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Abstract—Transmit optimization and resource allocation for
wireless cooperative networks with channel state information
(CSI) uncertainty are important but challenging problems in
terms of both the uncertainty modeling and performance op-
timization. In this paper, we establish a generic stochastic
coordinated beamforming (SCB) framework that provides flex-
ibility in the channel uncertainty modeling, while guaranteeing
optimality in the transmission strategies. We adopt a general
stochastic model for the CSI uncertainty, which is applicable
for various practical scenarios. The SCB problem turns out to
be a joint chance constrained program (JCCP) and is known
to be highly intractable. In contrast to all the previous algo-
rithms for JCCP that can only find feasible but sub-optimal
solutions, we propose a novel stochastic DC (difference-of-convex)
programming algorithm with optimality guarantee, which can
serve as the benchmark for evaluating heuristic and sub-optimal
algorithms. The key observation is that the highly intractable
probability constraint can be equivalently reformulated as a DC
constraint. This further enables efficient algorithms to achieve
optimality. Simulation results will illustrate the convergence,
conservativeness, stability and performance gains of the proposed
algorithm.

Index Terms—Stochastic DC programming, joint chance con-
strained programming, Monte Carlo simulation, wireless cooper-
ative networks, coordinated beamforming, performance bench-
marking.

I. I NTRODUCTION

NETWORK cooperation is a promising way to improve
both energy efficiency and spectral efficiency of wireless

networks by sharing control information and/or user data [1].
Among all the cooperation strategies, jointly processing the
user data can achieve the best performance by exploiting
the benefits of a large-scale virtual MIMO system [2], [3].
This inspires a recent proposal of a new network architecture,
i.e., Cloud radio access network (Cloud-RAN) [4], [5], which
will enable fully cooperative transmission/reception by moving
all the baseband signal processing to a datacenter Cloud. In
order to fully exploit the benefits of cooperative networks
and develop efficient transmission strategies (i.e., coordinated
beamforming), channel state information (CSI) is often re-
quired. However, in practical scenarios, inevitably therewill
be uncertainty in the obtained channel coefficients, which may
originate from a variety of sources. For instance, in frequency-
division duplex (FDD) systems, the CSI uncertainty may
originate from downlink training based channel estimation
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[6] and uplink limited feedback [7]. It could also be due to
the hardware deficiencies, delays in CSI acquisition [8], [9],
and partial CSI acquisition [10], [11]. With full and perfect
CSI, efficient performance optimization can often be achieved
through convex formulations, e.g., coordinated beamforming
via second-order cone programming [5], [12]. However, the
channel knowledge uncertainty due to the partial and imper-
fect CSI brings technical challenges in system performance
optimization.

To address such challenges brought by the channel knowl-
edge uncertainty, one may either adopt a robust optimization
formulation [13] or stochastic optimization formulation [14].
Specifically, for the robust formulation, the channel knowledge
uncertainty model is deterministic and set-based [15]. Thus,
the corresponding transmission strategies aim at guaranteeing
the worst-case performance over the entire uncertainty set. The
primary advantage of robust formulation is the computational
tractability [16]. However, the worst-case formulation might
be over-conservative [16], as the probability of the worst
case could be very small [17]. Meanwhile, how to model
the uncertainty set is also challenging [18]. On the other
hand, in the stochastic optimization formulation, the channel
knowledge is modeled by a probabilistic description. Thus,
the corresponding transmission strategies seek to immunize a
solution against the stochastic uncertainty in a probabilistic
sense [19]–[23]. The freedom of the probabilistic robustness
can provide improved system performance [22] and provide a
tradeoff between the conservativeness and probability guaran-
tee [16].

Motivated by the fact that most wireless systems can tolerate
occasional outages in the quality-of-service (QoS) require-
ments [19]–[21], in this paper, we propose a stochastic coor-
dinated beamforming (SCB) framework to minimize the total
transmit power while guaranteeing the system probabilistic
QoS requirements. In this framework, we only assume that the
distribution information of the channel uncertainty is available,
but without any further structural modeling assumptions (e.g.,
adopting the ellipsoidal error model for robust design [15]
or assuming complex Gaussian random distribution for the
channel errors [21]–[23] for stochastic design). In spite of the
distinct advantages, including the design flexibility and the
insights obtained by applying the SCB framework to handle
the CSI uncertainty, it falls into a joint chance constrained
program (JCCP) [14], which is known to be highly intractable
[24]. All the available algorithms (e.g., the scenario approach
[10], [20], [25] and the Bernstein approximation method [19],
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[21], [23], [26]) can only findfeasible but suboptimal solutions
without any optimality guarantee.

In contrast, in this paper, we propose a novel stochastic DC
programming algorithm, which can find the globally optimal
solution if the original SCB problem is convex and find a
locally optimal solution if the problem is non-convex. The
main idea of the algorithm is to reformulate the system
probabilistic QoS constraint as a DC constraint, producing
an equivalent stochastic DC program. Although the DC pro-
gramming problem is still non-convex, it has the algorithmic
advantage and can be efficiently solved by the successive
convex approximation algorithm [24], [27].

The main computational complexity of the proposed algo-
rithm comes from solving a large-sized sample problem with
the Monte Carlo approach at each iteration. This makes such
an approach inapplicable in large-size networks. However,the
proposed stochastic DC programming algorithm gives a first
attempt to solve a highly-intractable and highly-complicated
problem with optimality guarantee, while existing algorithms
fail to possess the optimality feature. Therefore, it can serve
as a performance benchmark for evaluating other suboptimal
and heuristic algorithms.

A. Related Works

The chance constrained programming has recently received
emerging interests in designing efficient resource allocation
strategies in communication networks by leveraging the dis-
tribution information of uncertain channel knowledge [10],
[11], [19]–[23]. However, due to the high intractability ofthe
underlying chance or probabilistic constraints (e.g., it is diffi-
cult to justify the convexity or provide analytical expressions),
even finding a feasible solution is challenging. Therefore,it
is common to approximate the probability constraint to yield
computationally tractable and deterministic formulations. One
way is to approximate the chance constraints using analytical
functions, which, however, often requires further assumptions
on the distribution of the uncertain channel knowledge (e.g.,
complex Gaussian distributions for Bernstein-type inequality
approximation [21], [23] or the affine constraint functionsin
perturbations for Bernstein approximation [19], [22], [26]).
The other way is to use the Monte Carlo simulation approach
to approximate the chance constraints (e.g., the scenario
approach [10], [20], [25] and the conditional-value-at-risk
(CVaR) [28]). However, all the above approaches only seek
conservative approximations to the original problem. Thus, it
is difficult to prove the optimality and quantify the conserva-
tiveness of the obtained solutions.

Honget. al [24] recently made a breakthrough on providing
optimality of the highly intractable joint chance constrained
programming problems for the first time. However, the con-
vexity of the functions in the chance constraint is required. Our
proposed stochastic DC programming algorithm is inspired by
the ideas in [24]. Unfortunately, the functions in the chance
constraint in our problem are non-convex, and thus, we cannot
directly apply the algorithm in [24]. Instead, by exploiting
the special structure of the functions in the chance constraint,
we equivalently reformulate the chance constraint into a DC

constraint. The resulting DC program is further supported
by efficient algorithms. Thus, we extend the work [24] by
removing the convexity assumption on the functions in the
chance constraint. Furthermore, to improve the convergence
rate, instead of fixing the approximation parameter as in [24],
a joint approximation method is proposed.

