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Abstract

In this work and the supporting Parts II [2] and III [3], we provide a rather detailed analysis

of the stability and performance of asynchronous strategies for solving distributed optimization and

adaptation problems over networks. We examine asynchronous networks that are subject to fairly general

sources of uncertainties, such as changing topologies, random link failures, random data arrival times,

and agents turning on and off randomly. Under this model, agents in the network may stop updating their

solutions or may stop sending or receiving information in a random manner and without coordination

with other agents. We establish in Part I conditions on the first and second-order moments of the relevant

parameter distributions to ensure mean-square stable behavior. We derive in Part II [2] expressions that

reveal how the various parameters of the asynchronous behavior influence network performance. We

compare in Part III [3] the performance of asynchronous networks to the performance of both centralized

solutions and synchronous networks. One notable conclusion is that the mean-square-error performance

of asynchronous networks shows a degradation only of the order of O(ν), whereν is a small step-size

parameter, while the convergence rate remains largely unaltered. The results provide a solid justification

for the remarkable resilience of cooperative networks in the face of random failures at multiple levels:

agents, links, data arrivals, and topology.
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Distributed learning, distributed optimization, diffusion adaptation, asynchronous behavior, adaptive

networks, dynamic topology, link failures.

I. INTRODUCTION

Distributed learning arises when a global objective needs to be achieved through local cooperation

over a number of interconnected agents. This problem occursin many important contexts, including

distributed estimation [4]–[11], distributed machine learning [12]–[15], resource allocation [16], [17],

and in the modeling of flocking and swarming behavior by biological networks [18]–[22]. Several useful

decentralized solutions, such as consensus strategies [23]–[31], incremental strategies [32]–[36], and dif-

fusion strategies [8], [9], [11], [15], [37]–[39], have been developed for this purpose. Diffusion strategies

are particularly attractive because they are scalable, robust, fully-distributed, and endow networks with

real-time adaptation and learning abilities. In addition,they have been shown to have superior stability

ranges [40] and to lead to enhanced transient and steady-state performance in the context ofadaptive

networks whenconstant step-sizes are necessary to enable continuous adaptation and learning. The main

reason for this enhanced performance can be explained as follows. In adaptive implementations, the

individual agents do not know their exact cost functions andneed to estimate their respective gradient

vectors. The difference between the actual and approximategradient vectors is called gradient noise. When

a constant step-size is used in a stochastic-gradient implementation, the gradient noise term does not die

out anymore and seeps into the algorithm. This effect disappears when a diminishing step-size is used

because the decaying step-size annihilates the gradient noise factor. However, it was shown in [40] that

when constant step-sizes are used to enable adaptation, theeffect of gradient noise can make the state of

consensus networks grow unstable. The same effect does not happen for diffusion networks; the stability

of these networks was shown to be insensitive to the network topology. This is an important property,

especially for asynchronous networks where the topology will be changing randomly. It therefore becomes

critical to rely on distributed strategies that are robust to such changes. For this reason, we concentrate

on the study of diffusion networks while noting that most of the analysis can be extended to consensus

networks with some minimal adjustments. In this Part I, we show that diffusion strategies continue to

deliver stable network behavior under fairly general asynchronous conditions for non-vanishing step-size

adaptation.

There already exist several insightful studies and resultsin the literature on the performance of

consensus and gossip type strategies in the presence of asynchronous events [24], [26], [29], [30] or

changing topologies [5], [26], [29], [30], [41]–[46]. There are also some limited studies in the context of
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diffusion strategies [47], [48]. However, with the exception of the latter two works, the earlier references

investigated pure averaging algorithmswithout the ability to respond to streaming data, assumed noise-

free data, or relied on the use of diminishing step-size sequences. These conditions are problematic for

adaptation and learning purposes when data is continually streaming in, since decaying step-sizes turn

off adaptation eventually, and noise (including gradient noise) is always present.

In this article, and its accompanying Parts II [2] and III [3], we remove these limitations. We also allow

for fairly general sources of uncertainties and random failures and permit them to occur simultaneously.

Some of the questions that we address in the three parts include:

1) How does asynchronous behavior affect network stability? Can mean-square stability still be ensured

under non-vanishing step-sizes?

2) How is the convergence rate of the algorithm affected? Is it altered relative to synchronous networks?

3) Are agents still able to reach some sort of agreement in steady-state despite the random nature of

their interactions and despite data arriving at possibly different rates?

4) How close do the steady-state iterates of the various agents get to each other and to the optimal

solution that the network is seeking?

5) Compared with synchronous networks, under what conditions and by how much does the asyn-

chronous behavior generate anet negative effect in performance?

6) How close can the performance of an asynchronous network get to that of a stochastic-gradient

centralized solution?

We answer question 1 in Part I, questions 2, 3, and 4 in Part II [2], and questions 5 and 6 in Part III [3].

As the reader can ascertain from the derivations in the appendices, the arguments require some careful

analysis due to various sources of randomness in the networkand due to the interaction among the agents

— events at one agent influence the operation of other neighboring agents.

To answer the above questions in a systematic manner, we introduce in this Part I a fairly general model

for asynchronous events. Then, we carry out a detailed mean-square-error (MSE) analysis and arrive at

explicit conditions on the parameters of certain probability distributions to ensure stable behavior. The

analysis is pursued further to arrive at closed-form expressions for the MSE in steady-state in Part II

[2] and to compare against synchronous and centralized environments in Part III [3]. One of the main

conclusions that will follow from the detailed analysis in the three parts is that, under certain reasonable

conditions, the asynchronous network will continue to be able to deliver performance that is comparable

to the synchronous case where no failure occurs. This work therefore justifies analytically why, even
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under highly dynamic scenarios where many different components of the network can vary randomly or

fail, the diffusion network is still able to deliver performance and solve the inference or optimization task

with remarkable accuracy. The results provide strong evidence for the intrinsic robustness and resilience

of network-based cooperative solutions. When presenting the material in the three parts, we focus on

discussing the main results and their interpretation in thebody of the paper, while delaying the technical

proofs and arguments to the appendices.

Notation: We use lowercase letters to denote vectors, uppercase letters for matrices, plain letters for

deterministic variables, and boldface letters for random variables. We also use(·)T to denote transposition,

(·)∗ to denote conjugate transposition,(·)−1 for matrix inversion,Tr(·) for the trace of a matrix,λ(·)
for the eigenvalues of a matrix, and‖ · ‖ for the 2-norm of a matrix or the Euclidean norm of a vector.

Besides, we use⊗ to denote the Kronecker product.

II. PRELIMINARIES

We consider a connected network consisting ofN agents as shown in Fig. 1. The objective is to

minimize, in a distributed manner, an aggregate cost function of the form:

minimize
w

Jglob(w) ,

N∑

k=1

Jk(w) (1)

where the{Jk(w) : w ∈ CM → R} denote individual cost functions. Observe that we are allowing the

argumentw to be complex-valued so that the results are applicable to a wide range of problems, especially

in the fields of communications and signal processing where complex parameters are fairly common (e.g.,

in modeling wireless channels, power grid models, beamforming weights, etc.). To facilitate the analysis,

and before describing the distributed strategies, we first introduce two alternative ways for representing

real-valued functions of complex arguments.

A. Equivalent Representations

The first representation is based on the1-to-1 mappingT̄ : CM 7−→ R2M :

w̄ , T̄(w) =



Re(w)

Im(w)


 (2)

which replaces theM ×1 complex vectorw by the2M ×1 extended vector̄w composed of the real and

imaginary components ofw. In this way, we can interpret eachJk(w) as a function of the real-valued
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Fig. 1. An illustration of a connected network with individual costs associated with the various agents.

variablew̄ and writeJk(w̄) , Jk(w) as well as

Jglob(w̄) , Jglob(w) =

N∑

k=1

Jk(w) =

N∑

k=1

Jk(w̄) (3)

The second representation for functions of complex arguments is based on another1-to-1 mapping
¯
T :

CM 7−→ C2M
M (whereC2M

M is a sub-manifold of complex dimensionM and is isomorphic toR2M [49])

defined as

¯
w ,

¯
T(w) =




w

(w∗)T


 (4)

in terms of the entries ofw and their complex conjugates. In this case, we can interpreteachJk(w) as

a function defined over the extended variable
¯
w ∈ C2M

M and writeJk(
¯
w) , Jk(w) as well as

Jglob(
¯
w) , Jglob(w) =

N∑

k=1

Jk(w) =

N∑

k=1

Jk(
¯
w) (5)

Most of our analysis will be based on the second representation (4)–(5); the first representation (2)–(3)

will be used when we need to exploit some analytic propertiesof real functions. Note from (2) and (4)

that the variables{w̄,
¯
w} are related linearly as follows:



w

(w∗)T




︸ ︷︷ ︸
=
¯
w

=



IM jIM

IM −jIM




︸ ︷︷ ︸
,D



Re(w)

Im(w)




︸ ︷︷ ︸
=w̄

⇐⇒
¯
w = D · w̄ (6)

where the matrixD satisfiesDD∗ = D∗D = 2 · I2M andI2M denotes the2M × 2M identity matrix. It

follows that

w̄ = D−1 ·
¯
w =

1

2
D∗ ·

¯
w (7)
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Using the real representation{Jk(w̄)}, we introduce the following assumption on the analytic properties

of {Jk(w)}.

Assumption 1 (Properties of cost functions): The individual cost functions{Jk(w̄) : R2M 7→ R ; k =

1, 2, . . . , N} are assumed to be at least twice-differentiable and strongly convex overR2M . They are also

assumed to share acommon andunique minimizer atw̄o , T̄(wo), wherewo ∈ CM .

The situation involving a common minimizer for the cost functions {Jk(w̄)} is frequent in practice,

especially when agents need to cooperate with each other in order to attain acommon objective. For

example, in biological networks, it is usual for agents in a school of fish to interact while searching for

a common food source or avoiding a common predator [22]. Likewise, in wireless sensor networks, it

is common for sensors to survey the same physical environment, to interact with each other to estimate

a common modeling parameter, or to track the same target [17]. Furthermore, in machine learning

applications [50], it is common for all agents to minimize the same cost function (for example, the

logistic risk) which automatically satisfies the conditionof a common minimizer. It is also important

to note that agents can still benefit from cooperation even when they share a common minimizer for at

least two reasons. First, this is because different agents are generally subject to different measurement

noise conditions. The information sharing and cooperationamong agents can effectively equalize the

difference. Second, this is also because some agents may nothave sufficient data to recover the desired

unknown parameter on their own. Information sharing and cooperation among agents can alleviate the

problem of ill-conditioning and enable agents to solve for their desired parameters.

