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Abstract

In this work and the supporting Parts [11[2] and Il[l[3], we pide a rather detailed analysis
of the stability and performance of asynchronous strasefpe solving distributed optimization and
adaptation problems over networks. We examine asyncheometworks that are subject to fairly general
sources of uncertainties, such as changing topologiedprarlink failures, random data arrival times,
and agents turning on and off randomly. Under this modelntia the network may stop updating their
solutions or may stop sending or receiving information iraadom manner and without coordination
with other agents. We establish in Part | conditions on tts éind second-order moments of the relevant
parameter distributions to ensure mean-square stablevibehd/e derive in Part II[[2] expressions that
reveal how the various parameters of the asynchronous lehiafluence network performance. We
compare in Part 11I[[B] the performance of asynchronous néte/to the performance of both centralized
solutions and synchronous networks. One notable conclusithat the mean-square-error performance
of asynchronous networks shows a degradation only of theratlO(v), wherev is a small step-size

parameter, while the convergence rate remains largelytanedl The results provide a solid justification
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for the remarkable resilience of cooperative networks i fice of random failures at multiple levels:

agents, links, data arrivals, and topology.
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. INTRODUCTION

Distributed learning arises when a global objective needbe achieved through local cooperation
over a number of interconnected agents. This problem odoursany important contexts, including
distributed estimation_[4]-[11], distributed machinerleag [12]-[15], resource allocation [16], [17],
and in the modeling of flocking and swarming behavior by lgadal networks[[18]--[22]. Several useful
decentralized solutions, such as consensus stratégipg32B incremental strategies [32]-[36], and dif-
fusion strategies [8]/ [9]/ [11]/ [15]| [37]=[39], have beedeveloped for this purpose. Diffusion strategies
are particularly attractive because they are scalablaystoffully-distributed, and endow networks with
real-time adaptation and learning abilities. In additidrey have been shown to have superior stability
ranges|([40] and to lead to enhanced transient and steatdyfggformance in the context aflaptive
networks whertonstant step-sizes are necessary to enable continuous adaptatideaning. The main
reason for this enhanced performance can be explained lasv$olin adaptive implementations, the
individual agents do not know their exact cost functions ardd to estimate their respective gradient
vectors. The difference between the actual and approxigratiient vectors is called gradient noise. When
a constant step-size is used in a stochastic-gradient inguigation, the gradient noise term does not die
out anymore and seeps into the algorithm. This effect disafgowhen a diminishing step-size is used
because the decaying step-size annihilates the gradiése factor. However, it was shown in_[40] that
when constant step-sizes are used to enable adaptatiogifele of gradient noise can make the state of
consensus networks grow unstable. The same effect doesppeh for diffusion networks; the stability
of these networks was shown to be insensitive to the netwapklogy. This is an important property,
especially for asynchronous networks where the topolodyb&ichanging randomly. It therefore becomes
critical to rely on distributed strategies that are robasstich changes. For this reason, we concentrate
on the study of diffusion networks while noting that most loé tanalysis can be extended to consensus
networks with some minimal adjustments. In this Part I, wevshhat diffusion strategies continue to
deliver stable network behavior under fairly general afyonous conditions for non-vanishing step-size
adaptation.

There already exist several insightful studies and result¢he literature on the performance of
consensus and gossip type strategies in the presence afhasgous events [24][ [26]l [29]._[30] or

changing topologies [5]|_[26]. [29]. [30], [41]=[46]. Theeare also some limited studies in the context of
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diffusion strategies [47]/[48]. However, with the exceyptiof the latter two works, the earlier references
investigated pure averaging algorithm&hout the ability to respond to streaming data, assumed noise-
free data, or relied on the use of diminishing step-size seges. These conditions are problematic for
adaptation and learning purposes when data is continutihareing in, since decaying step-sizes turn
off adaptation eventually, and noise (including gradiesise) is always present.

In this article, and its accompanying Parts Il [2] and [lll,[8le remove these limitations. We also allow
for fairly general sources of uncertainties and randonufagd and permit them to occur simultaneously.

Some of the questions that we address in the three partgdeiclu

1) How does asynchronous behavior affect network staBiltgn mean-square stability still be ensured
under non-vanishing step-sizes?

2) How is the convergence rate of the algorithm affectedfdkdred relative to synchronous networks?

3) Are agents still able to reach some sort of agreement adgtetate despite the random nature of
their interactions and despite data arriving at possibffieidint rates?

4) How close do the steady-state iterates of the varioustagg to each other and to the optimal
solution that the network is seeking?

5) Compared with synchronous networks, under what conditiand by how much does the asyn-
chronous behavior generatena negative effect in performance?

6) How close can the performance of an asynchronous netwetrkogthat of a stochastic-gradient

centralized solution?

We answer question 1 in Part |, questions 2, 3, and 4 in P& llahd questions 5 and 6 in Part Il [3].
As the reader can ascertain from the derivations in the appes, the arguments require some careful
analysis due to various sources of randomness in the nefnatkiue to the interaction among the agents
— events at one agent influence the operation of other neigitagents.

To answer the above questions in a systematic manner, veelirtte in this Part | a fairly general model
for asynchronous events. Then, we carry out a detailed ragaare-error (MSE) analysis and arrive at
explicit conditions on the parameters of certain probgbiliistributions to ensure stable behavior. The
analysis is pursued further to arrive at closed-form exgoes for the MSE in steady-state in Part Il
[2] and to compare against synchronous and centralizedaemaents in Part [I[[3]. One of the main
conclusions that will follow from the detailed analysis hetthree parts is that, under certain reasonable
conditions, the asynchronous network will continue to bke &b deliver performance that is comparable

to the synchronous case where no failure occurs. This wagkefbre justifies analytically why, even
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under highly dynamic scenarios where many different coreptsof the network can vary randomly or

fail, the diffusion network is still able to deliver perfoance and solve the inference or optimization task
with remarkable accuracy. The results provide strong emddor the intrinsic robustness and resilience
of network-based cooperative solutions. When presentiegntaterial in the three parts, we focus on
discussing the main results and their interpretation inbibay of the paper, while delaying the technical

proofs and arguments to the appendices.

Notation: We use lowercase letters to denote vectors, uppercaseslétr matrices, plain letters for
deterministic variables, and boldface letters for randamiables. We also us(e)T to denote transposition,
(-)* to denote conjugate transposition)~! for matrix inversion,Tr(-) for the trace of a matrix\(-)
for the eigenvalues of a matrix, anjd || for the 2-norm of a matrix or the Euclidean norm of a vector.

Besides, we use@ to denote the Kronecker product.

[l. PRELIMINARIES

We consider a connected network consistingNofagents as shown in Figl 1. The objective is to

minimize, in a distributed manner, an aggregate cost fanadf the form:
N
minimize J9%P(w) £ Z Ji(w) 1)
v k=1

where the{J,(w) : w € CM — R} denote individual cost functions. Observe that we are atigwhe

argumentw to be complex-valued so that the results are applicable tiol@ rnge of problems, especially
in the fields of communications and signal processing wheneptex parameters are fairly common (e.qg.,
in modeling wireless channels, power grid models, beamfagrweights, etc.). To facilitate the analysis,
and before describing the distributed strategies, we fitsbduce two alternative ways for representing

real-valued functions of complex arguments.

A. Equivalent Representations

The first representation is based on thto-1 mappingT : CM — R?M:

_ Re(w)
w = T(w) = (2)
Jm(w)
which replaces thé/ x 1 complex vectorw by the2M x 1 extended vectow composed of the real and

imaginary components af. In this way, we can interpret each(w) as a function of the real-valued
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Fig. 1. Anillustration of a connected network with indivalucosts associated with the various agents.

variablew and write J,(w) = Ji(w) as well as

N N
J9P(w) £ JOP(w) =Y Jp(w) =Y Jp(w) (3)
k=1 k=1

The second representation for functions of complex argisnisnbased on anothdrto-1 mappingT :
CM +— C2M (whereC3} is a sub-manifold of complex dimensiad and is isomorphic t&®?M [49])

defined as
w

w £ T(w) = (4)
(w*)T
in terms of the entries ofv and their complex conjugates. In this case, we can integaeh.J;,(w) as

a function defined over the extended variables C2}! and write J,(w) £ Ji.(w) as well as

N N
JI(w) £ J9P(w) =Y " Jp(w) = Y J(w) (5)
k=1 k=1

Most of our analysis will be based on the second represent&d)—{5); the first representatidn (Z)-(3)

will be used when we need to exploit some analytic properdfeal functions. Note froml{2) andl(4)

that the variablegw, w} are related linearly as follows:

w Iy LY, i)%e(w)
= = w = D -w (6)
(’w*)T Ing  —j5lm ﬁm(w)

where the matrixD satisfiesDD* = D*D = 2 - I5y; and Isy, denotes the M x 2M identity matrix. It
follows that
1
’LZ):D_I'Z_UZED*-’L_U (7)
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Using the real representatid, (w)}, we introduce the following assumption on the analytic pntips
of {Ji(w)}.

Assumption 1 (Properties of cost functions): The individual cost functiong§.Jy (@) : R?M s Rk =
1,2,..., N} are assumed to be at least twice-differentiable and syaragivex oveiR?* . They are also
assumed to share@mmon and unique minimizer atw® = T(w°), wherew® € CM. [ |

The situation involving a common minimizer for the cost ftions {J;(w)} is frequent in practice,
especially when agents need to cooperate with each otherdir ¢o attain acommon objective. For
example, in biological networks, it is usual for agents incha®l of fish to interact while searching for
a common food source or avoiding a common predatar [22]. ke, in wireless sensor networks, it
is common for sensors to survey the same physical environpr@einteract with each other to estimate
a common modeling parameter, or to track the same targét Pufthermore, in machine learning
applications [[50], it is common for all agents to minimizesteame cost function (for example, the
logistic risk) which automatically satisfies the conditioha common minimizer. It is also important
to note that agents can still benefit from cooperation evearmthey share a common minimizer for at
least two reasons. First, this is because different ageetgenerally subject to different measurement
noise conditions. The information sharing and cooperatiotong agents can effectively equalize the
difference. Second, this is also because some agents mdawmetsufficient data to recover the desired
unknown parameter on their own. Information sharing andoeoation among agents can alleviate the
problem of ill-conditioning and enable agents to solve fugit desired parameters.