B. Contributions

In this paper, we provide a general framework to design op-
timal transmission strategies with CSI uncertainty for wireless
cooperative networks. The major contributions are summarized
as follows:

1) We establish a general SCB framework to cope with the
uncertainty in the available channel knowledge, which
intends to minimize the total transmit power with a sys-
tem probabilistic QoS guarantee. This framework only
requires the distribution information of the uncertain
channel coefficients. Thus, it enjoys the flexibility in
modeling channel knowledge uncertainty without any
further structural assumptions. The SCB problem is then
formulated as a JCCP problem.

2) We develop a novel stochastic DC programming algo-
rithm to solve the SCB problem, which will converge
to the globally optimal solution if the SCB problem is
convex or a locally optimal solution if it is non-convex.
The proposed stochastic DC programming algorithm
can be regarded as the first attempt to guarantee the
optimality for the solutions of JCCP without the con-
vexity assumption on functions in the chance constraint
[24], while the available algorithms (i.e., the scenario
approach and the Bernstein approximation method) for
JCCP can only find a feasible solution without any
optimality guarantee.

3) The proposed SCB framework is simulated in Section
IV. In particular, the convergence, conservativeness, sta-
bility and performance gains of the proposed algorithm
are illustrated.

C. Organization

The remainder of the paper is organized as follows. Section
II presents the system model and problem formulation, fol-
lowed by the problem analysis. In Section III, the stochastic
DC programming algorithm is developed. Simulation results
will be presented in Section IV. Finally, conclusions and
discussions are presented in Section V. To keep the main text
clean and free of technical details, we divert most of the proofs
to the appendix.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a fully cooperative network1 with L radio
access units (RAUs), where thel-th RAU is equipped withNl

antennas, and there areK single-antenna mobile users (MUs).
The centralized signal processing is performed at a central

1The proposed framework can be easily extended to more general cooper-
ation scenarios as shown in [15].
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processor, e.g., at the baseband unit (BBU) pool in Cloud-
RAN [5]. The propagation channel from thel-th RAU to the
k-th MU is denoted ashkl ∈ CNl , 1 ≤ k ≤ K, 1 ≤ l ≤ L. We
focus on the downlink transmission, for which the joint signal
processing is more challenging. The received signalyk ∈ C

at MU k is given by

yk =

L∑

l=1

hH

klvlksk +
∑

i6=k

L∑

l=1

hH

klvlisi + nk, ∀k, (1)

wheresk is the encoded information symbol for MUk with
E[|sk|2] = 1, vlk ∈ C

Nl is the transmit beamforming vector
from the l-th RAU to thek-th MU, andnk ∼ CN (0, σ2

k) is
the additive Gaussian noise at MUk. We assume thatsk ’s and
nk ’s are mutually independent and all the users apply single
user detection. The corresponding signal-to-interference-plus-
noise ratio (SINR) for MUk is given by

Γk(v,hk) =
|hH

kvk|2
∑

i6=k |hH

kvi|2 + σ2
k

, ∀k, (2)

wherehk , [hT
k1,h

T
k2, . . . ,h

T
kL]

T = [hkn]1≤n≤N ∈ CN with
N =

∑L
l=1Nl, vk , [vT

1k,v
T
2k, . . . ,v

T
Lk]

T ∈ CN and v ,

[vk]
K
k=1 ∈ CNK . The beamforming vectorsvlk ’s are designed

to minimize the total transmit power while satisfying the QoS
requirements for all the MUs. The beamformer design problem
can be formulated as

PFull : minimize
v∈V

L∑

l=1

K∑

k=1

‖vlk‖2

subject to Γk(v,hk) ≥ γk, ∀k, (3)

whereγk is the target SINR for MUk, and the convex set
V is the feasible set ofvlk ’s that satisfy the per-RAU power
constraints:

V ,

{

vlk ∈ C
Nl :

K∑

k=1

‖vlk‖2 ≤ Pl, ∀l, k
}

, (4)

with Pl as the maximum transmit power of the RAUl.
The problemPFull can be reformulated as a second-order

conic programming (SOCP) problem, which is convex and
can be solved efficiently (e.g., via the interior-point method).
Please refer to [5] for details. Such coordinated beamform-
ing can significantly improve the network energy efficiency.
However, solving problemPFull requires full and perfect CSI
available at the central processor. In practice, inevitably there
will be uncertainty in the available channel knowledge. Such
uncertainty may originate from various sources, e.g., training
based channel estimation [6], limited feedback [7], delays[8],
[9], hardware deficiencies [15] and partial CSI acquisition
[10], [11]. In the next subsection, we will provide a generic
stochastic model for the CSI uncertainty.

A. Stochastic Modeling of CSI Uncertainty

In this paper, we only assume that the distribution infor-
mation of the channel knowledgeh = [hk]

K
k=1 ∈ CNK is

available. That is,h is a random vector drawn from the support
setΞ ∈ CNK with the distribution asP. This helps avoid any

structural assumptions on the deterministic channel uncertainty
models and the assumptions on the distribution types of the
stochastic channel uncertainty models. In the following, we
will provide three examples to justify such a stochastic model.

1) Example One (Additive Error Model): The following ad-
ditive error model is commonly used to model the uncertainty
of CSI acquisition

hk = ĥk + ek, ∀k, (5)

where ĥk ’s are the estimated imperfect channel coefficients
and ek’s are the estimation error vectors. To facilitate the
Bernstein-type inequality approximation for the chance con-
strained programming, one may assumes that the error vec-
tors follow the complex Gaussian distribution [21]–[23], i.e.,
ek ∈ CN (0,Θk), ∀k, whereΘk ∈ HN with Θk � 0, is the
covariance matrix of the error vectorek. Based on this model,
we can reconstruct the distribution of the channels as

hk ∼ CN (ĥk,Θk), ∀k. (6)

To leverage the robust design, one often further assumes the
following ellipsoidal channel uncertainty model to bound the
errors in deterministic sets, i.e.,ekΘ̃ke

H

k ≤ 1, ∀k, whereΘ̃k ∈
HN with Θ̃k � 0 specifies the shape and size of the ellipsoid
of the error vectorek [15].

