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Matching Pursuit LASSO Part II: Applications and
Sparse Recovery over Batch Signals

Mingkui Tan, Ivor W. Tsang, and Li Wang

Abstract—In Part | [I], a Matching Pursuit LASSO (MPL)  such as the least-angle regression (LARS)] [20], gradient
algorithm has been presented for solving large-scale spas projection for sparse reconstruction (GPSR)I[17], pr@ect
recovery (SR) problems. In this paper, we present a S”bSpacegradient (PG)[21], fast iterative shrinkage-threshotgbaithm

search to further improve the performance of MPL, and then . g .
continue to address another major challenge of SR — batch (FISTA) [22], coordinate descent methods|[23], proximai-gr

SR with many signals, a consideration which is absent from dient homotopy (PGH) method [18]. [19] and so on. Interested
most of previous ¢;-norm methods. As a result, a batch-mode readers can refer to Part | and the references therkin [1§ for
MPL is developed to vastly speed up sparse recovery of many more comprehensive review.

signals simultaneously. Comprehensive numerical experiemts on Existing ¢,-norm methods, however, suffer from high com-

compressive sensing and face recognition tasks demonsteathe . .
superior performance of MPL and BMPL over other methods putational complexity for large-scale SR problems. More

considered in this paper, in terms of sparse recovery abilitand ~ critically, for problems likebatch SR[24], in which many
efficiency. In particular, BMPL is up to 400 times faster than signals need to be sparsely recovered simultaneously, the

existing ¢;-norm methods considered to be state-of-the-art. computations will be even more expensive. Here, the batch
Index Terms—Batch mode LASSO, sparse recovery, big dic- SR problem is carried out to solve the following optimizatio
tionary, compressive sensing, face recognition. problem:
p
|. INTRODUCTION min IB— AX|[F+ A [xill1, (3)
With the fast development of compressive sensing the- =1

ory [2], sparse recovery (SR) has gained increased attentighere B = [b;, ..., b,] € R™*? records the measurements of
recently in the signal processing community [2], [8], [4].[lt p signals and|- || » denotes thé”-norm of a matrix. The batch
has also become a fundamental element of many other rese@Rproblem plays an important role in many applicationshsuc
areas, such as image processing, computer vision, datagnimis face recognitior [7]/[25], compressive sensind [J67],[2

and machine learning [6].[7].[8].[9][10].[11]. dictionary learning[[28],[[29] and so on.
Formally, SR seeks to recover an unknob#sparse signal

x € R™ from its nonadaptive linear measuremént Ax +

L A. Batch SR in Face Recognition
e € R", whereA € R"™*™(n <« m) denotes the dictionary, N 9 ) .
e € R” represents the noise, and each column vectoA of Face recognition by SR has achieved promising perfor-

is referred to as an atom. To recoverfrom b, one need to Mance recently [7][[25][[30].[31].[32]. The basic assuiop
solve anf,-norm minimization problem: is that, any testing image lies in a subspace spanned by the

training images of a persoml[7]._[33]._[25], thus it can be
minxjo, st b=Ax, (1)  sparsely represented by the training images. Here, thartggi
images are formed as a dictionaty € R"*™, wheren
Qenotes the number of pixels or features of a face image, and

. ; ) m denotes the number of training images. The core task of
solve its¢;-convex relaxations insteafl JL4L J19[1 [3], such 33R based face recognition is to find a sparse representdtion o

the following LASSO problem{[16]{[17][T18][[19]: a testing imagé over A. However, directly solving problem

min \|[x]); + le ~ Ax|?, @ (@) is computationally expensive especially wheris very
x 2 large [7], [33], [25]. Some researchers propose to reduee th
where X\ is a regularization parameter. Regarding problegomputational cost by dimension reduction methods, such as
(@), many methods have been proposed over the last decadadom projections [7]. However, the recognition rates may
be affected due to the dimension reductionl [33]] [25]] [10].
In practice, it is often required to recognize many face
images simultaneously in real-time, which is very challagg
Ivor W. Tsang is with the‘Cen‘tre for Quantum ComputathrinteIIigent for SR based methodE[]33]:ﬂ34]. To address this, the authors
Eyni:{“fvg?%'igga@%j?ﬁ eléﬂ“;irs'ty of Technology, Sydney gl TAustralia. in [33] suggest directly solvingnin, %||b — Ax||?, which is
o o denoted by L2; while the authors ih[34] argue that solving
Li Wang_ is with the' Institute for Computational gnd Exper'rm_a? a least square probleminx %Hb _ AX||2 + %HXHQ’ which
Eﬁjﬁgﬂi@dgg,ﬁ,";}f“ci“;f‘"cs (ICERM). Brown University, USA.met: is denoted by L2-L2, can achieve more stable performance.
For the L2 method, the optimal solution i& = RtQ'b,

where|| - ||o denotes the/s-norm of a vector. Probleni)(1) is
NP-complete[[12],[12],[TI8], and many researchers propose
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where A = QR denotes the QR decomposition &f, and The rest of this paper is organized as follows. In Sedfibn I,
R* denotes the pseudo inverse. For the L2-L2 method, the briefly review the MPL algorithm and then propose an
optimal solution isx* = (ATA + AI)"'A"b. Therefore, improved MPL algorithm with subspace exploratory matching
fast predictions can be achieved via simple matrix-vectar Sectior1ll, we describe the batch mode MPL method. Nu-
products by pre-computinB'Q" and (AT A + \I)~! off- merical experiments and real-world applications are priese
line. However, since the solutions of the two methods are niot Sectiond IV and"V/, respectively. Conclusive remarks are
sparse, the recognition performance may be degraded.  given in Sectiori_VI.