It follows from Assumptior(]L that the real global cost fulcij J9°P(:%), has a unique minimizer
at w°, or equivalently, that the original global cost functiof°®(w), has a unique minimizer at®.
Accordingly, the unique minimizer foy9°’(w) and for eachJy(w) is given byw® = T(w°).

The strong convexity assumption on each chgto) ensures that their Hessian matrices are sufficiently
bounded away from zero, which avoids situations involvikganditioning in recursive implementations
based on streaming data. Strong convexity is not a serimitation because it is common practice in
adaptation and learning to incorporate regularizatioo ihie cost functions, and it is well-known that
regularization helps enforce strong convexity|[51],/[52f may add though that many of the results in
this work would still hold if we only require the aggregatestéunction.J9°°(«w) to be strongly convex
by following arguments similar to those used (inl[53]; in tlcate, it would be sufficient to require only
one of the individual costdy (w) to be strongly convex while the remaining costs can be siropiywex.
Nevertheless, some of the derivations will become morenieahunder these more relaxed conditions.

For this reason, and since the arguments in the three partal@ady demanding and lengthy, we opt

September 12, 2018 DRAFT



to convey the main ideas and results by working under Assiomid

B. Hessian Matrices

We explain in AppendiX_A how to compute the complex gradieattor and the complex Hessian
matrix of the cost/i(w), and its equivalent representations, with respect to tumgijuments. The strong
convexity condition from Assumptionl 1 translates into théstence of a lower bound on the Hessian
matrices as shown below ip](8). In addition, we shall assumethe Hessian matrices are also bounded
from above. This requirement relaxes conditions from pstudies in the literature where it has been
customary to bound the gradient vectoiopposed to the Hessian matrix [28], [30]; bounding the gradient
vector limits the class of cost functions to those with lingeowth — see[[15],[[39] for an explanation.

Assumption 2 (Bounded Hessian and Lipschitz condition): The eigenvalues of the complex Hessian
{Vi@*Jk(w)} (defined by[(11l7) in Appendix]A) are bounded from below andrfrabove by

)\k,min < )‘(Vzm_u* Jk(@)) < )\k,max (8)

where0 < A\p min < Akmax. Moreover, the complex Hessian functio{]‘§zm_u“]k(w} are assumed to be

locally Lipschitz continuous [54] atv?, i.e.,
IV e T (W) = Vi T(w) | < 7 - [Jw® — w| ©)

wherer;, > 0, w° = T(w®) andw = T(w) for any w € B(w?, §;) with B(w?, d;) denoting the 2-norm
ball B(w?, &) £ {w € CM; ||w® — w]|| < §;}, which is centered av° with radiusdy. |
Lemma 1 (Global Lipschitz continuity): When conditions[(8) and{9) hold, the Hessian matrix func-

tions {V2 . J,(w)} are globally Lipschitz continuous at°, i.e.,

ww*

IV Tk (w®) = Vi Je(w)|| < 77, - [w® — wl| (10)
for any w, and
Ak — Me.mi
71 £ max {T  omex TRl ’mm} 11
k k N (11)

Proof: We first note that
IV T () = Ve Je(w) ]| < Akmax — Abmin (12)
for any w = T(w), because for angM x 1 vectorz,
z* [VZ@*J;.C(LUO) - VZ@*Jk(z_u)]x =z [VZ@*Jk(t_UO)];U —z* [VZ@*Jk(t_U)]x

< (Ak,max - Ak,min)”‘rnz (13)
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Now, if w € B(w?, i), by condition [(9), we have

IV Je(w®) = Vi Je(w) | < 7+ lw — wl| (14)

On the other hand, ifv ¢ B(w®, 6;.), i.e., |w® — w|| > §; or ||w® — w|| > V23, then we have

)\kmax_)\kmin
V2 Je(w®) — V2, LT (w)]| < Shmax Thmin oy
IV Tk (W) = Vi Ji(w) || < NI k

<7’ = wl (15)

by condition [(12). [ |

1. A SYNCHRONOUSDIFFUSION NETWORKS

We first describe the traditional synchronous diffusionveek studied in[[11],[[15], then we introduce

the asynchronous network and derive some useful properties

A. Synchronous Diffusion Networks

References[[11],[[15] deal with the optimization of aggtegaeal functions of the formy9°°(«w).
Starting from equations (12)—(14) from [15] and usihp (6) s@® derive the following diffusion strategy

for solving the distributed optimization probleinl (1) witbnstant step-sizes:

Ppi = Whio1 — 1k V- Jo(wyi—1)  (adaptation) (16a)
Wi = Y ag e (combination) (16b)
LeEN;

where [16h) is a stochastic gradient approximation stegdfifilearning and_(16b) is a convex combination
step for social-learning. The iteratey, ; is the estimate for° that is computed by age#tat iteration.

The iterateyy, ; is an intermediate solution that results from the adaptatiep and will be shared with
the neighbors in the combination step. The fagtpis a positive step-size parameter and the combination

coefficients{as } are nonnegative parameters and are required to satisfyllogving constraints:

ag, >0, if £ eN,

> ag =1, and (17)
2eN;, apr, = 0, otherwise

where ;. denotes the set of neighbors of agénncluding % itself. If we collect these coefficients into
an N x N matrix such thafA],. = ag, then condition[(17) implies thad is a left-stochastic matrix,

written asAT1y = 1 wherely is the N x 1 vector with all entries equal to one.
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In (I&4), the stochastic approximation for the true grai@ctor is used because, in general, agents
do not have sufficient information to acquire the true grattie The difference between the true and
approximate gradients is called gradient noise, which rigloan in nature and seeps into the algorithm.
That is why the variable$w;, ;} in (16a){16b) are random and are represented in boldfaeemddel
the gradient noise, denoted by ;(w;, ;—1), as an additive random perturbation to the true gradiertbvec
ie.,

—

Vi Jk(W,i—1) = Vi Ji (Wi i—1) + v i(Wki—1) (18)

Let IF,_; denote the filtration to represent all information avaiabp to iteratiorni — 1. The conditional

covariance of the individual gradient noisg ;(wy;—1) is given by

Rypi(wii—1) = Elogi(wyi—1) vk (wki—1)|Fi-1]

Ry pi(wr,i-1) Ry (wei-1)

— (19)
rri(Wrio1) Ry (wiio1)
by using [(4), where
Ry ei(wpi—1) £ Elvgi (wp,i—1) vk i (wi—1)|Fi—1] (20)
R,y i(wpio1) = Elog i (wyi—1)vg ;(whi—1) |Fii] (21)

so thatR, j ;(wy;—1) is Hermitian positive semi-definite anla;’k7i(wk7,-_1) is symmetric. Let further
vi(w;i—1) £ col{vy i(w1,-1),...,vni(wNi—1)} (22)

The conditional covariance af;(w;_1) is denoted by
Ri(wi—1) £ Elvi(wi—1)v; (wi—1)|Fi_1] (23)

Assumption 3 (Gradient noise model): The gradient noisey, ;(wy ;—1), conditioned onfF,_;, is as-
sumed to be independent of any other random sources ingltgiiology, links, combination coefficients,

and step-sizes. The conditional mean and variance, ofwy, ;1) satisfy:

E [vgi(wg,i—1)|Fi—1] =0 (24)
E [[|vg,i(wp,i—1)|*[Fic1] < af|w® — w1 ]]* + o7 (25)
for somea > 0 ando? > 0. ]
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Let v ;i(wg,i—1) =S T(vg,i(wg,i—1)). From Assumptioni]3, the extended gradient naigg(wy ;—1),
conditioned onF;_ 4, is independent of other random sources including topgléigiks, combination

coefficients, and step-sizes. The conditional mean an@mwveei ofvy, ;(wy, ;—1) Satisfy
Elvgi(wg,i—1)Fi—1] =0 (26)
Ell|lvki(wri—1)|*[Fiz1] < af|w® — wy ;1| + 202 (27)
Conditions similar to[(26) and_(27) appeared in the workd],[J®4], [55] on distributed algorithms.

However, they are more relaxed than those employed in [58], s already explained in [15]. Conditions

(28) and [(2V) are satisfied in several useful scenarios aftiped relevance such as those involving

guadratic costs or logistic costs.

B. Asynchronous Diffusion Networks

To model theasynchronous behavior of the network, we modify the diffusion strateg@4}-{16b) to
the following form:

—

Vi = Wi i—1 — (1) Ve Jp(wii—1) (28a)
Wy = Z a (i) P (28b)
ZEN;CJ:

where the{u(i),asr(i)} are nowtime-varying and random step-sizes and combination coefficients,
and N ; denotes theandom neighborhood of agerit at timei. The step-size parametefg (i)} are
nonnegative random variables, and the combination cosfiis{a.; (i)} are also nonnegative random

variables, which are required to satisfy the following dosisits (compare td (17)):

agk(’i) > 0, if ¢¢ Nk,i

> an(i)=1, and (29)
CeN . an(i) =0, otherwise
Let
w; £ co{wy ;,wa;,...,wN;} (30)
i £ col{eh1 i, Yo, ..., PN} (31)

denote the collections of the iterates from across the n&tabtime:. Let also

M; = diag{p1 (i), p2(i), ..., pn (i)} (32)
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be the diagonal random step-size matrix at tim@/e further collect the combination coefficieRis, (i)}
at time 7 into the matrix A; € RV*Y, The asynchronous network model consists of the following
conditions on{ M;, A;;i > 0}:
1) The stochastic processM;,i > 0} consists of a sequence of diagonal random matrices with
bounded nonnegative entrieq,u(¢) € [0, ]}, where the upper bound, > 0 is a constant. The
random matrixM; is assumed to have constant mednof size N x N and constant Kronecker-

covariance matrixC; of size N2 x N2, i.e.,

M £ E M; = diag{fi1, fiz, - - ., in'} (33)
fir £ E pu(4) (34)
Cu £E[(M; — M) ® (M; — M)] = diag{C,1,Cp2,...,Cun} (35)
Cui = El(px (i) — i) (M — M)] = diag{cy 1, Cu2s -5 Cup, N} (36)

where i), denotes the:-th entry on the diagonal af/, C,, , is a diagonal matrix and denotes the
k-th block of sizeN x N on the diagonal of’);, andc,, 1, denotes thé-th entry on the diagonal

of Cy k. The scalar, ;. , represents the covariance between the step-giz€s and p,(i):

e = Bl (i) — ix) (pe(i) — fae)] (37)

