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Abstract—Affine biased estimation is particularly useful when
there is some a-priori knowledge on the parameters that can be ex-
ploited in adverse situations (when the number of samples is low,
or the noise is high). Three different affine estimation strategies
are discussed, namely the Deepest MinimumCriterion (DMC), the
Min-Max (MM), and the Linear Matrix Inequality (LMI) strate-
gies, and closed form expressions are obtained for all of them, for
the case when the a priori knowledge is given in the form of ellip-
soidal constraints on the parameter space, and when the covari-
ance matrix of the unbiased estimator is constant. A relationship
between affine estimation and Bayesian estimation of the mean of
a multivariate Gaussian distribution with Gaussian prior is estab-
lished and it is shown how affine estimation theory can help in the
choice of the Gaussian prior distribution.

Index Terms—Affine bias, Bayesian estimation, biased estima-
tion, constrained estimators, least-squares methods, nonlinear op-
timization, parameter estimation, positive definite matrices.

I. INTRODUCTION

I N the problem of parameter estimation, affine estimation
has emerged as a technique that takes advantage of the bias-

variance tradeoff in order to lower the mean squared error of es-
timation [1]–[4]. Essentially, the idea is to apply an affine trans-
formation to an unbiased estimator, yielding a biased estimator
with affine bias—an affine estimator—in such a way that the
overall mean squared error of the estimator is reduced with re-
spect to the unbiased estimator.
There are several techniques for choosing the optimal affine

transformation to be applied. Mainly, the Min-Max (MM) tech-
nique [5], the Linear Matrix Inequality (LMI) method [6] and
the Deepest Minimum Criterion (DMC) strategy [7]. Each tech-
nique looks to obtain the affine transformation following dif-
ferent optimality criteria. The MM strategy [5] is a conserva-
tive approach that tries to uniformly reduce the mean squared
error while the LMI criterion [6] is a more strict strategy that
lowers the mean squared error in every possible axis of the pa-
rameter space. The DMC [7] tries to lower the minimum value
of the mean squared error of the biased estimator while en-
suring that the affine estimator dominates over the unbiased esti-
mator. Nonetheless, all three strategies yield admissible estima-
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tors. This means that no affine estimator is better than the other
affine estimator over the whole region of interest; but all three
affine estimators have a better mean squared error performance
than the unbiased estimator they transform.
The key aspect for the affine estimators to be better than the

unbiased estimator is the inclusion of some a-priori knowledge.
This a-priori knowledge is given in the form of a subset of the
parameter space to which the true parameter is known to be-
long to. Usually, the idea of a-priori knowledge is exclusive
to Bayesian estimation, where the parameter is considered as
a random variable and the a-priori information is given in the
form of a prior distribution [8]–[11]. Although the posterior pdf
is what it is usually sought in Bayesian estimation, in practice, if
useful, only point estimators derived from it are generally used.
It has been hinted that these estimators have a relationship with
the affine estimator for the case of estimating the mean of a mul-
tivariate Gaussian distribution with Gaussian prior [6], [12].
The aim of this paper is manifold. First, an alternative proof

of the optimal solution for the DMC problem is given, for the
case of a-priori information given as an ellipsoid, and for un-
biased estimators of constant covariance matrix (Section III).
Second, a complete proof of the optimal solution of the MM
strategy is given, also for the same case of ellipsoidal a-priori
information and constant covariance matrix unbiased estimators
(Section IV). Third, the LMI strategy is generalized to any pa-
rameter estimation problem rather than only linear regression
problems. Fourth, the optimal solution for the LMI strategy is
given, for the case of ellipsoidal a-priori information and con-
stant covariance matrix estimators (Section V). Fifth, an explicit
relationship between the Bayesian point estimator of the mean
of a multivariate Gaussian distribution with Gaussian prior and
affine estimators is obtained (Section VI). This relationship may
serve as a bridge connecting both estimation philosophies for
this case and will be of great help in the design of the a-priori
information in either case. Finally, an illustrative simulated ex-
ample is used to show the performance of the different affine
estimators. This illustrative example is the estimation of a FIR
lowpass filter (Section VII).
The general problem of affine biased estimation for the case

of constant covariance matrix and ellipsoidal constraints is con-
sidered in Section II (for a more general treatment on the sub-
ject, see [7]). Also, conclusions can be found in Section VIII.
In the present paper, matrices will be uppercase boldface let-

ters and vectors will be lowercase boldface letters. For any ma-
trix denotes its transpose and denotes
that is symmetric positive semidefinite (s.p.s.) and
stands for a symmetric positive definite (s.p.d.) matrix. Given
two symmetricmatrices the partial ordering de-
fined on the symmetric positive semidefinite cone will be used.
This is is equivalent to being s.p.s. and
is equivalent to being s.p.d.
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II. AFFINE BIASED ESTIMATION