It follows from Assumption 1 that the real global cost function, Jglob(w̄), has a unique minimizer

at w̄o, or equivalently, that the original global cost function,Jglob(w), has a unique minimizer atwo.

Accordingly, the unique minimizer forJglob(
¯
w) and for eachJk(

¯
w) is given by

¯
wo =

¯
T(wo).

The strong convexity assumption on each costJk(w̄) ensures that their Hessian matrices are sufficiently

bounded away from zero, which avoids situations involving ill-conditioning in recursive implementations

based on streaming data. Strong convexity is not a serious limitation because it is common practice in

adaptation and learning to incorporate regularization into the cost functions, and it is well-known that

regularization helps enforce strong convexity [51], [52].We may add though that many of the results in

this work would still hold if we only require the aggregate cost functionJglob(w̄) to be strongly convex

by following arguments similar to those used in [53]; in thatcase, it would be sufficient to require only

one of the individual costsJk(w̄) to be strongly convex while the remaining costs can be simplyconvex.

Nevertheless, some of the derivations will become more technical under these more relaxed conditions.

For this reason, and since the arguments in the three parts are already demanding and lengthy, we opt
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to convey the main ideas and results by working under Assumption 1.

B. Hessian Matrices

We explain in Appendix A how to compute the complex gradient vector and the complex Hessian

matrix of the costJk(w), and its equivalent representations, with respect to theirarguments. The strong

convexity condition from Assumption 1 translates into the existence of a lower bound on the Hessian

matrices as shown below in (8). In addition, we shall assume that the Hessian matrices are also bounded

from above. This requirement relaxes conditions from priorstudies in the literature where it has been

customary to bound the gradient vector asopposed to the Hessian matrix [28], [30]; bounding the gradient

vector limits the class of cost functions to those with linear growth — see [15], [39] for an explanation.

Assumption 2 (Bounded Hessian and Lipschitz condition): The eigenvalues of the complex Hessian

{∇2

¯
w
¯
w∗Jk(

¯
w)} (defined by (117) in Appendix A) are bounded from below and from above by

λk,min ≤ λ(∇2

¯
w
¯
w∗Jk(

¯
w)) ≤ λk,max (8)

where0 < λk,min ≤ λk,max. Moreover, the complex Hessian functions{∇2

¯
w
¯
w∗Jk(

¯
w} are assumed to be

locally Lipschitz continuous [54] at
¯
wo, i.e.,

‖∇2

¯
w
¯
w∗Jk(

¯
wo)−∇2

¯
w
¯
w∗Jk(

¯
w)‖ ≤ τk · ‖

¯
wo −

¯
w‖ (9)

whereτk ≥ 0,
¯
wo =

¯
T(wo) and

¯
w =

¯
T(w) for anyw ∈ B(wo, δk) with B(wo, δk) denoting the 2-norm

ball B(wo, δk) , {w ∈ CM ; ‖wo − w‖ ≤ δk}, which is centered atwo with radiusδk.

Lemma 1 (Global Lipschitz continuity): When conditions (8) and (9) hold, the Hessian matrix func-

tions {∇2

¯
w
¯
w∗Jk(

¯
w)} are globally Lipschitz continuous atwo, i.e.,

‖∇2

¯
w
¯
w∗Jk(

¯
wo)−∇2

¯
w
¯
w∗Jk(

¯
w)‖ ≤ τ ′k · ‖¯w

o −
¯
w‖ (10)

for anyw, and

τ ′k , max

{
τk,

λk,max − λk,min√
2δk

}
(11)

Proof: We first note that

‖∇2

¯
w
¯
w∗Jk(

¯
wo)−∇2

¯
w
¯
w∗Jk(

¯
w)‖ ≤ λk,max − λk,min (12)

for any
¯
w =

¯
T(w), because for any2M × 1 vectorx,

x∗[∇2

¯
w
¯
w∗Jk(

¯
wo)−∇2

¯
w
¯
w∗Jk(

¯
w)]x = x∗[∇2

¯
w
¯
w∗Jk(

¯
wo)]x− x∗[∇2

¯
w
¯
w∗Jk(

¯
w)]x

≤ (λk,max − λk,min)‖x‖2 (13)
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Now, if w ∈ B(wo, δk), by condition (9), we have

‖∇2

¯
w
¯
w∗Jk(

¯
wo)−∇2

¯
w
¯
w∗Jk(

¯
w)‖ ≤ τ ′k · ‖¯w

o −
¯
w‖ (14)

On the other hand, ifw /∈ B(wo, δk), i.e., ‖wo − w‖ > δk or ‖
¯
wo −

¯
w‖ >

√
2δk, then we have

‖∇2

¯
w
¯
w∗Jk(

¯
wo)−∇2

¯
w
¯
w∗Jk(

¯
w)‖ ≤ λk,max − λk,min√

2δk
·
√
2δk

≤ τ ′k · ‖¯w
o −

¯
w‖ (15)

by condition (12).

III. A SYNCHRONOUSDIFFUSION NETWORKS

We first describe the traditional synchronous diffusion network studied in [11], [15], then we introduce

the asynchronous network and derive some useful properties.

A. Synchronous Diffusion Networks

References [11], [15] deal with the optimization of aggregate real functions of the formJglob(w̄).

Starting from equations (12)–(14) from [15] and using (6) wecan derive the following diffusion strategy

for solving the distributed optimization problem (1) withconstant step-sizes:

ψk,i = wk,i−1 − µk∇̂w∗Jk(wk,i−1) (adaptation) (16a)

wk,i =
∑

ℓ∈Nk

aℓk ψℓ,i (combination) (16b)

where (16a) is a stochastic gradient approximation step forself-learning and (16b) is a convex combination

step for social-learning. The iteratewk,i is the estimate forwo that is computed by agentk at iterationi.

The iterateψk,i is an intermediate solution that results from the adaptation step and will be shared with

the neighbors in the combination step. The factorµk is a positive step-size parameter and the combination

coefficients{aℓk} are nonnegative parameters and are required to satisfy the following constraints:

∑

ℓ∈Nk

aℓk = 1, and





aℓk > 0, if ℓ ∈ Nk

aℓk = 0, otherwise
(17)

whereNk denotes the set of neighbors of agentk includingk itself. If we collect these coefficients into

an N × N matrix such that[A]ℓk = aℓk, then condition (17) implies thatA is a left-stochastic matrix,

written asAT
1N = 1N where1N is theN × 1 vector with all entries equal to one.
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In (16a), the stochastic approximation for the true gradient vector is used because, in general, agents

do not have sufficient information to acquire the true gradients. The difference between the true and

approximate gradients is called gradient noise, which is random in nature and seeps into the algorithm.

That is why the variables{wk,i} in (16a)–(16b) are random and are represented in boldface. We model

the gradient noise, denoted byvk,i(wk,i−1), as an additive random perturbation to the true gradient vector,

i.e.,

∇̂w∗Jk(wk,i−1) = ∇w∗Jk(wk,i−1) + vk,i(wk,i−1) (18)

Let Fi−1 denote the filtration to represent all information available up to iterationi− 1. The conditional

covariance of the individual gradient noise
¯
vk,i(wk,i−1) is given by

Rk,i(wk,i−1) , E[
¯
vk,i(wk,i−1)

¯
v∗k,i(wk,i−1)|Fi−1]

=



Rv,k,i(wk,i−1) R′

v,k,i(wk,i−1)

R′∗
v,k,i(wk,i−1) RT

v,k,i(wk,i−1)


 (19)

by using (4), where

Rv,k,i(wk,i−1) , E[vk,i(wk,i−1)v
∗
k,i(wk,i−1)|Fi−1] (20)

R′
v,k,i(wk,i−1) , E[vk,i(wk,i−1)v

T

k,i(wk,i−1)|Fi−1] (21)

so thatRv,k,i(wk,i−1) is Hermitian positive semi-definite andR′
v,k,i(wk,i−1) is symmetric. Let further

¯
vi(wi−1) , col{

¯
v1,i(w1,i−1), . . . ,

¯
vN,i(wN,i−1)} (22)

The conditional covariance of
¯
vi(wi−1) is denoted by

Ri(wi−1) , E[
¯
vi(wi−1)

¯
v∗i (wi−1)|Fi−1] (23)

Assumption 3 (Gradient noise model): The gradient noisevk,i(wk,i−1), conditioned onFi−1, is as-

sumed to be independent of any other random sources including topology, links, combination coefficients,

and step-sizes. The conditional mean and variance ofvk,i(wk,i−1) satisfy:

E [vk,i(wk,i−1)|Fi−1] = 0 (24)

E [‖vk,i(wk,i−1)‖2|Fi−1] ≤ α ‖wo −wk,i−1‖2 + σ2
v (25)

for someα ≥ 0 andσ2
v ≥ 0.
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Let
¯
vk,i(wk,i−1) ,

¯
T(vk,i(wk,i−1)). From Assumption 3, the extended gradient noise

¯
vk,i(wk,i−1),

conditioned onFi−1, is independent of other random sources including topology, links, combination

coefficients, and step-sizes. The conditional mean and variance of
¯
vk,i(wk,i−1) satisfy

E[
¯
vk,i(wk,i−1)|Fi−1] = 0 (26)

E[‖
¯
vk,i(wk,i−1)‖2|Fi−1] ≤ α‖

¯
wo −

¯
wk,i−1‖2 + 2σ2

v (27)

Conditions similar to (26) and (27) appeared in the works [15], [54], [55] on distributed algorithms.

However, they are more relaxed than those employed in [54], [55], as already explained in [15]. Conditions

(26) and (27) are satisfied in several useful scenarios of practical relevance such as those involving

quadratic costs or logistic costs.

