
ar
X

iv
:1

30
2.

50
10

v2
 [

cs
.C

V
]

24
 D

ec
 2

01
4

1

Matching Pursuit LASSO Part II: Applications and
Sparse Recovery over Batch Signals

Mingkui Tan, Ivor W. Tsang, and Li Wang

Abstract—In Part I [1], a Matching Pursuit LASSO (MPL)
algorithm has been presented for solving large-scale sparse
recovery (SR) problems. In this paper, we present a subspace
search to further improve the performance of MPL, and then
continue to address another major challenge of SR – batch
SR with many signals, a consideration which is absent from
most of previous ℓ1-norm methods. As a result, a batch-mode
MPL is developed to vastly speed up sparse recovery of many
signals simultaneously. Comprehensive numerical experiments on
compressive sensing and face recognition tasks demonstrate the
superior performance of MPL and BMPL over other methods
considered in this paper, in terms of sparse recovery ability and
efficiency. In particular, BMPL is up to 400 times faster than
existing ℓ1-norm methods considered to be state-of-the-art.

Index Terms—Batch mode LASSO, sparse recovery, big dic-
tionary, compressive sensing, face recognition.

I. I NTRODUCTION

With the fast development of compressive sensing the-
ory [2], sparse recovery (SR) has gained increased attention
recently in the signal processing community [2], [3], [4], [5]. It
has also become a fundamental element of many other research
areas, such as image processing, computer vision, data mining
and machine learning [6], [7], [8], [9], [10], [11].

Formally, SR seeks to recover an unknownk-sparse signal
x ∈ R

m from its nonadaptive linear measurementb = Ax+
e ∈ R

n, whereA ∈ R
n×m(n ≪ m) denotes the dictionary,

e ∈ R
n represents the noise, and each column vector ofA

is referred to as an atom. To recoverx from b, one need to
solve anℓ0-norm minimization problem:

min
x

‖x‖0, s.t. b = Ax, (1)

where‖ · ‖0 denotes theℓ0-norm of a vector. Problem (1) is
NP-complete [12], [2], [13], and many researchers propose to
solve itsℓ1-convex relaxations instead [14], [15], [3], such as
the following LASSO problem [16], [17], [18], [19]:

min
x

λ‖x‖1 +
1

2
‖b−Ax‖2, (2)

where λ is a regularization parameter. Regarding problem
(2), many methods have been proposed over the last decade,

Mingkui Tan is with the School of Computer Science, the University of
Adelaide, Australia. e-mail: mingkui.tan@adelaide.edu.au.

Ivor W. Tsang is with the Centre for Quantum Computation& Intelligent
Systems (QCIS), at the University of Technology, Sydney (UTS), Australia.
e-mail: Ivor.Tsang@uts.edu.au.

Li Wang is with the Institute for Computational and Experimental
Research in Mathematics (ICERM), Brown University, USA. e-mail:
liwangucsd@gmail.com.

such as the least-angle regression (LARS) [20], gradient
projection for sparse reconstruction (GPSR) [17], projected
gradient (PG) [21], fast iterative shrinkage-threshold algorithm
(FISTA) [22], coordinate descent methods [23], proximal gra-
dient homotopy (PGH) method [18], [19] and so on. Interested
readers can refer to Part I and the references therein [1] fora
more comprehensive review.

Existing ℓ1-norm methods, however, suffer from high com-
putational complexity for large-scale SR problems. More
critically, for problems likebatch SR[24], in which many
signals need to be sparsely recovered simultaneously, the
computations will be even more expensive. Here, the batch
SR problem is carried out to solve the following optimization
problem:

min
X

‖B−AX‖2F + λ

p∑

i=1

‖xi‖1, (3)

whereB = [b1, ...,bp] ∈ R
n×p records the measurements of

p signals and‖·‖F denotes theF -norm of a matrix. The batch
SR problem plays an important role in many applications, such
as face recognition [7], [25], compressive sensing [26], [27],
dictionary learning [28], [29] and so on.

A. Batch SR in Face Recognition

Face recognition by SR has achieved promising perfor-
mance recently [7], [25], [30], [31], [32]. The basic assumption
is that, any testing image lies in a subspace spanned by the
training images of a person [7], [33], [25], thus it can be
sparsely represented by the training images. Here, the training
images are formed as a dictionaryA ∈ R

n×m, where n
denotes the number of pixels or features of a face image, and
m denotes the number of training images. The core task of
SR based face recognition is to find a sparse representation of
a testing imageb overA. However, directly solving problem
(2) is computationally expensive especially whenn is very
large [7], [33], [25]. Some researchers propose to reduce the
computational cost by dimension reduction methods, such as
random projections [7]. However, the recognition rates may
be affected due to the dimension reduction [33], [25], [10].

In practice, it is often required to recognize many face
images simultaneously in real-time, which is very challenging
for SR based methods [33], [34]. To address this, the authors
in [33] suggest directly solvingminx

1

2
‖b−Ax‖2, which is

denoted by L2; while the authors in [34] argue that solving
a least square problemminx

1

2
||b −Ax||2 + λ

2
||x||2, which

is denoted by L2-L2, can achieve more stable performance.
For the L2 method, the optimal solution isx∗ = R+Q⊤b,

http://arxiv.org/abs/1302.5010v2

2

whereA = QR denotes the QR decomposition ofA, and
R+ denotes the pseudo inverse. For the L2-L2 method, the
optimal solution isx∗ = (A⊤A + λI)−1A⊤b. Therefore,
fast predictions can be achieved via simple matrix-vector
products by pre-computingR−1Q⊤ and(A⊤A+ λI)−1 off-
line. However, since the solutions of the two methods are not
sparse, the recognition performance may be degraded.

B. Batch SR in Compressive Sensing

Sparse recovery is a core element of the recently devel-
oped compressive sensing theory on signal acquisition [2].
In compressive sensing, a signal is allowed to be captured
at a rate significantly lower than the Nyquist rate, if it is
compressible or can be sparsely decomposed under a basis
Ψ = [Ψ1, ...,Ψm] ∈ R

m×m [3], [26]. To recover the original
signal, we need to solve a sparse recovery problem [26],
[27], which might be very expensive. Moreover, in real-world
sensing tasks, such as imaging and video sensing [27], [35],it
is often necessary to sense a large number of signals simultane-
ously in real-time. Therefore, it is critical to efficientlyaddress
the large-scale batch SR problem in compressive sensing.

C. Batch SR in Dictionary Learning

Dictionary learning, which aims to find a good dictionary
based on a set of training signals, has recently become in-
creasingly important in many areas, such as signal processing,
computer vision and machine learning [29], [24], [36], [37],
[38]. To learn a good dictionary, many training examples (or
signals) are usually required to be sparsely represented at
the same time, leading to an intolerable cost for dictionary
learning. The large-scale batch SR problem therefore is a core
step in dictionary learning [29], [36].

D. Main Contributions

In Part I of this paper, we has presented a matching pursuit
LASSO (MPL) algorithm in relation to the computational
issues of LASSO over big dictionaries. In this paper, we first
present a subspace search to further improve the performance
of MPL, and then continue to address the computational bottle-
neck created by the batch SR problem. The main contributions
of this paper are summarized as follows:

• A subspace exploratory matching is proposed to improve
the performance of MPL. This new matching pursuit
scheme takes less than 50 seconds to recover a600-sparse
signal over a dictionary of one million atoms.

• A batch mode MPL (BMPL), which is absent in manyℓ1-
norm methods, is presented to address large-scale batch
SR problems.

• We apply BMPL to face recognition tasks on two well-
known face databases, namelyExtended YaleBand AR
databases. Comprehensive experiments show that BMPL
achieves comparable or better recognition rates than
baselines with comparable time complexity. Importantly,
BMPL is up to 400 times faster than existingℓ1-norm
methods considered to be state-of-the-art.

The rest of this paper is organized as follows. In Section II,
we briefly review the MPL algorithm and then propose an
improved MPL algorithm with subspace exploratory matching.
In Section III, we describe the batch mode MPL method. Nu-
merical experiments and real-world applications are presented
in Sections IV and V, respectively. Conclusive remarks are
given in Section VI.