Let be a given unbiased estimator of the true param-
eter that generated the samples , inde-
pendent or not, drawn from some parametrized probability Dis-
tribution Function , with and
so that , see e.g., [8]. It is assumed that the co-
variance of the unbiased estimator exists for all values of and
. Consider the estimator

(1)

where is a square matrix, not necessarily
symmetric, and .
Throughout this paper a given unbiased estimator will

be considered and, when compared, all affine estimators
of the form (1) will be transformations of the same unbiased es-
timator . Since minimizing squared errors is the problem
here, if possible a MVUE should be the preferred unbiased es-
timator to choose.
The weighted mean squared error MSE of is

defined as

(2)

where is a known s.p.d. matrix that may give dif-
ferent weights to the components of the error vector, as consid-
ered in, for example ([10], p. 94, p. 135). Usually, is taken
to be the identity matrix and this will be assumed from now on
as both the MM [5] and the LMI [6] estimators do not consider
a weighted mean squared error. For the general case
please refer to [7].
Let be the

covariance matrix of the unbiased estimator . The matrix
is, in general, a function of and . From (2), the mean

squared error of the biased estimator is

(3)

From now on, it will be considered the practical case when
, see [7]. This implies that there is room for

some actual improvement of the biased affine estimator over
the unbiased estimator. It is easy to observe that, if then,
from (3), the MSE of the biased affine estimator will be higher
than that of the unbiased estimator unless , which yields

and there is no room for improvement. Gen-
eralizing this idea, if , then this same issue
would arise in some subspace of the parameter space. In prac-
tice, should , the parameter space may be re-
formulated so as not to include the subspace where there is no
room for improvement. So, from now on, it will be assumed
that . This assumption implies that (3) can be
rewritten as

(4)

The interest is set on obtaining and that define a biased
estimator with less MSE than that of

inside a region of interest that will be called
the validation-region, that is

(5)

with strict inequality for at least one value of .
In order to obtain a closed form solution, the a-priori informa-

tion given in the validation regionwill take a special structure. In
[6] it is considered to be a polytope (given by linear restrictions
on the possible values of the parameters) and in [5] it is consid-
ered to be an ellipsoid. In this paper, the latter subset is consid-
ered. In any case, any other subset can be approximated by an
ellipsoid, see [6]. Therefore, the a-priori known validation-re-
gion that will be considered is the closed ellipsoidal-ball, see
([7], def. 1),

(6)

with s.p.d. and both known. This region
will be called the validation-ellipsoid. The validation regions
are application-dependendent. However, in many cases, as sug-
gested in [6], some upper and lower bounds on the values of the
parameters to be estimated can be obtained. This bounded re-
gion can then be covered by a minimum-volume ellipsoid [13],
see Section VII.
Also, in order to obtain a closed-form expression for the

optimal solutions of all three strategies, it is further assumed
that the covariance matrix does not depend on , i.e.,

. This case turns out to be quite useful in practice.
In general, problems involving the estimation of the mean of
Gaussian distributions [8], linear regression models [14], DC
level in white noise [15], line fitting problems, range estimation
[16], source localization [17], among many others make use of
unbiased estimators of constant covariance matrix. The affine
estimator developed in [6] only considers a constant covariance
matrix unbiased estimator. Otherwise, if the covariance matrix
is dependent on the parameter, then a reasonable constant
bound to the covariance matrix may exist in the region of
interest . With this assumption the MSE of the affine biased
estimator (4) turns into

(7)

where

(8)

It is observed that (7) is the equation of an upwards paraboloid
with axis in the direction of the MSE axis. The least MSE value
corresponds to which is the -space coor-
dinate of the vertex of the paraboloid, with MSE value
given by (8). Paraboloid (7) will be called the error-paraboloid.
Considering that now and that

(5) holds for actual improvement, then using (7) it yields

(9)

for all which is the condition that has to be satisfied by
and . Moreover, assuming that there exists a for which
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the inequality in (5) is strict, then , and then (9)
defines the ellipsoid

(10)

for all . This ellipsoid will be called error-ellipsoid and it
is a closed ellipsoidal-ball given by , where

(11)

Hence, the surface of the error-ellipsoid (10) is the intersection
of the error-paraboloid (7) with the -hyperplane.
It is important to recall that the only case of practical impor-

tance [7] is when the validation-region contains a minimal
error-spheroid given by

(12)

for some , see [18]. This is, ,
which, in the case that the validation-region is the validation-
ellipsoid (6), is equivalent to the following LMI ([7], obs. 3,
(19))

(13)

Besides its practical importance, (13) is an essential inequality
for proving all the optimal solutions for any strategy. The exis-
tence of this upper bound is of paramount importance. There-
fore, it will be assumed that throughout
the rest of the paper.
The problem addressed here is if there is an optimal way to

choose and such that (5) is met, for a given validation-re-
gion that contains a minimal error-spheroid (12), with the re-
strictions and (see [7]). The
solution obtained depends on the optimality criterion selected.
The most important difference between each criteria is the way
the a-priori information is weighted with respect to the estimator
based on the samples. It is of utmost importance to remark that
the affine estimators that arise from all three strategies are all ad-
missible, so no strategy is better over all the validation-region.
In what follows, the case considered will be that in which

does not depend on , that is . For a
geometrical insight see ([7], Fig. 1) and for a geometrical com-
parison of the DMC and MM strategies applied to one-dimen-
sional parameters, see ([19], Fig. 5).