II. MATCHING PURSUIT FORLASSO

, | f th v d Throughout the paper, we denote the transpose of a vec-

Sparse recovery is a core element of the recently devgl iy by the superscript, 0 as a zero vector and diag)
oped COMPressive sensing theory_on signal acquisifion [ a diagonal matrix with diagonal entries equalwtoIn
In compressive sensing, a signal is allowe(_j to be C_aptu_rﬁgdition, let||v]|, and||v|| denote the/,-norm and/y-norm
at a rate_3|gn|f|cantly lower than the Nyquist rate, if it I$f a vectorv, respectively. For a functiorf(x), let V f(x)
compressible or can be sparsely decomposed under a bgﬁﬁ df(x) be the gradient and subgradient fx) at x

— mxXm i ’
U=, V) €R [3], [26]. To recover the original \ohactively. For a sparse vecter let the calligraphic letter
signal, we need to solve a sparse recovery probIETh (28], Supportx) — {ilz; # 0} C {1,...,m} be its supporte,
[27], _Wh'Ch might be Very expensive. Moreover, in real-v_ubrl be the subvector indexed By, and7 ¢ be the complementary
sensing tasks, such as imaging and video sensifg [ﬂ],|{35]$et of T, i.e. 7¢ = {1,..,m}\7. Furthermore, letA ® B

is often necessary to sense a large number of signals Sm’u'ta}epresent the element-wise product of two matrideand B.
ously in real-time. Therefore, it is critical to efficienthddress Lastly, let A denote the columns oA indexed byZ
the large-scale batch SR problem in compressive sensing. ' '

B. Batch SR in Compressive Sensing

A. Matching Pursuit LASSO

To introduce MPL, in[[1], we bring in a support detection

Dictionary learning, which aims to find a good dictionaryector+ € {0,1}™ to x, and impose arf,-norm constraint
based on a set of training signals, has recently become @m 7, namely|||jo < o, to enforce the sparsity. Here, is
creasingly important in many areas, such as signal prougssia predefined integer satisfying < o < k[ Let A = {7 :
computer vision and machine learning [[29],1[24].1[36].1[37]l| 7|0 < o, T € {0,1}"} be the domain ofr, we propose to
[38]. To learn a good dictionary, many training examples (@olve an integer programming model of LASSO:

C. Batch SR in Dictionary Learning

signals) are usually required to be sparsely represented at o 1 )

the same time, leading to an intolerable cost for dictionary min Iillél Alxll1 + 5 [1€]l (4)
learning. The large-scale batch SR problem therefore i@ co ’

step in dictionary learning [29][ [36]. st £=b-AxOT).

Rather than solving this problem directly, we bring in dual
variablesa. € R™ to the constraing = b — A(x ® 7) W.r.t.
any fixed r, and transform[{4) into a minimax problem by

In Part | of this paper, we has presented a matching pursifroducing the dual form of the inner problem [d (4):
LASSO (MPL) algorithm in relation to the computational

D. Main Contributions

issues of LASSO over big dictionaries. In this paper, we first min max  — 1||o¢||2 +a'b (5)
present a subspace search to further improve the perfoemanc TGAO‘GR; _ 2

of MPL, and then continue to address the computationaldsottl st e’ Adiag(T)[[o < A

neck created by the batch SR problem. The main contributions;

of this paper are summarized as follows: fla,7) = %HQHQ —a'b, acd,

« A subspace exploratory matching is proposed to improve
the performance of MPL. This new matching pursuitvhere A2 = {a : |a"Adiag7)|| < M\ a € [-1,1]"}
scheme takes less than 50 seconds to recov@d-aparse denotes the domain ok w.r.t. a feasibler, andl > 0 is
signal over a dictionary of one million atoms. a large number. By applying a convex relaxation[fo (5), MPL
« A batch mode MPL (BMPL), which is absent in mafyy  seeks to solve the following convex problem:
norm methods, is presented to address large-scale batch 0, st. fla,T)<0, ¥reA. ©6)

m
SR problems. QLER™ HER

« We apply BMPL to face recognition tasks on two well- 1y qetajls of MPL are presented in Algoritfiin 1. Basically,

known face databases, nameixtended YaleBand AR it iteratively adds a set of active atoms by worst-case aigly

databases. Comprehensive experiments show that BMfalsien 3 and conducts a master problem optimization insStep

achieves comparable or better recognition rates thang Letg = ATa!~! andZ; be the index set of the detected

baselines with comparable time complexity. Importantly o g at theth iteration, the worst-case analysis is to update
BMPL is up to 400 times faster than existifg-norm

methods considered to be state-of-the-art. nterested readers may find more discussiong of Part | [1].



7, based org. We find theo atoms with the largedy;|, and Lemma 1. Let f(x) = [x[1 + 3[&[° g = AT¢! and
then record their indices intg;. After that, we updatd€; by u' be the starting point regarding the inner loop. Assume
Z; = Z;—1 U J;. The master problem optimization from Stepsg;| > A for Vi € J.+1, where J;1; is obtained by Step 3 of

4-8 is to solve the following problem: Algorithm[3, with proper line search in PG, we have:
1 1
i A1 + 5lb— A, st xz; =o. @) PO = ) = o S0 (lgil = V)
*, 1€Tt+1

The proximal gradient (PG)_[21] (resp. conjugate gradiepfherel/L is the step size obtained by the line search in PG.
descent (CGD)[[39]) is adopted to solMg (7) whan> 0

(resp.\ = 0), as shown in the innefor loop. For thefor
loop, to distinguish it from the outewhile loop, we useu as

According to Lemmd]1, choosing atoms with the largest
lg;| can only guarantee the best improvement in objective
values after one iteration (e.g. = 1) of the inner loop.

variables. P
However, thesep atoms cannot guarantee the best objective
Algorithm 1 Matching Pursuit Lasso for Solvin§l(6) value improvement when more inner iterations (e.g. when
1 Initialize x° = 0, £° = b, T = 0. Lett = 1. s> 1) are used. In other words, the worst-case an_alysis in
2: while (The stopping condition is not achievedd Step 3 might be suboptimal when> 1. Wheny is relatively

3 Do worst-case analysis: large in particular, some non-support atoms that are withela
Letg = ATt !; choose the largest|g;| and record values of|g;| might be mistakenly added intg;. To address
their indices in7,: letZ, = 7, , U J;. this, we propose to first include more thar(e.g.wo, where
Initialize v}, = thjl and u%f —0. w > 1) new atoms wnh_the largesy;|, and then solve .the
for s =1, ... Syuax dO master problem in{7) with all of the selected atoms. Finally
Updateus, using PG § > 0) or CGD (A = 0) rules. we choosep new atoms t_hat decrease _the objective \(alue_
Break if the stopping conditions are achieved. the most as the most-active atoms. This scheme, which is
referred to as subspace exploratory matching, is sumntarize

© 0N aR

end for.
Setx, — uk, xb. — 0 andé’ = b — Az x. . Let in Algorithm[2. To improve the efficiency, we adopt a warm-
t = tﬁ 1. T T T start strategy (see Step 3), and use equdfibn (8) as thergjopp

10: end while condition in the master problem optimization.