II. M ATCHING PURSUIT FORLASSO

Throughout the paper, we denote the transpose of a vec-
tor/matrix by the superscript⊤, 0 as a zero vector and diag(v)
as a diagonal matrix with diagonal entries equal tov. In
addition, let‖v‖p and ‖v‖ denote theℓp-norm andℓ2-norm
of a vectorv, respectively. For a functionf(x), let ∇f(x)
and ∂f(x) be the gradient and subgradient off(x) at x,
respectively. For a sparse vectorx, let the calligraphic letter
T = support(x) = {i|xi 6= 0} ⊂ {1, ...,m} be its support,xT

be the subvector indexed byT , andT c be the complementary
set of T , i.e. T c = {1, ...,m}\T . Furthermore, letA ⊙ B

represent the element-wise product of two matricesA andB.
Lastly, letAI denote the columns ofA indexed byI.

A. Matching Pursuit LASSO

To introduce MPL, in [1], we bring in a support detection
vector τ ∈ {0, 1}m to x, and impose anℓ0-norm constraint
on τ , namely‖τ‖0 ≤ ̺, to enforce the sparsity. Here,̺ is
a predefined integer satisfying1 ≤ ̺ < k.1 Let Λ = {τ :
‖τ‖0 ≤ ̺, τ ∈ {0, 1}m} be the domain ofτ , we propose to
solve an integer programming model of LASSO:

min
τ∈Λ

min
x,ξ

λ||x||1 +
1

2
||ξ||2 (4)

s.t. ξ = b−A(x⊙ τ).

Rather than solving this problem directly, we bring in dual
variablesα ∈ R

n to the constraintξ = b −A(x ⊙ τ) w.r.t.
any fixed τ , and transform (4) into a minimax problem by
introducing the dual form of the inner problem in (4):

min
τ∈Λ

max
α∈Rn

−
1

2
‖α‖2 +α⊤b (5)

s.t. ‖α⊤Adiag(τ)‖∞ ≤ λ.

Let
f(α, τ) =

1

2
‖α‖2 −α⊤b, α ∈ Aλ

τ ,

where Aλ
τ = {α : ‖α⊤Adiag(τ)‖∞ ≤ λ,α ∈ [−l, l]n}

denotes the domain ofα w.r.t. a feasibleτ , and l > 0 is
a large number. By applying a convex relaxation to (5), MPL
seeks to solve the following convex problem:

min
α∈Rn,θ∈R

θ, s.t. f(α, τ) ≤ θ, ∀ τ ∈ Λ. (6)

The details of MPL are presented in Algorithm 1. Basically,
it iteratively adds a set of active atoms by worst-case analysis
in Step 3, and conducts a master problem optimization in Steps
4-8. Letg = A⊤αt−1 andIt be the index set of the detected
atoms at thetth iteration, the worst-case analysis is to update

1Interested readers may find more discussions of̺ in Part I [1].

3

It based ong. We find the̺ atoms with the largest|gj|, and
then record their indices intoJt. After that, we updateIt by
It = It−1 ∪Jt. The master problem optimization from Steps
4-8 is to solve the following problem:

min
x,ξ

λ||x||1 +
1

2
||b−Ax||2, s.t. xIc

t
= 0. (7)

The proximal gradient (PG) [21] (resp. conjugate gradient
descent (CGD) [39]) is adopted to solve (7) whenλ > 0
(resp.λ = 0), as shown in the innerfor loop. For the for
loop, to distinguish it from the outerwhile loop, we useu as
variables.

Algorithm 1 Matching Pursuit Lasso for Solving (6)

1: Initialize x0 = 0, ξ0 = b, I0 = ∅. Let t = 1.
2: while (The stopping condition is not achieved)do
3: Do worst-case analysis:

Let g = A⊤αt−1; choose the̺ largest|gj | and record
their indices inJt; let It = It−1 ∪ Jt.

4: Initialize u0
It

= xt−1
It

andu0
Ic

t

= 0.
5: for s = 1, ..., smax do
6: Updateus

It
using PG (λ > 0) or CGD (λ = 0) rules.

7: Break if the stopping conditions are achieved.
8: end for.
9: Set xt

It
= uk

It
, xt

Ic

t

= 0 and ξ
t = b − AIt

xt
It

. Let
t = t+ 1.

10: end while

Whenλ = 0 and̺ = 1, MPL in Algorithm 1 is reduced to
the orthogonal matching pursuit (OMP) [40], [41]. MPL is also
related to stagewise OMP (StOMP) [42] and stagewise weak
gradient pursuits (SWCGP for short) [43], in the sense that
all of them add a set of new atoms per iteration. However, in
SWCGP and StOMP, the number of atoms added per iteration
changes due to complex thresholding strategies [42], [43].
For example, in StOMP, the knowledge of noise is required
to determine the number of new atoms. This knowledge,
however, is not available for general problems [43]. To address
this, SWCGP adopts a simpler thresholding strategy that is
independent of the noise [43]. However, in SWCGP, only
one iteration is conducted (namelys = 1) in the master
problem optimization. As a result, the master problem may
not be sufficiently optimized, and many non-support atoms
might be included accordingly, leading to degraded perfor-
mance. In contrast, MPL takes more iterations in the master
problem optimization before the following stopping condition
is achieved:

f(us−1)− f(us)

f(u0)− f(us)
≤ εin, (8)

whereεin denotes a small tolerance.

B. Subspace Exploratory Matching for MPL

The convergence of MPL has been studied in Part I [1].
However, the performance of MPL might be affected by the
value of̺. To explain this, we first present a bound regarding
the progress of objective value per outer loop.

Lemma 1. Let f(x) = ‖x‖1 + 1

2
‖ξ‖2, g = A⊤ξt−1 and

u1 be the starting point regarding the inner loop. Assume
|gi| > λ for ∀i ∈ Jt+1, whereJt+1 is obtained by Step 3 of
Algorithm 1, with proper line search in PG, we have:

f(xt)− f(u1) ≥
1

2L

∑

i∈Jt+1

(|gi| − λ)2,

where1/L is the step size obtained by the line search in PG.

According to Lemma 1, choosing̺ atoms with the largest
|gi| can only guarantee the best improvement in objective
values after one iteration (e.g.s = 1) of the inner loop.
However, these̺ atoms cannot guarantee the best objective
value improvement when more inner iterations (e.g. when
s > 1) are used. In other words, the worst-case analysis in
Step 3 might be suboptimal whens > 1. When̺ is relatively
large in particular, some non-support atoms that are with large
values of|gi| might be mistakenly added intoJt. To address
this, we propose to first include more than̺ (e.g.ω̺, where
ω > 1) new atoms with the largest|gi|, and then solve the
master problem in (7) with all of the selected atoms. Finally,
we choose̺ new atoms that decrease the objective value
the most as the most-active atoms. This scheme, which is
referred to as subspace exploratory matching, is summarized
in Algorithm 2. To improve the efficiency, we adopt a warm-
start strategy (see Step 3), and use equation (8) as the stopping
condition in the master problem optimization.

Algorithm 2 Subspace Exploratory Matching

1: Given a dictionaryA, It−1, αt, εin andω(ω ≥ 1).
2: Calculateg = A⊤αt; choose theω̺ largest |gj | and

record the indices inJω ; let Iω = It−1 ∪ Jω.
3: Initialize u0

Iω
= xt−1

Iω
andu0

Ic
ω

= 0.
4: for s = 1, ..., smax do
5: Updateus

Iω
using PG (λ > 0) or CGD (λ = 0) rules.

6: Quit if the stopping conditions are achieved.
7: end for.
8: Sort theω̺ atoms inJω in descending order by|ui|;

return the first̺ atoms and record the indices inJt.
9: Let It = It−1 ∪ Jt. Setxt

It
= us

It
andxt

Ic
t

= 0.

For convenience, hereafter we refer to Algorithm 1 with
the subspace search as SMPL. In general, since the̺ atoms
chosen in SMPL achieve better improvement in objective
value than MPL, both convergence speed and sparse recovery
performance can be boosted, which can be observed in Fig. 1
in Section IV-B.