B. Asynchronous Diffusion Networks

To model theasynchronous behavior of the network, we modify the diffusion strategy (16a)–(16b) to

the following form:

ψk,i = wk,i−1 − µk(i)∇̂w∗Jk(wk,i−1) (28a)

wk,i =
∑

ℓ∈N k,i

aℓk(i)ψℓ,i (28b)

where the{µk(i),aℓ k(i)} are now time-varying and random step-sizes and combination coefficients,

andN k,i denotes therandom neighborhood of agentk at time i. The step-size parameters{µk(i)} are

nonnegative random variables, and the combination coefficients{aℓk(i)} are also nonnegative random

variables, which are required to satisfy the following constraints (compare to (17)):

∑

ℓ∈N k,i

aℓk(i) = 1, and





aℓk(i) > 0, if ℓ ∈ N k,i

aℓk(i) = 0, otherwise
(29)

Let

wi , col{w1,i,w2,i, . . . ,wN,i} (30)

ψi , col{ψ1,i,ψ2,i, . . . ,ψN,i} (31)

denote the collections of the iterates from across the network at time i. Let also

Mi , diag{µ1(i),µ2(i), . . . ,µN (i)} (32)
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be the diagonal random step-size matrix at timei. We further collect the combination coefficients{aℓk(i)}
at time i into the matrixAi ∈ RN×N . The asynchronous network model consists of the following

conditions on{Mi,Ai; i ≥ 0}:

1) The stochastic process{Mi, i ≥ 0} consists of a sequence of diagonal random matrices with

bounded nonnegative entries,{µk(i) ∈ [0, µk]}, where the upper boundµk > 0 is a constant. The

random matrixMi is assumed to have constant meanM̄ of sizeN ×N and constant Kronecker-

covariance matrixCM of sizeN2 ×N2, i.e.,

M̄ , EMi = diag{µ̄1, µ̄2, . . . , µ̄N} (33)

µ̄k , Eµk(i) (34)

CM , E [(Mi − M̄)⊗ (Mi − M̄)] = diag{Cµ,1, Cµ,2, . . . , Cµ,N} (35)

Cµ,k , E[(µk(i)− µ̄k)(Mi − M̄)] = diag{cµ,k,1, cµ,k,2, . . . , cµ,k,N} (36)

whereµ̄k denotes thek-th entry on the diagonal of̄M , Cµ,k is a diagonal matrix and denotes the

k-th block of sizeN ×N on the diagonal ofCM , andcµ,k,ℓ denotes theℓ-th entry on the diagonal

of Cµ,k. The scalarcµ,k,ℓ represents the covariance between the step-sizesµk(i) andµℓ(i):

cµ,k,ℓ , E[(µk(i) − µ̄k)(µℓ(i)− µ̄ℓ)] (37)

Whenℓ = k, the scalarcµ,k,k becomes the variance ofµk(i). Since the{µ̄k} are all finite positive

numbers, the condition number of the matrix̄M is bounded by some finite positive constantκ > 0,

i.e.,
maxk{µ̄k}
mink{µ̄k}

≤ κ (38)

2) The stochastic process{Ai, i ≥ 0} consists of a sequence of left-stochastic random matrices,whose

entries satisfy the conditions in (29) at every timei. The mean and Kronecker-covariance matrices

of Ai are assumed to be constant and are denoted by theN×N matrix Ā and theN2×N2 matrix

CA, respectively,

Ā , EAi =




ā11 ā12 · · · ā1N

ā21 ā22 · · · ā2N

...
...

.. .
...

āN1 āN2 · · · āNN




(39)

āℓk , Eaℓk(i) (40)
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CA , E[(Ai − Ā)⊗ (Ai − Ā)] =




Ca,11 Ca,12 · · · Ca,1N

Ca,21 Ca,22 · · · Ca,2N

...
...

. . .
...

Ca,N1 Ca,N2 · · · Ca,NN




(41)

Ca,ℓk , E[(aℓk(i)− āℓk)(Ai − Ā)] =




ca,ℓk,11 ca,ℓk,12 · · · ca,ℓk,1N

ca,ℓk,21 ca,ℓk,22 · · · ca,ℓk,2N

...
...

. . .
...

ca,ℓk,N1 ca,ℓk,N2 · · · ca,ℓk,NN




(42)

where āℓk denotes the(ℓ, k)-th element ofĀ, Ca,ℓk denotes the(ℓ, k)-th block with sizeN × N

of CA, and ca,ℓk,nm denotes the(n,m)-th element ofCa,ℓk. The scalarca,ℓk,nm represents the

covariance between the combination coefficientsaℓk(i) andanm(i):

ca,ℓk,nm , E[(aℓk(i)− āℓk)(anm(i)− ānm)] (43)

Whenℓ = n andk = m, the scalarca,ℓk,ℓk becomes the variance ofaℓk(i).

3) The random matricesMi andAi are mutually-independent and are independent of any other

random variable.

4) We refer to the topology that corresponds to the average combination matrixĀ as themean graph,

which is fixed over time. For each agentk, the neighborhood defined by the mean graph is denoted

by Nk. The mean combination coefficientsāℓk > 0 satisfy the following constraints (compare with

(17) and (29)):

∑

ℓ∈Nk

āℓk = 1, and






āℓk > 0, if ℓ ∈ Nk

āℓk = 0, otherwise
(44)

The asynchronous network model described above is general enough to cover many situations of practical

interest — note that the model does not impose any specific probabilistic distribution on the step-sizes,

network topologies, or combination coefficients. The upperbounds{µk} are arbitrary and are independent

of the constant step-size parameters used in synchronous diffusion networks (16a)–(16b). For example,

we can choose the sample space of each step-sizeµk(i) to be the binary choice{0, µ} to model a

random “on-off” behavior at each agentk for the purpose of saving power, waiting for data, or even

due to random agent failures. Similarly, we can choose the sample space of each combination coefficient
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aℓ k(i), ℓ ∈ Nk\{k}, to be {0, aℓk} to model a random “on-off” status for the link from agentℓ to

agentk at time i for the purpose of either saving communication cost or due torandom link failures. If

links are randomly chosen by agents such that at every timei there is only one other neighboring agent

being communicated with, then we effectively mimic the random gossip strategies [5], [26], [42], [43],

[46]. Note that the convex constraint (29) can be satisfied byadjusting the value ofakk(i) according

to the realizations of{aℓk(i); ℓ ∈ N k,i\{k}}. If the underlying topology is changing over time and the

combination weights are also selected in a random manner, then we obtain the probabilistic diffusion

strategy studied in [47], [48] or the random link or topologymodel studied in [29], [41], [44]. Since the

parameter matricesMi andAi are assumed to be independent of each other and of any other random

variable, the statistical dependency among the random variables{wi,ψi,Ai,Mi} is illustrated in Fig. 2.

The filtration Fi−1 now also includes information aboutAi−1 andMi−1 to representall information

available up to iterationi− 1.

C. Properties of the Asynchronous Model

The randomness of the combination coefficient matrixAi arises from three sources. The first source

is the randomness in the topology. The random topology is used to model the rich dynamics of evolv-

ing adaptive networks. The second source arises once a certain topology is realized, where the links

among agents are further allowed to drop randomly. This phenomenon may be caused by either random

interference or fading that blocks the communication links, or by neighbor selection policies used to

save resources such as energy and bandwidth. The third sources relates to the agents which are allowed

to assign random combination coefficients to their links, aslong as the constraint (29) is satisfied. An

example of a random network with two equally probable realizations and its mean graph is shown in

Fig. 3. The letterω is used to index the sample space of the random matrixAi. A useful result relating

the random neighborhoods{N k,i} from (28b) to the neighborhoods{Nk} from the mean network model

is given in the following statement.

Lemma 2 (Neighborhoods): The neighborhoodNk defined by the mean graph of the asynchronous

network model is equal to theunion of all possible realizations for the random neighborhoodN k,i in

(28b), i.e.,

Nk =
⋃

ω∈Ω

N k,i(ω) (45)

for any k, whereΩ denotes the sample space ofN k,i.

Proof: We first establish
⋃

ω∈ΩN k,i(ω) ⊆ Nk. By (29), we haveaℓk(i) > 0 for any ℓ ∈ N k,i.

Sinceaℓk(i) is a nonnegative random variable, if the eventaℓk(i) > 0 occurs, then̄aℓk > 0 by (40),
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Fig. 2. An illustration of the statistical dependency for the asynchronous diffusion strategy (28a)–(28b)

which impliesℓ ∈ Nk. Thus, we getN k,i ⊆ Nk. This relation holds for any realization ofN k,i, so we

have
⋃

ω∈Ω N k,i(ω) ⊆ Nk.

Now we establishNk ⊆ ⋃ω∈Ω N k,i(ω). For anyℓ ∈ Nk, we havēaℓk > 0 by definition. This is only

possible if there exists at least one realization ofaℓk(i) assuming a positive value, which means that

ℓ ∈ N k,i(ω) for a certainω. Therefore,Nk ⊆ ⋃ω∈Ω N k,i(ω) holds as expected.

Another useful property for the asynchronous model relatesto the combination coefficient matrices

{Ā, Ā⊗ Ā+ CA}.

Lemma 3 (Left-stochastic matrices): TheN ×N matrix Ā and theN2 ×N2 matrix Ā⊗ Ā+CA are

left-stochastic matrices, meaning that every element ofĀ or Ā⊗ Ā+ CA is nonnegative and

ĀT
1N = 1N , (Ā⊗ Ā+ CA)

T
1N2 = 1N2 (46)

Proof: SinceAi has nonnegative entries by the asynchronous network model,it is easy to verify

that Ā andAi ⊗Ai also have nonnegative entries. Moreover, noting that

E(Ai ⊗Ai) = Ā⊗ Ā+ E[(Ai − Ā)⊗ (Ai − Ā)]

= Ā⊗ Ā+ CA (47)

it follows that Ā⊗ Ā+ CA has nonnegative entries as well. Furthermore, observe that

ĀT
1N = E(AT

i )1N = E(AT

i 1N ) = 1N (48)

and

(Ā⊗ Ā+ CA)
T
1N2 = E(AT

i ⊗AT

i )(1N ⊗ 1N )

= E[(AT

i 1N )⊗ (AT

i 1N )]

= 1N2 (49)

as desired.

A useful special case of the asynchronous network model is the spatially-uncorrelated model, where

the random step-sizes at the agents are uncorrelated with each other across the network, and the random
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2 1 

4 3 

2 1 

4 3 

2 1 

4 3 

Fig. 3. The first two rows show two equally probable realizations with the respective neighborhoods. The last row shows the

resulting mean graph.

combination coefficients assigned by each agent to its localneighborsexcluding itself are also uncorrelated

with each other and with all other combinations weights assigned by other agents across the network. In

the next subsection we provide two concrete examples for this model.

