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Abstract—Transmit optimization and resource allocation for [6] and uplink limited feedback [7]. It could also be due to
wireless cooperative networks with channel state informaon the hardware deficiencies, delays in CSI acquisition [8], [9
(CSI) uncertainty are important but challenging problems in and partial CSI acquisition [10], [11]. With full and perfec

terms of both the uncertainty modeling and performance op- _ oL .
timization. In this paper, we establish a generic stochasti CSl, efficient performance optimization can often be aattev

coordinated beamforming (SCB) framework that provides flex —through convex formulations, e.g., coordinated beamfogni
ibility in the channel uncertainty modeling, while guaranteeing Vvia second-order cone programming [5], [12]. However, the

optimality in the transmission strategies. We adopt a genal channel knowledge uncertainty due to the partial and imper-

stochastic model for the CSI uncertainty, which is applicale  foct CS| brings technical challenges in system performance
for various practical scenarios. The SCB problem turns out b optimization

be a joint chance constrained program (JCCP) and is known
to be highly intractable. In contrast to all the previous algo- To address such challenges brought by the channel knowl-

rithms for JCCP that can only find feasible but sub-optimal edge uncertainty, one may either adopt a robust optimizatio
solutions, we propose a novel stochastic DC (difference-obnvex)  formulation [13] or stochastic optimization formulatioh4].
programming algorithm with optimality guarantee, which can  gpacifically, for the robust formulation, the channel knesge

serve as the benchmark for evaluating heuristic and sub-optnal . . S
algorithms. The key observation is that the highly intracteble uncertainty model is deterministic and set-based [15].sThu

probability constraint can be equivalently reformulated as a DC  the corresponding transmission strategies aim at guaiagte
constraint. This further enables efficient algorithms to adieve the worst-case performance over the entire uncertaintyr bet

optimality._ Simulation _r_esults will illustrate the convergence, primary advantage of robust formulation is the computation
conservativeness, stability and performance gains of therpposed tractability [16]. However, the worst-case formulationgtmi
algorithm. . .
be over-conservative [16], as the probability of the worst
Index Terms—Stochastic DC programming, joint chance con- case could be very small [17]. Meanwhile, how to model
strained programming, Monte Carlo simulation, wireless c@per- — yne ncertainty set is also challenging [18]. On the other
ative networks, coordinated beamforming, performance beoh- . . L .
marking. hand, in the_ stochastic optimization f_(_)rmulatlon,_ the f141::1g)
knowledge is modeled by a probabilistic description. Thus,
the corresponding transmission strategies seek to imraumiz
solution against the stochastic uncertainty in a probsthili
ETWORK cooperation is a promising way to improvesense [19]-[23]. The freedom of the probabilistic robustne
both energy efficiency and spectral efficiency of wirelessan provide improved system performance [22] and provide a
networks by sharing control information and/or user daja [ltradeoff between the conservativeness and probabilityagua
Among all the cooperation strategies, jointly processing ttee [16].
user data can achieve the best performance by exploitingviotivated by the fact that most wireless systems can taerat
the benefits of a large-scale virtual MIMO system [2], [3Joccasional outages in the quality-of-service (QoS) reguir
This inspires a recent proposal of a new network architectuments [19]-[21], in this paper, we propose a stochastic-coor
i.e., Cloud radio access network (Cloud-RAN) [4], [5], winic dinated beamforming (SCB) framework to minimize the total
will enable fully cooperative transmission/reception bgvimg transmit power while guaranteeing the system probatuilisti
all the baseband signal processing to a datacenter CloudQeS requirements. In this framework, we only assume that the
order to fully exploit the benefits of cooperative networkgistribution information of the channel uncertainty is iafale,
and develop efficient transmission strategies (i.e., doatédd but without any further structural modeling assumptiong.(e
beamforming), channel state information (CSI) is often rexdopting the ellipsoidal error model for robust design [15]
quired. However, in practical scenarios, inevitably thei# or assuming complex Gaussian random distribution for the
be uncertainty in the obtained channel coefficients, whiely mchannel errors [21]-[23] for stochastic design). In spit¢he
originate from a variety of sources. For instance, in fremye distinct advantages, including the design flexibility are t
division duplex (FDD) systems, the CSI uncertainty masights obtained by applying the SCB framework to handle
originate from downlink training based channel estimatiohe CSI uncertainty, it falls into a joint chance constraine

_ _ ~ program (JCCP) [14], which is known to be highly intractable
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[21], [23], [26]) can only findfeasible but suboptimal solutions constraint. The resulting DC program is further supported

without any optimality guarantee. by efficient algorithms. Thus, we extend the work [24] by
In contrast, in this paper, we propose a novel stochastic D@moving the convexity assumption on the functions in the

programming algorithm, which can find the globally optimathance constraint. Furthermore, to improve the convemgenc

solution if the original SCB problem is convex and find aate, instead of fixing the approximation parameter as if, [24

locally optimal solution if the problem is non-convex. The joint approximation method is proposed.

main idea of the algorithm is to reformulate the system

probabl_hstlc QoS cons_tralnt as a DC constraint, producn’g Contributions

an equivalent stochastic DC program. Although the DC pro-

gramming problem is still non-convex, it has the algoritami !n this paper, we provide a general framework to design op-

advantage and can be efficiently solved by the successifal transmission strategies with CSI uncertainty foreléss
convex approximation algorithm [24], [27]. cooperative networks. The major contributions are sunuedri

The main computational complexity of the proposed alg@s follows:
rithm comes from solving a large-sized sample problem with 1) We establish a general SCB framework to cope with the
the Monte Carlo approach at each iteration. This makes such uncertainty in the available channel knowledge, which
an approach inapplicable in large-size networks. Howeler, intends to minimize the total transmit power with a sys-
proposed stochastic DC programming algorithm gives a first ~ tem probabilistic QoS guarantee. This framework only
attempt to solve a highly-intractable and highly-comphch requires the distribution information of the uncertain
problem with optimality guarantee, while existing algbrits channel coefficients. Thus, it enjoys the flexibility in
fail to possess the optimality feature. Therefore, it cavese modeling channel knowledge uncertainty without any
as a performance benchmark for evaluating other suboptimal further structural assumptions. The SCB problem is then
and heuristic algorithms. formulated as a JCCP problem.
2) We develop a novel stochastic DC programming algo-

rithm to solve the SCB problem, which will converge
A. Related Works to the globally optimal solution if the SCB problem is

The chance constrained programming has recently received convex or a locally optimal solution if it is non-convex.
emerging interests in designing efficient resource allonat The proposed stochastic DC programming algorithm
strategies in communication networks by leveraging the dis can be regarded as the first attempt to guarantee the
tribution information of uncertain channel knowledge [10] optimality for the solutions of JCCP without the con-