When/t = k, the scalak,, ;. , becomes the variance pf; (7). Since the{z,} are all finite positive
numbers, the condition number of the matiik is bounded by some finite positive constant 0,

ie.,
may ik} (38)
miny {7 }
2) The stochastic proce$si;,i > 0} consists of a sequence of left-stochastic random matndesse
entries satisfy the conditions ih (29) at every tim&he mean and Kronecker-covariance matrices
of A; are assumed to be constant and are denoted b theV matrix A and theN? x N? matrix

C4, respectively,

ailr Q2 -+ Q1N
B a1 Q2 - Q2N
AL2EA; = (39)
aNi1 QaN2 - GNN
apl £ E agk(i) (40)
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Conn Coi2 -+ Cuin
) Cao1 Ca22 -+ Cuan
CA2E[(Ai-A) @A —A)]=| _ . _ (41)
Cant Can2 -+ CunN
Calk,11  Calk,12 - Calk 1N
- Ca k21 Calk,22 - Caqlk?2N
Caok = El(an (i) — an)(A; — A)] = , . _ . (42)
Catk,N1 Calk,N2 " Cqtk NN

wheredy, denotes thd/, k)-th element of4, C, 4 denotes thé/, k)-th block with sizeN x N
of Ca, and ¢, gk nm denotes thegn, m)-th element ofC, .. The scalarc, g . represents the

covariance between the combination coefficiamts(i) and a,,(7):

Catkm = El(a (1) — o) (@nm (i) — Gpm)] (43)

When/ = n andk = m, the scalark, ¢ ¢, becomes the variance af; (7).

3) The random matricedZ; and A; are mutually-independent and are independent of any other
random variable.

4) We refer to the topology that corresponds to the averageowtion matrixA as themean graph,
which is fixed over time. For each agéentthe neighborhood defined by the mean graph is denoted
by Ni. The mean combination coefficieritg, > 0 satisfy the following constraints (compare with
(17) and [(29)):

ag, >0, if L eN,

Z ag. =1, and (44)

LEN;, ag, = 0, otherwise
The asynchronous network model described above is germeyabé to cover many situations of practical
interest — note that the model does not impose any specifizapitistic distribution on the step-sizes,
network topologies, or combination coefficients. The ugpminds{ ., } are arbitrary and are independent
of the constant step-size parameters used in synchronffusiain networks[(16a)=(16b). For example,
we can choose the sample space of each stepgsiz@ to be the binary choicd0, 1} to model a
random “on-off” behavior at each agehtfor the purpose of saving power, waiting for data, or even

due to random agent failures. Similarly, we can choose thgpkaspace of each combination coefficient
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api(i), £ € Ng\{k}, to be{0,as} to model a random “on-off” status for the link from agehto
agentk at time: for the purpose of either saving communication cost or duetalom link failures. If
links are randomly chosen by agents such that at every dithere is only one other neighboring agent
being communicated with, then we effectively mimic the ramdgossip strategies|[5], [26], [42], [43],
[46]. Note that the convex constraint {29) can be satisfiecadhysting the value o& (i) according
to the realizations ofa(i); ¢ € Ny ;\{k}}. If the underlying topology is changing over time and the
combination weights are also selected in a random mannem, We obtain the probabilistic diffusion
strategy studied ir_[47][.[48] or the random link or topolagpdel studied in[[29],[[41],[44]. Since the
parameter matricedZ; and A; are assumed to be independent of each other and of any otidona
variable, the statistical dependency among the randorahlas{w;, v;, A;, M;} is illustrated in Fig[R.
The filtration F;_; now also includes information abowt; ; and M, _; to represengll information

available up to iteration — 1.

C. Properties of the Asynchronous Model

The randomness of the combination coefficient mattixarises from three sources. The first source
is the randomness in the topology. The random topology idl teanodel the rich dynamics of evolv-
ing adaptive networks. The second source arises once ancésfology is realized, where the links
among agents are further allowed to drop randomly. This pimemon may be caused by either random
interference or fading that blocks the communication ljntis by neighbor selection policies used to
save resources such as energy and bandwidth. The thirdesorglates to the agents which are allowed
to assign random combination coefficients to their linksjcag as the constrainf (R9) is satisfied. An
example of a random network with two equally probable redilims and its mean graph is shown in
Fig.[3. The lettetw is used to index the sample space of the random matrixA useful result relating
the random neighborhoods\/. ;} from (28B) to the neighborhoodsVy } from the mean network model
is given in the following statement.

Lemma 2 (Neighborhoods): The neighborhoodV; defined by the mean graph of the asynchronous
network model is equal to thenion of all possible realizations for the random neighborhddd ; in
(28h), i.e.,

Ne = | Mi,ilw) (45)

we2
for any k, where(2 denotes the sample spacef; ;.

Proof: We first establisH J, .o Ni,i(w) € Ni. By (29), we havea(i) > 0 for any ¢ € Ny;.

Sinceay (i) is a nonnegative random variable, if the event(i) > 0 occurs, themi, > 0 by (40),
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state 7 — 2 state 7 — 1 state ¢

{vk,i—1<wk.,i—2>} {vk,i(wk,i~1)}

Fig. 2. An illustration of the statistical dependency foe thsynchronous diffusion stratedy (P8a)—(28b)

which implies¢ € N. Thus, we getV;,; C Ny. This relation holds for any realization & ;, so we
havelJ,,cq Nk,i(w) € Nj.

Now we establishV}, € |, cq Nk,i(w). For any? € NV, we haveiy, > 0 by definition. This is only
possible if there exists at least one realizationagf(i) assuming a positive value, which means that
{ € Ny,i(w) for a certainw. Therefore N, C |J,,cq Nk,i(w) holds as expected. |

Another useful property for the asynchronous model reltdethe combination coefficient matrices
{A,A® A+ Cyl.

Lemma 3 (Left-stochastic matrices): The N x N matrix A and theN? x N2 matrix A ® A+ C4 are

left-stochastic matrices, meaning that every elemem afr A ® A + C4 is nonnegative and
ATy =1y, (A@A+C4) "1y =12 (46)

Proof: Since A; has nonnegative entries by the asynchronous network mibdeleasy to verify

that A and A; ® A, also have nonnegative entries. Moreover, noting that

E(A; ® A;) = A® A+ E[(A; — A) @ (A; — A)]

A A+ Cy (47)

it follows that A ® A + C4 has nonnegative entries as well. Furthermore, observe that

ATy =E(AN1y =E(A]1y) =1y (48)
and
(AR A+ Ca)T1y: =E(A] ® Al )(1y @ 1)
=E[(A]1y) ® (A]1y)]
= Lo (49)
as desired. [ |

A useful special case of the asynchronous network modeleissfiatially-uncorrelated model, where

the random step-sizes at the agents are uncorrelated vathather across the network, and the random
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Ai(wr) =
05 0 0 05 Nii(wi) = {1,4}
0 05 05 0 N i(wi) = {2.3}
0 05 05 0 Ni(wr) ={2,3}
05 0 0 05 N yi(wr) = {1,4}
i) = N 1,2
05 025 0 0 Nl,i(wz) {1,2}
05 05 025 0 Nz,f(wz) ={1.2,3}
0 025 05 0.5 3,i(w2) = {2,3,4}
0 0 025 05 Nyi(w2) = {3.4}
A=05[A;(w) + Aj(w)] =
_ [Ai(wr) (wa)] N = (1.2.4)
05 0125 0  0.25
No ={1,2,3}
025 05 0375 0
N; = {2,3,4}
0 0375 05 025
N = {1,3,4}

0.25 0 0.125 0.5

Fig. 3. The first two rows show two equally probable realmasi with the respective neighborhoods. The last row showss th

resulting mean graph.

combination coefficients assigned by each agent to its lomighborsexcluding itself are also uncorrelated
with each other and with all other combinations weightsgsesil by other agents across the network. In
the next subsection we provide two concrete examples ferrtiudel.

Lemma 4 (The spatially-uncorrelated model): Under the asynchronous network model, if at each it-
eration, the random step-sizefquy(i); £k = 1,2,..., N} are uncorrelated with each other across the
network, and if the random combination coefficiefits(i); ¢ # k,k = 1,2,..., N} are also assumed
to be uncorrelated with each other across the network, tieendvariancegc,, . ¢} in 37) and{c, ¢k nm }
in (43) are now given by

Cukk, TL=Ek

Cukl = (50)
0, otherwise
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Ca,fk‘,fk‘a |f k = m’f — 'I’L,f c Nk;\{k}
—Ca,th,th> if k=m=n,lecN\{k}
Cathnm = | ek it k=m=tneN\{k} (51)
Z Cajkjky, Thk=m=~(=n
JEN\{k}
0, otherwise

Correspondingly, the block matricd€’,, 1., C, ¢} in (36) and [4R) are given by the following compact

expressions:

Cuk = Cukk Errk (52)
Co ik = Capkek - (Eox — Eg), €€ Ni\{k} (53)
Co ke = Z Ca,tktk - (Erk — Egr) (54)

LeN\{k}
where Ey, denotes theéV x N matrix whose entries are all zero except for tiigk)-th entry, which is
equal to one.
Proof: See AppendixB. [ |
We remark that the matricdg”,;, C'4 } are Kronecker-covariance matrices definedby (35) thay;

arenot conventional covariance matrices and, therefore natenecessarily Hermitian matrices.

D. Two Useful Network Models

In this subsection we describe two scenarios where the heymous behavior arises naturally. The
first model below is referred to as the Bernoulli model, a s#dexase of which was used before to model
random link failures over consensus netwoiks [29]] [44]e Bernoulli model given here is more general
in that it also allows us to consider simultaneously on-tfitegies for adaptation through equatibn (55).