Lemma 4 (The spatially-uncorrelated model): Under the asynchronous network model, if at each it-

eration i, the random step-sizes{µk(i); k = 1, 2, . . . , N} are uncorrelated with each other across the

network, and if the random combination coefficients{aℓk(i); ℓ 6= k, k = 1, 2, . . . , N} are also assumed

to be uncorrelated with each other across the network, then the covariances{cµ,k,ℓ} in (37) and{ca,ℓk,nm}
in (43) are now given by

cµ,k,ℓ =





cµ,k,k, if ℓ = k

0, otherwise
(50)
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ca,ℓk,nm =





ca,ℓk,ℓk, if k = m, ℓ = n, ℓ ∈ Nk\{k}

−ca,ℓk,ℓk, if k = m = n, ℓ ∈ Nk\{k}

−ca,nk,nk, if k = m = ℓ, n ∈ Nk\{k}
∑

j∈Nk\{k}

ca,jk,jk, if k = m = ℓ = n

0, otherwise

(51)

Correspondingly, the block matrices{Cµ,k, Ca,ℓk} in (36) and (42) are given by the following compact

expressions:

Cµ,k = cµ,k,k · Ekk (52)

Ca,ℓk = ca,ℓk,ℓk · (Eℓk − Ekk), ℓ ∈ Nk\{k} (53)

Ca,kk =
∑

ℓ∈Nk\{k}

ca,ℓk,ℓk · (Ekk −Eℓk) (54)

whereEℓk denotes theN ×N matrix whose entries are all zero except for the(ℓ, k)-th entry, which is

equal to one.

Proof: See Appendix B.

We remark that the matrices{CM , CA} are Kronecker-covariance matrices defined by (35) and (41);they

arenot conventional covariance matrices and, therefore, arenot necessarily Hermitian matrices.

D. Two Useful Network Models

In this subsection we describe two scenarios where the asynchronous behavior arises naturally. The

first model below is referred to as the Bernoulli model, a special case of which was used before to model

random link failures over consensus networks [29], [44]. The Bernoulli model given here is more general

in that it also allows us to consider simultaneously on-off strategies for adaptation through equation (55).

1) The Bernoulli Model: We assume that at every timei, each agentk adopts a random “on-off” policy

to reduce energy consumption. Specifically, agentk enters an active mode with probability0 < qk < 1

and performs the self-learning step (28a), and it enters a sleep mode with probability1 − qk to save

energy. This behavior can also be interpreted as the result of random data arrivals: at every timei, a new

data becomes available to agentk with probability qk. This situation can be modeled by the following
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Bernoulli random step-size model:

µk(i) =





µk, with probability qk

0, with probability 1− qk

(55)

whereµk is a fixed step-size. We further assume that the underlying topology is fixed. However, each

agentk is allowed to randomly choose asubset of its neighbors to perform the social-learning step

(28b). Specifically, agentk chooses neighborℓ with probability 0 < ηℓk < 1 to save on communication

costs. This behavior can also be interpreted as resulting from random link failures: at every timei, the

communication link from agentℓ to agentk drops with probabilityηℓk. This situation can be modeled

by the following Bernoulli random combination coefficientsmodel:

aℓk(i) =





aℓk, with probability ηℓk

0, with probability 1− ηℓk

(56)

for any ℓ ∈ N k,i\{k}, where0 < aℓk < 1 is a fixed combination coefficient. Based on Lemma 2, we

require the values ofaℓk(i) in (56) to ensure that0 ≤ akk(i) ≤ 1 where

akk(i) = 1−
∑

ℓ∈N k,i\{k}

aℓk(i) (57)

Using Lemma 4, the relevant quantities introduced in the asynchronous network model are given by

µ̄k = qkµk (58)

cµ,k,k = qk(1− qk)µ
2
k (59)

āℓk = ηℓkaℓk (60)

ākk , 1−
∑

ℓ∈Nk\{k}

ηℓkaℓk (61)

ca,ℓk,ℓk = ηℓk(1− ηℓk)a
2
ℓk, ℓ ∈ Nk\{k} (62)

2) The Beta Model: The other example involves continuous random variables modeled by Beta

distributions, which can be viewed as extensions of binary Bernoulli distributions to the continuous

domain when the probability mass is distributed over a bounded region. The family of Beta distributions

takes values in the interval[0, 1] and includes the uniform distribution over[0, 1] as a special case [56].
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The probability density function (PDF) of a Beta distribution is given by

B(x; ξ, ζ) =





Γ(ξ + ζ)

Γ(ξ)Γ(ζ)
xξ−1(1− x)ζ−1, 0 ≤ x ≤ 1

0, otherwise
(63)

whereξ, ζ > 0 are the shape parameters andΓ(·) denotes the Gamma function. Figure 4 plotsB(x; ξ, ζ)

for two values ofζ. The mean and variance of the Beta distribution (63) are given by

x̄ =
ξ

ξ + ζ
, σ2

x =
ξζ

(ξ + ζ)2(ξ + ζ + 1)
(64)

For the asynchronous network model, we assume that the step-sizeµk(i) takes random values in the

range[0, µk], whereµk denotes the largest possible value for thek-th step-size. We further assume that

the scaled parameterµk(i)/µk is governed by a Beta distribution:

xk(i) =
µk(i)

µk
∼ B(xk; ξk, ζk) (65)

where{ξk, ζk > 0} are the corresponding shape parameters. Likewise, we assume that the combination

coefficientaℓk(i) for ℓ ∈ N k,i\{k} takes random values in the range[0, aℓk] with 0 < aℓk < 1. The

scaled parameteraℓk(i)/aℓk is assumed to be governed by a Beta distribution:

yℓk(i) =
aℓk(i)

aℓk
∼ B(yℓk; ξℓk, ζℓk) (66)

where{ξℓk, ζℓk > 0} are the shape parameters. We adopt the spatially uncorrelated model from Lemma

4. In order to guarantee thatakk(i) always assumes values within the range[0, 1], we again require

condition (57). Then, we can use (64) to calculate the relevant quantities introduced in the asynchronous

network model:

µ̄k =
ξk

ξk + ζk
µk (67)

cµ,k,k =
ξkζk

(ξk + ζk)2(ξk + ζk + 1)
µ2
k (68)

āℓk =
ξℓk

ξℓk + ζℓk
aℓk (69)

ākk , 1−
∑

ℓ∈N\{k}

ξℓk
ξℓk + ζℓk

aℓk (70)

ca,ℓk,ℓk =
ξℓkζℓk

(ξℓk + ζℓk)2(ξℓk + ζℓk + 1)
a2ℓk, ℓ ∈ Nk\{k} (71)

September 12, 2018 DRAFT



19

Fig. 4. The PDFs of the Beta distributionB(x; ξ, ζ) for different values ofξ andζ.

IV. M AIN RESULTS

We presented a fairly general model for asynchronous eventsto cover many useful scenarios. Due to

the random evolution of the step-sizes, topology, neighborhoods, and combination coefficients, the error

dynamics of the network is influenced by more factors than traditional synchronous networks. Hence,

before delving into the technical details, we summarize in this section some of the main conclusions that

will follow from the analysis for the benefit of the reader.

The first important result (in Part I) is Theorem 1, which presents in (93) a condition on the first and

second-order moments of the random step-sizes to ensure themean-square stability of the asynchronous

network. It is noteworthy and also remarkable that the random distribution of the combination coefficients

(and, hence, the randomness in the topology) does not affectthe stability condition. This is another

manifestation of the property stated earlier in the introduction, and which has been proven before only

for synchronous networks in [15], that the mean-square stability of diffusion strategies is insensitive to the

network topology even in the asynchronous case. Theorem 1 will show that studying the mean-square

stability of the asynchronous network can be achieved by investigating the stability of the following

recursive inequality:

max
k

E‖w̃k,i‖2 ≤ β ·max
k

E‖w̃k,i−1‖2 + θσ2
v (72)

wherew̃k,i = wo−wk,i denotes the error vector at agentk at timei, and{β, θ, σ2
v} are certain parameters

defined by (90), (91), and (25), respectively. The recursiveinequality (72) provides an upper bound for

the worst individual MSD in the network at every timei. Thus, as long as the factorβ is inside the

unit circle, i.e.,|β| < 1, then the sequences{E‖w̃k,i‖2; i ≥ 0} for all k will remain bounded and the

network will be mean-square stable. Theorem 1 provides a sufficient condition to guarantee|β| < 1. The

condition involves the first and second-order moments of thestep-size distribution as follows:

µ̄2
k + cµ,k,k

µ̄k
<

λk,min

α+ λ2
k,max

(73)
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for all k, where{λk,min, λk,max} andα are from Assumptions 2 and 3, respectively. As long as condition

(73) holds, the random step-sizes will lead to stable networks regardless of their PDFs. Furthermore,

when condition (73) holds, the same theorem establishes that the MSD of the individual agents will

eventually be bounded by

lim sup
i→∞

E‖w̃k,i‖2 ≤ b · νo (74)

whereb andνo are given by (95) andνo is reproduced here:

νo = max
k

µ̄2
k + cµ,k,k

µ̄k
=

µ̄
(2)
k

µ̄
(1)
k

(75)

whereµ̄(m)
k , E[µk(i)]

m denotes them-th moment ofµk(i) and µ̄k ≡ µ̄
(1)
k . Thus, the individual MSD

values will decrease withνo and can become arbitrarily small in steady-state.

With some strengthened assumptions on the gradient noise and random step-sizes, and using Theorem

1, we then establish in Part II [2] two important conclusions:

lim
i→∞

E ‖wo −wk,i‖2 = O(ν) (76)

lim
i→∞

E ‖wk,i −wℓ,i‖2 = O(ν1+γ′

o) (77)

for someγ′o > 0 and sufficiently smallν. The parameterν is defined by

ν , max
k

√
µ̄
(4)
k

µ̄
(1)
k

(78)

These results imply that all agents reach a level ofO(ν1+γ′

o) agreement with each other and getO(ν)

close to the desired solutionwo in steady-state. This interesting behavior is illustratedin Fig. 5, where it

is shown that, despite being subjected to different sourcesof randomness and failures, the agents in an

asynchronous network are still able to approach the desiredsolution and they are also able to coalesce

close to each other while seeking the desired solution. Actually, in Part II [2], we shall derive explicit

closed-form expressions for the size of the error variancesin (76) and (77).