III. THE DEEPEST MINIMUM OPTIMALITY CRITERION

The goal of the DMC strategy is to reduce the value (8)
of the MSE at the vertex of the error-paraboloid (7) as much
as possible while condition (5) still holds. This implies that the
validation-region has to be contained inside the error-ellipsoid
(10), ; otherwise, the affine estimator would
not have less MSE than the unbiased estimator over the whole
region . See ([7], Fig. 1) for a geometrical insight. The general
problem can be formally stated as ([7], DMC-General Form)
DMC-Problem: Let be a s.p.d. matrix and let
, where , define a bounded validation-region such
that it contains a minimal error-spheroid , see
(12), for some spheroid center . Find and

such that the error-ellipsoid , see (10), with
and given by (11), contains the validation-region, , with

and , and the value
of the MSE at the vertex of the error-paraboloid (8),

, is minimum.
For the particular case when the validation-region is given by

the validation-ellipsoid (6), the following holds.
The optimal value of is given by ([7],

Obs. 7), where is the optimal value of which
can be obtained by solving the next problem ([7], E-DMC-Gen-
eral Form 2)
E-DMC-Problem: Let be s.p.d. matrices,

with . Find with
such that is

minimized, subject to

(14)

This is a convex optimization problem of the form

(15)

The objective function
is convex because it is the composition

of an increasing linear function and another convex func-
tion, ([13], ex. 3.46, ex. 3.48). The restriction function

is convex
because it is the non-negative sum of two convex functions,
([13], ex. 3.49). This implies that problem (15) is convex [13].
The closed form solution to the DMC strategy is given in

([7], Main Theorem) and it was obtained through geometrical
considerations. Here, a different proof will be given, using the
Karush-Kuhn-Tucker (KKT) conditions of convex optimization
problem (15). The proof given here is more straightforward, but
it requires knowledge of the closed form expression. This closed
form expression was obtained in a constructive way in [7].
The KKT conditions for problem (15) are given by
KKT Conditions 1: DMC Problem. The KKT conditions for

problem (15) are

(16)

(17)

(18)

(19)

where is the optimal value of the variable of the primal
problem and is the optimal value of the Lagrange
multiplier s.p.s., which is the variable of the dual
problem.

Proof: The KKT conditions for problem (15) can be ob-
tained as follows, ([13], p. 267). The Lagrangian is ([13], p. 264)
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where is the Lagrange multiplier and, therefore, is
s.p.s., ([13], p. 265). Condition (16) is obtained by setting the
derivative of the Lagrangian with respect to to zero
for the optimal values . Thus,

Setting it equal to zero,

and, finally, by proposing
condition (16) is obtained.
Condition (17) is the complementary slackness condition.

Condition (18) is the feasibility of the dual problem and finally,
condition (19) is the feasibility of the primal problem.
The KKT conditions 1 are necessary and sufficient condi-

tions the optimal solution must satisfy because the optimization
problem (15) is convex and strong duality holds ([13], p. 267).
Theorem 1: Solution for the DMC Problem. The solution to

problem (15) is

(20)

Proof: Solution (20) is optimal as proved in ([7], Main
Theorem), which is a constructive proof to get to the expression
(20). As a double check, an alternative proof is given here by
using KKT conditions.
Condition (16) yields the optimal value of the Lagrange mul-

tiplier

(21)

where .
Condition (17) is verified by replacing the DMC solution (20)

and the optimal value of (21) which yields

For condition (18), note that

(22)

and that and is s.p.d. ([7], Theorem
2), which is obtained from the condition (13) imposed on .
Finally, condition (19) is immediate by replacing the DMC

solution (20).
Hence, it has been checked that the DMC solution (20) sat-

isfies the KKT conditions for the convex optimization problem
(15) and therefore the optimal affine transformation according
to the DMC criterion is given by in (20) and by

.

It should be observed that the DMC affine estimator is admis-
sible, as it is not dominated by the Min-Max estimator which is
also admissible ([5], p. 3827). This implies that the Min-Max
estimator is not better than the DMC estimator over the whole
region , or vice versa. Also, if the unbiased estimator that is
transformed is efficient in the Cramér-Rao sense, then the affine
biased estimator will achieve the bound on the MSE for biased
estimators of deterministic parameters, see ([5], Theorem 1).