1) The Bernoulli Model: We assume that at every timeeach agent adopts a random “on-off” policy
to reduce energy consumption. Specifically, ageminters an active mode with probability< ¢, < 1
and performs the self-learning stdp (P8a), and it entereepsinode with probability — ¢, to save
energy. This behavior can also be interpreted as the restdhdom data arrivals: at every timea new

data becomes available to agéntvith probability ¢. This situation can be modeled by the following
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Bernoulli random step-size model:

ie, With probability g
(i) = (55)

0, with probability 1 — g
where ;. is a fixed step-size. We further assume that the underlyipglégy is fixed. However, each
agentk is allowed to randomly choose subset of its neighbors to perform the social-learning step
(28B). Specifically, agent chooses neighbat with probability 0 < 7, < 1 to save on communication
costs. This behavior can also be interpreted as resultong fiandom link failures: at every timg the
communication link from agent to agentk drops with probabilityn,;. This situation can be modeled

by the following Bernoulli random combination coefficiemsdel:

age, With probability 7
apk(i) = (56)

0,  with probability 1 — 7
for any ¢ € Ny ;\{k}, where0 < ay, < 1 is a fixed combination coefficient. Based on Lemima 2, we
require the values of(:) in (56) to ensure that < axx(i) < 1 where

ag(i) =1— > anl(i) (57)
LeN \{k}

Using Lemmd#4, the relevant quantities introduced in thenalsgonous network model are given by

Bl = qrlk (58)

Cutee = (1 — qr) i (59)

gk = Mok ek (60)

A 21— > nwan (61)
LeN\{k}

Ca ook = Nek(1 — ner)age, £ € Ni\{k} (62)

2) The Beta Model: The other example involves continuous random variableseteddby Beta
distributions, which can be viewed as extensions of binaeynBulli distributions to the continuous
domain when the probability mass is distributed over a bedneégion. The family of Beta distributions

takes values in the intervé, 1] and includes the uniform distribution ovir, 1] as a special case [56].
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The probability density function (PDF) of a Beta distrilmutiis given by

L' +Q) L1
IN(3IN(9

0, otherwise

(1-2)¢1 0<z<1
B(z;€,() =

(63)
where¢, ¢ > 0 are the shape parameters did) denotes the Gamma function. Figlie 4 pl&s; &, ()

for two values of¢. The mean and variance of the Beta distribution (63) arengbse

§ oL & 64)

E+C T (E+QOAE+CHY)

For the asynchronous network model, we assume that thesstepe (i) takes random values in the

Tr =

range|0, ux], wherepy, denotes the largest possible value for thth step-size. We further assume that

the scaled parameter(i)/uy is governed by a Beta distribution:

zy(i) = le(j) ~ B(wk; &k, Cr) (65)

where{{x, (x > 0} are the corresponding shape parameters. Likewise, we asthanthe combination
coefficientay (i) for ¢ € Ny ;\{k} takes random values in the ranfieas,] with 0 < ag, < 1. The

scaled parameteat(i)/ag is assumed to be governed by a Beta distribution:

agk(i)

Yo (i) = ~ B(Yer: Eoks Con) (66)

where{&su, (o, > 0} are the shape parameters. We adopt the spatially uncedeatadvdel from Lemma
4. In order to guarantee thai.(i) always assumes values within the rarigel], we again require
condition [5T). Then, we can ude {64) to calculate the relegaantities introduced in the asynchronous

network model:

= (67)
wkk = e+ Ck)f(kg:Jr Cp+1) v (68)
g, = ﬁaﬂt (69)
e 21— éeg\:{k} ﬁaﬂt (70)
Cothth = (e + Cek)?&iikJr ek + 1)a%k7 LeNi\ik} (D

September 12, 2018 DRAFT



19

6 6
o o
e GINE=1 f—g
G = §=3 -
Q2 =1 §=3 Q2
__/
0 0.5 10 0 0.5 1.0
x x

Fig. 4. The PDFs of the Beta distributidB(x; ¢, ¢) for different values of and(.

IV. MAIN RESULTS

We presented a fairly general model for asynchronous eventever many useful scenarios. Due to
the random evolution of the step-sizes, topology, neighdods, and combination coefficients, the error
dynamics of the network is influenced by more factors thaditicmal synchronous networks. Hence,
before delving into the technical details, we summarizéhia section some of the main conclusions that
will follow from the analysis for the benefit of the reader.

The first important result (in Part I) is Theorém 1, which ers in [98) a condition on the first and
second-order moments of the random step-sizes to ensuregher-square stability of the asynchronous
network. It is noteworthy and also remarkable that the ramdistribution of the combination coefficients
(and, hence, the randomness in the topology) does not dfiecstability condition. This is another
manifestation of the property stated earlier in the intiahi, and which has been proven before only
for synchronous networks if [15], that the mean-squardlgyatf diffusion strategies is insensitive to the
network topology even in the asynchronous case. Thebtenll lshaw that studying the mean-square
stability of the asynchronous network can be achieved bestigating the stability of the following
recursive inequality:

e B[] < 8 max B[ | + 00 (72)

wherewy, ; = w’—wy, ; denotes the error vector at agénat time:, and{z, ¢, o2} are certain parameters
defined by[(9D),[(91), and (P5), respectively. The recursieguality (72) provides an upper bound for
the worst individual MSD in the network at every timé Thus, as long as the factgt is inside the
unit circle, i.e.,|8] < 1, then the sequencd®|wy ;||%;¢ > 0} for all k£ will remain bounded and the
network will be mean-square stable. Theofém 1 providesfacwuit condition to guarantel®| < 1. The
condition involves the first and second-order moments ofstke-size distribution as follows:
B3+ Cpkok Ak, min
[k < a+ A2

k,max

(73)
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for all k, where{A; min, Ak, max } @nda are from Assumptionis|2 amd 3, respectively. As long as cimmdit
(73) holds, the random step-sizes will lead to stable ndtsvoegardliess of their PDFs. Furthermore,
when condition [(78) holds, the same theorem establishestlleaMSD of the individual agents will
eventually be bounded by

limsupE\|ﬁk,i||2 <b-v, (74)

71— 00
whereb andv, are given by[(95) and, is reproduced here:

—2 —(2)
+Ccukk
v, = max Fr * Cpukk _ Hr

(75)

Whereﬂém) £ E[u(i)]™ denotes then-th moment ofuy (i) and fiy, = /jl(j). Thus, the individual MSD
values will decrease witly, and can become arbitrarily small in steady-state.
With some strengthened assumptions on the gradient notseaadom step-sizes, and using Theorem

[, we then establish in Part [[I[2] two important conclusions

Jim E [ — wy | = O@) (76)
11— 00
lim E|Jwy; — wegl|? = O %) (77)
1— 00

for some~, > 0 and sufficiently small.. The parameter is defined by

ﬂ(4)
vEa max le) (78)
Hi;

These results imply that all agents reach a leveDgi' t7-) agreement with each other and getv)
close to the desired solutian® in steady-state. This interesting behavior is illustrateéig. [, where it

is shown that, despite being subjected to different sountgandomness and failures, the agents in an
asynchronous network are still able to approach the desibédion and they are also able to coalesce
close to each other while seeking the desired solution. allgtuin Part Il [2], we shall derive explicit

closed-form expressions for the size of the error variamtdg6) and [(77).
V. MEAN-SQUARE STABILITY
For each agent, we introduce the error vectors:

¢k,i 2w’ — ";bk,ia ’lBlm' £ w° — W 4 (79)

wherew? is the desired optimal solution. Subtracting from both sides ofl (16a)=(16b) and usingl(18)

gives
Yri = Wp i1+ P D)V Je (Wi 1) + vpi(wpi1)] (80a)
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E||lwg,; —

we|* = O )

Fig. 5. lllustration for results(76) an@([77): the solutoby the agents do not only géi(v) close to the target® but they

also cluster next to each other withi(1' %) for some~, > 0.

W= Y ag(i) e (80Db)
LeN

Applying the transformatioff’(-) from (4) to both sides of these equations, we show in Appefitiilat
the error recursior (80aJ—(80b) becomes

Pri = onr — pn(8) Hy i1 | i1 + (1) vpi(whi1) (81a)
Wy, = Z an (i) Pei (81b)
eN

where we introduced thgM x 2M matrix:
1
Hp; 12 / V2w T (W — Wy 1) dt (82)
)

To proceed, we introduce the following network variables:

w; = col{wy ;,Was, ..., WN,i} (83)
M, & M; @ Iy (84)
A 2 A ® DLy (85)
H; = diag{H;;, Ha;,...,Hy,;} (86)

Using [81a)£(81b) we conclude that the network error ve@a) evolves according to the following

dynamics:

w; = Al (Iyn — MM _)w; 1 + Al Mwi(w;_1) (87)
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A. Condition for Mean-Square Sability
The main result in this Part | is to establish the mean-sqstaigility of this recursion in Theorefd 1
below. The difficulty lies in the fact that the error dynam{@) is a time-variant stochastic recursion
that also depends nonlinearly on the data. The paraméiéysM,;, H, 1} are random, time-varying,
and multiplied together and by the error vector and nois@akbes. The statement and proof of Theorem
(83)

[ rely on the following quantities:
1 -
5 - maxElwy |
(89)

(i) &

= max B
2 A = —2 2
Ve = 11— Qﬂk/\k,min + (:U‘k + Cu,k,k))\k,max

(90)

B & max{v} + a(fi; + curnr)}
(91)

0 £ max{jif + ¢}
where the{\; min, Ak max} COrrespond to the lower and upper bounds on the Hessiancesfrom [(8)

Theorem 1 (Mean-square stability): The mean-square stability of the asynchronous diffusicatesyy
(92)

(284)(28b) reduces to studying the convergence of thesieuinequality:
(@) < B-€*(i—1)+ 052

wheres? is from (25). The mode[{92) is stable if the mefi, } and the ratio{ (1} +c,, )/ } satisfy
(93)

)\k,min

the following relation:
=2
+c
Hi _ pokik
Pk

for k =1,2,..., N, where the parameter is from (27). When conditior{ (93) holds, an upper bound on
the individual steady-state mean-square-deviation (M®Deach agenk in the network is given by
(94)

2
a+ Ak,max

lim sup E|[wy;||* < b- v,
1—00
(95)

2
KOj

=2

By + Cukok A

Pk T ok s
ming {\g min }

where
A

Vo, = max — ,

k H

[ ]

and the parametet is from (38).