2) Example Two (Gauss-Markov Uncertainty Model): The
imperfect CSI can also be modeled as the following Gauss-
Markov model [29]:

hkl = R
1/2
kl (

√
1− τklĉkl + τklekl)

︸ ︷︷ ︸

ckl

, ∀k, l, (7)

whereRkl ∈ H
Nl×Nl with Rkl � 0 is the channel correlation

matrix between MUk and RAU l, ĉkl ∈ CN (0, INl
) is the

imperfect estimate of the true channel vectorckl and ekl ∈
CN (0, INl

) is the i.i.d. Gaussian noise term andτkl with 0 ≤
τkl ≤ 1 quantifies the estimation quality. Based on this model,
we can reconstruct the distribution of the channels as follows

hkl ∈ CN (R
1/2
kl (

√
1− τklĉkl),Rklτ

2
kl), ∀k, l. (8)

3) Example Three (Partial and Imperfect CSI Model): In
practice, the partial CSI knowledge acquisition [11] (e.g., com-
pressive CSI acquisition [10]) is a practical way to reduce the
CSI signaling overhead by only estimating a subset of channel
links. This approach is based on the fact that the channel links
between the MU and some RAUs far away have negligible
channel gains [10], [11], and thus the state information of
these links contributes little to the performance. In the partial
CSI acquisition methods, statistical channel state information
is often assumed for each link. Therefore, we have mixed
CSI including a subset of imperfect instantaneous CSI and
statistical CSI for the other channel coefficients. Combining
the above Gauss-Markov uncertainty model (7), we can re-
construct the channel distribution for the partial and imperfect
channel knowledge as follows: for the unestimated channel
links, we haveτkl = 1, and thus the statistical knowledge is
given ashkl = CN (0,Rkl); for the estimated channel links
with 0 < τkl < 1, the distribution of the uncertain channel
links is given byhkl ∈ CN (R

1/2
kl (

√
1− τklckl),Rklτ

2
kl). In
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particular,τkl = 0 indicates that the corresponding channel
coefficients are perfect.

B. Stochastic Coordinated Beamforming with Probability QoS
Guarantee

The uncertainty in the available CSI brings a new technical
challenge for the system design. To guarantee performance,
we impose a probabilistic QoS constraint, specified as follows

Pr {Γk(v,hk) ≥ γk, ∀k} ≥ 1− ǫ, (9)

where the distribution information ofhk ’s is known,0 < ǫ < 1
indicates that the system should guarantee the QoS require-
ments for all the MUs simultaneously with probability of at
least1 − ǫ. The probability is calculated over all the random
vectorshk ’s. The SCB is thus formulated to minimize the total
transmit power while satisfying the system probabilistic QoS
constraint (9):

PSCB : minimize
v∈V

L∑

l=1

K∑

k=1

‖vlk‖2

subject to Pr {Γk(v,hk) ≥ γk, ∀k} ≥ 1− ǫ, (10)

which is a joint chance constrained program (JCCP) [14], [24]
and is known to be intractable in general.

1) Problem Analysis: There are two major challenges in
solving PSCB. Firstly, the chance (or probabilistic) constraint
(9) has no closed-form expression in general and thus is
difficult to evaluate. Secondly, the convexity of the feasible
set formed by the probabilistic constraint is difficult to verify.
The general idea to handle such a constraint is to seek asafe
and tractable approximation. “Safe” means that the feasible
set formed by the approximated constraint is a subset of the
original feasible set, while “tractable” means that the opti-
mization problem over the approximated feasible set shouldbe
computationally efficient (e.g., relaxed to a convex program).

A natural way to form a computationally tractable approxi-
mation is the scenario approach [25]. Specifically, the chance
constraint (9) will be approximated by the followingKJ
sampling constraints:

Γk(v, h
j
k) ≥ γk, 1 ≤ j ≤ J, ∀k, (11)

where hj = [hjk]1≤k≤K , 1 ≤ j ≤ J is a sample ofJ
independent realizations of the random vectorh. The SCB
problemPSCB thus can be approximated by a convex program
based on the constraints (11). This approach can find a feasible
solution with a high probability, for which more details can
be found in [10]. An alternative way is to derive an analytical
upper bound for the chance constraint based on the Bernstein-
type inequality [21], [23], [26], resulting in a deterministic
convex optimization problem. The Bernstein approximation
based approach thus can find a feasible but suboptimal so-
lution.

Although the above methods have the advantage of com-
putational efficiency due to the convex approximation, the
common drawback of all these algorithms is the conservative-
ness due to the “safe” approximation. Furthermore, it is also
difficult to quantify the qualities of the solutions generated by

the algorithms. This motivates us to seek a novel approach
to find a more reliable solution to the problemPSCB. In
this paper, we will propose a stochastic DC programming
algorithm to find the globally optimal solution toPSCB if the
problem is convex and a locally optimal solution if it is non-
convex, which can be regarded as the first attempt to guarantee
the optimality for the solutions of the JCCP (10).

III. STOCHASTIC DC PROGRAMMING ALGORITHM

In this section, we propose a stochastic DC programming
algorithm to solve the problemPSCB. We will first propose
a DC programming reformulation for the problemPSCB,
which will then be solved by stochastic successive convex
optimization.

A. DC Programming Reformulation for the SCB Problem

The main challenge of the SCB problemPSCB is the in-
tractable chance constraint. In order to overcome the difficulty,
we will propose a DC programming reformulation that is
different from all the previous conservative approximation
methods. We first propose a DC approximation to the chance
constraint (9). Specifically, the QoS constraintsΓk(v,hk) ≥
γk can be rewritten as the following DC constraints [30]

dk(v,hk) , ck,1(v−k,hk)− ck,2(vk,hk) ≤ 0, ∀k, (12)

where v−k , [vi]i6=k, and both ck,1(v−k,hk) ,
∑

i6=k v
H

i hkh
H

kvi + σ2
k andck,2(vk,hk) ,

1
γk

vH

khkh
H

kvk are
convex quadratic functions inv. Therefore,dk(v,hk)’s are
DC functions inv. Then, the chance constraint (9) can be
rewritten asf(v) ≤ ǫ, with f(v) given by

f(v) = 1− Pr {Γk(v,hk) ≥ γk, ∀k}

=Pr

{(

max
1≤k≤K

dk(v,hk)

)

> 0

}

=E

[

1(0,+∞)

(

max
1≤k≤K

dk(v,hk)

)]

, (13)

where 1A(z) is an indicator of setA. That is, 1A(z) = 1
if z ∈ A and 1A(z) = 0, otherwise. The indicator function
makesf(v) non-convex in general.

The conventional approach to deal with the non-convex
indicator function is to approximate it by a convex function,
yielding a conservative convex approximation. For example,
using exp(z) ≥ 1(0,+∞)(z) will yield the Bernstein approx-
imation [26]. Applying [ν + z]+/ν ≥ 1(0,+∞)(z), ν > 0
will obtain a conditional-value-at-risk (CVaR) type approxi-
mation [26]. Although these approximations might enjoy the
advantage of being convex, all of them are conservative and
will lose optimality for the solution of the original problem.
More specifically, only the feasibility of the solutions canbe
guaranteed with these approximations.

To find a better approximation tof(v) in (13), in this paper,
we propose to use the following non-convex function [24, Fig.
2] to approximate the indicator function1(0,+∞)(z) in (13):

ψ(z, ν) =
1

ν
[(ν + z)+ − z+], ν > 0, (14)
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which is a DC function [30] inz. Although the DC function
is not convex, it does have many advantages. In particular,
Hong et al. [24] proposed to use this DC function to ap-
proximate the chance constraint assuming that the functions in
the chance constraint are convex, resulting in a DC program
reformulation. However, we cannot directly extend their results
for our problem, since the functionsdk(v,hk)’s in (12) are
non-convex. Fortunately, we can still adopt the DC function
ψ(z, ν) in (14) to approximate the chance constraint based on
the following lemma.

