‖1 ≤ 1, W � 0}. We choose γ = 0.05
and δ = 0.1. For the initialization of the dictionary for the
ADMM algorithm from [11], we let the algorithm iterate
between the sparse coding step and the dictionary learning

5We would like to thank S. P. Kasiviswanathan for kindly sharing his
MATLAB code through e-mail communication in order to reproduce the
simulation in [11], including the ordered data.

step 35 times. The diffusion algorithm runs through the data
once. We choose η = 0.2 for the connection point between the
quadratic part and the linear part of the Huber loss function.
Both the fully connected and distributed algorithms utilize a
learning step-size of µw(s) = 1/s, where s is the current time-
step for learning of the dictionary. For the inference, the fully
connected algorithm utilizes µFC = 0.5, while the distributed
algorithm uses µ = 0.05. The fully connected algorithm
performs 100 iterations for the inference, while the distributed
algorithm utilizes 1000 iterations for the inference. Samples
1-1000 are used for the initialization of the dictionary. Novel
documents are only introduced at the first (samples 1001-
2000), second (2001-3000), fifth (5001-6000), sixth (6001-
7000), and eighth (8001-9000) time-steps. For this reason,
we only execute the novel document detection part of the
algorithm at those time-steps, and present the ROC curves
for those time-steps. We run our algorithm using the fully
connected case, where A = 1

N 11
T and the distributed case

where the probability that two nodes are connected is 0.5, and
the combination matrix is the Metropolis rule.

To obtain the distributed algorithm, we note from (29) that

Jk(ν;xst ) ,
1

N
(f?(ν)− νTxst )+h?yk(wTk ν) (60)

where we are using wk instead of Wk because each agent
k is in charge of one atom of the dictionary (i.e., the k-th
column of W ). Since we now use f(u) =

∑M
m=1 L(um) and

hyk(yk) = γ‖y‖1,+ + δ
2‖y‖22 (according to the last row of

Table I), we obtain that f?(ν) = η
2‖ν‖22, Vf = {ν : ‖ν‖∞ ≤

1}, and h?yk(wTk ν) = S+γ
δ

(
wTk ν
δ

)
according to Table II. A

straightforward calculation then shows that

∇νf?(ν) = η · ν, ∇νh?yk(wTk ν) =
1

δ
T +
γ (wTk ν)wk (61)

Substituting (61) into the gradient of (60), we obtain:

∇νJk(ν;xt) =
1

N
(η · ν − xt)+

1

δ
T +
γ (wTk ν)wk (62)

where we let NI = N and all agents in the network have
access to xst . By substituting (62) into the inference part of
Alg. 1, we immediately obtain the inference part of Alg. 2.
For the learning portion of the algorithm, we need to compute
yok,t at node k once νot has been estimated. With our choices
of f(u) and h(yk), we observe from Table II that yok,t may be

obtained as yok,t = T +
γ
δ

(
wTk ν

o
t

δ

)
= 1

δT +
γ

(
wTk ν

o
t

)
(as listed in

Alg. 2). Now, using the fact that hwk(wk) = 0 (see Table I),
we have that the update rule for wk from Alg. 1 becomes

wk,t = ΠWk

{
wk,t−1+µwν

o
t y
o
k,t

}
(63)

where Wk = {w : ‖w‖2 ≤ 1, w � 0} (see Table I). When
recursion (63) finishes going through the data samples in the
s-th time-step, the most up-to-date dictionary is denoted by
W s = [ws1 · · ·wsN ].

In this example, we do not need to recover zot in (41), but
we only need to recover the cost value for representing a test
data sample ξt using dictionary W s learned up to the s-th
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time-step:

min
{yk}

[
f
(
ξt −

N∑
k=1

wskyk

)
+

N∑
k=1

hyk(yk)

]
(64)

where we use ξt to differentiate it from the training data
sample xst . Interestingly, since strong duality holds for this
example, based on the argument from (21a) to (28a), the above
minimum primal cost (64) is equal to the maximum value of
its associated dual cost:

max
ν

g(ν, ξt) = g(νot , ξt) = −
N∑
k=1

Jk(νot , ξt) (65)

where the first equality follows from the fact that νot is the
optimizer of the dual problem. Therefore, we can obtain the
minimum primal cost (64) by computing the maximum dual
cost (65), which can be done in many ways with one of them
being the diffusion strategy. In order to obtain a scaled multiple
of (65), we setup the following scalar optimization problem:

min
g

N∑
k=1

Vk(g) (66)

where

Vk(g) ,
1

2
(Jk(νot , ξt) + g)