IV. THE MIN-MAX OPTIMALITY CRITERION

The Min-Max (MM) strategy [5] can be viewed as a two step
process. First, for each and determine which is
the value of that maximizes the MSE (3). Second, choose

and for which the MSE at is minimum.
Define as the surface of the validation-region. That is,

for the case in which the validation-region is the validation-el-
lipsoid given by (6) it is

(23)

In the -MSE space, (23) defines a cylinder, called the val-
idation-cylinder, with axis parallel to the MSE axis and for
which the perpendicular section is the validation-ellipsoid (6).
Hence, the first step corresponds to the intersection of the valida-
tion-cylinder with the error-paraboloid for a given pair ,
looking for the value of inside the validation-ellipsoid with
highest MSE. That maximum will occur on the surface of
the validation-ellipsoid. With these definitions the first step of
the Min-Max strategy corresponds to:
For each and , i.e.,

, determine that maximizes
, given by (3). That is, define as:

(24)

The second step corresponds to:

(25)

Then, the Min-Max strategy seeks an affine estimator that, in
a sense, has uniformly deepest MSE on the surface of the
validation-ellipsoid.
In [5], convex programming techniques [13] are used to find

the solution of the Min-Max problem. In this direction, in [5],
the Karush-Kuhn-Tucker (KKT) conditions that an optimal so-
lution must satisfy are given for a validation-ellipsoid. In what
follows, the closed form solution for this case is obtained, and
then, as a double check, the KKT conditions in ([5], (58)) are
verified for this solution.

A. Closed Form Solution for the Min-Max Strategy

To obtain the closed form solution the following argument
is made. For a given and , consider the hyper-surface
(curve for ) obtained from the intersection of the error-
paraboloid (7) and the validation-cylinder.
Hence, the first step looks for the with the highest

MSE value on that surface (curve). Then, the optimal
corresponding to and , with
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, obtained in the second step should be
such that . If
not a better solution would be obtained by slightly
shifting, rotating, and/or changing the relative axises of ,
i.e., changing the error paraboloid, so that results
in a lower value than . Hence, taking into ac-
count ([7], obs. 2), the optimal error-paraboloid should be
centered at the center of the validation-ellipsoid, and then

. Since is parallel to the -hyperplane,
i.e., it is equidistant from the validation-ellipsoid, then itself
is the perpendicular section of the validation-cylinder, and then
also it is the perpendicular section of the error-paraboloid.
Recall that, by definition, the perpendicular section of the vali-
dation-cylinder is the validation-ellipsoid. Then, the Min-Max
optimal error-paraboloid will intersect the -hyperplane,
in an error-ellipsoid that will have the same relative axises,
i.e., ratios of eigenvalues, than . Since all the perpendic-
ular sections of the error-paraboloid have the same relative
axises, i.e., the same ellipsoid shape, then they should have
the validation-ellipsoid shape. Hence the shape of the optimal
Min-Max error-paraboloid may be obtained from the result of
([7], Theorem 4). Finally, it only remains to determine the size
of the Min-Max optimal error-ellipsoid.
Call , and where

.
Then, the optimal Min-Max value may be obtained as:

for any .
Since , and

then from (3),
with , it results

. Since for any , it is
, then

so that

(26)

Hence, the closed form solution for the Min-Max estimator,
under an ellipsoidal constraint (6) with covariance matrix,

independent of , is given by

(27)

and .
Note that the scalar coefficient in (27) is one half the scalar

coefficient in , with given by (20). Thus,
.

B. KKT Conditions for the Min-Max Problem

As a double check, the KKT conditions in ([5], (58)) are ver-
ified for the closed form solution given by (27).

The Min-Max problem (24)–(25) is equivalent to convex op-
timization problem ([5], Lemma 4) when the validation region
is given by (6). It is also strictly feasible ([5], proposition 3)

and, therefore, strong duality holds. Thus, KKT conditions are
necessary and sufficient conditions for a solution to be optimal.
In ([5], (58)) the KKT conditions were first obtained for

problem ([5], Lemma 4) and then they were solved for and
. Conditions ([5], (58)) are given for a general quadratic

covariance matrix unbiased estimator, but here will be used for
constant covariance matrix unbiased estimators (obtained by
replacing ;
and in ([5], (22), (24) and (33))).
It has already been proved in the previous section that solu-

tion (27), together with is optimal. As an alter-
native proof, it can be easily shown that these values satisfy the
KKT conditions ([5], (58)) for a constant covariance matrix un-
biased estimator.
In particular, the value of the Lagrange Multiplier related

variables and are

(28)

(29)

C. Comparison Between Min-Max and DMC Affine Biased
Estimators

For the Min-Max solution, from (27) and (8) it results:

(30)

with error-ellipsoid given by

(31)

while for the DMC-solution, from (20) and (8) it results

(32)

with error-ellipsoid coinciding with the validation-ellipsoid (6)
([7], Theorem 4)

Since it is
, so that .