Lemma 1 (DC Approximation for the Chance Constraint):
The non-convex functionf(v) in (13) has the following
conservative DC approximation for anyν > 0,

f̂(v, ν) =E

[

ψ

(

max
1≤k≤K

dk(v,hk), ν

)]

=
1

ν
[u(v, ν) − u(v, 0)], ν > 0, (15)

where

u(v, ν) = E

[

max
1≤k≤K+1

sk(v,h, ν)

]

, (16)

is a convex function and the convex quadratic functions
sk(v,h, ν)’s are given by

sk(v,h, ν) , ν + ck,1(v−k,hk) +
∑

i6=k

ci,2(vi,hi), ∀k,(17)

and sK+1(v,h, ν) ,
∑K

i=1 ci,2(vi,hi) is a convex quadratic
function too.

Proof: Please refer to Appendix A for details.
Based on the DC approximation function̂f(v, ν), we

propose to solve the following problem to approximate the
original SCB problemPSCB:

PDC : minimize
v∈V

L∑

l=1

K∑

k=1

‖vlk‖2

subject to inf
ν>0

f̂(v, ν) ≤ ǫ, (18)

whereinfν>0 f̂(v, ν) is the most accurate approximation func-
tion to f(v). ProgramPDC is a DC program with the convex
set V , the convex objective function, and the DC constraint
function [30]. One major advantage of the DC approximation
PDC is the equivalence to the original problemPSCB. That
is, the DC approximation will not lose any optimality of the
solution of the SCB problemPSCB, as stated in the following
theorem.

Theorem 1 (DC Programming Reformulation): The DC
programming problemPDC in (18) is equivalent to the
original SCB problemPSCB.

Proof: Please refer to Appendix B for details.
Based on this theorem, in the sequel, we focus on how to

solve the problemPDC.

B. Optimality of Joint Optimization over v and κ

As the constraint inPDC itself is an optimization problem, it
is difficult to be solved directly. To circumvent this difficulty,
by observing thatf̂(v, ν) is nondecreasing inν for ν > 0,

as indicated in (50), one way is to solve the followingκ-
approximation problem [24]

minimize
v∈V

L∑

l=1

K∑

k=1

‖vlk‖2

subject to u(v, κ)− u(v, 0) ≤ κǫ, (19)

for any fixed small enough parameterκ > 0 to approximate
the original problemPDC. However, an extremely smallκ
might cause numerical stability issues and might require more
time to solve the subproblems that will be developed later [24].

We notice that, by regardingκ as an optimization variable,
problem (19) is still a DC program, as the functionµ(v, κ)
is jointly convex in (v, κ). Therefore, we propose to solve
the following joint approximation optimization problem by
treatingκ as an optimization variable

P̃DC : minimize
v∈V,κ>0

L∑

l=1

K∑

k=1

‖vlk‖2

subject to [u(v, κ)− κǫ]− u(v, 0) ≤ 0. (20)

The following proposition implies that the joint approximation
problemP̃DC can enhance the performance of problem (19).

Proposition 1 (Effectiveness of Joint Approximation):
Denote the optimal value of the problem (19) with a fixed
κ = κ̂ and that of the problemP̃DC as V ⋆(κ̂) and Ṽ ⋆,
respectively, then we havẽV ⋆ ≤ V ⋆(κ̂).

Proof: Define the feasible region of problem̃PDC as

D , {v ∈ V , κ > 0 : [u(v, κ)− κǫ]− u(v, 0) ≤ 0}. (21)

The projection ofD on the setV is given by

D̄ = {v ∈ D : ∃κ > 0, s.t.(v, κ) ∈ D}. (22)

Therefore, fixingκ = κ̂, any feasible solution in problem
(19) belongs to the setD. Therefore, the feasible set of the
optimization problem (19) is a subset ofD̄. As a result, solving
P̃DC can achieve a smaller minimum value with a larger
feasible region.

Define the deviation of a given setA1 from another setA2

as [14]

D(A1,A2) = sup
x1∈A1

(

inf
x2∈A2

‖x1 − x2‖
)

, (23)

then we have the following theorem indicating the optimality
of the joint approximation programP̃DC.

Theorem 2 (Optimality of Joint Approximation): Denote
the set of the optimal solutions and optimal values of problems
P̃DC, PSCB and the problem (19) with a fixedκ = κ̂ as
(P̃⋆, Ṽ ⋆), (P⋆, V ⋆) and (P⋆(κ̂), V ⋆(κ̂)), respectively, we have

lim
κ̂ց0

(V ⋆(κ̂)− Ṽ ⋆) = lim
κ̂ց0

(V ⋆(κ̂)− V ⋆) = 0, (24)

and

lim
κ̂ց0

D(P⋆(κ̂), P̃⋆) = lim
κ̂ց0

D(P⋆(κ̂),P⋆) = 0. (25)

Proof: Based on Proposition 1, the proof follows [24,
Theorem 2].

Based on Theorem 2, we can thus focus on solving the
program P̃DC. Although P̃DC is still a non-convex DC
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program, it has the algorithmic advantage, as will be presented
in the next subsection.

C. Successive Convex Approximation Algorithm

In this subsection, we will present a successive convex
approximation algorithm [24], [27] to solve the non-convex
joint approximation programP̃DC. We will prove in Theorem
3 that this algorithm still preserves the optimality properties,
i.e., achieving the Karush-Kuhn-Tucker (KKT) pair of the
non-convex programP̃DC. The main idea is to upper bound
the non-convex DC constraint function iñPDC by a convex
function at each iteration. Specifically, at thej-th iteration,
given the vector(v[j], κ[j]) ∈ D, for the convex function
u(v, 0), we have

u(v, 0) ≥ u(v[j], 0) + 2〈∇v∗u(v[j], 0),v − v[j]〉, (26)

where〈a,b〉 , R(aHb) for anya,b ∈ C and the gradient of
functionu(v, 0) is given as follows.

Lemma 2: The complex gradient ofu(v, 0) with respect to
v∗ (the complex conjugate ofv) is given by

∇v∗u(v, 0) = E[∇v∗sk⋆(v,h, 0)], (27)

wherek⋆ = arg max
1≤k≤K+1

sk(v,h, 0), and∇v∗sk(v,h, 0) =

[νk,i]1≤i≤K(1 ≤ k ≤ K) with νk,i ∈ CN given by

νk,i =

{(

hkh
H

k + 1
γi
hih

H

i

)

vi, if i 6= k, 1 ≤ k ≤ K,

0, otherwise,

and ∇v∗sK+1(v,h, κ) = [νK+1,i]1≤i≤K with νK+1,i =
1
γi
hih

H

i vi, ∀i. Furthermore, the gradient ofu(v, 0) with re-
spect toκ is zero, asκ = 0 is a constant in the function
u(v, 0).

Proof: Please refer to Appendix C for details.
Therefore, at thej-th iteration, the non-convex DC constraint
function[u(v, κ)−κǫ]−u(v, 0) in P̃DC can be upper bounded
by the convex functionl(v, κ;v[j], κ[j])− κǫ with

l(v, κ;v[j], κ[j])

= u(v, κ)− u(v[j], 0)− 2〈∇v∗u(v[j], 0),v − v[j]〉. (28)

Based on the convex approximation (28) to the DC constraint
in P̃DC, we will then solve the following stochastic convex
programming problem at thej-th iteration:

P̃DC(v
[j], κ[j]) : minimize

v∈V,κ>0

L∑

l=1

K∑

k=1

‖vlk‖2

subject to l(v, κ;v[j], κ[j])− κǫ ≤ 0. (29)

The proposed stochastic DC programming algorithm to the
SCB problemPSCB is thus presented in Algorithm 1.