2 (67)

from which we can obtain the following scalar diffusion
algorithm [16]:φk(i) = gk(i− 1)− µg(Jk(νot , ξt) + gk(i− 1))

gk(i) =
∑
`∈Nk

a`kφ`(i) (68)

After sufficient iterations, recursion (68) approximates the
minimizer of (66), which is got = − 1

N

∑N
k=1 Jk(νot , ξt).

Comparing got to (65), we note that there is an additional
positive scaling factor, 1/N , in got . However, it does not affect
the result since it can be absorbed into the threshold parameter:

−
N∑
k=1

Jk(νot , ξt)
H1

≷
H0

χ′ ⇔ got
H1

≷
H0

χ ,
χ′

N
(69)

where H1 and H0 denote the hypotheses of “the document
is novel” and “the document is not novel”, respectively. In
other words, using a threshold χ′ for the original cost (65), is
equivalent to using the threshold χ = χ′/N for got .

The final algorithm is listed in Alg. 2. Each node in the
network is responsible for a single dictionary atom. The sparse
coding stages of the centralized ADMM-based algorithm from
[11] utilize 35 iterations, and the number of iterations of the
dictionary update steps are capped at 10 for all iterations
other than the initialization step, which are the default setup
in the code of [11]. We observe that the performance of
the centralized ADMM-based algorithm reproduced in this
manuscript is competitive with that in [11], even though the
initial dictionary size is chosen to be ten, as opposed to 200
atoms (as was done in the experiment in [11]). Furthermore,
for our algorithm, since we are simulating a network of N -
agents on a single machine, we expect the computation time
to be N times as much as that in [11] in order to have a

Algorithm 2 Model-distributed diffusion strategy for distributed
novel document detection (Huber Loss Residual).

Initialization: The sub-dictionaries {Wk} are randomly initialized
and then projected onto (4) using (52).
for each time step s = 1, 2, . . . , 8 do

Dictionary Learning:
for each training sample xst from time-step s, (t = 1, . . . , Ts)
do

Each node k repeats until convergence:{
ψk,i=νk,i−1−µN (ηνk,i−1−xst)−

µ
δ
T +
γ (wTk,t−1νk,i−1)wk,t−1

νk,i=Πν∈[−1,1]

{∑
`∈Nk a`kψ`,i

}
with initialization {νk,0 = 0, k = 1, . . . , N}. where the
above projection is carried out according to (36).
Set νot = νk,i. Compute yok,t = 1

δ
T +
γ (wTk,t−1ν

o
t ).

Update the dictionary using:

wk,t = Π‖w‖2≤1

{
Πw�0

{
wk,t−1+µw(s)νot y

o
k,t

}}
end for
Let wsk denote the most up-to-date sub-dictionary at agent k.
Novel Document Detection:
for each test data sample ξt, each node k do

Repeat until convergence:{
ψk,i=νk,i−1−µN (ηνk,i−1−ξt)− µ

δ
T +
γ

(
(wsk)T νk,i−1

)
wsk

νk,i = Πν∈[−1,1]

{∑
`∈Nk a`kψ`,i

}
Set νot = νk,i.
Perform diffusion strategy to optimize (66) until convergence:{

φk(i) = gk(i− 1)− µg(Jk(νot , ξt) + gk(i− 1))

gk(i) =
∑
`∈Nk

a`kφ`(i)

where Jk(ν, ·) is defined in (60).
Set got = gk,i.
if got > χ then

declare document as novel.
else

declare document as not novel.
end if

end for
Add nodes to network (expand the dictionary)

end for

fair comparison. This is because the gradient descent steps
and the combination steps in (31a)–(31b) should be finished
concurrently in an actual N -agent network, while our single-
machine simulation can only perform them sequentially. For
this reason, we choose the setup for our algorithm (such as the
number of inference iterations) to be about N times of that in
[11] to ensure a fair comparison.6