Hence .
The error-paraboloid for the MM estimator is given by

(33)
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while for the DMC estimator is given by

(34)

The intersection of the two paraboloids defines the intersection-
ellipsoid given by

(35)

This intersection is well defined since , as
previously discussed.
Since

(36)

then the intersection-ellipsoid is inside the validation ellipsoid,
which in turn is inside the Min-Max error-ellipsoid.
Hence four regions are defined:
• Region I, outside the Min-Max error ellipsoid. The
Min-Max estimator is better that the DMC estimator, but
both are worse than the unbiased estimator;

• Region II, inside the Min-Max estimator and outside the
validation-ellipsoid. Both the Min-Max estimator and the
unbiased estimator are better than the DMC estimator, and
the Min-Max estimator is better than the unbiased esti-
mator.

The important situation corresponds to the following cases since
the true parameter is assumed to be inside the validation-ellip-
soid.
• Region III, inside the validation-ellipsoid and outside the
intersection-ellipsoid. Both the DMC and theMin-Max are
better than the unbiased estimator, and the Min-Max esti-
mator is better than the DMC estimator.

• Region IV, inside the intersection-ellipsoid. Both the DMC
and the Min-Max are better than the unbiased estimator,
and the DMC estimator is better than the Min-Max esti-
mator.

Special care should be taken with this classification, in terms of
the estimators, since it is valid asymptotically when the number
of samples in is large. When the number of samples is finite
and small, which is the case of special interest for affine biased
estimators, the biased estimate may fall outside the validation
region to which the true parameter belongs. This can happen
with any strategy DMC, MM or any other. If that is the case
some criterion should be set to choose some value of the esti-
mator on the surface of the validation-region. Such a situation
requires careful analysis using large deviation theory.

V. THE LMI CRITERION

In [6] the problem of affine estimation is considered for linear
regression models. In this section, those ideas are extended to
a general deterministic parameter estimation problem, i.e., a
sample , independent or not, drawn from
some parametrized probability Distribution Function
with . The affine estimator proposed ([6], (III.1))
has the structure

(37)

with an unbiased estimator with constant covariancema-
trix1 and with

(38)

(39)

(40)

where and are the design variables. As
it will be discussed in Section VI, estimator (37) is first pro-
posed with the structure of the Bayesian estimator of the mean
of a multivariate Gaussian random variable with Gaussian prior,
hinting at the idea of an existing relationship between affine es-
timators and Bayesian estimation. Also, it is observed that in the
definition of (39), it was already assumed in [6] that
has to be s.p.d., the same as in ([7], Theorem 1).
The aim of the LMI strategy is to achieve mean square error

matrix domination ([6], p. 1265) over the validation-region ,
and not only MSE domination (5). This implies

(41)

with strict inequality for at least one value of . In (41),
s.p.d. is defined as

(42)

(43)

where andwhere the practical restriction that
discussed earlier is used. It is observed

that and that
.

Using (43) in (41) together with the Schur-complement based
lemma ([6], Lemma 1), then the restriction (41) is equivalent to

(44)

and this has to be true for every .
For the validation-ellipsoid (6) ([6],

Theorem 2). It is observed that if (44) has to be valid for every
, then the validation-ellipsoid should be contained by

the ellipsoid given by (44). Then, for the validation-ellipsoid,
restriction (41) is equivalent to

(45)

for the optimal .
The optimal value of can be found by solving the problem

([6], (III.9))

(46)

1In the linear regression problem, there exists a MVUE estimator with con-
stant covariance matrix [15]. Here the theory is extended to any unbiased esti-
mator with constant covariance matrix.
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which is valid for the general estimation problem given in
Section II, not only for a linear regression model used in [6].
From now on, a practical restriction analogous to (13), see

[7], is imposed on the validation-ellipsoid

(47)

which guarantees that the measurements introduce new infor-
mation, besides that given by the a-priori information given by
the validation-ellipsoid and it is worthwhile to perform the esti-
mation based on those measurements.
Note that because has to be s.p.s. (second

restriction in problem (46)), and the case of is not of
interest here (it is the Hodges-Le Cam estimator, see [7]), then
the second restriction implies that the solution has to be such
that is s.p.d. as in ([7], Theorem 1).
By proposing the invertible change of variables,

, and noting that looking for matrix that minimizes
is the same as the one that minimizes

, then the problem can be reformulated as
LMI-Problem: Let be s.p.d. matrices such

that (47) holds. Find s.p.d. that solves the convex
optimization problem

(48)

LMI-Problem (48) is convex (SDP) because is a
convex ([13], p. 116) decreasing function ([13], p. 109), pro-
vided that is s.p.d. which is guaranteed. Also, the restriction
of problem (48) is an affine function of the variable .
The solution to the LMI-Problem (48) can be readily found by

geometric arguments. Since is a decreasing function,
the minimum will be attained at the maximum possible value of

which is

(49)

because the restriction is an increasing (affine) function of .