Proof: See AppendixD.
From the asynchronous network model, we know faati) € [0, ux]. It follows that
) _(2) .
P+ Cukk B E g ()
k _ (4 —_ _I(fl) < [ _( ) ] = (96)
HEk fy, 203
DRAFT
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From [96), a sufficient condition fof (93) to hold is given by

)\k,min
a+ A2

k,max

Condition [93) allows us to provide some insights about hbes dispersion ofu (i) affects mean-

e < 97)

square stability. Note that condition_{93) even allows thedom step-sizes to assume some abnormally
large values at a relatively low probability. This “hoppinigehavior (resulting from infrequent large
step-sizes) would not destroy the mean-square stabilithefetwork; this fact reveals another useful
form of robustness.

Since the constant coefficiehtlefined in[(95) is a fixed bound, Theoréin 1 implies that for sigfitly
large i, the MSD of each individual agent’s solution has a boundddevalhe upper bound ir_(94) is
proportional to the parametey, across the network. Using the useful conclusiorl_of (94), wkbe able

to derive in the sequel a condition for fourth-order stapibf the error recursior (87).

B. Sability Conditions for Bernoulli and Beta Models

We specialize conditiori_(94) for the asynchronous modeserilged in Section I1-D.
1) The Bernoulli Model: Substituting [(5B) and_(59) intd_(P3) yields the condition

>\k,min
a+ N2

k,max

which is identical to condition (97) on the upper limit of thenge of random step-sizes.

pr < (98)

2) The Beta Model: Without loss of generality, let, = ¢ - £ with a constant factog;, > 0. It

follows from (617) that the mean valyg, can be expressed in terms of the faaterand the upper limit

Mo
- K
= 99
=T g (99)
Likewise, from [68), we have
2
Db (100)

bk = T 6)2(E + Exp + 1)

which is a monotonically decreasing function of the shapapaters, > 1. As the value of; becomes

larger, the probability mass @i (:) will gradually concentrate around its meanl(99), as showridn[@.
Substituting [(9P) and_(100) int@_(P3) yields

(bkgk )\k min
1 : 101
”’“<< 1 e at AL (101)

where 1, is the largest possible value fqi, (i) defined by [(6b). In[(101), the bound g, is a

monotonically increasing function of the shape paraméter> 1. As & becomes larger, the bound

September 12, 2018 DRAFT



24

Fig. 6. The PDFs of the Beta distributidB(x; &k, () for ¢ = 1.5, and&, = 2,4, 6.

in (I01) becomes larger. The net effect allows for a widemgeafor the realizations of the random

step-sizes. Moreover, it is easy to verify that the uppemidom (101) is larger than that if_(98).

C. Condition for Fourth-Order Stability

Result [94) establishes that the network is mean-squal#estander the assumption of bounded
second-order moments for the gradient noise process ag)nl{2esired, under a similar condition on
bounded fourth-order moments for the gradient noise, weatsm establish by extending the arguments
of Appendix[D and[[57] that the error recursidn(87) is stahleéhe fourth-order sense.

Theorem 2 (Stability of fourth-order error moments): Assume the fourth-order moments of the gradi-

ent noise components are bounded by
E[||vgi(wki—1)[|*[Fi1] < @?||w® = wyia|* + o, (102)

for some constants > 0 ando, > 0. If

~(4)
My )\k min
< : 103
P 3Af max T 40 (109

holds for all &, then the fourth-order moments of the individual errors asgmptotically bounded by

lim sup Ellwg;||* < b7 - ? (104)

1—00

where the parameter is defined by

g, a 30’3(/@ + 1)
koo g ming A\ min

Proof: See AppendiXE. [ |

(105)
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It is easy to verify that conditiori (102) implies a bound oe gecond-order moment of the gradient
noise:

E[[|vk,i(wri—1)[]*[Fi—1] < eflw® — w1 ||* + o7 (106)

although the converse is generally not true. In other woitdis, redundant to assume both conditions

(Z7) and [(10R). It can be verified that condition (1L03) impl{83) (see[(200) and (201) in Appendik E).
Therefore, conditions (102) and (103) are sufficient to emdoth mean-square and fourth-order stability

of error moments. Moreover, it is straightforward to verihat

_(2) ﬂ(4)
v, = max —— < max _—k =v (207)
ko pk ko pg

Therefore, we can use to upper bound,.

VI. CONCLUSION

We introduced a fairly general model fasynchronous behavior over networks with random step-
sizes, links, topologies, and combination coefficients. tén carried out a mean-square analysis and
showed that, even under non-vanishing step-sizes, theklsymus network remains mean-square stable
for sufficiently small step-sizes. We derived a conditiontba first and second-order moments of the
random step-sizes to ensure stable behavior. We spedidiizaesults to two models: a Bernoulli network
and a Beta network. It was observed that the Beta networktadmiider range of step-sizes for stability.
The results suggest that networks where step-sizes assalomesvandomly within a certain interval are
robustly more stable than networks that have their stegsdie turned on or off. In Part IL[2] of this
work, we derive explicit closed-form expressions for the MBerformance and use these expressions
to clarify how the parameters of the asynchronous behamituuence both the convergence rate and the
MSE performance. We will also be able to establish the usdfidtering property illustrated by Figl 5,
namely, that the iterates at the various agents approacbptiraal solution within accuracg () while

clustering close to each other withi(v'7) for some~y/, > 0.

APPENDIX A

EQUIVALENT COMPLEX-DOMAIN REPRESENTATIONS

First, we recall the definition of theeal Jacobian of a real-valued functioi{w) with respect to a real

column vectorw € RM as

(108)

OJ (w) 20 oJ(w) 9J(w) oJ(w)
Ow YV 0w ows T dwar
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wherew,, € R denotes then-th element ofw. Using [2), the real gradient of the functiof (w) with

respect tow is defined as
a O0Jp(w)

) _ _ | 8Je(w)  8Jx(w)
vak;('UJ) - aw - |:8§Re(w) 83m(w)] (109)

and the real Hessian matrix of the same functiw) with respect tow is defined by

J(w) ] T 9 aTu(w)] T
dJy, () T BSR?(U)) [89‘&(11})} oom(w) [ﬁfﬁke(w)]

0w ] - 9 o) T ) 8Ju(w) T
ORe(w) [ajm(w)] OTm(w) [aﬁm(w)}

B
2 Na 9
VaarJu(0) = - [ (110)

It is easy to verify thatv2 . J,(w) is a symmetric matrix.
Then, we define the derivative of a real-valued functifz) with respect to the complex argument
z € C as [58], [59]:

0J(z) o 1 ( 0J(2) . 0J(2)
<89{e(z) _jajm(z)> (111)

0z 2
and thecomplex Jacobian of a real-valued functioh(w) with respect to the complex column vector

w € CM is given by

(112)

)

) {&f(w) 0.7 (w) aJ(w)}

E?wl 8w2 B Z?wM
wherew,, € C denotes then-th element ofw. The complex gradient of the real-valued functidy(w)

with respect to the complex vector argument C is defined as[[59, eq. (20)] (compare with (1.09)):

s 0J(w) 1 (0J(w) . 0J(w)
Vudi(w) = =5 = =5 <ame(w) —J 83m(w)> (113)

and the complex conjugate gradient.bf(w) with respect taw* € CM is defined by[[59, egs. (21, 22)]:

= 3;;@ = [V Ji(w)]* (114)

Using [4), the complex gradient of,(w) with respect to the column vectar € C2 is then given by
[59, eq. (18)]:

V= Ji (w)

Yy ilw) = 20 D) (Ve syl (115)
and the corresponding complex conjugate gradient is giyen b
o0J *
Vo i (w) = [%} ~ (Vi) (116)

The complex Hessian of,(w) with respect tow € C3 is defined by[[59, eq. (32)]:

o [0Jk(w)]”
2 s Y k
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Vi Je() (Voo Ji(w))*

_ (a17)
V%UUJTJk(w) (v%uw* Jk(w))T
where
[ 82Jk(w) 82Jk(w) 82Jk(w) ]
Owsow, owidw, " OJwidwm
0 [0Jy (w) * Ow};ow, Owidw, T Owidwn
. L2 - = 118
Vi) £ o | (118)
82Jk(w) 82Jk(w) 82Jk(w)
owi, 0w, Owi0ws " Owh 0wy
[ 82Jk(w) 82Jk(w) 82Jk(w) T
Owi 0w, Ow, Ows T Ow, 0w pr
8 8J (w) 8w28w1 ngawg tee awgawM
2 A k
: &~ | RV 119
Vi) £ o | )] (119)
82Jk(w) 82Jk(w) 82Jk(w)
611]1%611]1 8’!1}1»{8’!1}2 tee 8’!1)1»[8’!1}1»{
It is easy to verify that2 . Ji(w) is a Hermitian matrix.
From [109) and[(115), we have [59, egs. (18, 19)]:
Vodi(0) = VyJi(w) - D (120)
1
Vadi(w) - §D* = VuJi(w) (121)
Similarly, from (110) and[(117), we have [59, egs. (32, 33)]:
V2 k(@) = D* - [V2, . Jp(w)] - D (122)
1
D (V25 Jk(@)] - D* = V2, . Je(w) (123)

Identities [(12D)-+£(123) play an important role in our analys

APPENDIX B

PROOF OFLEMMA [

Expression[(50) is becaugs; (i) and u,(i) are uncorrelated wheh # ¢. Expression[(52) is obtained
by using [50) and(36). Using (P9) and Lemfda 2, we have

a(@)=1— Y  aw@)=1- Y agli) (124)

LeEN,\{k} LeN\{k}
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sinceay (i) = 0 for any ¢ € N \N% ;. Whent + k, all entries inA; are uncorrelated with (i) except

for the (¢, k)-th and(k, k)-th entries. It follows from LemmBl|2 that

Catk ik = E[(aek (i) — @) (ark (i) — axr)]

(i) — Z El(am (i) — am)(@nk (i) — ang)]

= — E(agk(i) — dgk)2

—
=

[

= — Ca,tk,tk (125)

—
~

for any ¢ € M \{k} since [I2b) holds for any realization of the random neighbod A/}, ;, and where
step (a) is due to(124); step (b) is becaysg(i);n € Ny;\{k}} are all uncorrelated withu, (i)
except foras (i) itself, anda (i) = 0 for any ¢ € N\N;; and step (c) is because ¢f{43). From
(128), we get[(Bl1). Wheid = k, all entries inA; are uncorrelated witla (i) except for the(/, k)-th

entries for alll € Ay ;. It follows from Lemma2 that

Cakktk = El(ark (i) — arr) (@ (i) — ag)]

= — Ca lk,lk> 0 e Ni\{k} (126)
Ca,kk,kk @ > Ellan(i) — an)(@nk(i) — an)]
LneN\{k}
u Z E(anm (i) — dn)”
ZEN)@\{]@}
(2 Z Ca, 0k 0k (227)
ZENk\{k}

where [126) is because ¢f (125); step (a) is becaude of (8&84);(b) is becauspuy (i); £ € Ny \{k}}
are mutually-uncorrelated, an (i) = 0 for any ¢ € N\ N;; and step (c) is because 6f{43). From
(1286) and[(127), we get (b1).