The performance of the algorithms is illustrated in Fig. 7.
We observe that the Huber loss function improves performance
relative to the `1 function. The area under each ROC curve
is listed in Table IV. Since the different algorithms were
initialized with different dictionaries, it may be possible for the
sparsely-connected diffusion strategy to slightly outperform

6When applying the centralized gradient descent to the dual inference
problem (30a)–(30b) with 1000 iterations at a single machine, we found that
the entire learning time over one time-step (1000 samples) is approximately
the same as that of the ADMM-based method from [11] using the same
MATLAB implementation for the time benchmark.
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Fig. 7. Application of dictionary learning to novel document/topic detection.
At each time step, the algorithms receive 1000 documents. The task is to
determine which documents are associated with topics that have already been
observed, and which documents are associated with topics that have not yet
been observed. These curves represent the ROC curve associated with each
time step against a changing test set. The x-axis represents probability of false
alarm while the y-axis represents probability of detection. The area under each
cuve is listed in Table IV.

TABLE IV
AREA UNDER ROC CURVE FOR THE THREE TESTED ALGORITHMS. NOVEL

DOCUMENTS NOT PRESENTED IN TIME-STEPS 3, 5, 7.

Time Step ADMM [11] Diffusion (Fully Connected) Diffusion
1 0.69 0.79 0.79
2 0.65 0.94 0.93
5 0.70 0.94 0.95
6 0.77 0.96 0.95
8 0.76 0.93 0.94

the fully-connected diffusion strategy. We observe this effect in
Table IV, where the sparsely-connected network outperforms
the fully-connected network by 0.01 (area under ROC curve).

C. Biclustering via Sparse Singular-Value-Decomposition

Consider next the cancer data matrix X ∈ RM×T from [9],
where M = 56 and T = 12, 625. Each row of X contains
the genetic information for each of 56 patients. Each patient
belongs to one of four cancer categories: Normal, Carcinoid,
Colon, and SmallCell. The algorithm is unaware of the true
category (label) of any patient, but wants to cluster patients
into groups with different cancer types using the genetic
information. The problem was formulated in [18] as a bi-
clustering task (see also Tables I–II) that factorizes X as

X ≈
N∑
k=1

wky
T
k (70)

with both wk ∈ RM×1 and yk ∈ RT×1 being sparse.

In Alg. 3, we list the algorithm from [9], which alternates
between two sparse coding steps to obtain y and w, respec-
tively. Observe that the algorithm is a batch algorithm, in that

Algorithm 3 Simplified algorithm from [9] for biclustering.
for each k do

Apply standard SVD to X = woldsoldy
T
old. Repeat until conver-

gence:
1) Set ỹ = Tλ(XTwold), and ynew = ỹ/‖ỹ‖2.
2) Set w̃ = Tβ(Xynew), and wnew = w̃/‖ỹ‖2.
3) Set wold = wnew.

Set wk = wnew, sk = wTnewXynew, and yk = skynew.
Set X = X − wkyTk .

end for

Algorithm 4 Model-distributed diffusion strategy for online bi-
clustering.

Initialization: The sub-dictionaries {Wk} are randomly initialized
and then projected onto (3) using (50).
for each input data sample xt, each node k do

Repeat until convergence:
ψk,i=νk,i−1−µν 1

N
(νk,i−1 − xt)−

µν
δ
Tγ(wTk,t−1νk,i−1)wk,t−1

νk,i =
∑
`∈Nk

a`kψ`,i

with initialization {νk,0 = 0, k = 1, . . . , N}.
Set νok = νk,i. Compute yok = 1

δ
Tγ(wTk,t−1ν

o).
Update the dictionary using:

wk,t = Π‖w‖≤1

{
Tβ
(
wk,t−1+µwν

o
ky
oT
k

)}
end for

it utilizes the entire data set at each iteration. In addition,
the algorithm works by computing the best sparse rank-1
approximation for the matrix X ≈ w1y

T
1 , then computes the

best rank-1 approximation for X − w1y
T
1 ≈ w2y

T
2 , and so

on. In contrast, our proposed Alg. 1, when specialized to the
bi-clustering application (see Alg. 4), runs through the data in
an online manner and obtains the {wk} simultaneously.