V. MEAN-SQUARE STABILITY

For each agentk, we introduce the error vectors:

ψ̃k,i , wo −ψk,i, w̃k,i , wo −wk,i (79)

wherewo is the desired optimal solution. Subtractingwo from both sides of (16a)–(16b) and using (18)

gives

ψ̃k,i = w̃k,i−1 + µk(i)[∇w∗Jk(wk,i−1) + vk,i(wk,i−1)] (80a)
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Fig. 5. Illustration for results (76) and (77): the solutions by the agents do not only getO(ν) close to the targetwo but they

also cluster next to each other withinO(ν1+γ′

o) for someγ′

o > 0.

w̃k,i =
∑

ℓ∈N k,i

aℓk(i) ψ̃ℓ,i (80b)

Applying the transformation
¯
T(·) from (4) to both sides of these equations, we show in AppendixC that

the error recursion (80a)–(80b) becomes

¯
ψ̃k,i = [I2M − µk(i)Hk,i−1]

¯̃
wk,i−1 + µk(i)

¯
vk,i(wk,i−1) (81a)

¯̃
wk,i =

∑

ℓ∈N k,i

aℓk(i)
¯
ψ̃ℓ,i (81b)

where we introduced the2M × 2M matrix:

Hk,i−1 ,

∫ 1

0
∇2

¯
w
¯
w∗Jk(

¯
wo − t

¯̃
wk,i−1) dt (82)

To proceed, we introduce the following network variables:

¯̃
wi , col{

¯̃
w1,i,

¯̃
w2,i, . . . ,

¯̃
wN,i} (83)

Mi ,Mi ⊗ I2M (84)

Ai , Ai ⊗ I2M (85)

Hi , diag{H1,i,H2,i, . . . ,HN,i} (86)

Using (81a)–(81b) we conclude that the network error vector(83) evolves according to the following

dynamics:

¯̃
wi = AT

i (I2MN −MiHi−1)
¯̃
wi−1 +AT

i Mi
¯
vi(wi−1) (87)
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A. Condition for Mean-Square Stability

The main result in this Part I is to establish the mean-squarestability of this recursion in Theorem 1

below. The difficulty lies in the fact that the error dynamics(87) is a time-variant stochastic recursion

that also depends nonlinearly on the data. The parameters{Ai,Mi,Hi−1} are random, time-varying,

and multiplied together and by the error vector and noise variables. The statement and proof of Theorem

1 rely on the following quantities:

ǫ2(i) , max
k

E‖w̃k,i‖2 =
1

2
·max

k
E‖

¯̃
wk,i‖2 (88)

γ2k , 1− 2µ̄kλk,min + (µ̄2
k + cµ,k,k)λ

2
k,max (89)

β , max
k

{γ2k + α(µ̄2
k + cµ,k,k)} (90)

θ , max
k

{µ̄2
k + cµ,k,k} (91)

where the{λk,min, λk,max} correspond to the lower and upper bounds on the Hessian matrices from (8).

Theorem 1 (Mean-square stability): The mean-square stability of the asynchronous diffusion strategy

(28a)–(28b) reduces to studying the convergence of the recursive inequality:

ǫ2(i) ≤ β · ǫ2(i− 1) + θσ2
v (92)

whereσ2
v is from (25). The model (92) is stable if the mean{µ̄k} and the ratio{(µ̄2

k+cµ,k,k)/µ̄k} satisfy

the following relation:
µ̄2
k + cµ,k,k

µ̄k
<

λk,min

α+ λ2
k,max

(93)

for k = 1, 2, . . . , N , where the parameterα is from (27). When condition (93) holds, an upper bound on

the individual steady-state mean-square-deviation (MSD)for each agentk in the network is given by

lim sup
i→∞

E‖w̃k,i‖2 ≤ b · νo (94)

where

νo , max
k

µ̄2
k + cµ,k,k

µ̄k
, b ,

κσ2
v

mink{λk,min}
(95)

and the parameterκ is from (38).

Proof: See Appendix D.

From the asynchronous network model, we know thatµk(i) ∈ [0, µk]. It follows that

µ̄2
k + cµ,k,k

µ̄k
=

µ̄
(2)
k

µ̄
(1)
k

≤ E [µk(i)µk]

µ̄k
= µk (96)
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From (96), a sufficient condition for (93) to hold is given by

µk <
λk,min

α+ λ2
k,max

(97)

Condition (93) allows us to provide some insights about how the dispersion ofµk(i) affects mean-

square stability. Note that condition (93) even allows therandom step-sizes to assume some abnormally

large values at a relatively low probability. This “hopping” behavior (resulting from infrequent large

step-sizes) would not destroy the mean-square stability ofthe network; this fact reveals another useful

form of robustness.

Since the constant coefficientb defined in (95) is a fixed bound, Theorem 1 implies that for sufficiently

large i, the MSD of each individual agent’s solution has a bounded value. The upper bound in (94) is

proportional to the parameterνo across the network. Using the useful conclusion of (94), we will be able

to derive in the sequel a condition for fourth-order stability of the error recursion (87).

B. Stability Conditions for Bernoulli and Beta Models

We specialize condition (94) for the asynchronous models described in Section III-D.

1) The Bernoulli Model: Substituting (58) and (59) into (93) yields the condition

µk <
λk,min

α+ λ2
k,max

(98)

which is identical to condition (97) on the upper limit of therange of random step-sizes.

2) The Beta Model: Without loss of generality, letζk = φk · ξk with a constant factorφk > 0. It

follows from (67) that the mean valuēµk can be expressed in terms of the factorφk and the upper limit

µk:

µ̄k =
µk

1 + φk
(99)

Likewise, from (68), we have

cµ,k,k =
φkµ

2
k

(1 + φk)2(ξk + ξkφk + 1)
(100)

which is a monotonically decreasing function of the shape parameterξk ≥ 1. As the value ofξk becomes

larger, the probability mass ofµk(i) will gradually concentrate around its mean (99), as shown inFig. 6.

Substituting (99) and (100) into (93) yields

µk <

(
1 +

φkξk
1 + ξk

)
λk,min

α+ λ2
k,max

(101)

where µk is the largest possible value forµk(i) defined by (65). In (101), the bound onµk is a

monotonically increasing function of the shape parameterξk ≥ 1. As ξk becomes larger, the bound
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Fig. 6. The PDFs of the Beta distributionB(x; ξk, ζk) for ζk = 1.5ξk andξk = 2, 4, 6.

in (101) becomes larger. The net effect allows for a wider range for the realizations of the random

step-sizes. Moreover, it is easy to verify that the upper bound in (101) is larger than that in (98).

C. Condition for Fourth-Order Stability

Result (94) establishes that the network is mean-square stable under the assumption of bounded

second-order moments for the gradient noise process as in (27). If desired, under a similar condition on

bounded fourth-order moments for the gradient noise, we canalso establish by extending the arguments

of Appendix D and [57] that the error recursion (87) is stablein the fourth-order sense.

Theorem 2 (Stability of fourth-order error moments): Assume the fourth-order moments of the gradi-

ent noise components are bounded by

E[‖vk,i(wk,i−1)‖4|Fi−1] ≤ α2‖wo −wk,i−1‖4 + σ4
v (102)

for some constantsα ≥ 0 andσv ≥ 0. If
√

µ̄
(4)
k

µ̄k
<

λk,min

3λ2
k,max + 4α

(103)

holds for allk, then the fourth-order moments of the individual errors areasymptotically bounded by

lim sup
i→∞

E‖w̃k,i‖4 ≤ b24 · ν2 (104)

where the parameterν is defined by

ν , max
k

√
µ̄
(4)
k

µ̄k

, b4 ,
3σ2

v(κ+ 1)

mink λk,min
(105)

Proof: See Appendix E.
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It is easy to verify that condition (102) implies a bound on the second-order moment of the gradient

noise:

E[‖vk,i(wk,i−1)‖2|Fi−1] ≤ α‖wo −wk,i−1‖2 + σ2
v (106)

although the converse is generally not true. In other words,it is redundant to assume both conditions

(27) and (102). It can be verified that condition (103) implies (93) (see (200) and (201) in Appendix E).

Therefore, conditions (102) and (103) are sufficient to ensure both mean-square and fourth-order stability

of error moments. Moreover, it is straightforward to verifythat

νo = max
k

µ̄
(2)
k

µ̄k
≤ max

k

√
µ̄
(4)
k

µ̄k
= ν (107)

Therefore, we can useν to upper boundνo.

VI. CONCLUSION

We introduced a fairly general model forasynchronous behavior over networks with random step-

sizes, links, topologies, and combination coefficients. Wethen carried out a mean-square analysis and

showed that, even under non-vanishing step-sizes, the asynchronous network remains mean-square stable

for sufficiently small step-sizes. We derived a condition onthe first and second-order moments of the

random step-sizes to ensure stable behavior. We specialized the results to two models: a Bernoulli network

and a Beta network. It was observed that the Beta network admits a wider range of step-sizes for stability.

The results suggest that networks where step-sizes assume values randomly within a certain interval are

robustly more stable than networks that have their step-sizes be turned on or off. In Part II [2] of this

work, we derive explicit closed-form expressions for the MSD performance and use these expressions

to clarify how the parameters of the asynchronous behavior influence both the convergence rate and the

MSE performance. We will also be able to establish the usefulclustering property illustrated by Fig. 5,

namely, that the iterates at the various agents approach theoptimal solution within accuracyO(ν) while

clustering close to each other withinO(ν1+γ′

o) for someγ′o > 0.