Based on Theorem 2 on the optimality of the joint approx-
imation, the convergence of the stochastic DC programming
algorithm is presented in the following theorem, which reveals
the main advantage compared with all the previous algorithms
for the JCCP problem, i.e., it guarantees optimality.

Theorem 3 (Convergence of Stochastic DC Programming):
Denote{v[j], κ[j]} as the sequence generated by the stochastic
DC programming algorithm. Suppose that the limit of the

Algorithm 1: Stochastic DC Programming Algorithm

Step 0: Find the initial solution(v[0], κ[0]) ∈ D and set
the iteration counterj = 0;
Step 1: If (v[j], κ[j]) satisfies the termination criterion,
go to End;
Step 2: Solve problemP̃DC(v

[j], κ[j]) and obtain the
optimal solution(v[j+1], κ[j+1]);
Step 3: Set j = j + 1 andgo to Step 1;
End.

sequence exists, i.e.,limj→+∞(v[j], κ[j]) = (v⋆, κ⋆), which
satisfies the Slater’s condition2, then v⋆ is the globally
optimal solution of the SCB problemPSCB if it is convex;
otherwise,v⋆ is a locally optimal solution. Furthermore,κ
converges to zero for most scenarios, except that

Pr

{

max
1≤k≤K

dk(v
⋆,h) ∈ (−κ⋆, 0]

}

= 0, (30)

if κ⋆ 6= 0.
Proof: Please refer to Appendix D for details.

Based on Theorem 3, in the sequel, we focus on how to effi-
ciently implement the stochastic DC programming algorithm.

D. Sample Average Approximation Method for the Stochastic
DC Programming Algorithm

In order to implement the stochastic DC programming
algorithm, we need to address the problem on how to solve
the stochastic convex program̃PDC(v

[j], κ[j]) (29) efficiently
at each iteration.

We propose to use the sample average approximation (SAA)
based algorithm [14] to solve the stochastic convex problem
P̃DC(v

[j], κ[j]) at the j-th iteration. Specifically, the SAA
estimate ofu(v, κ) is given by

ū(v, κ) =
1

M

M∑

m=1

max
1≤k≤K+1

sk(v, h
m, κ), (31)

where hm(1 ≤ m ≤ M) is a sample ofM independent
realizations of the random vectorh. Similarly, the SAA
estimate of the gradient∇v∗u(v, 0) is given by

∇̄v∗u(v, 0) =
1

M

M∑

m=1

∇v∗sk⋆
m
(v, hm, 0), (32)

wherek⋆m = arg max
1≤k≤K+1

sk(v, h
m, 0). Therefore, the SAA

estimate of the convex functionl(v, κ;v[j], κ[j]) (28) is given
by

l̄(v, κ;v[j], κ[j])

= ū(v, κ) − ū(v[j], 0)− 2〈∇̄v∗u(v[j], 0),v− v[j]〉, (33)

2Slater’s condition is a commonly used constraint qualification to ensure
the existence of KKT pairs in convex optimization [31].
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which is jointly convex inv and κ. We will thus solve the
following SAA based convex optimization problem

P̄DC(v
[j], κ[j];M) : minimize

v∈V,κ>0

L∑

l=1

K∑

k=1

‖vlk‖2

subject to l̄(v, κ;v[j], κ[j])− κǫ ≤ 0,(34)

to approximate the stochastic convex optimization problem
P̃DC(v

[j], κ[j]), which can be reformulated as the following
convex quadratically constraint quadratic program (QCQP)
[31]:

P
[j]
QCQP : minimize

v∈V,κ>0,x

L∑

l=1

K∑

k=1

‖vlk‖2

subject to
1

M

M∑

m=1

xm − ū(v[j], 0)

−2〈∇̄v∗u(v[j], 0),v− v[j]〉 ≤ κǫ

sk(v, h
m, κ) ≤ xm, xm ≥ 0, ∀k,m, (35)

which can then be solved efficiently using the interior-point
method [31], wherex = [xm]1≤m≤M ∈ RM is the collection
of the slack variables.

The following theorem indicates that the SAA based pro-
gram P̄DC(v

[j], κ[j];M) for the stochastic convex optimiza-
tion P̃DC(v

[j], κ[j]) will not lose any optimality in the asymp-
totic regime.

Theorem 4: Denote the set of the optimal solutions
and optimal values of problemsPDC(v

[j], κ[j]) and
P̄DC(v

[j], κ[j];M) as (P⋆(v[j], κ[j]), V ⋆(v[j], κ[j])) and
(P⋆

M (v[j], κ[j]), V ⋆
M (v[j], κ[j])), respectively, then we have

D(P⋆
M (v[j], κ[j]),P⋆(v[j], κ[j])) → 0, (36)

and

V ⋆
M (v[j], κ[j]) → V ⋆(v[j], κ[j]), (37)

with probability one, as the sample size increases, i.e., asM →
+∞.

Proof: Please refer to Appendix E for details.
Based on Theorems 1-4, we conclude that the proposed

stochastic DC programming algorithm converges to the glob-
ally optimal solution of the SCB problem if it is convex and
to a locally optimal solution if the problem is non-convex, in
the asymptotic regime, i.e.,M → +∞.

E. Complexity Analysis and Discussions

To implement the stochastic DC programming algorithm, at
each iteration, we need to solve the convex QCQP program
P

[j]
QCQP with m = (L + KM + 1) (M is the number of

independent realizations of the random vectorh) constraints
andn = (NK +M + 1) optimization variables. The convex
QCQP problem can be solved with a worst-case complexity
of O((mn2 + n3)m1/2 log(1/ε)) given a solution accuracy
ε > 0 using the interior-point method [32]. As the Monte
Carlo sample sizeM could be very large in order to reduce
the approximation bias [24], the computational complexityof
the stochastic DC programming algorithm could be higher than

other deterministic approximation methods, e.g., the Bernstein
approximation method.

In order to further improve the computational efficiency of
the stochastic DC programming algorithm, other approaches
can be explored (e.g., the alternating direction method of
multipliers (ADMM) method [33]) to solve the large-scale
conic programP

[j]
QCQP in (35) at each iteration. This is an

on-going research topic, and we will leave it as our future
work.

Furthermore, as the stochastic DC programming algorithm
only requires distribution information of the random vector
h to generate the Monte Carlo samples, this approach can
be widely applied for any channel uncertainty model. As the
proposed stochastic DC programming algorithm provides op-
timality guarantee, it can serve as the performance benchmark
in various beamforming design problems with CSI uncertainty
and probabilistic QoS guarantees, and thus it will find wide
applications in future wireless networks.