We choose N = 3 to be consistent with the setup in
[9], where each node is responsible for a single dictionary
atom. We set γ = 0.5 and β = 0.01. Since the number of
nodes is small, we simulate the fully connected case where
the combination matrix A = 1

N 1N1
T
N (i.e., each node is

effectively averaging the estimate of ψk,i). We run Alg. 3
until ‖wnew − wold‖∞ < 1 × 10−10. We run our algorithm’s
sparse coding for a total of 2000 iterations. We choose
µν = 0.01, µw = 5 × 10−3, and δ = 0.01. In Fig. 8,
we plot, in the same manner as [9], the clustering results
of Algorithms 3–4. This is an unsupervised learning task,
meaning that, during the learning process, the algorithms are
unaware of the ground truth of the cancer categories of each
patient. Still, the algorithms are required to cluster patients
into different groups according to their underlying genetic
information, hoping that patients of similar genetic information
will be clustered together. After the clustering is done, we add
colors to different markers according to the ground truth (label)
to visualize and evaluate the result of the clustering. The
clustering will be more successful if (i) markers of the same
color are clustered together, and (ii) markers of different colors
are well separated. We observe that both algorithms, without
the use of the cancer labels, can successfully cluster the data
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Fig. 8. Application of microarray biclustering. Each marker represents one
patient, and [wk]m denotes the m-th entry of the dictionary atom wk , where
m = 1, . . . , 56 is the index of the patients and k = 1, 2, 3 is the index of the
dictionary atoms. The algorithm is unaware of the ground truth of the cancer
categories of each patient. After the bi-clustering is done, we add colors to
different markers according to the ground truth (label) to visualize the success
of the bi-clustering task.

into 4 distinct clusters according to the genetic information,
with each cluster corresponding to a different type of cancer.
The advantage of the diffusion strategy is that it only requires
each node to observe each data sample (each column of X)
once (not batched) and obtain {w1, w2, w3} simultaneously.
Note that in this example an additional data collection process
is required to gather all the w1, w2, and w3 to generate the final
bi-clustering plots in Fig. 8. This is because we need to use
([w1]m, [w2]m, [w3]m) to represent the genetic profile of each
patient m. This step is usually less demanding than learning
the {wk}, especially in large-scale genetic data analysis. The
agents may choose to report the obtained results periodically.
Nevertheless, the computation-intensive learning process in bi-
clustering is still distributed over the network, where the agents
learn different {wk} in an online and simultaneous manner.

V. CONCLUSION

In this paper, we studied the online dictionary learning
problem over distributed models, where each agent is in charge
of a portion of the dictionary atoms and the agents collaborate
to represent the data. Using the concepts of conjugate function
and dual decomposition, we transform the original learning
problem into a form that is amenable to distributed optimiza-
tion, which is then solved by means of a diffusion strategy.
The collaborative inference step generates dual variables that
are used by the agents to update their dictionary atoms without
the need to share their dictionaries or even the coefficient
models for the training data. The proposed algorithm is tested
over two typical tasks of dictionary learning, namely, novel
document detection and bi-clustering. The results demonstrate
that our proposed algorithm can solve the dictionary learning
tasks effectively in a distributed and online manner.

In relation to the convergence behavior, we remark that
the general learning problem (1)–(2) is not jointly convex
with respect to both W and y. This fact explains why
convergence guarantees towards a global minimum, when it
exists, are generally not available in the literature. A common
technique for solving such coupled optimization problems is
to alternate between the minimization over one variable while
keeping the other variable fixed. In this article, we followed
a similar construction albeit one that operates in an online
and distributed manner. For the inference problem (7), we
applied the diffusion strategy, which has already been shown
in prior studies [16] to converge within O(µ2) to the optimal
inference solution. For the dictionary update step, we used
a proximal projection step. Simulation results in this article
and by other authors have indicated that such alternating
optimization solutions tend to perform well in practice.