Algorithm 2 Subspace Exploratory Matching

1: Given a dictionaryA, Z; 1, o', €;, andw(w > 1).

ﬁ: Calculateg = ATa!; choose thewp largest|g;| and
record the indices iy/,,; let Z, = 7,1 U J,.

Initialize uy = x7 ' anduf. = 0.

for s =1,..., Smax dO
Updateu? using PG & > 0) or CGD (A = 0) rules.

When\ =0 andp = 1, MPL in Algorithm 1 is reduced to
the orthogonal matching pursuit (OMP) [40], [41]. MPL is@ls
related to stagewise OMP (StOMP) [42] and stagewise wea
gradient pursuits (SWCGP for shorf) [43], in the sense tha&
all of them add a set of new atoms per iteration. However, in
SWCGP and StOMP, the number of atoms added per iteration
changes due to complex thresholding strategies [42], [43]. Quit if the stopping conditions are achieved
For example, in StOMP, the knowledge of noise is require end for. '
to determme the _number of new atoms. This knowledge& Sort thewo atoms inJ, in descending order byu,|;
however, is not available for general probleins [43]. To addr return the firsto atoms and record the indices if.
this, SWCGP adopts a simpler thresholding strategy that ig. LetZ, — 7, , UJ. Setx’. —u® andxb. — 0
independent of the noisé [43]. However, in SWCGP, only t Al et 7, = L. Iy =
one iteration is conducted (namely = 1) in the master
problem optimization. As a result, the master problem may For convenience, hereafter we refer to Algorithin 1 with
not be sufficiently optimized, and many non-support atontge subspace search as SMPL. In general, since tams
might be included accordingly, leading to degraded perfothosen in SMPL achieve better improvement in objective
mance. In contrast, MPL takes more iterations in the mast@lue than MPL, both convergence speed and sparse recovery
problem optimization before the following stopping comatit performance can be boosted, which can be observed ifiFig. 1

is achieved: in Section 1V-B.
FaY) - f(u®) _ The propiosed sut?space search is related to the atom selec-
a0 — ) < Ein, (8) tion strategies used in CoSaMP[44], $P1[45] and OMPR [46].
For example, to find: true supports, CoSaMP and SP choose
wheree;, denotes a small tolerance. 2k andk additional atoms respectively into the active atom set.
After that, a pruning step is performed such that dnlgtoms
B. Subspace Exploratory Matching for MPL are kept in the active atom set. In contrast, there is no atom

The convergence of MPL has been studied in Paff | [1r_placement or deleti(_)n in (S)MPL w.r.t. the ou_ter iterasio
However, the performance of MPL might be affected by th onsequently, SMPL is guaranteed to monotonically deereas

value ofo. To explain this, we first present a bound regardinj€ objective values as in MPLI[1]. Lastly, the subspacecsear
the progress of objective value per outer loop. of CoSaMP, SP and OMPR relies on the estimatioh,afhich

is not required in SMPL.



C. Stopping Conditions [1l. BATCH MODE MPL

Given a properly selected, a natural stopping condition

for (S)MPL is In the batch SR problem, suppose there arsignals to

« o <A e sparsely represented at the same time. Exigtingorm
laTAlls <A 9 b | d at th i Existi
methods, such as PG[21] and FISTA][22], taRémn) cost

reduce the solution bias of LASSO directly. Whans very per iteration. Suppos_e they .stop aftriterations, the total
cost for recovering signals isO(Spmn). On the contrary,

small, (S)MPL stops when|a|| <« ||e|| (heree denotes the . . L
ground(—tzuth noisg) anddi|t i! po!si|l|:)lfe that the over—ij:tinSlJppose (S)MPL stops aftéF iterations, it will reduce the
’ cost toO(T'pmn), whereT < S.

problem will happen. To prevent from the over-fitting prahle hel h lexity of q i il
we stop (S)MPL early if the following stopping conditiongar Vevertheless, the complexity of MPL and SMPL s sti
dependent om, making them expensive to tackle large-scale

achieved: X ; i .
problems that are with large. Essentially, this computational
la"Allo <7oo OF [laf] <72, (10)  burden is brought by the calculation @& "¢ (which takes
wherer.. andr; are pre-determined parameters. We can al§3(71) €ost) in theTz worst-case analysis. Therefore, how to
stop (S)MPL if reduce the cost oA ' £ is critical for improving the efficiency.
5t According to the studies in [17].[42], if the discrete Fauri
——__<e, (11) transform basis or wavelet basis are sampled to form the
lof (x9)| dictionary A, the computational complexity oA T¢ can be
whered? is the function value difference between tfie- 1) reduced toO(mlog(m)) with the help of the fast Fourier
and™ iteration, e is a small tolerance anfl(x°) denotes the transform (FFT). However, this technique cannot be applied
initial objective value. to general dictionaries.
Without early stopping, (S)MPL will achieve the LASSO To tackle many signals under general dictionaries, we pro-
solution, which may be biased (whenis large) or over-fitted pose below théatch-mode MPL (BMPL for short), in which
(when ) is small). For\A = 0 andp = 1 in particular, (S)MPL the computational cost can be greatly reduced. Actually, we

However, in practice, we may choose a smalin order to

will get the results of OMP[[40],141]. have AT¢ = AT(b — Arxz) = ATb — [ATA7|x7. Let
B=ATbandQ = ATA. If we pre-computeQ and/3, and
D. Implementation Concerns store them in the main memory, we can then calculatet