The proposed subspace search is related to the atom selec-
tion strategies used in CoSaMP [44], SP [45] and OMPR [46].
For example, to findk true supports, CoSaMP and SP choose
2k andk additional atoms respectively into the active atom set.
After that, a pruning step is performed such that onlyk atoms
are kept in the active atom set. In contrast, there is no atom
replacement or deletion in (S)MPL w.r.t. the outer iterations.
Consequently, SMPL is guaranteed to monotonically decrease
the objective values as in MPL [1]. Lastly, the subspace search
of CoSaMP, SP and OMPR relies on the estimation ofk, which
is not required in SMPL.

4

C. Stopping Conditions

Given a properly selectedλ, a natural stopping condition
for (S)MPL is

‖α⊤A‖∞ ≤ λ. (9)

However, in practice, we may choose a smallλ in order to
reduce the solution bias of LASSO directly. Whenλ is very
small, (S)MPL stops when||α|| ≪ ||e|| (heree denotes the
ground-truth noise), and it is possible that the over-fitting
problem will happen. To prevent from the over-fitting problem,
we stop (S)MPL early if the following stopping conditions are
achieved:

||α⊤A||∞ ≤ r∞ or ||α|| ≤ r2, (10)

wherer∞ andr2 are pre-determined parameters. We can also
stop (S)MPL if

δt

|̺f(x0)|
≤ ε, (11)

whereδt is the function value difference between the(t−1)th

andtth iteration,ε is a small tolerance andf(x0) denotes the
initial objective value.

Without early stopping, (S)MPL will achieve the LASSO
solution, which may be biased (whenλ is large) or over-fitted
(whenλ is small). Forλ = 0 and̺ = 1 in particular, (S)MPL
will get the results of OMP [40], [41].

D. Implementation Concerns

Several implementation techniques can be adopted to im-
prove the efficiency of (S)MPL. Note that the master problem
optimization in (S)MPL is w.r.t. a small set of atoms only.
Let I be the index set of selected atoms. We only need to
calculate small scale matrix-vector productsAIxI andA⊤

I ξ.
For convenience, we refer to them as the partial matrix-vector
product (PMVP). Correspondingly, we refer toAx andA⊤ξ

as the full matrix-vector product (FMVP).
Firstly, since|I| ≪ m, computing the PMVP (e.g.AIxI

andA⊤
I ξ) is much cheaper than FMVP (e.g.Ax andA⊤ξ).

To fully exploit this advantage, we storeA atom by atom in
the main memory so that we can easily retrieve any atoms
indexed byI using C++ pointers.

Secondly, when dealing with big dictionaries, the cache-to-
memory efficiency is important. For example, the calculations
of PMVPs (e.g.AIxI and A⊤

I ξ) may not be cache-to-
memory efficient, since the active atoms in general are very
far away from each other in the main memory. To address
this, we explicitly storeAI and A⊤

I in the main memory.
Accordingly, we can compute PMVPs very efficiently.

Thirdly, several iterations regarding the master problem op-
timization are sufficient, which significantly reduce the number
of PMVPs. Moreover, once updatingIt, we setxt

It
= us

It
for

the purpose of warm-start (see Step 9 in Algorithm 2). In this
way, we can significantly improve the efficiency of the master
problem optimization.2

2For fair comparison, we employ the above techniques to implement theℓ1-
norm methods whenever the intermediate variables are sparse: Let I denote
the supports of an intermediatex, we replaceAx with AIxI , which will
improve the efficiency considerably.

III. B ATCH MODE MPL

In the batch SR problem, suppose there arep signals to
be sparsely represented at the same time. Existingℓ1-norm
methods, such as PG [21] and FISTA [22], takeO(mn) cost
per iteration. Suppose they stop afterS iterations, the total
cost for recoveringp signals isO(Spmn). On the contrary,
suppose (S)MPL stops afterT iterations, it will reduce the
cost toO(Tpmn), whereT ≪ S.

Nevertheless, the complexity of MPL and SMPL is still
dependent onn, making them expensive to tackle large-scale
problems that are with largen. Essentially, this computational
burden is brought by the calculation ofA⊤ξ (which takes
O(mn) cost) in the worst-case analysis. Therefore, how to
reduce the cost ofA⊤ξ is critical for improving the efficiency.

According to the studies in [17], [42], if the discrete Fourier
transform basis or wavelet basis are sampled to form the
dictionaryA, the computational complexity ofA⊤ξ can be
reduced toO(m log(m)) with the help of the fast Fourier
transform (FFT). However, this technique cannot be applied
to general dictionaries.

To tackle many signals under general dictionaries, we pro-
pose below thebatch-mode MPL (BMPL for short), in which
the computational cost can be greatly reduced. Actually, we
haveA⊤ξ = A⊤(b − AIxI) = A⊤b − [A⊤AI]xI . Let
β = A⊤b andQ = A⊤A. If we pre-computeQ andβ, and
store them in the main memory, we can then calculateA⊤ξ

according to

A⊤ξ = β −QIxI . (12)

As a result, the computation cost of computingA⊤ξ is reduced
to O(m|I|), where|I| ≪ n. Since|I| ≈ k, the overall cost
for p signals becomesO(Tpmk).

Remark 1. To apply (12), we need to compute the matrix
Q ∈ R

m×m withO(nm2) cost, which is not efficient regarding
a single signal. However, sinceQ can be calculated off-line,
this cost is negligible when dealing with many signals.

Since BMPL adds̺ atoms per iteration, it requires consid-
erably fewer times ofA⊤ξ than the batch mode OMP (BOMP
for short) [24]. Specifically, BOMP takesO(pmk2) cost for
p signals; while BMPL takesO(Tpmk) complexity, where
T ≪ k.

For existingℓ1-norm methods, even though the intermediate
variables are sparse, it is not easy for them to conduct the batch
mode optimization, since the support setI of intermediate
variables might change frequently during the optimization. As
a result, frequent retrievals ofQI are very computationally
expensive.

The batch scheme is not applicable to a dictionary with
a very large number of atoms, because of theO(m2) space
complexity to storeQ. Nevertheless, BMPL can be applied
to many large-scale tasks. For example, it can efficiently
deal with dictionaries ofO(215) atoms on a 24GB memory
machine, which is sufficient for many real-world applications,
such as face recognition [7] and dictionary learning [10].

5

IV. N UMERICAL EXPERIMENTS

In this section, we compare the performance of (S)MPL
with the following baseline methods:3

• Four state-of-the-artℓ1-solvers: Shotgun4 which uses
the parallel coordinate descent in C++ [47]. FISTA5

which uses the accelerated proximal gradient method with
continuation technique [17], [25]; PGH which uses the
homotopy method to improve the convergence speed [18],
[19]; S-L16 which adopts a screening test to predict the
zero entries to improve the decoding efficiency [48].

• Several related greedy methods, such as ROMP [49]7,
StOMP [42]8 and SWCGP [43] are used for the compar-
ison. In addition, four well-known greedy algorithms, i.e.
orthogonal matching pursuit (OMP) [40], [41], acceler-
ated iterative hard thresholding (AIHT) [50], [51], [52]9,
subspace pursuit (SP) [45]10 and orthogonal matching
pursuit with replacement (OMPR) [46], are also included
as baseline methods.

In the experiments, Shotgun is conducted in parallel on an
Intel(R) Core(TM) i7 CPU (8 cores) PC with 64-bit Linux OS;
while the other methods are conducted on a 64-bit Windows
operating system (OS) with the same computer configuration.
For fair comparison, all methods, except S-L1, ROMP and
StOMP, are written in C++ running withsingle core. We run
S-L1, which is written in Matlab, in parallel on an eight-core
machine.

A. Experimental Settings and Performance Metrics

Following [18], [17], we setλ = 0.005||A⊤b||∞ for ℓ1-
norm methods. Unless noted otherwise, we applyde-biasing
techniqueto reduce the solution bias ofℓ1-norm methods [17],
[25]. For (S)MPL, we apply the early stopping to avoid the
over-fitting problem with stopping condition

|δt|/(̺||b||2) ≤ 1.0× 10−5, (13)

whereδt denotes the objective difference between thetth and
(t+ 1)th iterations. We set the subspace search lengthω = 3
for SMPL. For many greedy methods, such as AIHT, SP and
OMPR, we need to specifŷk. In the simulation, since we
know the ground-truthk, we setk̂ = 1.2k. For OMPR,η is
set to 0.7. Lastly, we keep default settings of other parameters
for the baseline methods.