APPENDIXC

DERIVATION OF ERRORRECURSION (813)—{(81b)

Applying the transformatiorT from (4) to both sides of the error recursidn (B0g)—={80b),get

Pri = Whio1 + k(0 Vi Jo(Wii1) + vpi(wpio1)] (128a)
Wri= Y ag(i) e, (128b)
LeN
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where, by definition,

V= Ji (W)
T(V Ju(w)) = = V- Ji(w) (129)
VwT Jk (w)

Thereal gradient defined by (109) can be expressed using the meaa-trdorem as [54]:
Vgt Ji (w0 [/ V2 (0 — t(w° — ))dt| (0 — ©°) (130)
since Vg Ji (w°) = 0 by AssumptiorL. Fron{6)[(IB0Y,_(121), add (123), we get

1

:/111) (V2 e Juo(@® — t(@° — @))] D*dt - D(w — @)
[/ V2 J(w® — t(w” w))dt] r— (131)
Letting w = wy, ;—1, we get
Vo Ji(Wk,i—1) [/ Vo Je(w® — tawy ;- 1)dt] Wy i1 (132)

Then, by [13R), the error recursidn_(128a) and (128b) careheitten as[(81a)=(81b).

APPENDIXD

PROOF OFTHEOREM[I

We start from equatior (81b). Since the squared Euclideamrjo ||? is a convex function of its

vector argument, using Jensen’s inequalityl [51] we get

[@rill* < D amw@el® = awi)Peil (133)

LeN L, LEN
sinceay (i) = 0 for any ¢ € N\ N; by (29) and Lemma]2. Taking the expectation of both sides of

(@I33) and using the asynchronous network model, we get

E|lwyi||* < Z aon Bl ||* < maX{EHT/’uH } (134)
LeN

Conditioned orF;_, the random matrixt}, ;_; defined by [(8R) becomes deterministic. Let
i 2 Lo — (i) Hi i) (135)
From (81&a), we get

- (@) ~ ,
E(9el*[Fi-1) = E(lwri-1l%, [Fi-1) + Elpi (0) | vri(wr,i-1)|*[Fi-i1]
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(b) - _

< E(|Zkll - |1Wki—1)*|Fiz1) + (TR + cur) - Elllvws (wii—1)||*[Fii]

(c) _ -

< E(||Zkll[Fic1) - [|@ni-1]1* + (B; + cue) - (o [|[Wpia]® + 207) (136)

where step (a) is fronl_(I85) and cross terms are eliminatedsinyg the conditional independence and
zero-mean properties af; ;(wy ;1) from Assumptiori B; step (b) in_(1B6) is due to the asynchrenou
network model and the sub-multiplicative property of thedm; and step (c) is by conditioning and
(27). Using Assumptions| 2 and (82) we have

1 — i (2) Mg max < AMLanr — e (0)Hy 1) < 1 — pug(4) \emin (137)

Then, from [(13b6), we obtain

A (Ek,z) < maX{(l - lj'k(i))‘k,min)27 (1 - p’k(i)/\k,max)2}
= max{l - 2/1'k(i)>‘k,min + Mz(i)/\i,minv 1- 2/1'k(i)/\k,max + ui(i)Az,max}
<1 = 205 ()M min + 17 (AT e (138)

becauseu (i) is nonnegative. Therefore, we have

(a)
E([|Z,illlFi-1) = E[Amax (Zg,i) [Fi-1]

(b)
< E[l — 2I4Lk(i))\k,min + Hz(i))‘i,max]

= M (139)
where step (a) is becau®, ; in (I35) is Hermitian and positive semi-definite, and itgyé&st singular
value coincides with its largest eigenvalue; step (b) is diypgi (138) and the independence condition in

the asynchronous model; and step (c) is[by (89). Subsiif\{fif9) into [136), and taking the expectation

of both sides with respect t@; ; yields

El|thr,il|* < [v7 + a(if + cppn)] - El@ri—1 [ + 2087 + cupn)o (140)
Combining [140) and_(134) yields
Ellwpi|* < max{(1 + (i} + cuen)] - Bl e + 25 + cuee)or} (141)

Dividing both sides of[(I41) by 2 and using the fact tliatwy. ;1 ||> = E|wk;—1]/*/2, we get

EH'LT:szz < m?x{’y? + a(ﬂ? + cu,m)}} |:m?XE|”lEz7Z’_1”2:| + [m?x{,uf + CM&Z}] . ag (142)
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Now since inequality[(142) holds for eveky using [88), we conclude thdt (92) should hold. Propagating
(92) backwards to the starting point yields

A
(i) < B E(=1) + 007 - B (143)
=0
wheree?(—1) £ maxy E ||wy _1||? represents the initial error variance. In order to guamateonvergent
upper bound, we requirgg| < 1, which, by [89) and[(90), is equivalent to
1 — 270 Mmin + (7 + o) Vi mmax + )| < 1 (144)

for any k. A sufficient condition for[(144) is given by

/Z% + Cu,k,k 2)\k,min
— < 5
Hi a+ Ak,max
It is easy to verify that conditiod_(93) is a sufficient comatit for (I458). Therefore, if conditior_(93)
holds, then/s| < 1.
Now under condition[(145), we obtain from _(92) that

Pop(1— B

(145)

(i) < BT E(-1) + =3 (146)
Wheni — oo, we get an upper bound for the individual MSD:
0 2
lim sup €2(i) < Ty (147)
1—00 1- 5
In the following we simplify the upper bound if (147). Frondj%nd [(89), we get
L= B =1 —max{y; + (i + cupn)}
= 1= max{1 = Ak min + (% + € k) M max + @)}
=2
= min {ﬁk . |:2/\k,min - at +_CMJ€J€ (Oé =+ /\% max):| }
k Hk ’
fiy + Cukk
> min{jig } - min [2)\k7min N LR Y max)] (148)
k k ik ’
Using [93) again, we get
B2+ Cukk 9
Tk T (a4 A2 ) < Memin (149)
Kk ’
Hence, relation[(148) can be further expressed as
1-8> m}jn{ﬂk} ’ mkin{)\k,min} (150)
From [91) we get
=2
f < max M - max i (151)
k s k
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Therefore, when — oo, using [150),[(151),.(38), an@ (95), we get from (L47) that

fo?
lim sup €2(3) < v
0'12) maxk{ﬂk} ﬂ% + Cuk k
= ming {Ag min } ming{fig} "k fik
2 )
< MO ey BT Gk (152)
ming{ A\ min} i
Substituting [(9b) into[(182) completes the proof.
APPENDIX E

PROOF OFTHEOREM[Z

From [81b) and using Jensen’s inequality, we obtain undpee&tation:

Ell@el* < amEllpes)* (153)
LeN
for all k. Therefore, we have
max B[ @ i[|* < max by (154)
From (81a), we have
nill* = lI[Tons — p(8) Hjj—1 @k i1 + po(8)wp i (wi i) |[* (155)

Lemma 5 (Fourth-order inequality): For any two vectors andy of the same size, it holds that
e +ylI* < [l + 8ll|* [y + 3llyl* + 4l *Re(z"y) (156)
Proof: It holds that
le +ylI* = [llz]* + 29%e(z"y) + [ly[*)?
= [l + 4[Re(z*y)]” + lyll* + 22|y + 4] =] *Re(z*y) + 4Re(z*y)|y|*  (157)
The result now follows by using the inequalities:

[9Re(zy)|” < llz|*lly]®, 2%e(z"y) < [|l2|® + [ly| (158)

Referring to [(15b), if we make the identifications

x = [Iong — pi(0) Hy i1 ) Wi i1, Yy = pp (1) g i (W i—1) (159)
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then we obtain

lz|*<a-b,  |y|*=c-d (160)
where
a 21— 205() Memin + 17 (DA} max (161)
b £ Wy, (162)
c 2 pi(i) (163)
d 2 ||ogi(wri-1)| (164)

Using Lemmd.b, we obtain froni_(160) that
lz+yllf <a? b +8a-b-c-d+3c?-d + 4|z|2Re(z"y) (165)
where
a® = [1 = 20t (1) Memmin + 13 (1) A7 )
=1 — 4pk ()b min + 282 () 2A% min + M mmax) — 408 (D) Memin A max + B (D Ak max
< 1= g () Ak min + 288 (1) (2A% min + AR mas) T H5 ()N max (166)
¢ = (i) (167)
a-c=pp (i) = 26 (D) Memin + B4 (DN max
< (1) + Bk (DAF (168)
Taking the expectation of (165) conditioned Bn_ ;, we get
E[|z + y||*|Fi_1] < E[a®] - b* + 8E[a - ] - b - E[d] + 3E[c?] - E[d?] (169)

where the last term disappears becayshas the noise factor that is conditionally zero mean. From

(166)-[168), we have

E[a2] < 1- 4/11(:))\k,min + 2/1122) (2)‘z,min + )‘i,max) + ﬂl(;l) )‘i,max (170)
Elc?] = i) (171)
Ela- ¢ < a7 + g 2F o (172)