Several implementation techniques can be adopted to ikcording to
prove the efficiency of (S)MPL. Note that the master problem T
optimization in (S)MPL is w.r.t. a small set of atoms only. A €=p-Qrxz.
Let Z be the index set of selected atoms. We only need
calculate small scale matrix-vector produdtgxz and A} £.
For convenience, we refer to them as the partial matrixerec
product (PMVP). Correspondingly, we refer fox and AT ¢
as the full matrix-vector product (FMVP). Remark 1. To apply [I2), we need to compute the matrix
Firstly, since|Z| < m, computing the PMVP (e.gAzxz Q € R™*™ with O(nm?) cost, which is not efficient regarding
and A1 ¢) is much cheaper than FMVP (e.4x and A "€). a single signal. However, sind® can be calculated off-line,
To fully exploit this advantage, we stork atom by atom in this cost is negligible when dealing with many signals.

the main memory so that we can easily retrieve any atoms . . . . .
indexed byZ using C++ pointers. Since BMPL addg atoms per iteration, it requires consid-

; T

Secondly, when dealing with big dictionaries, the cache-t§rably fewer times of " £ than the batch mode ?MP (BOMP
memory efficiency is important. For example, the calcufaio 10" Short) [24]. Specifically, BOMP take® (pmk®) cost for
of PMVPs (e.g.Azxz and AT¢) may not be cache-to- P signals; while BMPL takeD(T'pmk) complexity, where
memory efficient, since the active atoms in general are vefy< k. o _ .
far away from each other in the main memory. To addressFor existing?;-norm methods, even though the intermediate
this, we explicitly storeA; and A; in the main memory. variables are sparse, it is not easy for them to conduct ttolba
Accordingly, we can compute PMVPs very efficiently. mode optimization, since the support setof intermediate

Thirdly, several iterations regarding the master problgm ovariables might change frequently during the optimizatias
timization are sufficient, which significantly reduce thewher @ result, frequent retrievals d; are very computationally
of PMVPs. Moreover, once updating, we setx? = uj for EXPENSIVE. _ _ o .
the purpose of warm-start (see Step 9 in Algorifim 2). In this The batch scheme is not applicable to a dictionary with

way, we can significantly improve the efficiency of the mastér Very Ia}rge number of atoms, because of ten*) Space
problem optimizatioﬂ. complexity to storeQ. Nevertheless, BMPL can be applied
to many large-scale tasks. For example, it can efficiently
2For fair comparison, we em_ploy the _above tgchniques to imefe thel1-  qeal with dictionaries 00(215) atoms on a 24GB memory
norm methods whenever the intermediate variables areespaesZ denote hi hich i ffici f | d licat
the supports of an intermediate, we replaceAx with Azxz, which will ~Machine, which s su .|C|ent or many real-world app icaso
improve the efficiency considerably. such as face recognition][7] and dictionary learning [10].

(12)

/&Os a result, the computation cost of computiag ¢ is reduced
to O(m|Z|), where|Z| < n. Since|Z| ~ k, the overall cost
Yor p signals become®(Tpmk).



IV. NUMERICAL EXPERIMENTS b is produced byb = Ax + e, wheree denotes the additive

In this section, we compare the performance of (S)MPLOISe uniformly sampled from-0.01,0.01].
with the following baseline methofs: To evaluate the sparse recovery performance of a method,

. Four state-of-the-art,-solvers: ShOtng‘I which uses we adopt thaoot-mean-square erro(RMSE) as the compar-

the parallel coordinate descent in C++ |[47]. FIﬁTAIson metric,

which uses the accelerated proximal gradient method with m

continuation technique [17][25]; PGH which uses the RMSE = Z (xF —x;)2/m,
homotopy method to improve the convergence speed [18], i=1

[L9]; S-L1 which adopts a screening test to predict the . . _
zero entries to improve the decoding efficiency [48]. yvherex denotes the recovered signal. Here, a sparse signal
MEﬁ],[49

. Several related greedy methods, such as RO f successfully recovered if RMSE1E—-3. For a complete

SIOMP @E and SWCGPI[43] are used for the Compar_omparison, we record thempirical probability of successful

ison. In addition, four well-known greedy algorithms, i'e.reconstructlor(EPSR) over/ independent experiments 45]

orthogonal matching pursuit (OMP)_[40],_[41], acceler-
ated iterative hard thresholding (AIHT) [50[, [51], [§2] B. Comparison with PGH, FISTA and Active-set Method

subspace pursuit (SP)_M8]and orthogonal matching \we compare (S)MPL with PGH, FISTA and Active-set
pursuit with replacement (OMPR) [46], are also includeghethods on recovering a 140-spaBernoulli sparse signal
as baseline methods. and a 140-spars&aussiansparse signal over &aussian
In the experiments, Shotgun is conducted in parallel on dittionary A € R2x2" 1o study the effect ofp, given
Intel(R) Core(TM) i7 CPU (8 cores) PC with 64-bit Linux OS;a basicp, we study2p and 4o. We study two\’s, namely
while the other methods are conducted on a 64-bit Windows = 0.005||A Tb||,, and A, = 0.00005||A "b||. In Fig.
operating system (OS) with the same computer configurati@.we report the objective values of the comparison methods
For fair comparison, all methods, except S-L1, ROMP andlr.t. iterations. In Tablg | and TaHI€ Il, we record the éaling
StOMP, are written in C++ running withingle core We run metrics: The number of full matrix-vector products (#FMYPs
S-L1, which is written in Matlab, in parallel on an eight-eor The number of partial matrix-vector products (#PMVPs); The
machine. number of nonzerosSparsity in solutions; The decoding time
(Timg for each signal; The speedufispeedupof the fastest
method over others.
Based on the results, we draw the following conclusions.

o From Fig.[d, (S)MPL with different’s converge much
faster than baseline methods. In particu&lv)PL(20) is
about 20 times fasterthan others on th&aussiarsparse
signal. FISTA converges well when= 0.005||A "b||.

In particular, the objective value decreases very quickly
at the beginning. However, it converges very slowly
when\ = 0.00005||A "b||. In fact, generally speaking,
the convergence rate of FISTA is only sub-linear, e.g.
O(1/k?) [22]. In contrast to FISTA, PGH solves a se-
guence of subproblems, and attain linear convergence rate
if the subproblem is strongly convex 18], |19]. Overall,

it performs much better than FISTA.