A. KKT Conditions for the LMI Criterion Problem

Solution (49) can also be proved optimal because it satisfies
the KKT conditions which are necessary and sufficient because
the problem is convex and strong duality holds.
KKT Conditions 2: LMI Problem. The KKT conditions for

problem (48) are

(50)

(51)

(52)

(53)

where is the optimal and is the optimal Lagrange
multiplier .

Proof: Condition (50) is obtained by differentiating the La-
grangian with respect to ([13], ex. 3.37) and set-
ting its derivative to zero for optimal .

Condition (51) is the complementary slackness condition ob-
tained by using (50) in .
Conditions (52) and (53) are the feasibility condition of dual

problem and primal problem respectively.
Theorem 2: Solution for the LMI Problem. The optimal so-

lution for problem (48) is given by (49) and, therefore, the op-
timal values according to the LMI strategy are

(54)

(55)

Proof: The KKT conditions 2 are necessary and sufficient
because the problem is convex and strong duality holds, so the
optimal solution has to satisfy those conditions. By replacing

given by (49) in conditions (50)–(53)
the result is straightforward.
Given that , then by using (49) is obtained

to be (54). Using ([6], Theorem 2) because
validation-ellipsoid has a center of symmetry and thus, (55)
is obtained.

B. Comparison of the LMI Estimator With the DMC Estimator
and the Min-Max Estimator

Geometrically, the most striking difference between the LMI
estimator and both the DMC and MM estimators is that, while
the latter two have an error-paraboloid (and therefore, an error-
ellipsoid) with the same orientation as the validation-ellipsoid,
the LMI estimator does not.
The error-paraboloid for the DMC strategy is given by (34)

while for the MM strategy, it is (33). It is observed that for these
two strategies, the matrix of the error-paraboloid are scaled ver-
sions of .
However, for the LMI estimator, the error paraboloid is ob-

tained by replacing (54) and (55) in (7), recalling that

(56)

with , obtained by replacing (54) in (8).
It is clear then, that in order to ensure matrix domination, the

error-paraboloid has to take into account the actual matrix
for the problem and change its axis accordingly.
It is also worth noting that both the LMI and the DMC

strategies minimize the minimum MSE as much as pos-
sible, see Courant-Fischer theorem, ([20], Theorem 4.2.11)
and ([21], Theorem 7.7). This implies that, if the DMC
problem (15) is solved for a different validation region

given by

(57)

then the DMC solution (20) obtained for is the same as the
LMI solution (54). In other words, the LMI problem is the same
as the DMC problem but considering a different validation re-
gion such that it takes into account the covariance matrix
and achieves matrix domination instead of only MSE domina-
tion.
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VI. RELATIONSHIP WITH BAYES’ ESTIMATOR

In the Bayesian setting, the inclusion of a-priori knowledge
about the unknown parameters is achieved by considering them
as random variables drawn from a completely known proba-
bility distribution, [8], [9]. In the case in which the samples have
a normal distribution with a known covariance and the mean
is considered as a random variable with a completely known
normal distribution, the posterior distribution of the parameter
given the samples is normal and its mean is an affine transfor-
mation of the sample mean, [8]. This mean corresponds to the
MAP estimator as well as the conditional expectation estimator.
See [11] for an in depth discussion of this model. Alternatively
the Bayesian approachmay be considered as the problem of esti-
mating a random variable given a realization of a second random
variable, [10], for which the conditional expectation is the op-
timal estimator that minimizes the mean square error.
There is an interesting relationship between the affine esti-

mators and the Bayes’ estimator for the mean of a multivariate
Gaussian random variable with Gaussian prior, [8]. In [6] a de-
terministic parameter context is considered, but an estimator
with the structure of this bayesian estimator is used, hinting at
the idea that there is a relationship between affine estimators
in deterministic parameter setting and Bayesian estimation of
the mean of a multivariate Gaussian distribution with Gaussian
prior. Also, it is shown in [12] that the Min-Max estimation cri-
terion can be formulated in terms of a Bayesian approach and it
is equivalent to choosing the least favorable prior.
Let be an M-dimensional real random vari-

able with Gaussian distribution with mean unknown
and covariance matrix , s.p.d., known. Consider
as a random parameter with Gaussian prior distribution,

known and , s.p.d., known.
Let be a sample of size of the random variable , then the
posterior distribution of given the sample is [8],

(58)

with

(59)

(60)

where

(61)

For this case, both the conditional expectation estimator,
and the MAP estimator coincide and are equal to

given by (59).
As such, (59) may be considered as another estimate of , ab-

stracting from how it was obtained. It is clear that this estimator
is strongly consistent, and then weakly consistent, asymptoti-
cally unbiased, and asymptotically efficient in the Cramér-Rao
sense.
For finite it is biased and the question of minimum variance

must be analyzed, and will be discussed below.