[11], [19]-[23]. However, due to the high intractability tfe
underlying chance or probabilistic constraints (e.qg.s itiffi-
cult to justify the convexity or provide analytical expresss),

vexity assumption on functions in the chance constraint
[24], while the available algorithms (i.e., the scenario
approach and the Bernstein approximation method) for

even finding a feasible solution is challenging. Therefdare, JCCP can only find a feasible solution without any
is common to approximate the probability constraint to giel optimality guarantee.
computationally tractable and deterministic formulaio®ne  3) The proposed SCB framework is simulated in Section
way is to approximate the chance constraints using analytic IV. In particular, the convergence, conservativeness, sta
functions, which, however, often requires further assuomst bility and performance gains of the proposed algorithm
on the distribution of the uncertain channel knowledge.(e.g are illustrated.
complex Gaussian distributions for Bernstein-type indiua
approximation [21], [23] or the affine constraint functions
perturbations for Bernstein approximation [19], [22], [R6
The other way is to use the Monte Carlo simulation approachThe remainder of the paper is organized as follows. Section
to approximate the chance constraints (e.g., the scendti®resents the system model and problem formulation, fol-
approach [10], [20], [25] and the conditional-value-atkri lowed by the problem analysis. In Section IlI, the stocleasti
(CVaR) [28]). However, all the above approaches only se&C programming algorithm is developed. Simulation results
conservative approximations to the original problem. Thius Will be presented in Section IV. Finally, conclusions and
is difficult to prove the optimality and quantify the consarv discussions are presented in Section V. To keep the main text
tiveness of the obtained solutions. clean and free of technical details, we divert most of thefso
Honget. al [24] recently made a breakthrough on providind® the appendix.
optimality of the highly intractable joint chance constrzdl
programming problems for the first time. However, the con- [I. SYSTEM MODEL AND PROBLEM FORMULATION
vexity of the functiqns in the chance.constrai_nt s Te‘?“‘@.‘“ We consider a fully cooperative netwdrkvith L radio
proposed stochastic DC programming algorithm is inspined b : : . :
the ideas in [24]. Unfortunately, the functions in the crmncacceSS units (RAUs), where ti¢h RAU is equipped withv
o ' ! antennas, and there aké single-antenna mobile users (MUs).
constraint in our problem are non-convex, and thus, we dan e centralized signal processing is performed at a central
directly apply the algorithm in [24]. Instead, by explogin

the Speplal structure of the functions in the Chanlce .CO'm;lra 1The proposed framework can be easily extended to more derwmper-
we equivalently reformulate the chance constraint into a DfGion scenarios as shown in [15].

C. Organization



processor, e.g., at the baseband unit (BBU) pool in Cloustructural assumptions on the deterministic channel uaicey
RAN [5]. The propagation channel from tligh RAU to the models and the assumptions on the distribution types of the
k-th MU is denoted ahy,; € CM,1 <k < K,1 <1< L.We stochastic channel uncertainty models. In the following, w
focus on the downlink transmission, for which the joint sijn will provide three examples to justify such a stochastic glod
processing is more challenging. The received signat C 1) Example One (Additive Error Model): The following ad-

at MU £ is given by ditive error model is commonly used to model the uncertainty
I L of CSI acquisition
ye =Y _hiviesi + > > hfiviisi +ne, Ve, (1) hy = hy, + ey, Vk, (5)
=1 i#k =1

where ﬁk’s are the estimated imperfect channel coefficients
and e;’s are the estimation error vectors. To facilitate the
Bernstein-type inequality approximation for the chance-co

wheres;, is the encoded information symbol for Mk with
E[|sk|?] = 1, vy € CM is the transmit beamforming vector
from the I-th RAU to thek-th MU, andn; ~ CN(0,03) is . .
o ) . X strained programming, one may assumes that the error vec-
the additive Gaussian noise at MlJWe assume that,'s and . o .
. . ) rs follow the complex Gaussian distribution [21]-[23E.]
ng's are mutually independent and all the users apply smgt%

N -
user detection. The corresponding signal-to-interfezgulos- k € .CN(O’ Qk)ZVk’ where®;, € H™ with ©;, = 0 Is the
noise ratio (SINR) for MUF is given by covariance matrix of the error vectey,. Based on this model,

we can reconstruct the distribution of the channels as
|hilv,|?

Fk(V,hk) = Zi¢k|hgvi|2+(jz7Vk’ (2) hk NCN(hk,G)k),Vk (6)
AT T o N To leverage the robust design, one often further assumes the
wherehkL: [hkl’hkg’ by 1T = [hknh<n<y € C W'ti‘ following ellipsoidal channel uncertainty model to boure t
N =332 N vie & [V Vi v ]t € CV andv £ grpors in deterministic sets, i.@,Orell <1,Vk, where®, €

[vi]i=, € CVE. The beamforming vectors;,.'s are designed [~ with @, > 0 specifies the shape and size of the ellipsoid
to minimize the total transmit power while satisfying the®0 of the error vector;, [15].

requirements for all the MUs. The beamformer design problemz) Example Two (Gauss-Markov Uncertainty Model): The

can be formulated as imperfect CSI can also be modeled as the following Gauss-
ii , Markov model [29]:
Pyl : minimize [lviel R
vev L h = Ry, (VI — T + miien), ¥k, 1, (7
subject to I'y (v, hg) > v, Yk, ) Chi

where~, is the target SINR for MUk, and the convex set whereRy, € HY*Nt with Ry, = 0 is the channel correlation
V is the feasible set of;;,’s that satisfy the per-RAU power matrix between MUk and RAU [, ¢, € CN(0,1y,) is the

constraints: imperfect estimate of the true channel vectgr and ey, €
K CN(0,1y,) is the i.i.d. Gaussian noise term angd with 0 <
ya {Vlk € CN Y lvil® < B,V k} : (4) T < 1 quantifies the estimation quality. Based on this model,
1 we can reconstruct the distribution of the channels asviallo

with P, as the maximum transmit power of the RAU hy, € CN (R (VT = e, Riutd), Vk, L. (8)
The problemZZy; can be reformulated as a second-order ) _
conic programming (SOCP) problem, which is convex and 3) Example Three (Partial and Imperfect CS Model): In
can be solved efficiently (e.g., via the interior-point meth  Practice, the partial CSI knowledge acquisition [11] (eogm-
Please refer to [5] for details. Such coordinated beamforf€Ssive CSI acquisition [10]) is a practical way to reduue t
ing can significantly improve the network energy efficiency>S! Signaling overhead by only estimating a subset of chlanne
However, solving problen®qy; requires full and perfect CSI inks. This approach is based on the fact that the chanﬂgj I_|n
available at the central processor. In practice, inevjtabére Petween the MU and some RAUs far away have negligible
will be uncertainty in the available channel knowledge. tsuchannel gains [10], [11], and thus the state information of
uncertainty may originate from various sources, e.g.ninj these links contributes little to the performance. In thetiph
based channel estimation [6], limited feedback [7], de[8§s QSI acquisition methods, statlistical channel state inm'mm_
[9], hardware deficiencies [15] and partial CSI acquisitiofs Often assumed for each link. Therefore, we have mixed

[10], [11]. In the next subsection, we will provide a generiQSl including a subset of imperfect instantaneous CSI and
stochastic model for the CSI uncertainty. statistical CSI for the other channel coefficients. Coniani

the above Gauss-Markov uncertainty model (7), we can re-
] ] . construct the channel distribution for the partial and infget
A. Stochastic Modeling of CSI Uncertainty channel knowledge as follows: for the unestimated channel
In this paper, we only assume that the distribution infofinks, we havery; = 1, and thus the statistical knowledge is
mation of the channel knowledde = [hk]szl € CNK is given ashy, = CN(0,Ry,); for the estimated channel links
available. That ish is a random vector drawn from the supporvith 0 < 74; < 1, the distribution of the uncertain channel
set= e CVK with the distribution a®. This helps avoid any links is given byhy; € CA(R}/*(vT = Trckr), Rig72). In



particular, 7;; = 0 indicates that the corresponding channehe algorithms. This motivates us to seek a novel approach
coefficients are perfect. to find a more reliable solution to the proble®scg. In

this paper, we will propose a stochastic DC programming
B. Stochastic Coordinated Beamforming with Probability QoS algorithm_ to find the globally optima! solution @S‘FB, if.the
Guarantee problem is convex and a locally optimal solution if it is non-

o ] ] _convex, which can be regarded as the first attempt to guarante
The uncertainty in the available CSI brings a new technicg|e optimality for the solutions of the JCCP (10).