« Note that each FMVP take®(mn) complexity. From
Tabledl andl, (S)MPL with different’s need far fewer
FMVPs than other methods, which explains the signifi-
cant speedup of (S)MPL over other methods. Therefore,
(S)MPL are more suitable for big dictionaries.

o From Tableg§ll anffdl, in general, (S)MPL also need much

A. Experimental Settings and Performance Metrics

Following [18], [17], we setA\ = 0.005||A "b||, for ¢;-
norm methods. Unless noted otherwise, we apj#ybiasing
technigueto reduce the solution bias éf-norm method<d[17],
[25]. For (S)MPL, we apply the early stopping to avoid the
over-fitting problem with stopping condition

161/ (elIbll*) < 1.0 x 1072, (13)

whered? denotes the objective difference between tifieand

(t + 1)th iterations. We set the subspace search leagth3

for SMPL. For many greedy methods, such as AIHT, SP and
OMPR, we need to specif§. In the simulation, since we
know the ground-truttk, we setk = 1.2k. For OMPR,n is

set to 0.7. Lastly, we keep default settings of other paramet
for the baseline methods.

Following [45], [18], [19], we study compressive sensing
problems oveiGaussiandesign matrices. We study two types
of sparse signals, e.@ernoulli sparse vector (denoted ky
with each nonzero entry being either 1 or -1) &Bdussian

sparse signal (denoted Isy with each nonzero entry being
sampled fromGaussiandistribution/\'(0, 1)). The observation

3The C++ source codes of MPL and the compared methods arelzeail
at: | http://www.tanmingkui.com/mpl.htrnl.
Ahttps:/iwww.select.cs.cmu.edu/projects.
Shttps:/iwww.eecs.berkeley.eduyang/software/lTbenchmark/index.html.
Ehttp://www.princeton.edu/ zxiang/home/index.htrl.
"https:/lwww-personal.umich.edufomanv/software/romp.m.
€https://sparselab.stanford.edu/.
https://www.personal.soton.ac.uk/tbIm08/publicatibmml.
10https://sites.google.com/site/igorcarron2/cscodes.

fewer number of PMVPs than others. Moreover, the scale
of PMVPs in (S)MPL is much smaller than in PGH and
FISTA. For example, when\ = 0.00005||A "b||., the
sparsity of the PGH solution is 1015, which is much
larger than that of (S)MPL. In other words, the master
problem optimization in PGH is more expensive.

If o is too large, MPL may take more computation time.
For example, from Tablg I, MPL witl2p indeed needs
less time than MPL withdp. The reason is that, ib

is large, some non-support atoms might be mistakenly
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http://www.princeton.edu/~zxiang/home/index.html
https://www-personal.umich.edu/~romanv/software/romp.m
https://sparselab.stanford.edu/
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Fig. 1. Convergence of the comparison methodBemoulli sparse vectors (in Fi§. I{a) apd J(b)) a@dussiansparse vectors (in Fi§. I{c) ahd 1(d)). For
(S)MPL and the Active-set method, we recoféx®) per PG iteration. We only record results within 150 itenasidor all methods.

TABLE |
COMPARISON AMONGMPL, FISTA, PGHAND ACTIVE-SET METHODS ONBernoulli SPARSE SIGNAL WHERE TIMeRECORDS THE DECODING TIME(IN
SECONDS.
P Active-set | FISTA | PGH | MPL(p) | SMPL(p) | MPL(2p) | SMPL2p) | MPL(4p) | SMPL(dp)
Sparsity 160 595 253 159 168 216 166 188 178
#FMVP 160 120 177 11 11 7 5 4 3
0.005/|ATb|| #PMVP 2591 344 344 228 450 183 238 134 171
: o Time 1.36 6.07 1.22 0.1T 0.14 0.09 0.08 0.06 0.07
#speedup 21.9 97.9 19.6 1.8 2.3 15 1.3 T 1.3
Sparsity 161 1015 | 1015 189 144 244 195 328 197
#FMVP 160 1000 160 13 10 8 6 5 3
#PMVP 2647 3021 | 473 279 418 202 281 175 170
0.00005||A " blloc e 147 | 9837 [ 278 | 012 0.14 0.09 0.09 0.08 0.08
#speedup 18.8 1261.2 | 356 1.6 1.8 1.2 1.2 1.0 1.0
TABLE Il
COMPARISON AMONGMPL, FISTA, PGHAND ACTIVE-SET METHODS ONGaussianSPARSE SIGNAL WHERE TIeRECORDS THE DECODING TIME(IN
SECONDS.
P Active-set | FISTA | PGH | MPL(p) | SMPL(p) | MPL(2p) | SMPL2p) | MPL(4p) | SMPL{p)
Sparsity 160 313 221 154 154 196 168 303 256
#FMVP 160 79 92 10 10 6 5 5 4
0.005/|ATb]| #PMVP 2578 255 280 195 414 146 235 152 208
: oo Time 1.40 4746 | 0.92 0.09 0.14 0.06 0.09 0.06 0.09
#speedup 223 70.8 14.6 15 2.2 1.0 15 1.0 15
Sparsity 160 1015 | 1015 166 154 222 194 391 280
#FMVP 201 1000 144 11 10 7 6 6 4
#PMVP 3271 3023 | 611 238 415 183 282 202 239
0.00005||A " blloc g 107 | 9241 | 228 | 0.12 012 0.09 0.09 0.09 01T
#speedup 20.5 983.1 | 24.2 1.3 1.3 1.0 1.0 1.0 1.2




included. From FigJ1, SMPL in general converges fast&. Comparisons with Other Baselines

than MPL with a largep, which demonstrates the effec- | this experiment, we compare the performance of (S)MPL
tiveness of thesubspace exploratory search with other baseline methods on a median-scale probAem
« From Table§ll andll, the recovered signals are not exacﬁ@z“’xz“, where Shotgun and S-L1 work parallel. For each