Following [45], [18], [19], we study compressive sensing
problems overGaussiandesign matrices. We study two types
of sparse signals, e.g.Bernoulli sparse vector (denoted bysz
with each nonzero entry being either 1 or -1) andGaussian
sparse signal (denoted bysg with each nonzero entry being
sampled fromGaussiandistributionN (0, 1)). The observation

3The C++ source codes of MPL and the compared methods are available
at: http://www.tanmingkui.com/mpl.html.

4https://www.select.cs.cmu.edu/projects.
5https://www.eecs.berkeley.edu/∼yang/software/l1benchmark/index.html.
6http://www.princeton.edu/∼zxiang/home/index.html.
7https://www-personal.umich.edu/∼romanv/software/romp.m.
8https://sparselab.stanford.edu/.
9https://www.personal.soton.ac.uk/tb1m08/publications.html.
10https://sites.google.com/site/igorcarron2/cscodes.

b is produced byb = Ax+ e, wheree denotes the additive
noise uniformly sampled from[−0.01, 0.01].

To evaluate the sparse recovery performance of a method,
we adopt theroot-mean-square error(RMSE) as the compar-
ison metric,

RMSE=

√√√√
m∑

i=1

(x∗
i − xi)2/m,

wherex∗ denotes the recovered signal. Here, a sparse signal
is successfully recovered if RMSE≤1E−3. For a complete
comparison, we record theempirical probability of successful
reconstruction(EPSR) overM independent experiments [45].

B. Comparison with PGH, FISTA and Active-set Method

We compare (S)MPL with PGH, FISTA and Active-set
methods on recovering a 140-sparseBernoulli sparse signal
and a 140-sparseGaussiansparse signal over aGaussian
dictionary A ∈ R

2
10×2

13

. To study the effect of̺ , given
a basic̺, we study2̺ and 4̺. We study twoλ’s, namely
λ1 = 0.005||A⊤b||∞ and λ2 = 0.00005||A⊤b||∞. In Fig.
1, we report the objective values of the comparison methods
w.r.t. iterations. In Table I and Table II, we record the following
metrics: The number of full matrix-vector products (#FMVPs);
The number of partial matrix-vector products (#PMVPs); The
number of nonzeros (Sparsity) in solutions; The decoding time
(Time) for each signal; The speedup (#speedup) of the fastest
method over others.

Based on the results, we draw the following conclusions.

• From Fig. 1, (S)MPL with different̺ ’s converge much
faster than baseline methods. In particular,SMPL(2̺) is
about 20 times fasterthan others on theGaussiansparse
signal. FISTA converges well whenλ = 0.005||A⊤b||∞.
In particular, the objective value decreases very quickly
at the beginning. However, it converges very slowly
whenλ = 0.00005||A⊤b||∞. In fact, generally speaking,
the convergence rate of FISTA is only sub-linear, e.g.
O(1/k2) [22]. In contrast to FISTA, PGH solves a se-
quence of subproblems, and attain linear convergence rate
if the subproblem is strongly convex [18], [19]. Overall,
it performs much better than FISTA.

• Note that each FMVP takesO(mn) complexity. From
Tables I and II, (S)MPL with different̺ ’s need far fewer
FMVPs than other methods, which explains the signifi-
cant speedup of (S)MPL over other methods. Therefore,
(S)MPL are more suitable for big dictionaries.

• From Tables I and II, in general, (S)MPL also need much
fewer number of PMVPs than others. Moreover, the scale
of PMVPs in (S)MPL is much smaller than in PGH and
FISTA. For example, whenλ = 0.00005||A⊤b||∞, the
sparsity of the PGH solution is 1015, which is much
larger than that of (S)MPL. In other words, the master
problem optimization in PGH is more expensive.

• If ̺ is too large, MPL may take more computation time.
For example, from Table I, MPL with2̺ indeed needs
less time than MPL with4̺. The reason is that, if̺
is large, some non-support atoms might be mistakenly

http://www.tanmingkui.com/mpl.html
https://www.select.cs.cmu.edu/projects
https://www.eecs.berkeley.edu/~yang/software/l1benchmark/index.html
http://www.princeton.edu/~zxiang/home/index.html
https://www-personal.umich.edu/~romanv/software/romp.m
https://sparselab.stanford.edu/
https://www.personal.soton.ac.uk/tb1m08/publications.html
https://sites.google.com/site/igorcarron2/cscodes

6

FISTA PGH ACTIVE MPL(ρ) MPL(2ρ) MPL(4ρ) SMPL(ρ) SMPL(2ρ) SMPL(4ρ)

0 50 100 150
10

−8

10
−6

10
−4

10
−2

10
0

PG iterations

f
(x

t)
−
f
(x

∗
)

f
(x

0
)

(a) Objective value evolutions forλ = 0.005||A⊤b||∞

0 50 100 150
10

−8

10
−6

10
−4

10
−2

10
0

PG iterations

f
(x

t
)−

f
(x

∗
)

f
(x

0
)

(b) Objective value evolutions forλ = 0.00005||A⊤b||∞

0 50 100 150
10

−8

10
−6

10
−4

10
−2

10
0

PG iterations

f
(x

t)
−
f
(x

∗
)

f
(x

0
)

(c) Objective value evolutions forλ = 0.005||A⊤b||∞

0 50 100 150
10

−8

10
−6

10
−4

10
−2

10
0

PG iterations

f
(x

t
)−

f
(x

∗
)

f
(x

0
)

(d) Objective value evolutions forλ = 0.00005||A⊤b||∞

Fig. 1. Convergence of the comparison methods onBernoulli sparse vectors (in Fig. 1(a) and 1(b)) andGaussiansparse vectors (in Fig. 1(c) and 1(d)). For
(S)MPL and the Active-set method, we recordf(xt) per PG iteration. We only record results within 150 iterations for all methods.

TABLE I
COMPARISON AMONGMPL, FISTA, PGHAND ACTIVE-SET METHODS ONBernoulli SPARSE SIGNAL, WHERETimeRECORDS THE DECODING TIME(IN

SECONDS).

λ Active-set FISTA PGH MPL(ρ) SMPL(ρ) MPL(2ρ) SMPL(2ρ) MPL(4ρ) SMPL(4ρ)

0.005||A⊤
b||∞

Sparsity 160 595 253 159 168 216 166 188 178
#FMVP 160 120 177 11 11 7 5 4 3
#PMVP 2591 344 344 228 450 183 238 134 171

Time 1.36 6.07 1.22 0.11 0.14 0.09 0.08 0.06 0.07
#speedup 21.9 97.9 19.6 1.8 2.3 1.5 1.3 1 1.3

0.00005||A⊤
b||∞

Sparsity 161 1015 1015 189 144 244 195 328 197
#FMVP 160 1000 160 13 10 8 6 5 3
#PMVP 2647 3021 473 279 418 202 281 175 170

Time 1.47 98.37 2.78 0.12 0.14 0.09 0.09 0.08 0.08
#speedup 18.8 1261.2 35.6 1.6 1.8 1.2 1.2 1.0 1.0

TABLE II
COMPARISON AMONGMPL, FISTA, PGHAND ACTIVE-SET METHODS ONGaussianSPARSE SIGNAL, WHERETimeRECORDS THE DECODING TIME(IN

SECONDS).

λ Active-set FISTA PGH MPL(ρ) SMPL(ρ) MPL(2ρ) SMPL(2ρ) MPL(4ρ) SMPL(4ρ)

0.005||A⊤
b||∞

Sparsity 160 313 221 154 154 196 168 303 256
#FMVP 160 79 92 10 10 6 5 5 4
#PMVP 2578 255 280 195 414 146 235 152 208

Time 1.40 4.46 0.92 0.09 0.14 0.06 0.09 0.06 0.09
#speedup 22.3 70.8 14.6 1.5 2.2 1.0 1.5 1.0 1.5

0.00005||A⊤
b||∞

Sparsity 160 1015 1015 166 154 222 194 391 280
#FMVP 201 1000 144 11 10 7 6 6 4
#PMVP 3271 3023 611 238 415 183 282 202 239

Time 1.92 92.41 2.28 0.12 0.12 0.09 0.09 0.09 0.11
#speedup 20.5 983.1 24.2 1.3 1.3 1.0 1.0 1.0 1.2

7

included. From Fig. 1, SMPL in general converges faster
than MPL with a large̺ , which demonstrates the effec-
tiveness of thesubspace exploratory search.