challenge for the system design. To guarantee performance,
we impose a probabilistic QoS constraint, specified asvdlo
1. STOCHASTIC DC PROGRAMMING ALGORITHM

Prili(v,hy) = v, VE} 21— ¢, ) |5 this section, we propose a stochastic DC programming
where the distribution information df;’s is known,0 < ¢ < 1 algorithm to solve the problen#”scs. We will first propose
indicates that the system should guarantee the QoS requ#eDC programming reformulation for the problem¥scg,
ments for all the MUs simultaneously with probability of atvhich will then be solved by stochastic successive convex
least1 — e. The probability is calculated over all the randon®ptimization.
vectorsh,’s. The SCB is thus formulated to minimize the total

transmit power while satisfying the system probabilisteR) 5 pe Programming Reformulation for the SCB Problem

constraint (9):
©) The main challenge of the SCB problefAscg is the in-

L K . .
P minimi Z Z v ”2 tractable chance constraint. In order to overcome the diffic
ScB : IumuIIze L i tk we will propose a DC programming reformulation that is
. e different from all the previous conservative approximatio
subject to Pr{l'(v,hye) > 9, ¥k} 21— €,(10)  \1ohods. We first propose a DC approximation to the chance
which is a joint chance constrained program (JCCP) [14]} [2gonstraint (9). Specifically, the QoS constrailitg(v, hy) >
and is known to be intractable in general. ~r can be rewritten as the following DC constraints [30]

1) Problem Analysis. There are two major challenges in N
solving Zsce. Firstly, the chance (or probabilistic) constraint di(V. i) = cp 1 (Vor hi) — e 2(vi hy) < 0,k (12)
(9) has no closed-form expression in general and thusifere v_, 2 [Vilize, and both ¢y (v g, hy) 2
difficult to evaluate. Secondly, the convexity of the feésib ik vihehv, 4+ 02 and ey o (v, hy) £ ikv;'hkh,'jvk are
set formed by the probabilistic constraint is difficult tafe  convex quadratic functions ir. Therefore,d;, (v, hy,)'s are

The general idea to handle such a constraint is to sesea pc functions inv. Then, the chance constraint (9) can be
and tractable approximation. “Safe” means that the feasibleyewritten asf(v) < e, with f(v) given by

set formed by the approximated constraint is a subset of the

original feasible set, while “tractable” means that thei-opt f(v)=1=Pr{ly(v,hi) > v, Yk}
mization problem over the approximated feasible set shioelld _p d h 0
computationally efficient (e.g., relaxed to a convex progra N LS R(v,hi) | >

A natural way to form a computationally tractable approxi-
mation is the scenario approach [25]. Specifically, the chan =E |:1(0,+oo) (IE}&XK dk(Vahk)):| ’ (13)
constraint (9) will be approximated by the following J -
sampling constraints: where 1 4(z) is an indicator of setd. That is, 14(z) = 1
, . if z € Aand14(z) = 0, otherwise. The indicator function
L(v, hy) =, 1 < J < J,VE, (11) makesyf(v) non-convex in general.
where hi — [hi]lngK,l < j < Jis a sample ofJ The conventional approach to deal with the non-convex

independent realizations of the random vediorThe SCB indicgtor function is to approximate it py a convex function
problem Zscg thus can be approximated by a convex prograbﬂelld'”g a conservative convex approximation. For example
based on the constraints (11). This approach can find a feashiNg exP(2) > 1(o, o) (2) Will yield the Bernstein approx-
solution with a high probability, for which more details cadmation [26]. Applying [v + 2] /v > 1(g 4o)(2), v > 0

be found in [10]. An alternative way is to derive an analyticaVill Obtain a conditional-value-at-risk (CVaR) type apgro
upper bound for the chance constraint based on the Bernst&ittion [26]. Although these approximations might enjoy the
type inequality [21], [23], [26], resulting in a determitics agivantage o_f bemg convex, all _of them are_cgnservatwe and
convex optimization problem. The Bernstein approximatiofiill 10s€ optimality for the solution of the original probte
based approach thus can find a feasible but suboptimal Mpre specifically, only the feasibility of the solutions cae
lution. guaranteed with these approximations.

Although the above methods have the advantage of com-T° find @ better approximation {iv) in (13), in this paper,
putational efficiency due to the convex approximation, tHi€ Propose to use the following non-convex function [24, Fig
common drawback of all these algorithms is the conservativé {0 @pproximate the indicator functiono ;o) (2) in (13):
ness due to the “safe” approximation. Furthermore, it i® als

1
difficult to quantify the qualities of the solutions genedby P(z,v) = =[(v+2)" = 2%, v >0, (14)

v



which is a DC function [30] inz. Although the DC function as indicated in (50), one way is to solve the followirg
is not convex, it does have many advantages. In particulapproximation problem [24]
Hong et al. [24] proposed to use this DC function to ap-

L K
proximate the chance constraint assuming that the furstion minimize Z Z v |2
the chance constraint are convex, resulting in a DC program vev o
reformulation. However, we cannot directly extend thesutes subject to u(v, k) — u(v,0) < ke, (19)

for our problem, since the function, (v, hy)’s in (12) are ] .
non-convex. Fortunately, we can still adopt the DC functiof@” @ny fixed small enough parameter> 0 to approximate
¥(z,v) in (14) to approximate the chance constraint based 8¢ Original problempc. However, an extremely smak
the following lemma. rmght cause numerical stability issues and might requireemo
Lemma 1 (DC Approximation for the Chance Condraint); ~ Ume to so_lve the subproblems that will be_de_velgped Ia.té}. [2
The non-convex functionf(v) in (13) has the following We notice that, by regarding as an optimization variable,

conservative DC approximation for amy> 0, _prqb_lem (19) is s_tiII a DC program, as the functipfiv, k)
is jointly convex in (v, ). Therefore, we propose to solve
f(V,I/) -E [¢< max dk(v,hk),u)} the following joint approximation optimization problem by
1<k<K treatingx as an optimization variable

1
= —[u(v,v) —u(v,0)],v > 0, (15) N L K
v Ppc : minimize Z Z | vir]|
where veVRz0 T =
subject to [u(v,k) — ke] — u(v,0) < 0. (20)
u(v,v) =E [ max  sg(v,h, V):| , (16

1<k<KA+1 The following proposition implies that the joint approxitizan

is a convex function and the convex quadratic functiooblemZpc can enhance the performance of problem (19).
sk(v,h,v)’s are given by Proposition 1 (Effectiveness of Joint Approximation):
Denote the optimal value of the problem (19) with a fixed
se(v,h,v) £ v+ e (vog, h) +ZC¢,2(Vi,hi),W€,(17) x = k& and that of the problem?pc as V*(i) and V*,
i#k respectively, then we havig* < V* ().