140-sparse. This is because the observatiohas been k, we runM = 100 independent trials. For (S)MPL, we apply

disturbed by the noises. early stopping to avoid the over-fitting problem.
In OMPR, it is necessary to calculate= x+nA T (b—Ax),
TABLE Il wheren is a learning rate of OMPR[46]. The setting ofis

AVERAGED SPARSITY OF SOLUTIONS OBTAINED BY VARIOUS METHODS Crucial fOf the performancEBlG]. |m6], a feasible range f
WITH k = 140, 160, 180, RESPECTIVELY . . . . .
7n is provided if A satisfies the RIP condition. Unfortunately,

k| ROMP | SIOMP | SWCGP | MPL | SMPL if A is not well scaled, the scale &' (b — Ax) may vary
. | = U LA L a lot and the setting of will be difficult] To address this
180 | 651 374 732 196 | 210 issue, we propose a variant of OMPR in whiglis adaptively

adjusted by applying the CGD rul&o distinguish this variant
from OMPR, we refer it to as the OMPRA
The EPSR value and recovery time for tBaussiansparse
C. Influences of; on SMPL signals of each method are presented in Eig. 4. From this
In this experiment, we conduct a sensitivity study ©n figure, SMPL and OMP show much better recovery perfor-
for SMPL. We fix A = 0.00005][A "b|| and varyw € mance than other methods on the Gaussian sparse signals
{1,2,3,4,5}. Note that SMPL is reduced to MPL whenin terms of EPSR. In general, SMPL shows better recovery
w = 1. For eachk € {270,280,...,360}, we conduct performance than MPL in terms of EPSR. OMPR][46] shows
M = 100 independent experiments, and record the EPSfbrse recovery performance than other greedy methods. From
values and averaged decoding time in Fig.]2(a) and[Fig] 2(fhe experiments, OMPRA that uses an adaptive learning rate
respectively. improves OMPR greatly. However, OMPRA is still worse than
From Fig.[2(d), SMPL with largex’s tends to have better (S)MPL.
recovery performance in terms of EPSR. However, whenFrom Fig.[4(b), MP algorithms are much faster than the
w > 3, the improvement becomes less significant. The reasgpnorm methods, such as Shotgun (a well-designed parallel
is that, if w is large enough (e.gw = 3), the we atoms ¢,-method) and PGH. Ultimately, PGH shows better efficiency
with largest|g;| already include most of the potential activeahan Shotgun and S-L1, but is much worse than (S)MPL.
atoms, thus the increasing will not significantly improve
the performance. From quz_[b), M.P.L (e.9. SMPL W'”F Scalability Comparisons on Big Dictionaries
w = 1) shows the worst decoding efficiency. The reason Is

that, without the subspace search, some non-support atom

might be mistakenly included, and MPL needs more iteratioﬁ%)llylplgo Wi,th several bgselines on a Big Dictio_naA( €
X277 with two expenment@ Here, only Gaussian sparse

to converge. R ,
signals are studied.

In the first experiment, we generatesparse signals with
D. Comparisons with ROMP, StOMP, and SWCGP k € {300,400, ...,800}, and_compare (S)MPL with FISTA,
We compare (S)MPL with ROMP, StOMP, and SWCGPGH, SP and AIHT. We set = 1.2k for SP and AIHT. We
on Gaussiansparse signals, wherd € R2'**2"" We use SetA = 0.005/|A"b|., for LASSO related algorithms, and
the default parameter settings for StOMP and SWCGP. \&&t the maximum iterations of FISTA and PGH to 150. We
conductM = 100 independent experiments for eaghe reportthe RMSE and recovery time in Fig. §(a) and Fig.]5(b),
{80,100, ...,360}, and record the EPSR value and the avefespectively. According to the reported results, the foify
aged decoding time in Fif. 3[a) and Hig. 3(b), respectivaty. conclusions can be drawn.
also record the sparsity of solutions fbre {140, 160,180} « From Fig.[5(d), (S)MPL shows better RMSE than other
in Table[IIL. methods wher500 < k£ < 600; SMPL significantly im-
From Fig.[3(@) and Fig[ 3(p), (S)MPL outperforms the  proves MPL in terms of RMSE whe$b0 < & < 700. In
two baselines in terms of sparse recovery performance and addition, SP and AIHT cannot recover thesparse signal
decoding efficiency. StOMP cannot successfully recover all if k£ > 600 (the RMSE values are very large). Lastly, PGH
the sparse signals wheln > 240. From Table[1ll, StOMP and FISTA show worse recovery performance than other
and SWCGP include more atoms than (S)MPL, which indi- methods in terms of RMSE, which coincides with the
cates that many non-support atoms have been included. This results in TableB | and]ll.
problem becomes more severe for SWCGP, since its mastes From Fig.[5(0), it is evident that (S)MPL is much more
problem is not sufficiently optimized. As a result, it cannot  efficient than other methods, in particular whiei 500.
recover all thek-sparse signals wheh > 180, as shown in
Fig. [3(@). Lastly, ROMP shows much worse sparse recovery,interested readers can find more details)h [46].
. . . . In real-world applications, such as the face recognitiak,tave may have
performance than other methods, which is consistent wigh thiore than 1 million raining images from many persans [58].SR based
conclusions in[[43]. face recognition, the training images are formed as a bitjodiary.

ln the final experiment, we compare the scalability of
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SP has comparable efficiency with (S)MPL when< time in Fig.[6(a) and Fid. 6(b), respectively. From Hig. p(a)
450, but becomes less efficient whérn> 450. PGH and (S)MPL shows much better recovery performance than SP and
FISTA need thousands of seconds for/adl; while MPL  AIHT in terms of EPSR value. From Fig. 6[b), (S)MPL is also
needs less than 100 seconds when 600. In particular, much more efficient than SP and AIHT.
SMPL needs less than 50 seconds whken 700.

« From Fig[5(@), it is clear that PGH is better than FISTA '\, BatrcH MPL AND APPLICATIONS TOMANY-FACE
in terms of RMSE. In general, PGH converges faster than RECOGNITION

FISTA, thus it achieves a better solution with the same
number of iterations. In this section, we first compare BMPL with BOMP on

o synthetic compressive sensing tasks, and then apply them to
There are two reasons for the inefficiency of PGH ar\q{any_face recognition tasks.