Whereﬂ,(fm) £ E[ul(i)] denotes then-th moment of the random step-size parametg(i). It follows

from (102) that
E||wk,i(wki—)|'[Fim1] < o - ||[@gia || + 4oy (173)
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where a factor oft appears because of the transfdliifi). Likewise, it follows from [(106) that
Ell|vg,i(wri—1)|[*|Fim1] < o [[@gi-1]* + 207 (174)
Using [173) and[{174), we can bound the quantifiéé?] andE[d] in (I69) by
E[d’] < o - ||[wyi1||* + 40y = o® - b7 + 4o (175)
E[d) < o |Wpi|* + 205 = - b+ 20, (176)
Substituting [(170)£(172) and (I759)=(176) info (1169), we ep with
Elllz + gl 1Fi-1] < 11— 42 Mmin + 287 (20 i + N ) + 71 M a7
+ 81 + 02 ] b (0 b+ 20%) + 30 - (02 - b2 + o)
= [1- 4#,& NNemin + 2085 202 1min + A2 e + 400)

I O e+ 80A7 e + 302)] - 2 + 160217 + AIAF ] - b+ 1207200

L (1= hpa) b+ heo b+ hs (177)
where
Bt 2 48 M min — 2807 (22 1nin 4 A + 40) — U () ax + 8OAT e + 302) (178)
hio £ 1607 (i, @ Mi(g DY: max) (179)
his 21205 (180)

Substituting [(159),[{185), and_(162) info (177), we get

[HTPk AHFii1] < (1= hp) - ([ @rial|* + bz - | @k ||> + hes (181)
Taking the expectation with respecti_; yields

EHT/’k AP < (1= hey)  El|l@g i1 ||* + hio - Ellwp;_1]|* + hrs (182)
From [94) in Theorerfil1, we know for large enougthat

E||@gi1]% < 2(b+e) - v (183)

where we used the fact thit|?> = 2||w||?, and0 < ¢ < 1 is a small number. Therefore, we can bound

E\\Q_Zk7i|]4 in (I82) for large enough by

EHiPk ' < (1= hey)  El|lwgia||* + heo-20b+€) - v+ his (184)
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Substituting [(184) into[(154), we get

max EH@MH‘l < [mkax(l — hga)]- mkaxE|]@k7i_1H4 + mkax[hhg 2(b+€) v+ hys]

Let
Y4 = m]?X(l —hga) =1~ min g,y

94 £ m]?x[hk’g . 2(b + 6) 2 hk’g]

whereb is from (98). We can then usk _(185) to write for large enoudihat

m/?XE||@k,z’H4 <7 m,?XEH@kJ—l”Ll + 04

35

(185)

(186)

(187)

(188)

Therefore, the fourth-order moment of the individual eiisogoverned by[(188). Whenevey,| < 1, the

quantity maxy, E||wy;||* will have a bounded value asymptotically. In order to guteaim,| < 1, it is

sufficient to have

0 < 4fi” M min = 27117 (2N mmin + M e +40) = i (M s + 80AF o + 302) < 2

for all k. This condition can be guaranteed by the sufficient conutio

4:[‘](@1) /\k,min <2

A7 2N i+ A2 e+ 40) < 58 N i

ﬂl({jl) ()\i,max + 804)\%7max + 3042) < /jl?) (2)‘i,min + )‘i,max

Condition [190h) is equivalent to

ﬂg)<:2A;mm
Condition [190b) holds if
ﬂf) Ak, min
ﬂ](fl) 3)\i7max + 4o
Condition [190) holds if
B o1
ﬂ;(f) Aimax + 4o
because
A% max T 40 g 207 min T Momax T 40
(Mmax 400 7 AL L+ 8] o + 302
Since, for any random variabley (i),
AP <A, P <
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(190a)
(190b)

(190c)

(191)

(192)

(193)

(194)

(195)
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it is straightforward that

wp (B2 8P A
max [ﬂk ] ) _(1) 9 _(2) é _(1) 9 (196)
My My [Nk ]
On the other hand, it can be verified that
A i 1 1
,nin . 197
(B + 40 {Mz,mm’ YR 497

Therefore, if condition[(103) holds for all, then [191)+£(193) hold, and,| < 1 holds. Using[(196) and

the new definition ofv in (I08), we obtain

iy <v, gl <ot md <ot (198)
Using (198), we have
hi2 < 1602021 + /\%maxuz), hiz < 12004 (199)

It is worth noting that the new definition of in (108) bounds the old definition ib_ (B5) from above since

9 _(2) —(4)
Hig & Cuke _ Hy Hi

P (Y (200)

H, H,
due to [(196). It is easy to verify that
)\k min )\k min
: : 201

N H10 0 N 2on

With (200) and [[201), it is obvious thdf (103) impliés1(93).
When|v4| < 1, the recursive inequality (188) leads to

lim sup [maXEH@k,i||4:| < . (202)
i—00 k 1=
Substituting [(179) and (180) intd (187) yields
61 < max[1607 (" + A mae) - 200 + € + 12037
) iy (4)
= max 32020, [ 1+ %Aimx (b+ e)v + 1200 fiy, (203)
P,
wherev is given by [105). Using (103) and (196), we have
ﬂ](:l) 2 )‘z,max)‘z,min )‘é,max 1
ﬁ)‘k,max < ) 7 > 3 5= 3 (204)
ﬂk (3)\k,max + 4a) (3)\k,max) 9

Substituting [(204) into[(203) yields

1
0y < max 3202ﬁ£2)§0(b +ev+ 1203,&,&4)

v
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()

ax (120202 30w + 02M
v ~)

P,

120 3b1/ + 021/2)}

=(2)
[ 12,,u,(€1 ML (3bv + o2v )]

iy

< max [1201)#]2 )2 2(3b+ o I/)} (205)

where step (a) is by choosirg< b/80; and steps (b) and (c) are by using (105) dnd(196). Subsgtut

(190D) and[(190c) intd (178) yields
Bt > 8 M in (206)

It follows from (186) and[(206) that

L= s = min by > minff) A min] > min i - min A min (207)

Substituting [(206) and (207) intd (202), we arrive at

~ 120202%(3b + 02v) - max i
lim sup [maXE|’wk,iH4] < o @ o”) k Hi

< 1203(31) + agu) maxy, g,(j) 2

mink )\k ,min mink ﬂ](gl)

< 12502 (3b + o2 I/)VQ

(208)
mlnk )\k,mm
where we used (38) in the last step. Fram (103) and](105),6asy to verify that
/\k min 1
< : < 209
YR da T Bming A (209)
Then, from [(95) and (209), we obtain
2 2 2
I 3ko; L% - 3%(5 +1) (210)
Ming A min -~ 3MiNg Agmin  MiNg Ak min
Therefore, we obtain froni (208) and (210) that
lim sup [mkax IEH@,C,Z-HLL} <b3-v? =002 (211)
1—00

due to the identityj|w||* = 4, whereb, is given by [105).

September 12, 2018 DRAFT



38

REFERENCES

[1] X. Zhao and A. H. Sayed, “Asynchronous diffusion adaiptatover networks,” inProc. European Signal Process. Conf.
(EUSIPCO), Bucharest, Romania, Aug. 2012, pp. 27-31.
[2] X. Zhao and A. H. Sayed, “Asynchronous adaptation andnieg over networks — Part Il: Performance analysi€EE
Trans. Sgnal Process., vol. XX, N0. XX, pp. XXXX—XXXX, XXX 2015.
[3] X. Zhao and A. H. Sayed, “Asynchronous adaptation andnieg over networks — Part 1ll: Comparison analysiEFEE
Trans. Sgnal Process., vol. XX, N0. XX, PP. XXXX—XXXX, XXX 2015.
[4] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and A.a8lione, “Gossip algorithms for distributed signal
processing,’Proc. |IEEE, vol. 98, no. 11, pp. 1847-1864, Nov. 2010.
[5] S. Kar and J. M. F. Moura, “Convergence rate analysis efritiuted gossip (linear parameter) estimation: Fundaahen
limits and tradeoffs,”IEEE J. Sdl. Top. Sgnal Process., vol. 5, no. 4, pp. 674-690, Aug. 2011.
[6] A. Bertrand and M. Moonen, “Low-complexity distributédtal least squares estimation in ad hoc sensor networkEFE
Trans. Sgnal Process,, vol. 60, no. 8, pp. 4321-4333, Aug. 2012.
[7] O. N. Gharehshiran, V. Krishnamurthy, and G. Yin, “Dibtrted energy-aware diffusion least mean squares: Gaewdtic
learning,” IEEE J. Sdl. Top. Signal Process., vol. 7, no. 5, pp. 1-16, Oct. 2013.
[8] C. G. Lopes and A. H. Sayed, “Diffusion least-mean sqgsiameer adaptive networks: Formulation and performance
analysis,” IEEE Trans. Sgnal Process., vol. 56, no. 7, pp. 3122-3136, July 2008.
[9] F. S. Cattivelli and A. H. Sayed, “Diffusion LMS strategi for distributed estimationEEE Trans. Sgnal Process., vol.
58, no. 3, pp. 1035-1048, Mar. 2010.
[10] L. Xiao, S. Boyd, and S. Lall, “A space-time diffusiontmmme for peer-to-peer least-squares estimation,”Prioc.
ACM/IEEE Int. Conf. Inform. Process. Sensor Networks, Nashville, TN, Apr. 2006, pp. 168-176.
[11] A. H. Sayed, “Adaptive networks,Proc. |IEEE, vol. 102, no. 4, pp. 460-497, Apr. 2014.
[12] J. B. Predd, S. R. Kulkarni, and H. V. Poor, “A collabavattraining algorithm for distributed learninglEEE Trans. Inf.
Theory, vol. 55, no. 4, pp. 1856-1871, Apr. 2009.
[13] S. Theodoridis, K. Slavakis, and |. Yamada, “Adaptiearning in a world of projections: A unifying framework fanéar
and nonlinear classification and regression taskSEE Sgnal Process. Mag., vol. 28, no. 1, pp. 97-123, Jan. 2011.
[14] S. Chouvardas, K. Slavakis, and S. Theodoridis, “An@ptobust distributed learning in diffusion sensor netejr |EEE
Trans. Sgnal Process,, vol. 59, no. 10, pp. 4692-4707, Oct. 2011.
[15] J. Chen and A. H. Sayed, “Diffusion adaptation stragedor distributed optimization and learning over netwgrk&EE
Trans. Sgnal Process,, vol. 60, no. 8, pp. 4289-4305, Aug. 2012.
[16] D. Gesbert, S. G. Kiani, A. Gjendemsjo, and G. E. Oiengddftation, coordination, and distributed resource atlonan
interference-limited wireless networksProc. IEEE, vol. 95, no. 12, pp. 2393-2409, Dec. 2007.
[17] P. Di Lorenzo and S. Barbarossa, “A bio-inspired swaignalgorithm for decentralized access in cognitive radl&EE
Trans. Sgnal Process,, vol. 59, no. 12, pp. 6160-6174, Dec. 2011.
[18] K. M. Passino, “Biomimicry of bacterial foraging for stributed optimization and controlJEEE Control Syst. Mag., vol.
22, no. 3, pp. 52-67, June 2002.
[19] R. Olfati-Saber, “Flocking for multi-agent dynamic ggms: Algorithms and theory'EEE Trans. Autom. Control, vol.
51, no. 3, pp. 401-420, Mar. 2006.
[20] S. Barbarossa and G. Scutari, “Bio-inspired sensownoii design,”|EEE Sgnal Process. Mag., vol. 24, no. 3, pp. 26-35,
May 2007.