IV. SIMULATION RESULTS

In this section, we simulate the proposed stochastic DC
algorithm for coordinated beamforming design. We consider
the following channel model for the link between thek-th user
and thel-th RAU [12], [29]:

hkl = 10−L(dkl)/20
√
ϕklskl

︸ ︷︷ ︸

Dkl

(√

1− τ2klĉkl + τklekl

)

=
√

1− τ2klDklĉkl + τklDklekl, ∀k, l, (38)

where L(dkl) is the path-loss at distancedkl, as given in
[5, Table I], skl is the shadowing coefficient,ϕkl is the
antenna gain,̂ckl ∈ CN (0, INl

) is the estimated imperfect
small-scale fading coefficient andekl is the CSI error. We
assume that the BBU pool can accurately track the large-scale
fading coefficientsDkl’s [11]. The error vector is modeled
as ekl ∈ CN (0, INl

). The parametersτkl’s depend on the
CSI acquisition schemes, e.g., channel estimation errors using
MMSE. We use the standard cellular network parameters as
shown in [5, Table I]. The maximum outage probability that
the system can tolerate is set asǫ = 0.1. The proposed stochas-
tic DC programming algorithm will stop if the difference
between the objective values of̃PDC(v

[j], κ[j]) (29) of two
consecutive iterations is less than10−4.

The proposed stochastic DC programming algorithm is
compared to the following two algorithms:

• The scenario approach: The main idea of this algorithm
is to approximate the probabilistic QoS constraint by
multiple “sampling” QoS constraints [20], [25]. This
algorithm can only find a feasible solution for problem
PSCB with a high probability. Please refer to [10] for
more details.

• The Bernstein approximation method: The main idea
of this algorithm is to use the Bernstein-type inequality
to find a closed-form approximation for the chance con-
straint (9) [21], [23]. The original stochastic optimiza-
tion problemPSCB can be conservatively approximated
by a deterministic optimization problem. Therefore, the
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computational complexity of the deterministic approxi-
mation method is normally much lower than the Monte
Carlo approaches, e.g., the scenario approach and the
stochastic DC programming algorithm. Nevertheless, the
Bernstein approximation method can also only find a
feasible but suboptimal solution, and the conservativeness
of this method is difficult to quantify. Moreover, to derive
closed-form expressions, the Bernstein approximation
method restricts the distribution of the random vectorh to
be complex Gaussian distribution. Therefore, this method
is not robust against the distribution of the random vector
h.

Due to the computational complexity of solving large-
size sample problems for both the stochastic DC program-
ming algorithm and the scenario approach, we only consider
a simple and particular network realization to demonstrate
the performance benchmarking capability of the proposed
stochastic DC programming algorithm. Specifically, consider
a network withL = 5 single-antenna RAUs andK = 3
single-antenna MUs uniformly and independently distributed
in the square region[−400, 400]× [−400, 400] meters. In this
scenario, we consider a mixed CSI uncertainty model [10],
[11], i.e., partial and imperfect CSI. Specifically, for MUk,
we set τkn = 0.01, ∀n ∈ Ωk (i.e., the obtained channel
coefficients are imperfect) andτkn = 1, ∀ 6= Ωk, whereΩk

includes the indices of the 2 largest entries of the vector
consisting of all the large-scale fading coefficients for MUk.
That is, only40% of the channel coefficients are obtained in
this scenario. The QoS requirements are set asγk = 3dB, ∀k.
The sample size for the scenario approach is 308 [25] and
for the stochastic DC programming algorithm it is1000. The
simulated channel data is given in (39), whereĤ = [Dklĉkl]
and D = [Dkl]. In the following, we will illustrate the
convergence, conservativeness, stability and performance gains
of the stochastic DC programming algorithm.

A. Stability of the Algorithms

As both the stochastic DC programming and scenario
approach use Monte Carlo samples to obtain the solutions,
the corresponding solutions should depend on the particular
samples. Therefore, it is essential to investigate the stability
of solutions obtained by the stochastic algorithms. We thus
run the algorithms 50 replications with different Monte Carlo
samples for each replication to illustrate the stability ofthe
algorithms.

From Fig. 1 and Fig. 2, we can see that the solutions
and the estimated probability constraints obtained from the
stochastic DC programming algorithm are very stable, as they
converge to a similar solution. In particular, the average total
transmit power is 10.5228 dBm, with the lowest being 10.4614
dBm and the highest being 10.5804 dBm. The corresponding
average probability constraint is 0.9010, with the range of
0.8933 to 0.9067.

However, the solutions and the estimated probability con-
straints obtained from the scenario approach drastically differ
from replication to replication due to the randomness in
the Monte Carlo samples. In particular, the average total
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Fig. 1. Optimal value versus different Monte Carlo replications.
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Fig. 2. Probability constraint versus different Monte Carlo replications.

transmit power is 11.1004 dBm, with the lowest being 10.6260
dBm and the highest being 11.5826 dBm. The corresponding
average probability constraint is 0.9731, and is in the range
between 0.9522 and 0.9891.

We can see that the stochastic DC programming algorithm
can achieve a lower transmit power than the scenario approach
on average. The scenario approach yields a much more con-
servative approximation for the probability constraint. Further-
more, the performance of the scenario approach cannot be
improved by increasing the sampling size as this will cause
more conservative solutions. This is in contrast to the proposed
stochastic DC programming algorithm, as Theorem 4 indicates
that more samples can improve the Monte Carlo approximation
performance and most Monte Carlo approach based stochastic
algorithms possess such a property.

Finally, the average value of the parameterκ is 1.5× 10−3

and is in the rang between7.8× 10−4 and2.6× 10−3 when
the stochastic DC programming algorithm terminates. This
justifies the conclusion that the parameterκ will converge to
zero as presented in Theorem 3.
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Ĥ =









−2.2377 + 0.9643i −1.0311 + 2.0312i 3.6613 + 11.3275i
−0.5723− 0.1608i 8.4672 + 19.4963i −0.0046− 1.3821i
28.8976− 13.2169i 4.3453− 10.1453i 1.6451− 4.8108i
−1.6776 + 1.2600i −2.6659− 2.0050i 42.9821− 5.6807i
3.4623− 2.0804i 4.1266 + 1.8647i −2.3121 + 1.3415i









,D =









2.7963 4.4546 26.8928
2.4794 9.5564 1.9145
29.9654 24.3376 13.8270
2.1076 4.0912 38.7970
2.8683 3.9187 3.5856









. (39)
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Fig. 3. Convergence of the stochastic DC programming algorithm.

B. Convergence of the Stochastic DC Programming Algorithm

We report a typical performance on the convergence of the
stochastic DC programming algorithm, as shown in Fig. 3,
with the initial point being the solution from the Bernstein
approximation method. This figure shows that the convergence
rate of the proposed stochastic DC programming is very fast
for the simulated scenario. We can see that the stochastic DC
programming algorithm can achieve a much lower transmit
power than the Bernstein approximation method. This figure
also demonstrates the effectiveness of jointly optimizingover
the parameterκ and beamforming vectorv, as this can
significantly improve the convergence rate. Furthermore, the
parameterκ is 1.3× 10−3 when the proposed stochastic DC
programming algorithm terminates under this scenario.

C. Conservativeness of the Algorithms

We also report the typical performances of all the algo-
rithms on the conservativeness of approximating probability
constraints in the SCB problem under the same scenario as
the above subsection. The estimated probability constraint in
PSCB is shown in Fig. 4, which is 0.988 using the Bernstein
approximation. On the other hand, for the stochastic DC pro-
gramming algorithm, we can see that the probability constraint
becomes tight when it terminates, and thus the Bernstein
approximation is too conservative. This coincide with the
fact that the suboptimal algorithms only seek conservative
approximations to the chance constraint.