A Proof: Define the feasible region of probIe@DC as

andskyi(v,h,v) = Zfil ¢i2(vi, ;) is a convex quadratic

function too. DE2{veV,k>0:[u(v,k) — ke —u(v,0) <0}. (21)
Proof: Please refer to Appendix A for details. ] — L
Based on the DC approximation functiofiv,v), we The projection ofD on the sed is given by
propose to solve the following problem to approximate the D={veD:3x>0s.tv,k) €D} (22)

original SCB problem%s¢g:

Therefore, fixingk = &, any feasible solution in problem

o LK 9 (19) belongs to the se. Therefore, the feasible set of the
Poc Turize Z Z [Vl optimization problem (19) is a subset®f As a result, solving
=1 k=1 Ppc can achieve a smaller minimum value with a larger
subject to inf f(v,v) <e, (18) feasible region. ]

A Define the deviation of a given sgt; from another se#,
whereinf, - f(v,v) is the most accurate approximation funcas [14]

tion to f(v). Program&pc is a DC program with the convex
setV, the convex objective function, and the DC constraint D(A;, Az) = sup ( inf |z — a:2|> , (23)
function [30]. One major advantage of the DC approximation zeA \72€A2

Zpc is the equivalence to the original problefAscs. That then we have the following theorem indicating the optinyalit
is, the DC approximation will not lose any optimality of theof the joint approximation progran¥pc.
solution of the SCB problen¥?scg, as stated in the following  Theorem 2 (Optimality of Joint Approximation): Denote
theorem. the set of the optimal solutions and optimal values of pnoisle
Theorem 1 (DC Programming Reformulation): The  DC  %bc, Pscs and the problem (19) with a fixed = & as
programming problemZpc in (18) is equivalent to the (P*,V*),(P*,V*) and (P*(%), V*(#)), respectively, we have
original SCB problem%s¢g. . . ~ Yn .
Proof: Please refer to Appendix B for details. [ | ;K%W () =V7) (V¥(R) = VT =0, (24)
Based on this theorem, in the sequel, we focus on how g4
solve the problem#pc.

= lim
ANG)

lim D(P* (%), P*) = lim D(P* (%), P*) =0 (25)
B. Optimality of Joint Optimization over v and Proof: Based on Proposition 1, the proof follows [24,
As the constraint inpc itself is an optimization problem, it Theorem 2]. ]
is difficult to be solved directly. To circumvent this diffiy Based on Theorem 2, we can thus focus on solving the
by observing thatf(v,v) is nondecreasing iw for v > 0, program %pc. Although “Zpc is still a non-convex DC



program, it has the algorithmic advantage, as will be pregken Algorithm 1: Stochastic DC Programming Algorithm
in the next subsection.

Step 0: Find the initial solution(v[%, x) € D and set

the iteration countej = 0;

C. Successive Convex Approximation Algorithm Step 1: If (vl kU]) satisfies the termination criterion,

In this subsection, we will present a successive convexdo to End;

approximation algorithm [24], [27] to solve the non-convex Step 2:Solve problem%pc (vl k1) and obtain the

joint approximation progran¥’pc. We will prove in Theorem  optimal solution(vl 4, kb );

3 that this algorithm still preserves the optimality projes, ~ Step 3:Setj = j + 1 andgo to Step 1

i.e., achieving the Karush-Kuhn-Tucker (KKT) pair of the End.

non-convex progran¥’pc. The main idea is to upper bound

the non-convex DC constraint function i#pc by a convex

fu_nctlon at each iteration. Specifically, at thieth Iteration,  sequence exists, i.€lim; .. (vl k1) = (v*, x*), which

given the vector(vll, xll) € D, for the convex function satisfies the Slater's conditidnthen v* is the globally

u(v,0), we have optimal solution of the SCB problen?scg if it is convex;
u(v,0) > u(v[j],o) +2<vv*u(v[j]’o),v_v[j]>, (26) otherwise,v* is a locally optimal ;olution. Furthermore,

converges to zero for most scenarios, except that

where(a, b) £ R(a"b) for anya,b € C and the gradient of

functionu(v,0) is given as follows. p d h <o\ —o 30
Lemma 2: The complex gradient of(v,0) with respect to ' 1285(1( k(v',h) € (=47, 0] ’ (30)

v* (the complex conjugate of) is given by

if k* #£0.
Vy-u(v,0) = E[Vy-sk« (v, h,0)], (27) Proof: Please refer to Appendix D for details. [
wherek* = arg max sp(v,h,0), and Vy-s;(v,h,0) = Base.d on Theorem 3, in the _sequel, we focus_on how t_o effi-
1<k<K+1 ciently implement the stochastic DC programming algorithm

Viili<i<ig (1 < k_S_K with vy, ; € CN given b
il1<i< , g y

Hy 1y pH) v, if 4
Vi,i = { (hkhk + 5 kb ) Vi if i 7 k_’l =k= K, D. Sample Average Approximation Method for the Stochastic
0, otherwise DC Programming Algorithm

alnd Vs (v, b k) = [Vriih<ick With vk = n order to implement the stochastic DC programming
=-hihilv;, Vi. Furthermore, the gradient af(v,0) with re- algorithm, we need to address the problem on how to solve
spect tok is zero, ask = 0 is a constant in the function e stochastic convex programpc (vl k1) (29) efficiently
u(v,0). _ _ at each iteration.
Proof: Please refer to Appendix C for details. B We propose to use the sample average approximation (SAA)

Ther_efore, at thg-th iteration, the non-convex DC constrain,qe g algorithm [14] to solve the stochastic convex problem
function[u(v, ;) —rie] —u(v, 0) in Fpc can be upper bounded 5 (vlil ki) at the j-th iteration. Specifically, the SAA
by the convex functior(v, x; v, kU1) — ke with estimate ofu(v, x) is given by

i 4ld]
(v, k; v g o

= u(v, k) —u(v¥,0) = 2(Vy-u(vV],0),v — vI1).(28) (v, k) = — max  sg(v,h"™ k), (31)
M 4~ 1<k<K+1

Based on the convex approximation (28) to the DC constraint m=1

in Zpc, we will then solve the following stochastic convexyhere p™(1 < m < M) is a sample ofM independent

programming problem at thgth iteration: realizations of the random vectdi. Similarly, the SAA

estimate of the gradierW,-u(v,0) is given by

7 1] L]
Poe(vit ) migimize ;;”Wk”
subject to I(v, r; vl k) — ke < 0. (29) Vy-u(v,0) mzlvv*sk* (v, ™, 0), (32)

The proposed stochastic DC programming algorithm to th%erek*
SCB problemPscg is thus presented in Algorithm 1.

Based on Theorem 2 on the optimality of the joint approestimate of the convex functiditv, ; v, kll) (28) is given
imation, the convergence of the stochastic DC programmiby
algorithm is presented in the following theorem, which @dge o
the main advantage compared with all the previous algogthm (v, K; vl gl
for the JCCP problem, i.e., it guarantees optimality. =a(v,k) — ﬂ(v[j]’o) _ 2<@v*u(v[a‘]70) V—vV 7]> (33)

Theorem 3 (Convergence of Stochastic DC Programming):

Denote{vl’], s} as the sequence generated by the stochastiesjaters condition is a commonly used constraint qualiiicato ensure
DC programming algorithm. Suppose that the limit of thene existence of KKT pairs in convex optimization [31].