APPENDIX A
DERIVATION OF SOME TYPICAL CONJUGATE FUNCTIONS

In this appendix, we derive the conjugate functions listed
in Table II. The conjugate functions for 1

2‖u‖22, and their
corresponding domains can be found in [38, pp.90-94]. The
conjugate function for the scalar Huber loss L(um) can be
found in [55] as L?(νm) = 1

2ν
2
m with |νm| ≤ 1. Therefore, by

the “sums of independent functions” property7 in [38, p.95],
the conjugate function of

∑M
m=1 L(um) is:

M∑
m=1

L?(νm) =

M∑
m=1

1

2
ν2m =

1

2
‖ν‖22, (71)

where the domain is given by

|νm| ≤ 1, m = 1, . . . ,M ⇔ ‖ν‖∞ ≤ 1 (72)

Next, we derive the conjugate functions for the elastic net
regularization term hyk(yk) = γ‖yk‖1 + δ

2‖yk‖22. By the
definition of conjugate functions in (26), we have

h?yk(WT
k ν) = sup

yk

[
(WT

k ν)T yk − hyk(yk)
]

7If f(x1, . . . , xN ) = f1(x1) + · · · fN (xN ), then the conjugate func-
tion for f(x1, . . . , xN ) is given by f?(ν1, . . . , νN ) = f?1 (ν1) + · · · +
f?N (νN ), where f?1 (ν1), . . . , f?N (νN ) are the conjugate functions for
f1(x1), . . . , fN (xN ), respectively.
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= − inf
yk

[
hyk(yk)− (WT

k ν)T yk
]

= − inf
yk

[
γ‖yk‖1+

δ

2
‖yk‖22−(WT

k ν)T yk

]
(73)

= −δ ·inf
yk

[
γ

δ
‖yk‖1+

1

2

∥∥∥yk− 1

δ
WT
k ν
∥∥∥2
2

]
+

1

2δ
‖WT

k ν‖22 (74)

where the last step completes the square. Note from (47) that
the optimal yk that minimizes the term inside the bracket of
(74) can be expressed as the proximal operator of (γ/δ)‖yk‖1,
which is known to be given by the entry-wise soft-thresholding
operator [43, p.188] [56]:

yok,t = arg min
yk

[
γ

δ
‖yk‖1 +

1

2

∥∥∥yk− 1

δ
WT
k ν
∥∥∥2
2

]
= prox γ

δ ‖·‖1

(
WT
k ν

δ

)
= T γ

δ

(
WT
k ν

δ

)
(75)

where [Tλ(x)]n , (|[x]n| − λ)+sgn([x]n) and (x)+ =
max(x, 0). Substituting (75) into (73), we obtain

h?yk(WT
k ν) = S γ

δ

(
WT
k ν

δ

)
(76)

where

S γ
δ

(x) , −γ ·
∥∥T γ

δ
(x)
∥∥
1
− δ

2

∥∥T γ
δ

(x)
∥∥2
2
+δ · xTT γ

δ
(x) (77)

Finally, we derive the conjugate function for the nonnegative
elastic net regularization function hyk(yk) = γ‖yk‖1,+ +
δ
2‖yk‖22. Following the same line of argument from (73)–(74),
we get

h?yk(WT
k ν) = − inf

yk

[
γ‖yk‖1,++

δ

2
‖yk‖22−(WT

k ν)Tyk

]
(78a)

= −δ ·inf
yk

[
γ

δ
‖yk‖1,++

1

2

∥∥∥yk− 1

δ
WT
k ν
∥∥∥2
2

]
+

1

2δ
‖WT

k ν‖22 (78b)

By (47), the optimal yok,t that minimizes the term inside the
bracket of (78b) is given by

yok,t = arg min
yk

[
γ

δ
‖yk‖1,+ +

1

2

∥∥∥yk− 1

δ
WT
k ν
∥∥∥2
2

]
(79)

Applying an argument similar to the one used in [50], we can
express the optimal yok,t in (79) as

yok,t = T +
γ
δ

(
WT
k ν

δ

)
(80)

where [T +
λ (x)]n , ([x]n − λ)+. Substituting (80) into (78a):

h?yk(WT
k ν) = S+γ

δ

(
WT
k ν

δ

)
(81)

where

S+γ
δ

(x) , −γ ·
∥∥T +

γ
δ

(x)
∥∥
1,+
− δ

2

∥∥T +
γ
δ

(x)
∥∥2
2
+δ · xTT +

γ
δ

(x)

= −γ ·
∥∥T +

γ
δ

(x)
∥∥
1
− δ

2

∥∥T +
γ
δ

(x)
∥∥2
2
+δ ·xTT +

γ
δ

(x) (82)

where the last step uses the fact that the output of T +
γ (·) is

always nonnegative so that ‖T +
γ
δ

(x) ‖1,+ = ‖T +
γ
δ

(x) ‖1.
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