APPENDIX A

EQUIVALENT COMPLEX-DOMAIN REPRESENTATIONS

First, we recall the definition of thereal Jacobian of a real-valued functionJ(w) with respect to a real

column vectorw ∈ RM as

∂J(w)

∂w
, row

{
∂J(w)

∂w1
,
∂J(w)

∂w2
, . . . ,

∂J(w)

∂wM

}
(108)
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wherewm ∈ R denotes them-th element ofw. Using (2), the real gradient of the functionJk(w̄) with

respect tow̄ is defined as

∇w̄Jk(w̄) ,
∂Jk(w̄)

∂w̄
=
[
∂Jk(w)
∂Re(w)

∂Jk(w)
∂Im(w)

]
(109)

and the real Hessian matrix of the same functionJk(w̄) with respect tow̄ is defined by

∇2
w̄w̄TJk(w̄) ,

∂

∂w̄

[
∂Jk(w̄)

∂w̄

]
T

=




∂
∂Re(w)

[
∂Jk(w)
∂Re(w)

]
T

∂
∂Im(w)

[
∂Jk(w)
∂Re(w)

]
T

∂
∂Re(w)

[
∂Jk(w)
∂Im(w)

]T
∂

∂Im(w)

[
∂Jk(w)
∂Im(w)

]T


 (110)

It is easy to verify that∇2
w̄w̄TJk(w̄) is a symmetric matrix.

Then, we define the derivative of a real-valued functionJ(z) with respect to the complex argument

z ∈ C as [58], [59]:
∂J(z)

∂z
,

1

2

(
∂J(z)

∂Re(z)
− j

∂J(z)

∂Im(z)

)
(111)

and thecomplex Jacobian of a real-valued functionJ(w) with respect to the complex column vector

w ∈ CM is given by
∂J(w)

∂w
, row

{
∂J(w)

∂w1
,
∂J(w)

∂w2
, . . . ,

∂J(w)

∂wM

}
(112)

wherewm ∈ C denotes them-th element ofw. The complex gradient of the real-valued functionJk(w)

with respect to the complex vector argumentw ∈ CM is defined as [59, eq. (20)] (compare with (109)):

∇wJk(w) ,
∂J(w)

∂w
=

1

2

(
∂J(w)

∂Re(w)
− j

∂J(w)

∂Im(w)

)
(113)

and the complex conjugate gradient ofJk(w) with respect tow∗ ∈ CM is defined by [59, eqs. (21, 22)]:

∇w∗Jk(w) ,
∂J(w)

∂w∗
= [∇wJk(w)]

∗ (114)

Using (4), the complex gradient ofJk(
¯
w) with respect to the column vector

¯
w ∈ C2M

M is then given by

[59, eq. (18)]:

∇
¯
wJk(

¯
w) =

∂Jk(
¯
w)

∂
¯
w

=

[
∇wJk(w) (∇w∗Jk(w))

T

]
(115)

and the corresponding complex conjugate gradient is given by

∇
¯
w∗Jk(

¯
w) =

[
∂Jk(

¯
w)

∂
¯
w

]∗
= [∇

¯
wJk(

¯
w)]∗ (116)

The complex Hessian ofJk(
¯
w) with respect to

¯
w ∈ C2M

M is defined by [59, eq. (32)]:

∇2

¯
w
¯
w∗Jk(

¯
w) ,

∂

∂
¯
w

[
∂Jk(

¯
w)

∂
¯
w

]∗
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=



∇2

ww∗Jk(w) (∇2
wwTJk(w))

∗

∇2
wwTJk(w) (∇2

ww∗Jk(w))
T


 (117)

where

∇2
ww∗Jk(w) ,

∂

∂w

[
∂Jk(w)

∂w

]∗
=




∂2Jk(w)
∂w∗

1
∂w1

∂2Jk(w)
∂w∗

1
∂w2

. . . ∂2Jk(w)
∂w∗

1
∂wM

∂2Jk(w)
∂w∗

2
∂w1

∂2Jk(w)
∂w∗

2
∂w2

. . . ∂2Jk(w)
∂w∗

2
∂wM

...
...

. . .
...

∂2Jk(w)
∂w∗

M∂w1

∂2Jk(w)
∂w∗

M∂w2

. . . ∂2Jk(w)
∂w∗

M∂wM




(118)

∇2
wwTJk(w) ,

∂

∂w

[
∂Jk(w)

∂w

]T
=




∂2Jk(w)
∂w1∂w1

∂2Jk(w)
∂w1∂w2

. . . ∂2Jk(w)
∂w1∂wM

∂2Jk(w)
∂w2∂w1

∂2Jk(w)
∂w2∂w2

. . . ∂2Jk(w)
∂w2∂wM

...
...

. . .
...

∂2Jk(w)
∂wM∂w1

∂2Jk(w)
∂wM∂w2

. . . ∂2Jk(w)
∂wM∂wM




(119)

It is easy to verify that∇2

¯
w
¯
w∗Jk(

¯
w) is a Hermitian matrix.

From (109) and (115), we have [59, eqs. (18, 19)]:

∇w̄Jk(w̄) = ∇
¯
wJk(

¯
w) ·D (120)

∇w̄Jk(w̄) ·
1

2
D∗ = ∇

¯
wJk(

¯
w) (121)

Similarly, from (110) and (117), we have [59, eqs. (32, 33)]:

∇2
w̄w̄TJk(w̄) = D∗ · [∇2

¯
w
¯
w∗Jk(

¯
w)] ·D (122)

1

4
D · [∇2

w̄w̄TJk(w̄)] ·D∗ = ∇2

¯
w
¯
w∗Jk(

¯
w) (123)

Identities (120)–(123) play an important role in our analysis.

APPENDIX B

PROOF OFLEMMA 4

Expression (50) is becauseµk(i) andµℓ(i) are uncorrelated whenk 6= ℓ. Expression (52) is obtained

by using (50) and (36). Using (29) and Lemma 2, we have

akk(i) = 1−
∑

ℓ∈N k,i\{k}

aℓk(i) = 1−
∑

ℓ∈Nk\{k}

aℓk(i) (124)
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sinceaℓk(i) = 0 for anyℓ ∈ Nk\N k,i. Whenℓ 6= k, all entries inAi are uncorrelated withaℓk(i) except

for the (ℓ, k)-th and(k, k)-th entries. It follows from Lemma 2 that

ca,ℓk,kk = E[(aℓk(i)− āℓk)(akk(i)− ākk)]

(a)
= −

∑

n∈Nk\{k}

E[(aℓk(i)− āℓk)(ank(i)− ānk)]

(b)
= −E(aℓk(i)− āℓk)

2

(c)
= − ca,ℓk,ℓk (125)

for any ℓ ∈ Nk\{k} since (125) holds for any realization of the random neighborhoodN k,i, and where

step (a) is due to (124); step (b) is because{ank(i);n ∈ N k,i\{k}} are all uncorrelated withaℓk(i)

except foraℓk(i) itself, andaℓk(i) = 0 for any ℓ ∈ Nk\N k,i; and step (c) is because of (43). From

(125), we get (51). Whenℓ = k, all entries inAi are uncorrelated withakk(i) except for the(ℓ, k)-th

entries for allℓ ∈ N k,i. It follows from Lemma 2 that

ca,kk,ℓk = E[(akk(i)− ākk)(aℓk(i)− āℓk)]

= − ca,ℓk,ℓk, ℓ ∈ Nk\{k} (126)

ca,kk,kk
(a)
=

∑

ℓ,n∈Nk\{k}

E[(aℓk(i)− āℓk)(ank(i) − ānk)]

(b)
=

∑

ℓ∈Nk\{k}

E(aℓk(i)− āℓk)
2

(c)
=

∑

ℓ∈Nk\{k}

ca,ℓk,ℓk (127)

where (126) is because of (125); step (a) is because of (124);step (b) is because{aℓk(i); ℓ ∈ N k,i\{k}}
are mutually-uncorrelated, andaℓk(i) = 0 for any ℓ ∈ Nk\N k,i; and step (c) is because of (43). From

(126) and (127), we get (51).

APPENDIX C

DERIVATION OF ERROR RECURSION(81a)–(81b)

Applying the transformation
¯
T from (4) to both sides of the error recursion (80a)–(80b), weget

¯
ψ̃k,i =

¯̃
wk,i−1 + µk(i)[∇

¯
w∗Jk(

¯
wk,i−1) +

¯
vk,i(wk,i−1)] (128a)

¯̃
wk,i =

∑

ℓ∈N k,i

aℓk(i)
¯
ψ̃ℓ,i (128b)
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where, by definition,

¯
T(∇w∗Jk(w)) =



∇w∗Jk(w)

∇wTJk(w)


 = ∇

¯
w∗Jk(

¯
w) (129)

The real gradient defined by (109) can be expressed using the mean-value theorem as [54]:

∇w̄TJk(w̄) =

[∫ 1

0
∇2

w̄w̄TJk(w̄
o − t(w̄o − w̄))dt

]
(w̄ − w̄o) (130)

since∇w̄TJk(w̄
o) = 0 by Assumption 1. From (6), (130), (121), and (123), we get

∇
¯
w∗Jk(

¯
w) =

1

2
D · ∇w̄TJk(w̄)

=

∫ 1

0

1

4
D
[
∇2

w̄w̄TJk(w̄
o − t(w̄o − w̄))

]
D∗dt ·D(w̄ − w̄o)

=

[∫ 1

0
∇2

¯
w
¯
w∗Jk(

¯
wo − t(

¯
wo −

¯
w))dt

]
· (
¯
w −

¯
wo) (131)

Letting
¯
w =

¯
wk,i−1, we get

∇
¯
w∗Jk(

¯
wk,i−1) = −

[∫ 1

0
∇2

¯
w
¯
w∗Jk(

¯
wo − t

¯̃
wk,i−1) dt

]

¯̃
wk,i−1 (132)

Then, by (132), the error recursion (128a) and (128b) can be rewritten as (81a)–(81b).