= arg max si(v,h™,0). Therefore, the SAA
1<k<K+1



which is jointly convex inv and k. We will thus solve the
following SAA based convex optimization problem

L K
7 U kUL ) - minimi 2
Poc(vil, k0 M) - rggg}g;%e;; Vi
subject to (v, k; vl Ii[j]) — ke < 0,(34)

other deterministic approximation methods, e.g., the Bein
approximation method.

In order to further improve the computational efficiency of
the stochastic DC programming algorithm, other approaches
can be explored (e.g., the alternating direction method of
multipliers (ADMM) method [33]) to solve the large-scale
conic program@géQp in (35) at each iteration. This is an

to approximate the stochastic convex optimization problegh-going research topic, and we will leave it as our future
Ppc(vll, k1), which can be reformulated as the followingwork.
convex quadratically constraint quadratic program (QCQP)Furthermore, as the stochastic DC programming algorithm

[31]:

il L K
P J . s . 2
Qo Minimize ;—1 ;?—1 Vi

M
1 _
subi il — (vl
subject to i Ezl T — w(vP)0)

—2(Vyu(vl)0),v — vy < ke
Sk(vvh’ma K:) < Tms Tm > OaVkvmv(?’s)

which can then be solved efficiently using the interior-poin

method [31], wherex = [z,,]1<m<n € RM is the collection
of the slack variables.

The following theorem indicates that the SAA based pr
gram Ppc (vl kbl M) for the stochastic convex optimiza-
tion Zpc(vl!, k1)) will not lose any optimality in the asymp-
totic regime.

Theorem 4. Denote the set of the optimal solutions

and optimal values of problems#pc(vi, xll) and
QDC(V[.j]’K[j];N[) as (p*(v[j],,i[j])’ V*(VU],H[J‘])) and
(Prr (VUL sl0), Vi (U1, k171)), respectively, then we have
D(P;\(I (V[j] ) '%[j])a ,P*(V[j] ) '%[j] )) — Oa (36)

and
VJ\Z(VU],,{[J’]) N V*(V[J—]vﬂ[i])’ (37)

with probability one, as the sample size increases, i.e\{ as
~+00.

Proof: Please refer to Appendix E for details.

Based on Theorems 1-4, we conclude that the propo

stochastic DC programming algorithm converges to the gliﬁ-

ally optimal solution of the SCB problem if it is convex an

to a locally optimal solution if the problem is non-convex, i
the asymptotic regime, i.eM — +oo.

E. Complexity Analysis and Discussions

To implement the stochastic DC programming algorithm, at
each iteration, we need to solve the convex QCQP program

WgéQp with m = (L + KM + 1) (M is the number of
independent realizations of the random vediyrconstraints
andn = (VK + M + 1) optimization variables. The convex
QCQP problem can be solved with a worst-case complex
of O((mn? + n®*)m'/?log(1/¢)) given a solution accuracy

e > 0 using the interior-point method [32]. As the Monte
Carlo sample sizé// could be very large in order to reduce

the approximation bias [24], the computational complexgity

the stochastic DC programming algorithm could be highen tha

only requires distribution information of the random vecto

h to generate the Monte Carlo samples, this approach can
be widely applied for any channel uncertainty model. As the
proposed stochastic DC programming algorithm provides op-
timality guarantee, it can serve as the performance benthma
in various beamforming design problems with CSI unceryaint
and probabilistic QoS guarantees, and thus it will find wide
applications in future wireless networks.

IV. SIMULATION RESULTS

In this section, we simulate the proposed stochastic DC
algorithm for coordinated beamforming design. We consider
the following channel model for the link between th¢h user

%nd thel-th RAU [12], [29]:

hy = 107 E@d)/20 50s (\/ 1—7em + Tklekl)

Dy

=1/1 =74 D€ + Tri Diey, Yk, 1, (38)

where L(dy;) is the path-loss at distancé,;, as given in
[5, Table 1], sx; is the shadowing coefficientpy; is the
antenna gaing,, € CN(0,1Iy,) is the estimated imperfect
small-scale fading coefficient anel; is the CSI error. We
assume that the BBU pool can accurately track the largescal
fading coefficientsDy;'s [11]. The error vector is modeled
asey € CN(0,1y,). The parametersy;’s depend on the
CSI acquisition schemes, e.g., channel estimation ersingu
MMSE. We use the standard cellular network parameters as
shpwn in [5, Table I]. The maximum outage probability that
€ system can tolerate is seteas 0.1. The proposed stochas-
ic DC programming algorithm will stop if the difference
etween the objective values 6Ppc (vl kl7]) (29) of two
consecutive iterations is less thad.

The proposed stochastic DC programming algorithm is
compared to the following two algorithms:

o The scenario approach The main idea of this algorithm
is to approximate the probabilistic QoS constraint by
multiple “sampling” QoS constraints [20], [25]. This
algorithm can only find a feasible solution for problem
Psce With a high probability. Please refer to [10] for
more details.

The Bernstein approximation method The main idea
of this algorithm is to use the Bernstein-type inequality
to find a closed-form approximation for the chance con-
straint (9) [21], [23]. The original stochastic optimiza-
tion problem %scg can be conservatively approximated
by a deterministic optimization problem. Therefore, the

|ty.



computational complexity of the deterministic approxi-

mation method is normally much lower than the Monte R o e e A
Carlo approaches, e.g., the scenario approach and tt 16 R
stochastic DC programming algorithm. Nevertheless, the = s B | 00566 dBm
Bernstein approximation method can also only find a "% . ;'~| Reon o ‘. Ta!
feasible but suboptimal solution, and the conservativenes & Iy, o LI A -
of this method is difficult to quantify. Moreover, to derive &€ i 1 11 a0 T 4 P C
closed-form expressions, the Bernstein approximatior g uf '~; ‘|““. L ;' '.,'n\‘, 9! ll
method restricts the distribution of the random vettdo £ Loy AR (A |
be complex Gaussian distribution. Therefore, this methoc  E©f  &a o : 5 ]
is not robust against the distribution of the random vector  ~ sl Iy |
h. v Qbopbo%"eeqo'oo"eeag)‘edd%"e'wa?o\e%@QfQOoeedeq
Due to the computational complexity of solving large- oef o 4F0ds0dBm T
size sample problems for both the stochastic DC program e s

ming algorithm and the scenario approach, we only conside.

a simple and particular network realization to demonstra,g:? 1. Optimal value versus different Monte Carlo repiigas.
the performance benchmarking capability of the propose

stochastic DC programming algorithm. Specifically, coasid
a network with L = 5 single-antenna RAUs an& = 3
single-antenna MUs uniformly and independently distiéout
in the square regiofi-400, 400] x [—400, 400] meters. In this [ R B S = a
scenario, we consider a mixed CSI uncertainty model [10] ~ "“[#% [\ A= ) ) ST
[11], i.e., partial and imperfect CSI. Specifically, for MkJ | iy Lo LRA,=00369 W B
we setr,, = 0.01,Vn € € (i.e., the obtained channel e s K )
coefficients are imperfect) and,, = 1,V # Qg, whereQy
includes the indices of the 2 largest entries of the vecto
consisting of all the large-scale fading coefficients for MU
That is, only40% of the channel coefficients are obtained in
this scenario. The QoS requirements are sefas 3dB, Vk.
The sample size for the scenario approach is 308 [25] an
for the stochastic DC programming algorithm itli800. The
simulated channel data is given in (39), whéie= [Dyi€r] ' O Replzi‘f:ations‘o s 0w W
and D = [Dy]. In the following, we will illustrate the

convergence, conservativeness, stability and perforengains
of the stochastic DC programming algorithm.