• From Tables I and II, the recovered signals are not exactly
140-sparse. This is because the observationb has been
disturbed by the noisese.

TABLE III
AVERAGED SPARSITY OF SOLUTIONS OBTAINED BY VARIOUS METHODS

WITH k = 140, 160, 180, RESPECTIVELY.

k ROMP StOMP SWCGP MPL SMPL
140 506 260 230 167 154
160 584 309 359 182 168
180 651 374 432 196 210

C. Influences ofω on SMPL

In this experiment, we conduct a sensitivity study onω
for SMPL. We fix λ = 0.00005‖A⊤b‖∞ and vary ω ∈
{1, 2, 3, 4, 5}. Note that SMPL is reduced to MPL when
ω = 1. For eachk ∈ {270, 280, ..., 360}, we conduct
M = 100 independent experiments, and record the EPSR
values and averaged decoding time in Fig. 2(a) and Fig. 2(b),
respectively.

From Fig. 2(a), SMPL with largerω’s tends to have better
recovery performance in terms of EPSR. However, when
ω > 3, the improvement becomes less significant. The reason
is that, if ω is large enough (e.g.ω = 3), the ω̺ atoms
with largest|gi| already include most of the potential active
atoms, thus the increasingω will not significantly improve
the performance. From Fig. 2(b), MPL (e.g. SMPL with
ω = 1) shows the worst decoding efficiency. The reason is
that, without the subspace search, some non-support atoms
might be mistakenly included, and MPL needs more iterations
to converge.

D. Comparisons with ROMP, StOMP, and SWCGP

We compare (S)MPL with ROMP, StOMP, and SWCGP
on Gaussiansparse signals, whereA ∈ R

2
10×2

13

. We use
the default parameter settings for StOMP and SWCGP. We
conductM = 100 independent experiments for eachk ∈
{80, 100, ..., 360}, and record the EPSR value and the aver-
aged decoding time in Fig. 3(a) and Fig. 3(b), respectively.We
also record the sparsity of solutions fork ∈ {140, 160, 180}
in Table III.

From Fig. 3(a) and Fig. 3(b), (S)MPL outperforms the
two baselines in terms of sparse recovery performance and
decoding efficiency. StOMP cannot successfully recover all
the sparse signals whenk > 240. From Table III, StOMP
and SWCGP include more atoms than (S)MPL, which indi-
cates that many non-support atoms have been included. This
problem becomes more severe for SWCGP, since its master
problem is not sufficiently optimized. As a result, it cannot
recover all thek-sparse signals whenk > 180, as shown in
Fig. 3(a). Lastly, ROMP shows much worse sparse recovery
performance than other methods, which is consistent with the
conclusions in [43].

E. Comparisons with Other Baselines

In this experiment, we compare the performance of (S)MPL
with other baseline methods on a median-scale problemA ∈
R

2
10×2

13

, where Shotgun and S-L1 work inparallel. For each
k, we runM = 100 independent trials. For (S)MPL, we apply
early stopping to avoid the over-fitting problem.

In OMPR, it is necessary to calculatez = x+ηA⊤(b−Ax),
whereη is a learning rate of OMPR [46]. The setting ofη is
crucial for the performance [46]. In [46], a feasible range for
η is provided ifA satisfies the RIP condition. Unfortunately,
if A is not well scaled, the scale ofA⊤(b −Ax) may vary
a lot and the setting ofη will be difficult.11 To address this
issue, we propose a variant of OMPR in whichη is adaptively
adjusted by applying the CGD rule.To distinguish this variant
from OMPR, we refer it to as the OMPRA.

The EPSR value and recovery time for theGaussiansparse
signals of each method are presented in Fig. 4. From this
figure, SMPL and OMP show much better recovery perfor-
mance than other methods on the Gaussian sparse signals
in terms of EPSR. In general, SMPL shows better recovery
performance than MPL in terms of EPSR. OMPR [46] shows
worse recovery performance than other greedy methods. From
the experiments, OMPRA that uses an adaptive learning rate
improves OMPR greatly. However, OMPRA is still worse than
(S)MPL.

From Fig. 4(b), MP algorithms are much faster than the
ℓ1-norm methods, such as Shotgun (a well-designed parallel
ℓ1-method) and PGH. Ultimately, PGH shows better efficiency
than Shotgun and S-L1, but is much worse than (S)MPL.

F. Scalability Comparisons on Big Dictionaries

In the final experiment, we compare the scalability of
(S)MPL with several baselines on a Big DictionaryA ∈
R

2
12×2

20

with two experiments.12 Here, only Gaussian sparse
signals are studied.

In the first experiment, we generatek-sparse signals with
k ∈ {300, 400, ..., 800}, and compare (S)MPL with FISTA,
PGH, SP and AIHT. We set̂k = 1.2k for SP and AIHT. We
set λ = 0.005‖A⊤b‖∞ for LASSO related algorithms, and
set the maximum iterations of FISTA and PGH to 150. We
report the RMSE and recovery time in Fig. 5(a) and Fig. 5(b),
respectively. According to the reported results, the following
conclusions can be drawn.

• From Fig. 5(a), (S)MPL shows better RMSE than other
methods when500 < k ≤ 600; SMPL significantly im-
proves MPL in terms of RMSE when650 < k < 700. In
addition, SP and AIHT cannot recover thek-sparse signal
if k > 600 (the RMSE values are very large). Lastly, PGH
and FISTA show worse recovery performance than other
methods in terms of RMSE, which coincides with the
results in Tables I and II.

• From Fig. 5(b), it is evident that (S)MPL is much more
efficient than other methods, in particular whenk ≥ 500.

11Interested readers can find more details ofη in [46].
12In real-world applications, such as the face recognition task, we may have

more than 1 million training images from many persons [53]. In SR based
face recognition, the training images are formed as a big dictionary.

8

260 280 300 320 340 360
0

0.2

0.4

0.6

0.8

1

Sparsity k

E
P

S
R

ω = 1
ω = 2
ω = 3
ω = 4
ω = 5
ω = 6

(a) EPSR w.r.tk

260 280 300 320 340 360
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sparsity k

D
e

co
d

in
g

 t
im

e
 (

in
 s

e
co

n
d

s)

ω = 1
ω = 2
ω = 3
ω = 4
ω = 5
ω = 6

(b) Decoding time w.r.tk

Fig. 2. Results of SMPL on Gaussian sparse signals with different ω’s.

100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

Sparsity k

E
P

S
R

ROMP
StOMP
SWCGP
MPL
SMPL

(a) EPSR w.r.tk

100 150 200 250 300 350

10
−1

10
0

10
1

10
2

Sparsity k

D
e

co
d

in
g

 t
im

e
 (

in
 s

e
co

n
d

s)

ROMP
StOMP
SWCGP
MPL
SMPL

(b) Decoding time w.r.tk (in log scale)

Fig. 3. Comparison among ROMP, StOMP, SWCGP, MPL and SMPL on Gaussian sparse signals, where the early stopping accordingto the condition (13)
is applied to StOMP, SWCGP, MPL and SMPL.

150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sparsity k

E
m

p
ir
ic

a
l p

ro
b

a
b

ili
ty

 o
f

re
co

n
st

ru
ct

io
n

OMP
AIHT
SP
OMPR
OMPRA
PGH
S−L1
Shotgun
MPL
SMPL

(a) EPSR onGaussiansparse signals

150 200 250 300 350 400 450

10
−1

10
0

10
1

Sparsity k

D
e

co
d

in
g

 t
im

e
 (

in
 s

e
co

n
d

s)

OMP
AIHT
SP
OMPR
OMPRA
PGH
S−L1
Shotgun
MPL
SMPL

(b) Recovery time onGaussiansparse signals

Fig. 4. SR results onA ∈ R
2
10

×2
13

of different methods. Here, the de-biasing technique is applied to ℓ1-norm methods, and the early stopping is applied
to (S)MPL.