The rationale of Bayes estimation indicates that for small
the a-priori knowledge should help with respect to the lack of
enough samples, and that for large , the Bayesian estimator
should become the MSE estimator [8] which is indeed the case
for (59).
It is readily observed that the estimator (59) is an affine

transformation of the unbiased estimator (61). Equation
(59) shows that the form of the Bayesian estimator for i.i.d.
Gaussian samples with Gaussian prior is of the form

(62)

with and ,
where is the unbiased estimator of , with
covariance matrix independent of .
As it is, this estimator is a biased estimator and, its mean

squared error considering that a specific realization generated
the samples is, using (4),

(63)

Since is such that
is s.p.d. and since

(64)

then, using theorem ([7], Theorem 2),
so that the corresponding error-ellipsoid (10) is

given by the s.p.d. matrix

(65)

with center (as observed from (63); see also ([6],
Theorem 2)).
Conversely, if a validation-ellipsoid is

given for some fixed , and a in the Bayesian setting is to be
found, such that the corresponding error-ellipsoid for the esti-
mator given by (59) coincides with the validation-ellipsoid ,
then, equivalently must be found. Hence,
([7], Theorem 4) is used to obtain
where

(66)
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so that

Hence

and then

(67)

But, by ([7], Theorem 4)

then, using the fact that for arbitrary s.p.d. square ma-
trices , then if and only if

([20], Corollary 7.7.4),

(68)

so that using (68) in (67), it results , i.e., is s.p.d.
Hence, (67) permits to find the covariance of the prior

Gaussian density from the geometrical knowledge of the vali-
dation-region. Note that when does not commute with ,
(67) gives a non-trivial solution for . Then, if geometrical
a-priori knowledge about , equivalently the validation-re-
gion, is known, the above analysis shows how (67) may
become a useful tool to help to choose the parameters of the
Gaussian prior distribution for the estimation of the mean of a
Guassian random variable with known covariance matrix. In
other words, if the a-priori knowledge is given as an ellipsoid
in the -space and Bayesian estimation methods are to be used,
then (67) can be used to convert from known matrix to prior
covariance matrix . Conversely, if the a-priori information
is given in the form of a Gaussian prior distribution but a de-
terministic setting is to be used, then (65) can be used to obtain
the matrix of a validation-ellipsoid from the known prior
covariance matrix . This shows an explicit link between
the Gaussian prior distribution given in a Bayesian setting for
the estimation of the mean of a Gaussian random variable and
the validation-ellipsoid for a corresponding DMC estimator in
a deterministic setting. Nonetheless, it is necessary to remark
that in a Bayesian context, the main interest is set in the whole
posterior probability density function of the parameter and not
only in estimator (59).

This can be readily generalized for any (66). That
is, for any a suitable can be obtained through
(67). Each will give a different way in which the a-priori
information is considered. For instance, the MM estimator can
also be converted to the Bayesian estimator by taking

.
The final remark is that (65)–(67) is not the only way to link

Bayesian estimation of the mean of a Gaussian random variable
with known covariance matrix and Gaussian prior with deter-
ministic estimation. The affine estimator structure proposed in
[6] is, indeed, the structure of a Bayesian estimator with prior
covariance matrix . Then, by using the LMI solution (54) to-
gether with (39), a different link between geometrical a-priori
knowledge and the Gaussian prior distribution can be estab-
lished.
All in all, in this section, several ways to establish connec-

tions between a-priori knowledge given in the form of geomet-
rical knowledge of the validation-region and given in the form
of a prior Gaussian density have been explicitly obtained.

VII. ILLUSTRATIVE EXAMPLE

As an illustrative example, the problem of estimating a dis-
crete-time lowpass FIR filter is considered. The idea is to exploit
the special structure of discrete-time LTI lowpass FIR filters de-
signed by windowing methods in order to improve the estima-
tion over the unbiased estimator considered. This is achieved
through the use of a-priori information in affine estimators.
A lowpass causal and stable FIR filter , designed

by the windowing method, is obtained as [22]

(69)

where is the cutoff frequency, is the
chosen window, is the length of the window (and conse-
quently, of the FIR filter) and where a delay of
is introduced in order to make the filter causal. This delay
introduces a linear phase. Linear phase filters are very useful
because they do not distort the desired filtered signal, they
only delay it [22]. The window sequence is usually
chosen such that and also
such that it is symmetric around . This implies that the
filter is a generalized linear phase FIR filter, symmetric,
and will be a type I filter if is odd or a type II filter if is even
[22]. In this example, it will be considered that is odd.
The aim of this illustrative example is to estimate the se-

quence using a known input sequence and measuring
the output of the system. Let be a set of
measurements, with