V. CONCLUSIONS ANDFUTURE WORKS

This paper presented a generic stochastic coordinated beam-
forming framework for the optimal transmission strategy de-
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Fig. 4. Probability Constraint.

sign with a probabilistic model for the CSI uncertainty. This
framework frees us from the structural modeling assumptions
and distribution types assumptions for the uncertain channel
knowledge, thus it provides modeling flexibility. With the
optimality guarantee, the proposed stochastic DC program-
ming algorithm can serve as the benchmark for evaluating
suboptimal and heuristic algorithms. The benchmarking ca-
pability was demonstrated numerically in terms of conser-
vativeness, stability and optimal values by comparing with
the Bernstein approximation method and scenario approach.
Furthermore, the proposed algorithm has a better convergence
rate by jointly optimizing the approximation parameterκ. As
the proposed stochastic DC programming algorithm provides
optimality guarantee, we believe this algorithm can be applied
in various beamforming design problems with probabilistic
QoS guarantees due to the CSI uncertainty, and it will find
wide applications in future wireless networks.

Several future research directions are listed as follows:

• Although our framework only requires the distribution
information of the uncertain channel knowledge, so as
to generate Monte Carlo samples for the stochastic DC
programming algorithm, it might be challenging to obtain
the exact information in some scenarios. Therefore, one
may either seek more sophisticated measuring methods
to estimate the distribution information or adopt the
distributionally robust optimization approaches to deal
with the ambiguous distributions, e.g., [34].

• The main drawback of the stochastic DC programming
algorithm is the highly computational complexity with
the sample problemP [j]

QCQP at each iteration, one may
either resort to ADMM [33] based algorithms to solve
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the large-sized sample problem in parallel or reduce the
optimization dimensions by fixing the directions of the
beamformers and only optimizing the transmit power al-
location (e.g., in [22], the corresponding power allocation
problem is a linear program and can be solved with a
much lower computational complexity).

APPENDIX A
PROOF OFLEMMA 1

For simplicity, we denoteck,1(v) , ck,1(v−k,hk),
ck,2(v) , ck,2(vk,hk) and dk(v) , dk(v,hk). For any
v ∈ V , ∀k, dk(v) = ck,1(v) − ck,2(v) is a DC function on
V , as bothck,1(v) andck,2(v) are convex functions ofv. For
any ν > 0, we first prove that the following function

ψ

(

max
1≤k≤K

dk(v), ν

)

=

1

ν

[(

ν + max
1≤k≤K

dk(v)

)+

−
(

max
1≤k≤K

dk(v)

)+
]

, (40)

is also a DC function. The functiondk(v) can be rewritten as

dk(v) = ck,1(v) +
∑

i6=k

ci,2(v) −
K∑

i=1

ci,2(v). (41)

Therefore, the following function

max
1≤k≤K

dk(v) =

max
1≤k≤K






ck,1(v) +

∑

i6=k

ci,2(v)







︸ ︷︷ ︸

C1(v,h)

−
K∑

i=1

ci,2(v)

︸ ︷︷ ︸

C2(v,h)

, (42)

is a DC function, as both the functionsC1(v,h) andC2(v,h)
are convex inv. Furthermore, for anyz1, z2 ∈ R and z =
z1 − z2, we havez+ = max{z1, z2} − z2. Therefore,

ψ

(

max
1≤k≤K

dk(v), ν

)

=
1

ν
[m(v, ν)−m(v, 0)], (43)

is a DC function ofv, as

m(v, ν) = max{ν + C1(v,h), C2(v,h)}, (44)

is a convex function ofv. According to [30, Proposition 2.1],
f̂(v, ν) = E[ψ (max1≤k≤K dk(v,hk), ν)] is a DC function on
V . Therefore, the proof is completed.

APPENDIX B
PROOF OFTHEOREM 1

In order to prove Theorem 1, we need to prove the following
equality:

inf
ν>0

f̂(v, ν) = f(v). (45)

First, we need to prove the monotonicity of the function
f̂(v, ν) in the variableν. According to (43) and (44), the
function f̂(v, ν) can be rewritten as

f̂(v, ν) = E[π(ν, C1(v,h), C2(v,h))], (46)

where

π(ν, z1, z2) ,
1

ν
[max{ν + z1, z2} −max{z1, z2}] , (47)

for any z1, z2 ∈ R and ν > 0. Therefore, we only need
to prove the monotonicity of the functionπ(ν, z1, z2) in the
variableν.

Definez , z1 − z2, then we have

π(ν, z1, z2) =

(

1 +
1

ν
z

)

1(−ν,0](z) + 1(0,+∞)(z). (48)

For anyν1 > ν2 > 0 and anyz1, z2 ∈ R, we have

π(ν1, z1, z2)− π(ν2, z1, z2) =

(

1 +
1

ν1
z

)

1(−ν1,−ν2](z) +

z

(
1

ν1
− 1

ν2

)

1(−ν2,0)(z) ≥ 0. (49)

Therefore,f̂(v, ν) is nondecreasing inν for ν > 0. Hence,
we have

inf
ν>0

f̂(v, ν) = lim
νց0

f̂(v, ν) = lim
νց0

1

ν
[u(v, ν)− u(v, 0)],(50)

whereν ց 0 indicates thatν decreasingly goes to0. Thus,
based on (50), in order to prove (45), we only need to prove

lim
νց0

1

ν
[u(v, ν) − u(v, 0)] = f(v). (51)

Furthermore, if the partial derivation ofu(v, ν) exists, we have

lim
νց0

1

ν
[u(v, ν)− u(v, 0)] =

∂

∂ν
u(v, 0). (52)

Therefore, we need to prove that∂∂νu(v, ν) exists and
∂
∂νu(v, 0) = f(v).

According to (44), we haveu(v, ν) = E[m(v,h, ν)] =
E[max{ν + C1(v,h), C2(v,h)}]. As

∂

∂ν
(max{ν + z1, z2}) = 1(−ν,+∞)(z), (53)

for any z 6= −ν, andPr {max1≤k≤K dk(v,h) = −ν} = 0,
wheremax1≤k≤K dk(v,h) , C1(v,h) − C2(v,h) (42), we
conclude that∂∂νu(v, ν) exists.

Let T , (−T, T ) with T > 0 being an open set
such that the cumulative distribution functionF (v, ν) ,

Pr{max1≤k≤K dk(v) ≤ ν)} of the random variable
(max1≤k≤K dk(v)) is continuously differentiable for anyν ∈
T . Next we will show that

∂

∂ν
u(v, ν) = lim

δ→0

1

δ
E[m(v,h, ν + δ)−m(v,h, ν)]

= Pr

{

max
1≤k≤K

dk(v) > −ν
}

= 1−F (v,−ν).(54)

For any ν ∈ T and v ∈ V , define the random variable
X(δ) , [m(v,h, ν + δ)−m(v,h, ν)]/δ, then we have the
following two facts:

1) The limit ofX(δ) exists and we have

lim
δ→0

X(δ) = 1(−ν,+∞)

(

max
1≤k≤K

dk(v,h)

)

, (55)

with probability one.



11

2) X(δ) is dominated by a constantC > 0, i.e., |X(δ)| ≤
C, where0 < C <∞. This can be justified by

|X(δ)|= 1

h
|m(v,h, ν + δ)−m(v,h, ν)|

=
1

δ
|[δ +Q(v,h, ν)]+ − [Q(v,h, ν)]+| ≤ 1,

whereQ(v,h, ν) , ν+max1≤k≤K dk(v,h) and the last
inequality is based on the fact|[x]+ − [y]+| ≤ |x− y|.