APPENDIX D

PROOF OFTHEOREM 1

We start from equation (81b). Since the squared Euclidean norm ‖ · ‖2 is a convex function of its

vector argument, using Jensen’s inequality [51] we get

‖
¯̃
wk,i‖2 ≤

∑

ℓ∈N k,i

aℓk(i)‖
¯
ψ̃ℓ,i‖2 =

∑

ℓ∈Nk

aℓk(i)‖
¯
ψ̃ℓ,i‖2 (133)

sinceaℓk(i) = 0 for any ℓ ∈ Nk\N k,i by (29) and Lemma 2. Taking the expectation of both sides of

(133) and using the asynchronous network model, we get

E‖
¯̃
wk,i‖2 ≤

∑

ℓ∈Nk

āℓk E‖
¯
ψ̃ℓ,i‖2 ≤ max

ℓ
{E‖

¯
ψ̃ℓ,i‖2} (134)

Conditioned onFi−1, the random matrixHk,i−1 defined by (82) becomes deterministic. Let

Σk,i , [I2M − µk(i)Hk,i−1]
2 (135)

From (81a), we get

E(‖
¯
ψ̃ℓ,i‖2|Fi−1)

(a)
= E(‖

¯̃
wk,i−1‖2Σk,i

|Fi−1) + E[µ2
k(i)‖¯vk,i(wk,i−1)‖2|Fi−1]
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(b)

≤ E(‖Σk,i‖ · ‖
¯̃
wk,i−1‖2|Fi−1) + (µ̄2

k + cµ,k,k) · E[‖
¯
vk,i(wk,i−1)‖2|Fi−1]

(c)

≤ E(‖Σk,i‖|Fi−1) · ‖
¯̃
wk,i−1‖2 + (µ̄2

k + cµ,k,k) · (α · ‖
¯̃
wk,i−1‖2 + 2σ2

v) (136)

where step (a) is from (135) and cross terms are eliminated byusing the conditional independence and

zero-mean properties ofvk,i(wk,i−1) from Assumption 3; step (b) in (136) is due to the asynchronous

network model and the sub-multiplicative property of the 2-norm; and step (c) is by conditioning and

(27). Using Assumptions 2 and (82) we have

1− µk(i)λk,max ≤ λ(I2M − µk(i)Hk,i−1) ≤ 1− µk(i)λk,min (137)

Then, from (135), we obtain

λ (Σk,i) ≤ max{(1 − µk(i)λk,min)
2, (1 − µk(i)λk,max)

2}

= max{1− 2µk(i)λk,min + µ
2
k(i)λ

2
k,min, 1− 2µk(i)λk,max + µ

2
k(i)λ

2
k,max}

≤ 1− 2µk(i)λk,min + µ
2
k(i)λ

2
k,max (138)

becauseµk(i) is nonnegative. Therefore, we have

E(‖Σk,i‖|Fi−1)
(a)
= E[λmax (Σk,i) |Fi−1]

(b)

≤ E[1− 2µk(i)λk,min + µ
2
k(i)λ

2
k,max]

(c)
= γ2k (139)

where step (a) is becauseΣk,i in (135) is Hermitian and positive semi-definite, and its largest singular

value coincides with its largest eigenvalue; step (b) is by using (138) and the independence condition in

the asynchronous model; and step (c) is by (89). Substituting (139) into (136), and taking the expectation

of both sides with respect to
¯̃
wi−1 yields

E‖
¯
ψ̃k,i‖2 ≤ [γ2k + α(µ̄2

k + cµ,k,k)] · E‖
¯̃
wk,i−1‖2 + 2(µ̄2

k + cµ,k,k)σ
2
v (140)

Combining (140) and (134) yields

E‖
¯̃
wk,i‖2 ≤ max

ℓ
{[γ2ℓ + α(µ̄2

ℓ + cµ,ℓ,ℓ)] · E‖
¯̃
wℓ,i−1‖2 + 2(µ̄2

ℓ + cµ,ℓ,ℓ)σ
2
v} (141)

Dividing both sides of (141) by 2 and using the fact thatE ‖w̃k,i−1‖2 = E‖
¯̃
wk,i−1‖2/2, we get

E‖w̃k,i‖2 ≤
[
max

ℓ
{γ2ℓ + α(µ̄2

ℓ + cµ,ℓ,ℓ)}
] [

max
ℓ

E‖w̃ℓ,i−1‖2
]
+

[
max

ℓ
{µ̄2

ℓ + cµ,ℓ,ℓ}
]
· σ2

v (142)
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Now since inequality (142) holds for everyk, using (88), we conclude that (92) should hold. Propagating

(92) backwards to the starting point yields

ǫ2(i) ≤ βi+1 · ǫ2(−1) + θσ2
v ·

i∑

j=0

βj (143)

whereǫ2(−1) , maxk E ‖w̃k,−1‖2 represents the initial error variance. In order to guarantee a convergent

upper bound, we require|β| < 1, which, by (89) and (90), is equivalent to

|1− 2µ̄kλk,min + (µ̄2
k + cµ,k,k)(λ

2
k,max + α)| < 1 (144)

for any k. A sufficient condition for (144) is given by

µ̄2
k + cµ,k,k

µ̄k

<
2λk,min

α+ λ2
k,max

(145)

It is easy to verify that condition (93) is a sufficient condition for (145). Therefore, if condition (93)

holds, then|β| < 1.

Now under condition (145), we obtain from (92) that

ǫ2(i) ≤ βi+1 · ǫ2(−1) +
θσ2

v(1− βi+1)

1− β
(146)

When i → ∞, we get an upper bound for the individual MSD:

lim sup
i→∞

ǫ2(i) ≤ θσ2
v

1− β
(147)

In the following we simplify the upper bound in (147). From (90) and (89), we get

1− β = 1−max
k

{γ2k + α(µ̄2
k + cµ,k,k)}

= 1−max
k

{1 − 2µ̄kλk,min + (µ̄2
k + cµ,k,k)(λ

2
k,max + α)}

= min
k

{
µ̄k ·

[
2λk,min −

µ̄2
k + cµ,k,k

µ̄k
(α+ λ2

k,max)

]}

≥ min
k

{µ̄k} ·min
k

[
2λk,min −

µ̄2
k + cµ,k,k

µ̄k

(α+ λ2
k,max)

]
(148)

Using (93) again, we get
µ̄2
k + cµ,k,k

µ̄k
(α+ λ2

k,max) < λk,min (149)

Hence, relation (148) can be further expressed as

1− β ≥ min
k

{µ̄k} ·min
k

{λk,min} (150)

From (91) we get

θ ≤ max
k

µ̄2
k + cµ,k,k

µ̄k

·max
k

µ̄k (151)
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Therefore, wheni → ∞, using (150), (151), (38), and (95), we get from (147) that

lim sup
i→∞

ǫ2(i) ≤ θσ2
v

1− β

≤ σ2
v

mink{λk,min}
maxk{µ̄k}
mink{µ̄k}

max
k

µ̄2
k + cµ,k,k

µ̄k

≤ κσ2
v

mink{λk,min}
·max

k

µ̄2
k + cµ,k,k

µ̄k
(152)

Substituting (95) into (152) completes the proof.

APPENDIX E

PROOF OFTHEOREM 2

From (81b) and using Jensen’s inequality, we obtain under expectation:

E‖
¯̃
wk,i‖4 ≤

∑

ℓ∈Nk

āℓk E‖
¯
ψ̃ℓ,i‖4 (153)

for all k. Therefore, we have

max
k

E‖
¯̃
wk,i‖4 ≤ max

k
E‖

¯
ψ̃k,i‖4 (154)

From (81a), we have

‖
¯
ψ̃k,i‖4 = ‖[I2M − µk(i)Hk,i−1]

¯̃
wk,i−1 + µk(i)

¯
vk,i(wk,i−1)‖4 (155)

Lemma 5 (Fourth-order inequality): For any two vectorsx andy of the same size, it holds that

‖x+ y‖4 ≤ ‖x‖4 + 8‖x‖2‖y‖2 + 3‖y‖4 + 4‖x‖2Re(x∗y) (156)

Proof: It holds that

‖x+ y‖4 = [‖x‖2 + 2Re(x∗y) + ‖y‖2]2

= ‖x‖4 + 4[Re(x∗y)]2 + ‖y‖4 + 2‖x‖2‖y‖2 + 4‖x‖2Re(x∗y) + 4Re(x∗y)‖y‖2 (157)

The result now follows by using the inequalities:

|Re(x∗y)|2 ≤ ‖x‖2‖y‖2, 2Re(x∗y) ≤ ‖x‖2 + ‖y‖2 (158)

Referring to (155), if we make the identifications

x ≡ [I2M − µk(i)Hk,i−1]
¯̃
wk,i−1, y ≡ µk(i)

¯
vk,i(wk,i−1) (159)
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then we obtain

‖x‖2 ≤ a · b, ‖y‖2 = c · d (160)

where

a , 1− 2µk(i)λk,min + µ
2
k(i)λ

2
k,max (161)

b , ‖
¯̃
wk,i−1‖2 (162)

c , µ2
k(i) (163)

d , ‖
¯
vk,i(wk,i−1)‖2 (164)

Using Lemma 5, we obtain from (160) that

‖x+ y‖4 ≤ a2 · b2 + 8a · b · c · d+ 3c2 · d2 + 4‖x‖2Re(x∗y) (165)

where

a2 = [1− 2µk(i)λk,min + µ
2
k(i)λ

2
k,max]

2

= 1− 4µk(i)λk,min + 2µ2
k(i)(2λ

2
k,min + λ2

k,max)− 4µ3
k(i)λk,minλ

2
k,max + µ

4
k(i)λ

4
k,max

< 1− 4µk(i)λk,min + 2µ2
k(i)(2λ

2
k,min + λ2

k,max) + µ
4
k(i)λ

4
k,max (166)

c2 = µ4
k(i) (167)

a · c = µ2
k(i) − 2µ3

k(i)λk,min + µ
4
k(i)λ

2
k,max

≤ µ2
k(i) + µ

4
k(i)λ

2
k,max (168)

Taking the expectation of (165) conditioned onFi−1, we get

E[‖x+ y‖4|Fi−1] ≤ E[a2] · b2 + 8E[a · c] · b · E[d] + 3E[c2] · E[d2] (169)

where the last term disappears becausey has the noise factor that is conditionally zero mean. From

(166)–(168), we have

E[a2] ≤ 1− 4µ̄
(1)
k λk,min + 2µ̄

(2)
k (2λ2

k,min + λ2
k,max) + µ̄

(4)
k λ4

k,max (170)

E[c2] = µ̄
(4)
k (171)

E[a · c] ≤ µ̄
(2)
k + µ̄

(4)
k λ2

k,max (172)

whereµ̄(m)
k , E[µm

k (i)] denotes them-th moment of the random step-size parameterµk(i). It follows

from (102) that

E[‖
¯
vk,i(wk,i−1)‖4|Fi−1] ≤ α2 · ‖

¯̃
wk,i−1‖4 + 4σ4

v (173)