9

300 400 500 600 700 800 900
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Sparsity k

R
M

S
E

AIHT
SP
FISTA
PGH
MPL
SMPL

(a) RMSE w.r.tk

300 400 500 600 700 800 900 1000

10
2

10
3

10
4

Sparsity k

D
e

co
d

in
g

 t
im

e
 (

in
 s

e
co

n
d

s)

AIHT
SP
FISTA
PGH
MPL
SMPL

(b) Decoding time w.r.tk (in log scale)

Fig. 5. SR results on Gaussian sparse signals under aBig Dictionary A ∈ R
2
12

×2
20

.

300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

Sparsity k

E
P

S
R

AIHT
SP
MPL
SMPL

(a) EPSR w.r.tk

300 400 500 600 700 800

10
2

10
3

Sparsity k

D
e

co
d

in
g

 t
im

e
 (

in
 s

e
co

n
d

s)

AIHT
SP
MPL
SMPL

(b) Decoding time w.r.tk (in log scale)

Fig. 6. SR performance comparison under aBig Dictionary A ∈ R
2
12

×2
20

.

SP has comparable efficiency with (S)MPL whenk ≤
450, but becomes less efficient whenk > 450. PGH and
FISTA need thousands of seconds for allk’s; while MPL
needs less than 100 seconds whenk ≤ 600. In particular,
SMPL needs less than 50 seconds whenk ≤ 700.

• From Fig. 5(a), it is clear that PGH is better than FISTA
in terms of RMSE. In general, PGH converges faster than
FISTA, thus it achieves a better solution with the same
number of iterations.

There are two reasons for the inefficiency of PGH and
FISTA. Firstly, both of them require many iterations to con-
verge, which means that they need to compute many times of
A⊤ξ than (S)MPL. Secondly, when computingA⊤ξ for large
dictionaries, the data exchange between the main memory and
cache memory are very inefficient. In contrast, in (S)MPL,
the master problem optimization is w.r.t. a small set of active
atoms only, e.g.AI . Apparently, the data exchange between
the main memory and cache memory w.r.t.AI is much more
efficient.

To thoroughly compare the scalability of (S)MPL with SP
and AIHT, in the second experiment, we runM = 100
independent experiments for eachk, where we exclude FISTA
and PGH from the comparison. Here, we setk̂ = 1.5k for SP
and AIHT. We record the EPSR value and averaged recovery

time in Fig. 6(a) and Fig. 6(b), respectively. From Fig. 6(a),
(S)MPL shows much better recovery performance than SP and
AIHT in terms of EPSR value. From Fig. 6(b), (S)MPL is also
much more efficient than SP and AIHT.

V. BATCH MPL AND APPLICATIONS TOMANY-FACE

RECOGNITION

In this section, we first compare BMPL with BOMP on
synthetic compressive sensing tasks, and then apply them to
many-face recognition tasks.

A. Comparison of BMPL and BOMP

BOMP is a batch mode implementation of OMP [24].
In the simulation, we generate aGaussianrandom matrix
A ∈ R

2
12×2

14

and generate 200Gaussiansparse signals for
each sparsityk ∈ from {400, 450, 500, 550, 600}. The vector
of measurementsb is produced byb = Ax+ξ with Gaussian
noise sampled fromN (0, 0.05). The total time (in seconds)
spent by BMPL and BOMP in decoding 200 signals and the
averaged root-mean-square error(ARMSE) are reported in
Table IV. From Table IV, BMPL isabout 7-16 times faster
than BOMP. Moreover, BMPL gains better or comparable
ARMSE to BOMP for all k.

10

TABLE IV
EFFICIENCY COMPARISONBETWEEN BMPL AND BOMP (IN SECONDS).

THE TIME CONSUMED FOR COMPUTINGA⊤
A IS 46.27SECONDS

k 400 450 500 550 600

BOMP
Time 434.27 546.70 680.96 835.72 1014.93

ARMSE 7.11E-03 7.69E-03 7.92E-03 8.59E-03 8.94E-03

BMPL
Time 55.06 55.79 56.79 59.51 59.91

ARMSE 3.88E-03 4.31E-03 4.36E-03 4.70E-03 4.93E-03
#speedup 7.89 9.80 11.99 14.04 16.94

Note that it takes only 46.27 seconds to calculateA⊤A.
In other words, the consumed time per signal is only 0.23
seconds. If there are 200,000 signals, then the computational
time per signal will be2.3×10−4 seconds, which is negligible.

B. Many-face Recognition by BMPL

We apply BMPL for many-face recognition tasks by solving
problem (3). We adopt L2 [33], L2-L2 [34] and BOMP [24]
as the baseline methods. Besides, the PGH method is adopted
for the comparison, since it has shown better efficiency than
otherℓ1-norm methods [18], [19]. We follow the experimental
settings in [7] for the comparison. which is negligible. We set
̺ = 10 for BMPL andk = 200 for BOMP for all experiments.
Furthermore, considering that there may be some images
that cannot be sparse-represented by the training images, we
constraink ≤ 600.

The Extended YaleBand AR databases are used for the
comparison. TheExtended YaleBdatabase consists of 2,414
frontal face images of 38 subjects [33], [30]. They are captured
under various lighting conditions and cropped and normalized
to 192×168 pixels. In our experiment, we take 62 images per
person, resulting in 2,356 images in total. TheAR database
consists of over 2,600 frontal images of 100 individuals [54],
[7], [30]. Each image is normalized to80 × 60 pixels. Com-
putingA⊤A with all images ofExtended YaleBandAR takes
5.74 seconds and 1.10 seconds, respectively. In other words,
the time spent onA⊤A is negligible.

We consider two experimental settings: 1)Many-face recog-
nition with different number of pixels; and 2) Many-face
recognition with different number of training samples.

1) Many-face Recognition with Different Number of
Pixels: In this experiment, we down-sample the im-
ages at a sampling rateρd, where ρd is chosen
from {1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7} for YaleB images, and
{1, 3/4, 2/3, 1/2, 1/3} for AR images. Accordingly, the di-
mension of each new image vector will beρ2d of the original
image vector. Following [33], we randomly choose half of the
images of each person as the training set, and the remaining
images as the testing set. The prediction accuracies on the
YaleB and AR images are shown in Table V. To measure
the difference between results, theWilcoxon test with 5%
significance is conducted between BMPL and the winner of
L2 and L2-L2, and 1 indicates the significant difference.

From Table V, on theYaleB database, BMPL shows sig-
nificantly better accuracy than L2 and L2-L2 methods under
ρd = 1/5, 1/6 and 1/7, and comparable or slightly better
performance under other down-sampling rates. On theAR

TABLE VIII
PREDICTION ACCURACY ON YaleBWITH DIFFERENTNUMBER OF

TRAINING IMAGES

ρt 0.55 0.60 0.65 0.70 0.75 0.80
L2 0.6352 0.9350 0.9330 0.9684 0.9764 0.9815

L2-L2 0.9814 0.9814 0.9823 0.9827 0.9843 0.9872
BMPL 0.9848 0.9887 0.9887 0.9908 0.9911 0.9925

Wilcoxon 0 1 1 1 1 1

database, BMPL performs significantly better than L2 and L2-
L2 methods underρd = 1, 3/4 and 2/3. BMPL in particular
shows much more stable performance than the L2 and L2-
L2 methods. In particular, on theAR database, L2 only
achieves73.23% prediction accuracy at a down-sampling rate
ρd = 1/2, which may be caused by the unstable pseudo
inverse on the ill-conditioned matrix [33]. As a regularized
L2 method, L2-L2 method shows more stable performance
than L2. However, it is still worse than BMPL.

We report the total time spent by various methods in Table
VI. PGH, the state-of-the-artℓ1-solver, needs several hours
to predict all testing images on theAR database withρd =
1, which is unbearable for many real-world applications. On
the contrary, BMPL completes the prediction in 20 seconds
only, which is 366 times faster than PGH. BMPL is also 3-10
times faster than BOMP. Lastly, BMPL achieves comparable
efficiency to L2-L2 and L2.