, where is the known input sequence and
where is the measurement noise assumed to be Gaussian
and white, with zero mean and variance.
The following linear regression model can be set up

(70)

with
is the parameter vector

to be estimated and it comprises only of
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filter coefficients due to the symmetry of type I filters,
and

... (71)

with

... (72)

where the matrix has been adapted to exploit the
filter symmetry.
There exists an unbiased estimator for given by

with constant covariance matrix
that achieves the Cramér-Rao bound [15]. In this

example, this will be the unbiased estimator considered and all
three affine estimators will be transformations of this same un-
biased estimator.
For including the a-priori information it is observed that

the filter sequence is upper and lower bounded by the
sequences and

with and
; and where some bounds on the

cutoff frequency have been assumed
, both known. If not, then the natural bounds

on the cutoff frequency can be used, and .
These bounds hold as long as the window used for design
meets the conditions mentioned before. Now, each coeffi-
cient of the filter is bounded to be in between two values

. These linear constraints represent a
polytope (an hyperrectangle) in the parameter space . This is
the convex validation-region needed for the affine estimators.
For the closed form solutions of these estimators to be used,
then the minimum volume ellipsoid that contains the hyper-
rectangle can be found, and this ellipsoid will be the validation
ellipsoid. The center vector will be the lowpass FIR filter
with cutoff frequency and matrix is obtained
by solving a convex optimization problem ([13], p. 222).
For the simulations, it will be considered that

and .
The first simulation is carried out as a function of

the noise variance which take values in the set

. The true value of the filter considered is
and the filter was designed with a Blackman-Harris window
[22]. The input sequence is a pseudo random noise
(PRN) input sequence, such that . For each
value of the variance, 1000 iterations are carried out in order to
obtain an estimate of the mean squared errors. The idea of this
simulation is to illustrate the performance of the estimators as
a function of the variance. Results are shown in Fig. 1.
First of all, it is observed that all three affine estimators are

better than the unbiased estimator, in terms of MSE, especially

Fig. 1. Simulation results for in the case when is the true
cutoff frequency, as a function of .

TABLE I
MONTE CARLO SIMULATION. IMPROVEMENT FOR ,

FOR AN IMPULSE INPUT SEQUENCE

for the adverse case of high noise variance. As the variance
lowers, all three affine estimators converge to the unbiased es-
timator. This happens because when the noise variance is high,
the measurements are unreliable and the affine estimator weighs
the a-priori information more important than the measurement-
based unbiased estimator. For the highest noise variance, i.e.,

, the DMC estimator improvement over the unbi-
ased estimator is 73%, the MM improvement is 52%, and the
LMI improvement is 30%. This improvement is measured as

%.
For the second simulation, a Monte Carlo analysis is carried

out. For a fixed noise variance of cutoff fre-
quencies are selected at random from the interval and
1000 iterations are run for each of the 300 cutoff frequencies se-
lected, with unit-impulse input sequence. The improvement for
the worst performance realization, the best performance realiza-
tion, the average and the median performance for each estimator
can be found in Table I. It can be observed that all affine esti-
mators perform better than the unbiased estimator.

VIII. CONCLUSION

This paper has addressed several aspects of affine estimation
under ellipsoidal constraints, and how this is related to Bayesian
estimation and the choice of a prior distribution.
Three different strategies, namely the DMC, the MM and

the LMI criteria, have been discussed, analyzed and compared.
Closed form expressions for all three strategies have been ob-
tained for the case when the validation-region is a known val-
idation-ellipsoid and when the covariance matrix of the unbi-
ased estimator is independent of the parameter to be estimated.
The explicit expression of the intersection-ellipsoid that deter-
mines which estimator between the DMC and the Min-Max is
better within each subregion of the validation-ellipsoid has been
obtained. Also, it has been observed that the LMI criterion ro-
tates the error-paraboloid according to the covariance matrix of
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the unbiased estimator in order to ensure matrix domination. Fi-
nally, it was shown that both the DMC and the LMI seek to min-
imize the minimum MSE but for different validation regions.
The relationship between these validation regions was explic-
itly obtained.
The relationship between the affine estimators and the

Bayesian estimation of the mean of a multivariate Gaussian
distribution with Gaussian prior has been discussed. It was
shown that the theory of affine estimation can be of great help
when choosing a suitable Gaussian prior and how a-priori in-
formation can be related between different estimation contexts.
This may serve as a practical bridge connecting both estimation
philosophies for this case.
Finally, an illustrative simulated example estimating a FIR

lowpass filter has been used to show the characteristics of the
three affine estimation strategies.
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