- © - Stochastic DC Programming

0.94
- B -The Scenario Approach

Probability Constraint

R TS T OAS95006 P O T T T T TS T T T T LT

0od %o ° 0

09 O %Zl:o_ombo' ‘¢ °O'QQ ’pobp beozd 2 ‘bp'o‘oe oy
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Fig. 2. Probability constraint versus different Monte @Garéplications.

A. Sability of the Algorithms
transmit power is 11.1004 dBm, with the lowest being 10.6260

As both the stochastic DC programming and scenanfs , and the highest being 11.5826 dBm. The corresponding

ﬁ}pproach usedl_vlonteICingo s:;mplljsdto ok:;am E{?}e So“f'o %’/Erage probability constraint is 0.9731, and is in the eang
e corresponding solutions should depend on the particula. = -4 9555 and 0.9891.

samples. Therefore, it is essential to investigate theiltyab ) ) )
of solutions obtained by the stochastic algorithms. We thusVVe can see that the stochastic DC programming algorithm

run the algorithms 50 replications with different Monte [oar can achieve a lower transmit power than the scenario apiproac
samples for each replication to illustrate the stabilityté ON average. The scenario approach yields a much more con-
algorithms. servative approximation for the probability constrainirtfer-
From Fig. 1 and Fig. 2, we can see that the solutiof80re; the pe.rformar)ce of the scgnarig approaf:h cannot be
and the estimated probability constraints obtained from tHnProved by increasing the sampling size as this will cause
stochastic DC programming algorithm are very stable, ag th@0re cor_wservatlve soluho_ns. Th|s_|s in contrast to the pse[i
converge to a similar solution. In particular, the averagalt Stochastic DC programming algorithm, as Theorem 4 indscate
transmit power is 10.5228 dBm, with the lowest being 10.461#at more samples can improve the Monte Carlo approximation
dBm and the highest being 10.5804 dBm. The correspondiH@rfofmance and most Monte Carlo approach based stochastic
average probability constraint is 0.9010, with the range @fdorithms possess such a property.
0.8933 to 0.9067. Finally, the average value of the parametes 1.5 x 1073
However, the solutions and the estimated probability coand is in the rang betweeh8 x 10~% and2.6 x 10~3 when
straints obtained from the scenario approach drastic#ffigrd the stochastic DC programming algorithm terminates. This
from replication to replication due to the randomness ijstifies the conclusion that the parametewill converge to
the Monte Carlo samples. In particular, the average totadro as presented in Theorem 3.



—2.2377+0.9643¢ —1.031142.03127 3.6613 4 11.32753 2.7963 4.4546  26.8928

) —0.5723 — 0.1608: 8.4672 4 19.4963:  —0.0046 — 1.3821% 24794  9.5564 1.9145
H = |28.8976 — 13.2169: 4.3453 — 10.14537  1.6451 — 4.8108; |,D = |29.9654 24.3376 13.8270|. (39)
—1.6776 + 1.2600: —2.6659 — 2.0050: 42.9821 — 5.6807: 2.1076  4.0912  38.7970
3.4623 — 2.0804¢ 4.1266 + 1.8647: —2.3121 + 1.3415¢ 2.8683 3.9187  3.5856
e v\ -------------------- lgan;te-in-a;;pr-o;in:an; ;1e-th:)d_
h Bernstein approximation method 0.99 \\ 1
g “““‘ - 097: \‘\\\‘\
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Fig. 3. Convergence of the stochastic DC programming afyori Fig. 4. Probability Constraint.

B. Convergence of the Stochastic DC Programming AIgorithm  gjon with a probabilistic model for the CSI uncertainty. Fhi

We report a typical performance on the convergence of the@mework frees us from the structural modeling assumption
stochastic DC programming algorithm, as shown in Fig. 3nd distribution types assumptions for the uncertain calnn
with the initial point being the solution from the Bernsteirknowledge, thus it provides modeling flexibility. With the
approximation method. This figure shows that the convergensptimality guarantee, the proposed stochastic DC program-
rate of the proposed stochastic DC programming is very faging algorithm can serve as the benchmark for evaluating
for the simulated scenario. We can see that the stochastic B\{boptimal and heuristic algorithms. The benchmarking ca-
programming algorithm can achieve a much lower transnhbility was demonstrated numerically in terms of conser-
power than the Bernstein approximation method. This figutgtiveness, stability and optimal values by comparing with
also demonstrates the effectiveness of jointly optimizingr the Bernstein approximation method and scenario approach.
the parameters and beamforming vectow, as this can Furthermore, the proposed algorithm has a better conveegen
significantly improve the convergence rate. Furthermdre, trate by jointly optimizing the approximation parameterAs
parameters is 1.3 x 10~% when the proposed stochastic DGhe proposed stochastic DC programming algorithm provides
programming algorithm terminates under this scenario.  optimality guarantee, we believe this algorithm can be iapp!

in various beamforming design problems with probabilistic
C. Conservativeness of the Algorithms QoS guarantees due to the CSI uncertainty, and it will find

We also report the typical performances of all the algd¥ide applications in future wireless networks.
rithms on the conservativeness of approximating proh&bm Several future research directions are listed as follows:
constraints in the SCB problem under the same scenario ag Although our framework only requires the distribution
the above subsection. The estimated probablllty constiain information of the uncertain channel know|edge’ SO as
Psce Is shown in Fig. 4, which is 0.988 using the Bernstein o generate Monte Carlo samples for the stochastic DC
apprOXimation. On the other hand, for the stochastic DC pro- programming a|gorithm, it m|ght be Cha”enging to obtain
gramming algorithm, we can see that the probability comstra  the exact information in some scenarios. Therefore, one

becomes tight when it terminates, and thus the Bernstein may either seek more sophisticated measuring methods
approximation is too conservative. This coincide with the to estimate the distribution information or adopt the

fact that the suboptimal algorithms only seek conservative (jstributionally robust optimization approaches to deal

approximations to the chance constraint. with the ambiguous distributions, e.g., [34].
« The main drawback of the stochastic DC programming
V. CONCLUSIONS ANDFUTURE WORKS algorithm is the highly computational complexity with

This paper presented a generic stochastic coordinated-beam the sample problerr;WQj]CQP at each iteration, one may
forming framework for the optimal transmission strategy de  either resort to ADMM [33] based algorithms to solve
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the large-sized sample problem in parallel or reduce theéhere
optimization dimensions by fixing the directions of the
beamformers and only optimizing the transmit power al- (v, 21, 22)
location (e.g., in [22], the corresponding power allocatio,
problem is a linear program and can be solved with
much lower computational complexity).

1
£ > [max{v + 21, 20} — max{z1, 22}], (47)
for any 21,20 € R andv > 0. Therefore, we only need
{ prove the monotonicity of the functiom(v, z1, z2) in the
variablev.