FISTA. Firstly, both of them require many iterations to con-

verge, which means that they need to compute many times of

AT¢ than (S)MPL. Secondly, when computidg’ ¢ for large A. Comparison of BMPL and BOMP

dictionaries, the data exchange between the main memory angOMP is a batch mode implementation of OMP_1[24].
cache memory are very inefficient. In contrast, in (S)MPln the simulation, we generate Gaussianrandom matrix
the master problem optimization is w.r.t. a small set ofvacti A € R212><214 and generate ZOGaussiansparse 5igna|s for
atoms only, e.gAz. Apparently, the data exchange betweegach sparsity: € from {400, 450, 500, 550, 600 The vector
the main memory and cache memory w.At; is much more of measurements is produced byp = Ax+ £ with Gaussian

efficient. noise sampled fror\V'(0,0.05). The total time (in seconds)
To thoroughly compare the scalability of (S)MPL with SBpent by BMPL and BOMP in decoding 200 signals and the
and AIHT, in the second experiment, we rui = 100 averaged root-mean-square errdARMSE) are reported in

independent experiments for eachwhere we exclude FISTA Table[IM. From Tablé IV, BMPL isabout 7-16 times faster
and PGH from the comparison. Here, we ket 1.5k for SP than BOMP. Moreover, BMPL gains better or comparable
and AIHT. We record the EPSR value and averaged recové&k\RMSE to BOMP for all k.
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TABLE IV TABLE VI

EFFICIENCY COMPARISONBETWEENBMPL AND BOMP (IN SECONDS). PREDICTIONACCURACY ON YaleBwITH DIFFERENTNUMBER OF
THE TIME CONSUMED FOR COMPUTINGA " A IS 46.27SECONDS TRAINING IMAGES
Dt 0.55 0.60 0.65 0.70 0.75 0.80
k 400 450 500 550 600 L2 0.6352 | 0.9350 | 0.9330 | 0.9684 | 0.9764 | 0.9815
BOMP Time 434.27 546.70 680.96 835.72 1014.93 L2-L2 0.9814 | 0.9814 | 0.9823 | 0.9827 | 0.9843 | 0.9872
ARMSE | 7.11IE-03 | 7.69E-03 | 7.92E-03 | 8.59E-03 | 8.94E-03 BMPL 0.9848 | 0.9887 | 0.9887 | 0.9908 | 0.9911 | 0.9925
Time 55.06 55.79 56.79 59.51 59.91 Wilcoxon 0 1 1 1 1 1
BMPL [ ARMSE | 3.88E-03 | 4.31E-03 | 4.36E-03 | 4.70E-03 | 4.93E-03
#speedup 7.89 9.80 11.99 14.04 16.94

database, BMPL performs significantly better than L2 and L2-
_ L2 methods undep, = 1,3/4 and2/3. BMPL in particular

Note that it takes only 46.27 seconds to calculat®A. o5 much more stable performance than the L2 and L2-
In other words, the consumed time per signal is only 0.33, athods. In particular, on th&R database, L2 only

;econds. _lf there_ are 200'0991 signals, theq th? Compu,mtiogchievesm.z% prediction accuracy at a down-sampling rate
time per signal will be2.3 x 10~* seconds, which is negI|g|bIe.pd — 1/2, which may be caused by the unstable pseudo

inverse on the ill-conditioned matrix _[33]. As a reguladze
B. Many-face Recognition by BMPL L2 method, L2-L2 method shows more stable performance

” ._than L2. However, it is still worse than BMPL.
We apply BMPL for many-face recognition tasks by solving 'y report the total time spent by various methods in Table

problem B)._We adopt LZ:B3_], L2-LZ [34] and BOM,EUZA']M] PGH, the state-of-the-art;-solver, needs several hours
as the baseline methods. Besides, the PGH method is ado%eﬂredict all testing images on th&R database withp, —

for the comparison, since it has shown better efficiency than, nich js unbearable for many real-world applications. On
other¢;-norm methods [18]/[19]. We follow the experimentaly o ¢ontrary, BMPL completes the prediction in 20 seconds
settings in|[7] for the comparison. which is negligible. Wt s o\ \vhich is 366 times faster than PGH. BMPL is also 3-10

¢ = 10 for BMPL an.dk - 200 for BOMP for all experimepts. times faster than BOMP. Lastly, BMPL achieves comparable
Furthermore, considering that there may be some 'mag(ﬁﬁciency to L2-L2 and L2.

that cannot be sparse-represented by the training images, W remaining question isdoes the sparsity help to improve

constraink < 600. recognition performanc2 We list the average sparsity of
The Extended YaleBand AR databases are used for thes\ip| pGH, and BOMP in TabEWIL. Note that the solutions
comparison. TheExtended YaleRlatabase consists of 2,414,pqined by L2 and L2-L2 methods are not sparse. From Table
frontal face images of 38 subjects [33]. [30]. They are ceqitu |71 g\vpL, PGH, and BOMP show comparable or significantly
under various lighting conditions and cropped and norredliz ) qier recognition rates than L2 and L2-L2 methods on the
t0 192 x 168 pixels. In our experiment, we take 62 images péy,ieB database. In addition, BMPL outperforms L2 and L2-

person, resulting in 2,356 images in total. TAR database | 5 methods onAR database with enough pixels. Therefore,
consists of over 2,600 frontal images of 100 IndIVIdum'[SA'SparSity indeedhelps to improve recognition rates.