September 12, 2018 DRAFT



[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

39

F. S. Cattivelli and A. H. Sayed, “Modeling bird flightrimations using diffusion adaptatior EEE Trans. Sgnal Process.,
vol. 59, no. 5, pp. 2038-2051, May 2011.

S-Y. Tu and A. H. Sayed, “Mobile adaptive network$EEE J. Sal. Top. Sgnal Process., vol. 5, no. 4, pp. 649-664, Aug.
2011.

J. Tsitsiklis and M. Athans, “Convergence and asyniptagreement in distributed decision problemdEEE Trans.
Autom. Control, vol. 29, no. 1, pp. 42-50, Jan. 1984.

J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distriedtasynchronous deterministic and stochastic gradiemmizaition
algorithms,” IEEE Trans. Autom. Control, vol. 31, no. 9, pp. 803-812, Sept. 1986.

L. Xiao and S. Boyd, “Fast linear iterations for distited averaging,”System Control Lett., vol. 53, no. 9, pp. 65-78,
Sept. 2004.

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randothgssip algorithms,1EEE Trans. Inf. Theory, vol. 52, no.
6, pp. 2508-2530, June 2006.

P. Braca, S. Marano, and V. Matta, “Running consensusiialess sensor networks,” iaroc. Int. Conf. Inform. Fusion
(FUSION), Cologne, Germany, June - July 2008, pp. 1-6.

A. Nedic and A. Ozdaglar, “Distributed subgradient huts for multi-agent optimization'/EEE Trans. Autom. Control,
vol. 54, no. 1, pp. 48-61, Jan. 2009.

S. Kar and J. M. F. Moura, “Distributed consensus alpons in sensor networks: Link failures and channel noiteEEE
Trans. Sgnal Process,, vol. 57, no. 1, pp. 355-369, Jan. 2009.

K. Srivastava and A. Nedic, “Distributed asynchronawmnstrained stochastic optimization/EEE J. Sdal. Top. Sgnal
Process,, vol. 5, no. 4, pp. 772-790, Aug. 2011.

O. Hlinka, O. Sluciak, F. Hlawatsch, and P. M. Djuric, ikelihood consensus and its application to distributedigar
filtering,” 1EEE Trans. Sgnal Process., vol. 60, no. 8, pp. 4334-4349, Aug. 2012.

D. P. Bertsekas, “A new class of incremental gradienthoé@s for least squares problem&'AM J. Optim., vol. 7, no.
4, pp. 913-926, 1997.

A. Nedic and D. P. Bertsekas, “Incremental subgradieathods for nondifferentiable optimizationrdAM J. Optim., vol.
12, no. 1, pp. 109-138, 2001.

M. G. Rabbat and R. D. Nowak, “Quantized incrementaloathms for distributed optimization,”|EEE J. Sd. Areas
Commun., vol. 23, no. 4, pp. 798-808, Apr. 2005.

D. Blatt, A. Hero, and H. Gauchman, “A convergent incesttal gradient method with constant step siZAM J. Optim,,
vol. 18, no. 1, pp. 29-51, Feb. 2007.

C. G. Lopes and A. H. Sayed, “Incremental adaptive agias over distributed networks/EEE Trans. Signal Process.,
vol. 48, no. 8, pp. 223-229, Aug. 2007.

A. H. Sayed, S.-Y. Tu, J. Chen, X. Zhao, and Z. Towfic, fDdion strategies for adaptation and learning over netsjork
IEEE Sgnal Process. Mag., vol. 30, no. 3, pp. 155-171, May 2013.

A. H. Sayed, “Diffusion adaptation over networks,” Atademic Press Library in Sgnal Processing, R. Chellapa and
S. Theodoridis, Eds., vol. 3, pp. 323-454. Academic Prelsgvier, 2014.

A. H. Sayed, “Adaptation, learning, and optimizationeo networks,” Foundations and Trends in Machine Learning, vol.
7, no. 4-5, pp. 311-801, July 2014.

S-Y. Tu and A. H. Sayed, “Diffusion strategies outpenfioconsensus strategies for distributed estimation ovaptack
networks,” IEEE Trans. Sgnal Process., vol. 60, no. 12, pp. 6217-6234, Dec. 2012.

September 12, 2018 DRAFT



[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]
[55]

[56]
[57]

[58]

[59]

40

S. Kar and J. M. F. Moura, “Sensor networks with randonksi Topology design for distributed consensu&EE Trans.
Sgnal Process., vol. 56, no. 7, pp. 3315-3326, July 2008.

T. C. Aysal, A. D. Sarwate, and A. G. Dimakis, “Reachingnsensus in wireless networks with probabilistic broaftas
in Proc. Allerton Conf. Commun., Control, Comput., Allerton House, IL, Sept. and Oct. 2009, pp. 732-739.

T. C. Aysal, M. E. Yildiz, and A. Scaglione, “Broadcasbssip algorithms for consensudEEE Trans. Sgnal Process.,
vol. 57, pp. 2748-2761, 20009.

S. Kar and J. M. F. Moura, “Distributed consensus alfons in sensor networks: Quantized data and random linkrés|”
IEEE Trans. Sgnal Process., vol. 58, no. 3, pp. 1383-1400, Mar. 2010.

D. Jakovetic, J. Xavier, and J. M. F. Moura, “Weight opization for consensus algorithms with correlated switghi
topology,” IEEE Trans. Sgnal Process., vol. 58, no. 7, pp. 3788-3801, July 2010.

D. Jakovetic, J. Xavier, and J. M. F. Moura, “Cooperatdonvex optimization in networked systems: augmenteddragn
algorithms with directed gossip communicatioh2EE Trans. Signal Process., vol. 59, no. 8, pp. 3889-3902, Aug. 2011.
C. G. Lopes and A. H. Sayed, “Diffusion adaptive netwsorkith changing topology,” irfProc. |EEE Int. Conf. Acoust.,
Soeech, Sgnal Process. (ICASSP), Las Vegas, NV, Mar./Apr. 2008, pp. 3285-3288.

N. Takahashi and |. Yamada, “Link probability contradrfprobabilistic diffusion least-mean squares over resour
constrained networks,” iProc. |EEE Int. Conf. Acoust., Speech, Sgnal Process. (ICASSP), Dallas, TX, Mar. 2010, pp.
3518-3521.

K. Kreutz-Delgado, “The complex gradient operator ahd CR-calculus,” 2009, arXiv:0906.4835 [math.OC].

Z. J. Towfic, J. Chen, and A. H. Sayed, “On distributedmmklassification in the midst of concept driftyéurocomputing,
vol. 112, pp. 138-152, July 2013.

S. Boyd and L. Vandenbergh&onvex Optimization, Cambridge Univ. Press, Cambirdge, UK, 2004.

A. H. Sayed,Adaptive Filters, Wiley, NJ, 2008.

J. Chen and A. H. Sayed, “Distributed Pareto optimaatvia diffusion strategies,"EEE J. Sel. Top. Sgnal Process.,
vol. 7, no. 2, pp. 205-220, Apr. 2013.

B. Polyak, Introduction to Optimization, Optimization Software, New York, 1987.

D. P. Bertsekas and J. N. Tsitsiklis, “Gradient conegrice in gradient methods with error&§'AM J. Optim., vol. 10, no.
3, pp. 627-642, 1999.

M. H. DeGroot and M. J. Schervistirobability and Satistics, Addison-Wesley, Boston, MA, 4 edition, 2011.

J. Chen and A. H. Sayed, “On the learning behavior of tdametworks,” submitted for publication, also available as
arXiv:1312.7581 [cs.MA], Dec. 2013.

T. Adali, P. J. Schreier, and L. L. Scharf, “Complexwadl signal processing: The proper way to deal with impraoptie
IEEE Trans. Signal Process., vol. 59, no. 11, pp. 5101-5125, Nov. 2011.

A. van den Bos, “Complex gradient and HessialZE Proc.-Mis. Image Signal Process,, vol. 141, no. 6, pp. 380-383,
Dec. 1994.

September 12, 2018 DRAFT



	I Introduction
	II Preliminaries
	II-A Equivalent Representations
	II-B Hessian Matrices

	III Asynchronous Diffusion Networks
	III-A Synchronous Diffusion Networks
	III-B Asynchronous Diffusion Networks
	III-C Properties of the Asynchronous Model
	III-D Two Useful Network Models
	III-D1 The Bernoulli Model
	III-D2 The Beta Model


	IV Main Results
	V Mean-Square Stability
	V-A Condition for Mean-Square Stability
	V-B Stability Conditions for Bernoulli and Beta Models
	V-B1 The Bernoulli Model
	V-B2 The Beta Model

	V-C Condition for Fourth-Order Stability

	VI Conclusion
	Appendix A: Equivalent Complex-Domain Representations
	Appendix B: Proof of Lemma ??
	Appendix C: Derivation of Error Recursion (??)–(??)
	Appendix D: Proof of Theorem ??
	Appendix E: Proof of Theorem ??
	References