Definez £ z; — 2, then we have
APPENDIXA

PROOF OFLEMMA 1 w(v, 21,22) = (1 + lz) L—0,0)(2) + 1(0,400) (7). (48)
For simplicity, we denotecy ;(v) £ cra(Vog, hy), v
cra(V) 2 cr2(vi, hy) and di(v) £ di(v,hy). For any For anyr; > 15 > 0 and anyzy, 2o € R, we have
v € V, Vk, dp(v) = ck1(v) — cx2(v) is a DC function on 1
V, as bothey 1 (v) andey o(v) are convex functions of. For  m(v1, 21, 22) — (ve, 21, 22) = <1 + —Z> Lcuy =) (2) +
any v > 0, we first prove that the following function ( 1 1
z

V_l - I/_Q) 1(71/2,0) (Z) > 0. (49)
o (o) - . -

n n Therefore, f(v,v) is nondecreasing i for v > 0. Hence,

<y+ max dk(v)> - < max dk(v)> ] , (40) Wwe have

1<k<K 1<k<K . A 1
inf f(v,v) = lim f(v,v) = lim —[u(v,v) — u(v,0)],(50)
is also a DC function. The functiog,(v) can be rewritten as  ¥>° VN0 vNOV
1% wherer Y\ 0 indicates thatv decreasingly goes t6. Thus,
di(v) = cra (V) + Z Cin(v) — Z cin(v). (41) based on (50), in order to prove (45), we only need to prove
i#k i=1 1

v

lim —[u(v,v) —u(v,0)] = f(v). (51)
Therefore, the following function VN0 V[ v.v) (v. 0] )
max_ dy(v) = Furthermore, if the partial derivation efv, v) exists, we have
1<k<K 1 0
K 11{‘% ;[u(v, v) —u(v,0)] = au(v, 0). (52)
max ce1(v) + Z ci2(v) ¢ — Z ci2(v), (42)
tshsk ik i=1 Therefore, we need to prove tha(%u(v, v) exists and
. Fru(v,0) = f(v)
Cl(v,h) CQ(v,h) ayu(vv .

According to (44), we havei(v,v) = E[m(v,h,v)] =
is a DC function, as both the functiod§ (v,h) andCs(v,h) E[max{v + C;(v,h),Ca(v,h)}]. As
are convex inv. Furthermore, for any,2; € R andz =

21 — 22, we havezt = max{z1, 22} — 22. Therefore, (,% (max{v + 21, 22}) = 1(—y,400)(2), (53)
1/) < max dk(V), V) — l[m(v’ V) _ m(v,O)], (43) for any z # -V, and Pr {maxlSkSK dk(V,h) = —I/} =0,
1<k<K v WheremaxlngK dk(V, h) £ C4 (V, h) — CQ(V, h) (42), we
is a DC function ofv, as conclude thatZu(v, v) exists.
Let 7 & (~T,7) with T > 0 being an open set
m(v,v) = max{v + C1(v,h), C2(v,h)}, (44) such that the cumulative distribution functioRi(v,r) £

is a convex function of.. According to [30, Proposition 2.1], Primaxi<p<x dr(v) < v)} of the random variable

f(v,v) = E d. (v, hy.), )] is a DC function on (maxi<k<xk di(v)) is continuously differentiable for any €
S ) ¥ (maxicie di(v, by), 1) T. Next we will show that

V. Therefore, the proof is completed.
gu(v, v) = lim %E[m(v, h,v + ) — m(v,h,v)]

APPENDIXB I =0
PROOF OFTHEOREM 1 = Pr{ max _dp(v) > —1/} =1-F(v,—v)(54)
In order to prove Theorem 1, we need to prove the following ISk
equality: For anyrv € 7 andv € V, define the random variable
o X(8) £ [m(v,h,v +3) —m(v,h,v)]/§, then we have the
ig%f("v v)=f). (45)  following two facts:

First, we need to prove the monotonicity of the function 1) The limit of X(5) exists and we have

f(v,v) in the variabler. According to (43) and (44), the )
function f(v, ) can be rewritten as lim X(3) = L(-v,400) <1g}3§XK dk("ah)> , (55)

f(v,v) =E[r(v,Ci(v,h),Co(v,h))], (46) with probability one.
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2) X(0) is dominated by a constagt > 0, i.e., | X (9)] < 1) The limit of Y (Av}) exists and equals

C, where(0 < C < co. This can be justified by D5k
1 lim Y(Av}) = St (61)
|X(8)] =—=|m(v,h,v+§) —m(v,h,v)| Avi=0 Yi
? with probability one.
=0+ Q(v,h,v)]" — [Q(v,h,v)]T| <1, 2) The random variable is dominated by a random variable
Y Z with E[Z] < +o0, i.e.,
whereQ(v,h,v) £ v+max; <<k di(v, h) and the last Y (A0)| < Z,Vi, (62)

inequality is based on the fafte]™ — [y] 1] < |z — y].
From the above two facts on the random variakig), by the which can be verified by the following lemma.
dominated convergence theorem to interchange an expmectati Lemma 3: For anyx,y € V, there exists a random variable
and the limit asy — 0, and together with [35, Proposition 1],Z With E[Z] < oo such that

we have m(x.h,v) —mly.hv)| < Z|x-y].  (63)
(%u(v, V)= }13% E[X(0)] = E[lims—0 X (J)] Proof: As m(v) is convex inv, we have
=E[l(—y +4o0)(maxi<x<r di(v, h))] m(x) >m(y) +2(Vy-m(y),x —y), (64)
=1-F(v,—v). (56) m(y) > m(x) + 2(Vy-m(x),y — x). (65)
Therefore, we complete the proof by Based on the above two inequalities and by the Cauchy-

Schwarz inequality, we have

m(x) = ()] < 2 (s V-] ) - 1. (69

Furthermore, forl < k < K, we have

.3 .1
inf f(v,0) = lim ~fu(v,) = u(v,0)

= %U(V,O) =1-F(v,0)= f(v). (57)

1/2
APPENDIXC 1 2
PROOF OFLEMMA 2 (IVyesi(V)]| = (Z (hkh,'j + —thh?) v )
It is well known that non-constant real-valued functions of i#k Tk

complex variables are not holomorphic (@rdifferentiable) o\ /2
[36]. Thus, the real-valued functiong,(v,hy) in (12) are < max ||vi|| (Z <hkh2 + %hih?) )
not differentiable in the complex domai@™* (i.e., with ik ot Vie

respect to the complex vecte). Define a real-valued function -7, (67)

m(v,h,v) £ max;<k<rx+1skx(v,h,v), which is convex in . . .
v. Although this function is not holomorphic im, it can be WhereZ is a random variable witffi[Z;] < +oo, and for
viewed as a function of botlv and its complex conjugate ¥ = K + 1, we have

v*, i.e., m(v,v* h,v). It is easy to verify that the function K 2\ 1/2
m(v,v* h,v) is holomorphic inv for a fixed v* and is [Vysski1(v)]| = (Z —thhf'vi )
also holomorphic inv* for a fixed v. Proving Lemma 2 is o1 17
equivalent to proving that the gradient Bfm(v, h, v)] with K o\ 1/2
respect tov* exists and equals < max |vi (Z ighihli-i )
1<i<K 4 Y
Vy-E[m(v,h,v)] = E[Vy-m(v, h,v)]. (58) =t

= 7o, (68)
Based on the chain rule [36], the complex gradient of thv?hereZQ is a random variable witl[Z,] < -+oo. Therefore,

functionm(v, h, ) with respect tov* exists and is given by letting Z £ max{Z1, Z»} with E[Z] < +o0, we have
s Om(v,h,v)  Osgx(v,h,v)