[7], [30]. Each image is normalized %0 x 60 pixels. Com- 2} Face Recognition with Different Number of Training
puting AT A with all images ofExtended YaleBndARtakes samples:Let p; be the ratio of the number of training images
5.74 seconds and 1.10 seconds, respectively. In other worglzr the total number of images. In this experiment, we vary
the time spent oM™ A is negligible. p: € {0.55,0.60,0.65,0.7,0.75,0.8} to change the number of

We consider two experimental settings:Many-face recog- trajining images. The prediction accuracy and predictioreti
nition with different number of pixglsand 2) Many-face 1. p; are shown in TableS VIl and X, respectively.
recognition with different number of training samples In general, with more training images, the matAX A be-

1) Many-face Recognition with Different Number ofomes more ill-conditioned. From Talfle WIII, BMPL performs
Pixels: In this experiment, we down-sample the imsjgnificantly better than L2 and L2-L2 whem > 0.60. In
ages at a sampling rateps, where p; is chosen other words, BMPL achieves more stable performance when
from {1,1/2,1/3,1/4,1/5,1/6,1/7} for YaleBimages, and AT A becomes more ill-conditioned. Finally, from Taljle] IX,
{1,3/4,2/3,1/2,1/3} for AR images. Accordingly, the di- BMPL shows comparable efficiency to L2 and L2-L2 methods.
mension of each new image vector will pé of the original

image vector. Followind [33], we randomly choose half of the TABLE IX
images of each person as the training set, and the remainid@TAL TIME SPENT ONIYaleBWITH DIFFERENTNUMBER OF TRAINING
images as the testing set. The prediction accuracies on the MAGES (IN SECONDS

YaleB and AR images are shown in Tab[g] V. To measure o 055 | 060 | 0.65] 0.70 | 0.75 | 0.80
the difference between results, thilcoxon test with 5% L2 248 | 2.95 | 3.02 | 316 | 356 | 6.02
o . ) [2-12 | 2.20 | 251 | 350 | 3.94 | 3.21 | 6.06
significance is conducted between BMPL and the winner of BMPL 10651 611 1 571 [ 493 423 | 285

L2 and L2-L2, and 1 indicates the significant difference.
From Table['V, on theYaleB database, BMPL shows sig-

nificantly better accuracy than L2 and L2-L2 methods under VI. CONCLUSIONS

pa = 1/5,1/6 and 1/7, and comparable or slightly better In this paper, we have proposed a subspace search to further

performance under other down-sampling rates. On Ale improve the performance of MPL, and a batch-mode MPL
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TABLE V
PREDICTIONACCURACY ONTwWO FACE DATABASES
Extended YaleB Database AR Database
Pd 1 1/2 1/3 1/4 1/5 1/6 177 1 3/4 2/3 1/2 1/3
L2 0.9876 | 0.9868 | 0.9831 | 0.9792 | 0.9371 | 0.9561 | 0.9621 0.9466 | 0.9301 | 0.9108 | 0.7323 | 0.9638

L2-L2 0.9898 | 0.9859 | 0.9827 | 0.9818 | 0.9783 | 0.9730 | 0.9723 || 0.9524 | 0.9504 | 0.9532 | 0.9574 | 0.9692
PGH 0.9897 | 0.9843 | 0.9826 | 0.9846 | 0.9815 | 0.9760 | 0.9658 || 0.9657 | 0.9650 | 0.9715| 0.9679 | 0.9656
BOMP 0.9904 | 0.9897 | 0.9861 | 0.9844 | 0.9786 | 0.9799 | 0.9734 || 0.9742 | 0.9744 | 0.9738 | 0.9738 | 0.9619
BMPL 0.9911 | 0.9892 | 0.9873 | 0.9849 | 0.9817 | 0.9787 | 0.9761 || 0.9739 | 0.9757 | 0.9715 | 0.9723 | 0.9672

Wilcoxon 0 0 0 0 1 1 1 1 1 1 1 0
TABLE VI
TOTAL TIME SPENT ONTWO FACE DATABASES(IN SECONDQ, #SPEEDUP DENOTES THE TIMES OF SPEEDUP @&MPL ovVER PGH
Extended YaleB Database AR Database
Pd 1 1/2 1/3 1/4 1/5 1/6 1/7 1 3/4 2/3 1/2 1/3
L2 71.33 24.91 6.29 3.51 2.42 1.14 0.72 13.34 4.39 3.16 3.28 2.19
L2-L2 11.36 6.85 4.13 2.40 2.32 2.22 1.69 3.75 3.04 3.10 2.58 1.99

PGH 5559.53 | 4863.18 | 2195.03 | 1383.28 | 822.11 | 627.95 | 383.86 || 5229.75| 2812.96 | 2178.91 | 1324.59 | 557.65
BOMP 139.69 99.88 98.05 89.83 89.95 90.41 87.60 108.52 98.84 98.60 97.25 95.58
BMPL 39.72 17.05 12.94 7.86 7.62 6.53 6.19 14.29 10.87 10.20 7.14 4.57

#speedup| 140.0 283.6 169.6 176.0 107.9 96.2 62.0 366.0 258.8 213.6 185.5 122.0

TABLE ViII
AVERAGE SPARSITY ON TWO FACE DATABASES
Extended YaleB Database AR Database
Pd 1 1/2 1/3 1/4 1/5 1/6 1/7 1 3/4 2/3 1/2 1/3

BOMP | 200 | 200 | 200 | 200 | 200 | 200 | 200 200 | 200 | 200 | 200 | 200
PGH 164 | 165 | 165 | 162 | 156 | 158 | 163 133 | 130 | 127 | 135 | 124
BMPL | 167 | 165 | 160 | 155 | 155 | 149 | 143 189 | 190 | 188 | 194 | 201

has been developed to vastly speed up SR with many signalsl. J. Mairal, M. Elad, and G. Sapiro, “Sparse representatim color image
Comprehensive experiments demonstrate the superb efficien ~ restoration,"|[EEE Trans. Image Processvol. 17, no. 1, pp. 53-69,

2008.
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tens times faster than state-of-the-&rtnorm methods. The recognition via sparse representatioffEE Trans. Pattern Anal. Mach.
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. o ] A. Adler, M. Elad, and Y. Hel-Or, “Fast subspace clugterivia sparse

to batch face re_cognltl_on _t?‘SkS- The eXpe”men_tf_il reshtie/s representations,” Department of Computer Science, Teohrisrael,

that BMPL achieves significantly better recognition ratesnt Tech. Rep., 2011.
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BMPL is up to 20 times faster than the batch-mode OMP [zﬂl] T. Peleg, Y. Eldar, and M. Elad, “Exploiting statisticdependencies in
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