September 12, 2018 DRAFT



34

where a factor of4 appears because of the transform
¯
T(·). Likewise, it follows from (106) that

E[‖
¯
vk,i(wk,i−1)‖2|Fi−1] ≤ α · ‖

¯̃
wk,i−1‖2 + 2σ2

v (174)

Using (173) and (174), we can bound the quantitiesE[d2] andE[d] in (169) by

E[d2] ≤ α2 · ‖
¯̃
wk,i−1‖4 + 4σ4

v = α2 · b2 + 4σ4
v (175)

E[d] ≤ α · ‖
¯̃
wk,i−1‖2 + 2σ2

v = α · b+ 2σ2
v (176)

Substituting (170)–(172) and (175)–(176) into (169), we end up with

E[‖x+ y‖4|Fi−1] ≤ [1− 4µ̄
(1)
k λk,min + 2µ̄

(2)
k (2λ2

k,min + λ2
k,max) + µ̄

(4)
k λ4

k,max]b
2

+ 8[µ̄
(2)
k + µ̄

(4)
k λ2

k,max] · b · (α · b+ 2σ2
v) + 3µ̄

(4)
k · (α2 · b2 + 4σ4

v)

= [1− 4µ̄
(1)
k λk,min + 2µ̄

(2)
k (2λ2

k,min + λ2
k,max + 4α)

+ µ̄
(4)
k (λ4

k,max + 8αλ2
k,max + 3α2)] · b2 + 16σ2

v [µ̄
(2)
k + µ̄

(4)
k λ2

k,max] · b+ 12σ4
v µ̄

(4)
k

, (1− hk,1) · b2 + hk,2 · b+ hk,3 (177)

where

hk,1 , 4µ̄
(1)
k λk,min − 2µ̄

(2)
k (2λ2

k,min + λ2
k,max + 4α) − µ̄

(4)
k (λ4

k,max + 8αλ2
k,max + 3α2) (178)

hk,2 , 16σ2
v(µ̄

(2)
k + µ̄

(4)
k λ2

k,max) (179)

hk,3 , 12σ4
v µ̄

(4)
k (180)

Substituting (159), (155), and (162) into (177), we get

E[‖
¯
ψ̃k,i‖4|Fi−1] ≤ (1− hk,1) · ‖

¯̃
wk,i−1‖4 + hk,2 · ‖

¯̃
wk,i−1‖2 + hk,3 (181)

Taking the expectation with respect toFi−1 yields

E‖
¯
ψ̃k,i‖4 ≤ (1− hk,1) · E‖

¯̃
wk,i−1‖4 + hk,2 · E‖

¯̃
wk,i−1‖2 + hk,3 (182)

From (94) in Theorem 1, we know for large enoughi that

E‖
¯̃
wk,i−1‖2 ≤ 2(b + ǫ) · ν (183)

where we used the fact that‖
¯
w‖2 = 2‖w‖2, and0 < ǫ ≪ 1 is a small number. Therefore, we can bound

E‖
¯
ψ̃k,i‖4 in (182) for large enoughi by

E‖
¯
ψ̃k,i‖4 ≤ (1− hk,1) · E‖

¯̃
wk,i−1‖4 + hk,2 · 2(b+ ǫ) · ν + hk,3 (184)
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Substituting (184) into (154), we get

max
k

E‖
¯̃
wk,i‖4 ≤ [max

k
(1− hk,1)] ·max

k
E‖

¯̃
wk,i−1‖4 +max

k
[hk,2 · 2(b+ ǫ) · ν + hk,3] (185)

Let

γ4 , max
k

(1− hk,1) = 1−min
k

hk,1 (186)

θ4 , max
k

[hk,2 · 2(b+ ǫ) · ν + hk,3] (187)

whereb is from (95). We can then use (185) to write for large enoughi that

max
k

E‖
¯̃
wk,i‖4 ≤ γ4 ·max

k
E‖

¯̃
wk,i−1‖4 + θ4 (188)

Therefore, the fourth-order moment of the individual erroris governed by (188). Whenever|γ4| < 1, the

quantitymaxk E‖
¯̃
wk,i‖4 will have a bounded value asymptotically. In order to guarantee |γ4| < 1, it is

sufficient to have

0 < 4µ̄
(1)
k λk,min − 2µ̄

(2)
k (2λ2

k,min + λ2
k,max + 4α) − µ̄

(4)
k (λ4

k,max + 8αλ2
k,max + 3α2) < 2 (189)

for all k. This condition can be guaranteed by the sufficient conditions:

4µ̄
(1)
k λk,min < 2 (190a)

µ̄
(2)
k (2λ2

k,min + λ2
k,max + 4α) < µ̄

(1)
k λk,min (190b)

µ̄
(4)
k (λ4

k,max + 8αλ2
k,max + 3α2) < µ̄

(2)
k (2λ2

k,min + λ2
k,max + 4α) (190c)

Condition (190a) is equivalent to

µ̄
(1)
k <

1

2λk,min
(191)

Condition (190b) holds if
µ̄
(2)
k

µ̄
(1)
k

<
λk,min

3λ2
k,max + 4α

(192)

Condition (190c) holds if
µ̄
(4)
k

µ̄
(2)
k

<
1

λ2
k,max + 4α

(193)

because
λ2
k,max + 4α

(λ2
k,max + 4α)2

<
2λ2

k,min + λ2
k,max + 4α

λ4
k,max + 8αλ2

k,max + 3α2
(194)

Since, for any random variableµk(i),

[µ̄
(1)
k ]2 ≤ µ̄

(2)
k , [µ̄

(2)
k ]2 ≤ µ̄

(4)
k (195)
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it is straightforward that

max



[µ̄

(1)
k ]2,

(
µ̄
(2)
k

µ̄
(1)
k

)2

,
µ̄
(4)
k

µ̄
(2)
k



 ≤ µ̄

(4)
k

[µ̄
(1)
k ]2

(196)

On the other hand, it can be verified that

λ2
k,min

(3λ2
k,max + 4α)2

< min

{
1

4λ2
k,min

,
1

λ2
k,max + 4α

}
(197)

Therefore, if condition (103) holds for allk, then (191)–(193) hold, and|γ4| < 1 holds. Using (196) and

the new definition ofν in (105), we obtain

µ̄
(1)
k ≤ ν, µ̄

(2)
k ≤ ν2, µ̄

(4)
k ≤ ν4 (198)

Using (198), we have

hk,2 ≤ 16σ2
vν

2(1 + λ2
k,maxν

2), hk,3 ≤ 12σ4
vν

4 (199)

It is worth noting that the new definition ofν in (105) bounds the old definition in (95) from above since

µ̄2
k + cµ,k,k

µ̄k

=
µ̄
(2)
k

µ̄
(1)
k

≤

√
µ̄
(4)
k

µ̄
(1)
k

(200)

due to (196). It is easy to verify that

λk,min

3λ2
k,max + 4α

<
λk,min

α+ λ2
k,max

(201)

With (200) and (201), it is obvious that (103) implies (93).

When |γ4| < 1, the recursive inequality (188) leads to

lim sup
i→∞

[
max
k

E‖
¯̃
wk,i‖4

]
≤ θ4

1− γ4
(202)

Substituting (179) and (180) into (187) yields

θ4 ≤ max
k

[16σ2
v(µ̄

(2)
k + µ̄

(4)
k λ2

k,max) · 2(b+ ǫ)ν + 12σ4
v µ̄

(4)
k ]

= max
k

[
32σ2

v µ̄
(2)
k

(
1 +

µ̄
(4)
k

µ̄
(2)
k

λ2
k,max

)
(b+ ǫ)ν + 12σ4

v µ̄
(4)
k

]
(203)

whereν is given by (105). Using (103) and (196), we have

µ̄
(4)
k

µ̄
(2)
k

λ2
k,max <

λ2
k,maxλ

2
k,min

(3λ2
k,max + 4α)2

≤
λ4
k,max

(3λ2
k,max)

2
=

1

9
(204)

Substituting (204) into (203) yields

θ4 ≤ max
k

[
32σ2

v µ̄
(2)
k

10

9
(b+ ǫ)ν + 12σ4

v µ̄
(4)
k

]
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(a)

≤ max
k

[
12σ2

v µ̄
(2)
k

(
3bν + σ2

v

µ̄
(4)
k

µ̄
(2)
k

)]

(b)

≤ max
k

[
12σ2

v µ̄
(2)
k (3bν + σ2

vν
2)
]

= max
k

[
12σ2

v µ̄
(1)
k

µ̄
(2)
k

µ̄
(1)
k

(3bν + σ2
vν

2)

]

(c)

≤ max
k

[
12σ2

v µ̄
(1)
k ν2(3b+ σ2

vν)
]

(205)

where step (a) is by choosingǫ ≤ b/80; and steps (b) and (c) are by using (105) and (196). Substituting

(190b) and (190c) into (178) yields

hk,1 ≥ µ̄
(1)
k λk,min (206)

It follows from (186) and (206) that

1− γ4 = min
k

hk,1 ≥ min
k

[µ̄
(1)
k λk,min] ≥ min

k
µ̄
(1)
k ·min

k
λk,min (207)

Substituting (205) and (207) into (202), we arrive at

lim sup
i→∞

[
max
k

E‖
¯̃
wk,i‖4

]
≤ 12σ2

vν
2(3b+ σ2

vν) ·maxk µ̄
(1)
k

mink µ̄
(1)
k ·mink λk,min

≤ 12σ2
v(3b+ σ2

vν)

mink λk,min

maxk µ̄
(1)
k

mink µ̄
(1)
k

ν2

≤ 12κσ2
v(3b+ σ2

vν)

mink λk,min
ν2 (208)

where we used (38) in the last step. From (103) and (105), it iseasy to verify that

ν < max
k

λk,min

3λ2
k,max + 4α

≤ 1

3mink λk,min
(209)

Then, from (95) and (209), we obtain

3b+ σ2
vν ≤ 3κσ2

v

mink λk,min
+

σ2
v

3mink λk,min
<

3σ2
v(κ+ 1)

mink λk,min
(210)

Therefore, we obtain from (208) and (210) that

lim sup
i→∞

[
max
k

E‖w̃k,i‖4
]
≤ b24 · ν2 = O(ν2) (211)

due to the identity‖
¯
w‖4 = 4 · ‖w‖4, whereb4 is given by (105).
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