A remaining question is:does the sparsity help to improve
recognition performance? We list the average sparsity of
BMPL, PGH, and BOMP in Table VII. Note that the solutions
obtained by L2 and L2-L2 methods are not sparse. From Table
V, BMPL, PGH, and BOMP show comparable or significantly
better recognition rates than L2 and L2-L2 methods on the
YaleBdatabase. In addition, BMPL outperforms L2 and L2-
L2 methods onAR database with enough pixels. Therefore,
sparsity indeedhelps to improve recognition rates.

2) Face Recognition with Different Number of Training
Samples:Let ρt be the ratio of the number of training images
over the total number of images. In this experiment, we vary
ρt ∈ {0.55, 0.60, 0.65, 0.7, 0.75, 0.8} to change the number of
training images. The prediction accuracy and prediction time
w.r.t. ρt are shown in Tables VIII and IX, respectively.

In general, with more training images, the matrixA⊤A be-
comes more ill-conditioned. From Table VIII, BMPL performs
significantly better than L2 and L2-L2 whenρt ≥ 0.60. In
other words, BMPL achieves more stable performance when
A⊤A becomes more ill-conditioned. Finally, from Table IX,
BMPL shows comparable efficiency to L2 and L2-L2 methods.

TABLE IX
TOTAL T IME SPENT ONYaleBWITH DIFFERENTNUMBER OF TRAINING

IMAGES (IN SECONDS)

ρt 0.55 0.60 0.65 0.70 0.75 0.80
L2 2.48 2.95 3.02 3.16 3.56 6.02

L2-L2 2.20 2.51 3.50 3.94 3.21 6.06
BMPL 10.65 6.11 5.71 4.93 4.23 2.85

VI. CONCLUSIONS

In this paper, we have proposed a subspace search to further
improve the performance of MPL, and a batch-mode MPL

11

TABLE V
PREDICTION ACCURACY ON TWO FACE DATABASES

Extended YaleB Database AR Database
ρd 1 1/2 1/3 1/4 1/5 1/6 1/7 1 3/4 2/3 1/2 1/3
L2 0.9876 0.9868 0.9831 0.9792 0.9371 0.9561 0.9621 0.9466 0.9301 0.9108 0.7323 0.9638

L2-L2 0.9898 0.9859 0.9827 0.9818 0.9783 0.9730 0.9723 0.9524 0.9504 0.9532 0.9574 0.9692
PGH 0.9897 0.9843 0.9826 0.9846 0.9815 0.9760 0.9658 0.9657 0.9650 0.9715 0.9679 0.9656

BOMP 0.9904 0.9897 0.9861 0.9844 0.9786 0.9799 0.9734 0.9742 0.9744 0.9738 0.9738 0.9619
BMPL 0.9911 0.9892 0.9873 0.9849 0.9817 0.9787 0.9761 0.9739 0.9757 0.9715 0.9723 0.9672

Wilcoxon 0 0 0 0 1 1 1 1 1 1 1 0

TABLE VI
TOTAL T IME SPENT ONTWO FACE DATABASES (IN SECONDS), #SPEEDUP DENOTES THE TIMES OF SPEEDUP OFBMPL OVER PGH

Extended YaleB Database AR Database
ρd 1 1/2 1/3 1/4 1/5 1/6 1/7 1 3/4 2/3 1/2 1/3
L2 71.33 24.91 6.29 3.51 2.42 1.14 0.72 13.34 4.39 3.16 3.28 2.19

L2-L2 11.36 6.85 4.13 2.40 2.32 2.22 1.69 3.75 3.04 3.10 2.58 1.99
PGH 5559.53 4863.18 2195.03 1383.28 822.11 627.95 383.86 5229.75 2812.96 2178.91 1324.59 557.65

BOMP 139.69 99.88 98.05 89.83 89.95 90.41 87.60 108.52 98.84 98.60 97.25 95.58
BMPL 39.72 17.05 12.94 7.86 7.62 6.53 6.19 14.29 10.87 10.20 7.14 4.57

#speedup 140.0 283.6 169.6 176.0 107.9 96.2 62.0 366.0 258.8 213.6 185.5 122.0

TABLE VII
AVERAGE SPARSITY ON TWO FACE DATABASES

Extended YaleB Database AR Database
ρd 1 1/2 1/3 1/4 1/5 1/6 1/7 1 3/4 2/3 1/2 1/3

BOMP 200 200 200 200 200 200 200 200 200 200 200 200
PGH 164 165 165 162 156 158 163 133 130 127 135 124

BMPL 167 165 160 155 155 149 143 189 190 188 194 201

has been developed to vastly speed up SR with many signals.
Comprehensive experiments demonstrate the superb efficiency
of the proposed (S)MPL methods. In general, (S)MPL are
tens times faster than state-of-the-artℓ1-norm methods. The
recovery time of the SMPL method over aBig Dictionarywith
one million atoms is less than 50 seconds. We apply BMPL
to batch face recognition tasks. The experimental results show
that BMPL achieves significantly better recognition rates than
L2 and L2-L2 with comparable computational cost. Notably,
BMPL is up to 20 times faster than the batch-mode OMP [24]
and 400 times faster than theℓ1-norm methods considered to
be state-of-the-art.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous review-
ers for their insightful comments and suggestions which
have greatly improved the paper. This research was partially
supported by the Australian Research Council Future Fel-
lowship FT130100746, Australian Research Council grants
DE120101161, and DP140102270.

REFERENCES

[1] M. Tan, I. Tsang, and L. Wang, “Matching pursuit LASSO Part I: Sparse
recovery over big dictionary,” Tech. Rep., 2013.

[2] E. J. Candès and T. Tao., “Decoding by linear programming,” IEEE
Trans. Info. Theory, vol. 51, no. 12, pp. 4203–4215, 2005.

[3] D. Donoho, “Compressed sensing,”IEEE Trans. Info. Theory, vol. 52,
no. 4, pp. 1289–1306, 2006.

[4] M. F. Duarte and Y. C. Eldar, “Structured compressed sensing: From
theory to applications,”IEEE Trans. Signal Process., vol. 59, no. 9, pp.
4053–4085, 2011.

[5] T. T. Do, L. Gan, N. H. Nguyen, and T. D. Tran, “Fast and efficient
compressive sensing using structurally random matrices,”IEEE Trans.
Signal Process., vol. 60, no. 1, pp. 139–154, 2012.

[6] J. Mairal, M. Elad, and G. Sapiro, “Sparse representation for color image
restoration,” IEEE Trans. Image Process., vol. 17, no. 1, pp. 53–69,
2008.

[7] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,”IEEE Trans. Pattern Anal. Mach.,
vol. 31, no. 2, pp. 210–227, 2009.

[8] E. Elhamifar and R. Vidal, “Sparse subspace clustering,” in CVPR, 2009.
[9] A. Adler, M. Elad, and Y. Hel-Or, “Fast subspace clustering via sparse

representations,” Department of Computer Science, Technion, Israel,
Tech. Rep., 2011.

[10] A. Coates and A. Ng, “The importance of encoding versus training with
sparse coding and vector quantization,” inICML, 2011.

[11] T. Peleg, Y. Eldar, and M. Elad, “Exploiting statistical dependencies in
sparse representations for signal recovery,”IEEE Trans. Signal Process.,
vol. 60(5), pp. 2286–2303, 2012.

[12] G. Davis, S. Mallat, and M. Avellaneda, “Adaptive greedy approxima-
tions,” Constr. Approx., vol. 13, no. 1, pp. 57–98, 1997.

[13] D. Ge, X. Jiang, and Y. Ye, “A note on the complexity of lp minimiza-
tion,” Math. Programming, vol. 129, no. 2, pp. 285–299, 2011.

[14] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani., “Least angle
regression,”Ann. Statist., vol. 32, no. 2, pp. 407–499, 2004.

[15] H. Lee, A. Battle, R. Raina, and A. Y. Ng., “Efficient sparse coding
algorithms,” inNIPS, 2006.

[16] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky,“An interior-
point method for large-scaleℓ1-regularized least squares,”IEEE J. Sel.
Top. Sign. Proces., vol. 1, no. 4, pp. 606–617, 2007.