Vy=m(v,h,v) = S = v ., (59) Vy-m(v) = 35(;;"97) < max{Z, 2} = Z. (69)
with probability one, where:* = arglgglgggﬂsk(vvhv V). According to (66) and (69), we have the inequality (63
It is a vector operator and gives the direction of the steepesBased on the above two facts (61) and (62) on the random
ascent of a real scalar-valued function. variableY (Avy), and by the dominated convergence theorem
Denote 2m(vhr) & [9m], ., and 2as(vher) 2 to interchange an expectation and the limit/ss; — 0 and
(262 ], i< N, Wherev = [v1,12,...,uyk], and define the [35, Proposition 1], we have
following complex random variable lim E[Y(Av))] = E [ lim Y(Av;*)] _E {351@*} (70)
a1 . . . Av;—0 Av;—0 ov;
Y (Av;) = A—ﬁ[m(v—ia vf + Av}) —m(v_i,v])], (60) Based on the fact
wherev_; £ [vg]g.i, AvF € C andm(v) £ m(v,h,v) for VyE[m(v,h,v)] = [ lim E[Y(Avf)]} , (71)
Avf—0 1<i<NK

simplicity, then we have the following two facts on the rando
variableY (Av}): we get (58) and thus complete the proof.
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APPENDIXD According to (56), we have

PROOF OFTHEOREM 3 9 ol o] 9 o]
For simplicity, we only consider the case with real variable &v"“(v R) =V (&“(V K ))
and functions. The extension to complex variables is sttaig
forward. Specifically, defin®, = {v e V: f(v) < ¢} as the
feasible set of the SCB problef#scg. To ensure the existenceTherefore, we have
of the KKT paris for the SCB problen®’scg, we assume Vou(vli, k7)) — Vu(viH, 0)
the following constraint qualification [37, Corollary 6]lfor ngrﬁr-loo ] =
programPscg, i.e., for any feasible point € Dy, A =0 is

— 1 [n] _zlnly — _ < — <
the only value that satisfies the following linear system: LHm VeE (v, =&") = =V F(v,0) = Vv f(¥),(79)

=V F(vF —gnl), (78)

AV (V) € NY(V), A[f (V) — €] = 0 (72) whererl" € (0,x[),¥n, due to the mean-value theorem.

, Dividing both sides of equations (76) and (77) By x[",
where) > 0, and Ny, (v) is the normal cone to the convex Sef'espectively let — oo and suppose thax™ k" — foo

Vatv, ie., based on (75) and (79), we have
Mo(v) ={x|(x,y —v) <0,Vy € V}. (73) Vo f(¥) € My(¥), f(¥) —e=0. (80)
With this constraint qualification, we have the KKT pairgyowever, this contradicts the constraint qualification )(72
(v*,A*) [37, Corollary 6.15] for the SCB problem as Therefore, we conclude that" k") - +co. We thus assume
[V fo(v) + NV F(vH)] € Ny (v9) that \[" [ — X\ with 0 < \ < +o0. Letn — oo, based on
Qo MF(V) — =0 (74) (75), (76), (77) and (79), we obtain
Xzovre, ~{ T ho(@) + AV F(¥) } € NG(@), ALF(¥) — €] = 0.(81)

where fo(v) = ||v||? is the objective function 0f?scg.
Similarly, let (v*,x*,A\*) be a KKT pair of the join
approximation progran¥’pc as follows

t This indicates thatv, \) € Qo. We thus complete the proof.
|

Based on Lemma 4, we further investigate whether
—{Vvfo(v*) + XV [u(v*, &%) — k*e — u(v*,0)]} converges to zero. The answer is positive in most scenarios
€ My(v*), except two special cases. Suppose tiat:) is a KKT point
Q: ¢ —{NValu(v*, w%) — %€ — u(v*,0)]} € Mo 100)(K*);  of the problemPpc. We consider two particular cases in terms
M u(v*, k) — k*e —u(v*,0)] =0 of whether the SCB program®scg attaining its optimal value
A =>0,vieV,k>0. at the interior point or not.
In order to prove Theorem 3, we first prove the following Cas€ one:.Whgn the_SCB PrOQrﬁSCB attains the optimal
lemma illustrating the relationship betwegq and Q. value at the interior point of its feasible region, then peog

Lemma 4: Suppose that there exists'/], xli], A\l) € Q, Pscg also attains its optimal value at the interior point of its
such that(vll, kU1 Ay — (,0,}), then we have that feasible region based on Theorem 2. In this scenario, the DC

(¥, 1) € Q. constraint in#scg does not need to be tight. Thus,is not
Proof: We only need to consider two cases in terms ¢fEce€ssary to be zero and it has multiple choices, w(kil®)
AUl being zeros or not. still belongs tof2.

Case one: suppose there exists a subsequénéd) of Case two: When all the optimal solutions of the SCB
{1 such that\ki] = 0,i = 0,1,2,.... As A%l’s belong program Zscg make the probability constraint tight. In this

to Q, we have—V, fo(vI¥il) € Ay (v*), which implies that scenario, we haveu(v, &) — ke — u(v,0) = 0. This reveals

— V. fo(V) € Myy(¥), asi — co. This indicates(¥, 0) € Q. thatx =0 is a minimizer of the functionu(v, k) — xe] with
Case two: suppose that"l = 0, for sufficiently largen. In  "€SPect tos, 1.e.,

this case, we hav® . [u(vI™, k") — k[le] = 0, ask™ >0

and N(g ;) (k") = 0. Based on (57), let — oo such that Pr{

max dg(V,h) > O} =, (82)
k[ — 0, we have

1<k<K

where the calculation is based on (54). On the other hand, as

f(¥) —e=0. (75) k satisfies the KKT conditions of progra®pc, we have

Furthermore, ag["l # 0, based on the KKT pairs if}, we Vi [u(¥v, &) — ke| = 0. (83)

have According to [38, Theorem 10] and [39, Appendix A4], the
Vo [u(vM, kM) — (v 0)] minimizer (i.e.,& # 0 in (83)) of the function[u(¥, k) — ke
_ [n]y _ y[n] . [n] ) )
Vv fo(v™) = Ak { ) with respect tox satisfies
[n]

€M (v™), (76) Pr{ max dg(v,h) > —/%} <e. (84)

and kR

] [n] m] o] . Combining (82) and (84), we conclude that
Ak {Vn[u(v M) = K e]}zO- (77)  Pr{maxi<p<k dp(v,h) € (=%,0]} = 0. This implies
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that the optimization variable in Ppe converges to zero, if [13] A. Ben-Tal, L. El Ghaoui, and A. NemirovskRobust optimization.
for any ¢ > 0, we have

max di(Vv,h) € (85)

1<k<K

i ~e0lf £0

[14]

[15]

From numerical examples in Section IV, we will demonstratﬁﬂ

that

variablex will indeed converge to zero.

Finally, based on Lemma 4, we only need to prove th&’]

the sequence generated by the stochastic DC programming

algorithm converges to a KKT point of the prografpc.
This directly follows [24, Property 3]. We thus complete thél8]
proof.

APPENDIXE
PROOF OFTHEOREM4

[19]

[20]

By [14, Theorem 7.50] and [24, Theorem 6], we have
that the SAA estimatd (v, x; vl kll) (33) converges to [21]

I(v,

r; v, kU1 uniformly on the convex compact setwith

probability one as\l — +o0, i.e.,

sup
vey

with probability one.

5.5],

l1(v, ;v Y —1(v, k; v KDY = 0, M— +00,(86)
Furthermore,

we have Vy (v[ﬂ kU = vl kb)) and

D(P;, (vl k), P*( bl kUl)) — 0 with probability one as
M — +oo. Therefore, we complete the proof.
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