[17] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection
for sparse reconstruction: Application to compressed sensing and other
inverse problems,”IEEE J. Sel. Top. Sign. Proces.: Special Issue on
Convex Optimization Methods for Signal Processing, 2007.

[18] L. Xiao and T. Zhang, “A proximal-gradient homotopy method for the
l1-regularized least-squares problem,” inICML, 2012.

[19] ——, “A proximal-gradient homotopy method for the sparse least-
squares problem,”SIAM J. Optimiz., vol. 23, no. 2, pp. 1062–1091,
2013.

[20] B. Efron, T. Hastie, L. Johnstone, and R. Tibshirani, “Least angle
regression,”Ann. Statist., vol. 32, no. 2, pp. 407–499, 2004.

[21] Y. Nesterov, “Gradient methods for minimizing composite objective
function,” Center for Operations Research and Econometrics (CORE),
Catholic University of Louvain (UCL), Tech. Rep., 2007.

[22] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding

12

algorithm for linear inverse problems,”SIAM J. on Imaging Sciences,
vol. 2, no. 1, pp. 183–202, 2009.

[23] S. Yun and K.-C. Toh, “A coordinate gradient descent method for ℓ1-
regularized convex minimization,”Comput. Optim. Appl., vol. 48, no. 2,
pp. 273–307, 2011.

[24] R. Rubinstein, M. Zibulevsky, and M. Elad, “Efficient implementation
of the k-SVD algorithm using batch orthogonal matching pursuit,”
Technion, Tech. Rep., 2008.

[25] A. Yang, A. Ganesh, Y. Ma, and S. Sastry, “Fast l1-minimization
algorithms and an application in robust face recognition: Areview,”
in ICIP, 2010.

[26] R. Baraniuk, “Compressive sensing,”IEEE Signal Processing Mag.,
vol. 24, no. 4, pp. 118–121, 2007.

[27] J. Romberg, “Imaging via compressive sampling,”IEEE Signal Process-
ing Magazine, vol. 25, no. 2, pp. 14–20, 2008.

[28] M. Aharon, M. Elad, and A. Bruckstein, “Thek-SVD: An algorithm for
designing of overcomplete dictionaries for sparse representation,” IEEE
Trans. Signal Process., vol. 54, no. 11, pp. 4311–4322, 2006.

[29] H. Lee, A. Battle, R. Raina, and A. Y. Ng., “Efficient sparse coding
algorithms,” inNIPS, 2006, pp. 801–808.

[30] S. Gao, I. W. Tsang, and L. Chia, “Sparse representationwith kernels,”
IEEE Trans. Image Process., vol. 22, no. 2, pp. 423–434, 2013.

[31] W. Deng, J. Hu, and J. Guo, “Extended SRC: Undersampled face
recognition via intraclass variant dictionary,”IEEE Trans. Pattern Anal.
Mach., vol. 34, no. 9, pp. 1864–1870, 2012.

[32] L. Zhuang, A. Y. Yang, Z. Zhou, S. S. Sastry, and Y. Ma, “Single-
sample face recognition with image corruption and misalignment via
sparse illumination transfer,” inCVPR, 2013.

[33] Q. Shi, A. Eriksson, A. v. d. Hengel, and C. Shen, “Is facerecognition
really a compressive sensing problem?” inCVPR, 2011.

[34] L. Zhang, M. Yang, and X. Feng, “Sparse representation or collaborative
representation: Which helps face recognition?” inICCV, 2011.

[35] G. Huang, H. Jiang, K. Matthews, and P. Wilford, “Lensless imaging
by compressive sensing,” inICIP, 2013.

[36] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary learning
for sparse coding,” inICML. ACM, 2009, pp. 689–696.

[37] ——, “Online learning for matrix factorization and sparse coding,”
JMLR, vol. 11, pp. 19–60, 2010.

[38] R. Rubinstein, T. Peleg, and M. Elad, “Analysis k- SVD: Adictionary-
learning algorithm for the analysis sparse model,”IEEE Trans. Signal
Process., vol. 61, no. 3, pp. 661–677, 2013.

[39] B. Beckermann and A. B. J. Kuijlaars, “Superlinear convergence of
conjugate gradients,”SIAM J. Numer. Anal., vol. 39, no. 1, pp. 300–
329, 2002.

[40] Y. C. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet
decomposition,” inThe Twenty-Seventh Asilomar Conference on Signals,
Systems and Computers. IEEE, 1993, pp. 40–44.

[41] J. A. Tropp, “Greed is good: Algorithmic results for sparse approxima-
tion,” IEEE Trans. Info. Theory, vol. 50, no. 10, pp. 2231–2242, 2004.

[42] D. L. Donoho, Y. Tsaig, I. Drori, and J. L. Starck, “Sparse solution of
underdetermined systems of linear equations by stagewise orthogonal
matching pursuit,”IEEE Trans. Info. Theory, vol. 58, no. 2, pp. 1094–
1121, 2012.

[43] T. Blumensath and M. E. Davies, “Stagewise weak gradient pursuits,”
IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4333–4346, 2009.

[44] D. Needell and J. Tropp, “CoSaMP: Iterative signal recovery from
incomplete and inaccurate samples,”Appl. Comput. Harmon. Anal.,
vol. 26, no. 3, pp. 301–321, 2009.

[45] W. Dai and O. Milenkovic., “Subspace pursuit for compressive sensing
signal reconstruction,”IEEE Trans. Info. Theory, vol. 55, no. 5, pp.
2230–2249, 2009.

[46] P. Jain, A. Tewari, and I. S. Dhillon, “Orthogonal matching pursuit with
replacement,” inNIPS, 2011.

[47] J. K. Bradley, A. Kyrola, D. Bickson, and C. Guestrin., “Parallel
coordinate descent forl1-regularized loss minimization,” inICML, 2011.

[48] Z. J. Xiang, H. Xu, and P. J. Ramadge., “Learning sparse representations
of high dimensional data on large scale dictionaries,” inNIPS, 2012.

[49] D. Needell and R. Vershynin, “Uniform uncertainty principle and
signal recovery via regularized orthogonal matching pursuit,” J. Found.
Comput. Math., vol. 9, no. 3, pp. 317–334, 2009.

[50] T. Blumensath and M. E. Davies, “Iterative hard thresholding for
compressed sensing,”Appl. Comput. Harmon. Anal., vol. 27, no. 3, pp.
265–274, 2009.

[51] T. Blumensath, “Accelerated iterative hard threshoding,” Signal Process.,
vol. 92, no. 3, pp. 752–756, 2011.

[52] R. Giryes and M. Elad, “RIP-based near-oracle performance guarantees
for subspace-pursuit, CoSaMP, and iterative hard-thresholding,” IEEE
Trans. Signal Process., vol. 60, no. 3, pp. 1465–1468, 2012.

[53] Y. Taigman and L. Wolf, “Leveraging billions of faces toovercome
performance barriers in unconstrained face recognition,”Facebook AI
Research, Tech. Rep., 2011, arXiv:1108.1122.

[54] A. Martinez and R. Benavente, “The AR face database,” CVC Tech,
Tech. Rep., 1998.

http://arxiv.org/abs/1108.1122

	I Introduction
	I-A Batch SR in Face Recognition
	I-B Batch SR in Compressive Sensing
	I-C Batch SR in Dictionary Learning
	I-D Main Contributions

	II Matching Pursuit for LASSO
	II-A Matching Pursuit LASSO
	II-B Subspace Exploratory Matching for MPL
	II-C Stopping Conditions
	II-D Implementation Concerns

	III Batch Mode MPL
	IV Numerical Experiments
	IV-A Experimental Settings and Performance Metrics
	IV-B Comparison with PGH, FISTA and Active-set Method
	IV-C Influences of on SMPL
	IV-D Comparisons with ROMP, StOMP, and SWCGP
	IV-E Comparisons with Other Baselines
	IV-F Scalability Comparisons on Big Dictionaries

	V Batch MPL and Applications to Many-Face Recognition
	V-A Comparison of BMPL and BOMP
	V-B Many-face Recognition by BMPL
	V-B1 Many-face Recognition with Different Number of Pixels
	V-B2 Face Recognition with Different Number of Training Samples

	VI Conclusions
	References