From the above two facts on the random variableX(δ), by the
dominated convergence theorem to interchange an expectation
and the limit asδ → 0, and together with [35, Proposition 1],
we have

∂

∂ν
u(v, ν) = lim

δ→0
E[X(δ)] = E[limδ→0X(δ)]

=E[1(−ν,+∞)(max1≤k≤K dk(v,h))]

= 1− F (v,−ν). (56)

Therefore, we complete the proof by

inf
ν>0

f̂(v, ν) = lim
νց0

1

ν
[u(v, ν)− u(v, 0)]

=
∂

∂ν
u(v, 0) = 1− F (v, 0) = f(v). (57)

APPENDIX C
PROOF OFLEMMA 2

It is well known that non-constant real-valued functions of
complex variables are not holomorphic (orC-differentiable)
[36]. Thus, the real-valued functionsdk(v,hk) in (12) are
not differentiable in the complex domainCNK (i.e., with
respect to the complex vectorv). Define a real-valued function
m(v,h, ν) , max1≤k≤K+1 sk(v,h, ν), which is convex in
v. Although this function is not holomorphic inv, it can be
viewed as a function of bothv and its complex conjugate
v∗, i.e.,m(v,v∗,h, ν). It is easy to verify that the function
m(v,v∗,h, ν) is holomorphic inv for a fixed v∗ and is
also holomorphic inv∗ for a fixed v. Proving Lemma 2 is
equivalent to proving that the gradient ofE[m(v,h, ν)] with
respect tov∗ exists and equals

∇v∗E[m(v,h, ν)] = E[∇v∗m(v,h, ν)]. (58)

Based on the chain rule [36], the complex gradient of the
functionm(v,h, ν) with respect tov∗ exists and is given by

∇v∗m(v,h, ν) ,
∂m(v,h, ν)

∂v∗
=
∂sk⋆(v,h, ν)

∂v∗
, (59)

with probability one, wherek⋆ = arg max
1≤k≤K+1

sk(v,h, ν).

It is a vector operator and gives the direction of the steepest
ascent of a real scalar-valued function.

Denote ∂m(v,h,ν)
∂v∗

, [ ∂m∂v∗

i

]1≤i≤NK and ∂sk⋆ (v,hk,ν)
∂v∗

,

[∂sk⋆

∂v∗

i

]1≤i≤NK , wherev = [v1, v2, . . . , vNK ], and define the
following complex random variable

Y (∆v∗i ) ,
1

∆v∗i
[m(v−i, v

∗
i +∆v∗i )−m(v−i, v

∗
i )], (60)

wherev−i , [vk]k 6=i, ∆v∗i ∈ C andm(v) , m(v,h, ν) for
simplicity, then we have the following two facts on the random
variableY (∆v∗i ):

1) The limit of Y (∆v∗i ) exists and equals

lim
∆v∗

i
→0

Y (∆v∗i ) =
∂sk⋆

∂v∗i
, (61)

with probability one.
2) The random variable is dominated by a random variable

Z with E[Z] ≤ +∞, i.e.,

|Y (∆v∗i )| ≤ Z, ∀i, (62)

which can be verified by the following lemma.
Lemma 3: For anyx,y ∈ V , there exists a random variable

Z with E[Z] ≤ ∞ such that

|m(x,h, ν) −m(y,h, ν)| ≤ Z‖x− y‖. (63)

Proof: As m(v) is convex inv, we have

m(x)≥m(y) + 2〈∇v∗m(y),x− y〉, (64)

m(y)≥m(x) + 2〈∇v∗m(x),y − x〉. (65)

Based on the above two inequalities and by the Cauchy-
Schwarz inequality, we have

|m(x)−m(y)| ≤ 2

(

max
v=x,y

‖∇v∗m(v)‖
)

‖x− y‖. (66)

Furthermore, for1 ≤ k ≤ K, we have

‖∇v∗sk(v)‖=




∑

i6=k

∥
∥
∥
∥

(

hkh
H

k +
1

γ2k
hih

H

i

)

vi

∥
∥
∥
∥

2




1/2

≤max
i6=k

‖vi‖




∑

i6=k

∥
∥
∥
∥

(

hkh
H

k +
1

γ2k
hih

H

i

)∥
∥
∥
∥

2




1/2

=Z1, (67)

whereZ1 is a random variable withE[Z1] ≤ +∞, and for
k = K + 1, we have

‖∇v∗sK+1(v)‖=
(

K∑

i=1

∥
∥
∥
∥

1

γ2i
hih

H

i vi

∥
∥
∥
∥

2
)1/2

≤ max
1≤i≤K

‖vi‖
(

K∑

i=1

∥
∥
∥
∥

1

γ2i
hih

H

i

∥
∥
∥
∥

2
)1/2

=Z2, (68)

whereZ2 is a random variable withE[Z2] ≤ +∞. Therefore,
letting Z , max{Z1, Z2} with E[Z] < +∞, we have

∇v∗m(v) =
∂sk⋆(v)

∂v∗
≤ max{Z1, Z2} = Z. (69)

According to (66) and (69), we have the inequality (63).
Based on the above two facts (61) and (62) on the random

variableY (∆v∗i ), and by the dominated convergence theorem
to interchange an expectation and the limit as∆v∗i → 0 and
[35, Proposition 1], we have

lim
∆v∗

i
→0

E[Y (∆v∗i )] = E

[

lim
∆v∗

i
→0

Y (∆v∗i )

]

= E

[
∂sk⋆

∂v∗i

]

.(70)

Based on the fact

∇v∗E[m(v,h, ν)] =

[

lim
∆v∗

i
→0

E[Y (∆v∗i )]

]

1≤i≤NK

, (71)

we get (58) and thus complete the proof.
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APPENDIX D
PROOF OFTHEOREM 3

For simplicity, we only consider the case with real variables
and functions. The extension to complex variables is straight-
forward. Specifically, defineD0 = {v ∈ V : f(v) ≤ ǫ} as the
feasible set of the SCB problemPSCB. To ensure the existence
of the KKT paris for the SCB problemPSCB, we assume
the following constraint qualification [37, Corollary 6.15] for
programPSCB, i.e., for any feasible pointv ∈ D0, λ = 0 is
the only value that satisfies the following linear system:

−λ∇vf(v) ∈ NV(v), λ[f(v) − ǫ] = 0 (72)

whereλ ≥ 0, andNV(v) is the normal cone to the convex set
V at v, i.e.,

NV(v) = {x|〈x,y − v〉 ≤ 0, ∀y ∈ V}. (73)

With this constraint qualification, we have the KKT pairs
(v⋆, λ⋆) [37, Corollary 6.15] for the SCB problem as

Ω0 :







−[∇vf0(v
⋆) + λ⋆∇vf(v

⋆)] ∈ NV(v
⋆)

λ⋆[f(v⋆)− ǫ] = 0
λ⋆ ≥ 0,v⋆ ∈ V ,

(74)

wheref0(v) = ‖v‖2 is the objective function ofPSCB.
Similarly, let (v⋆, κ⋆, λ⋆) be a KKT pair of the joint

approximation programP̃DC as follows

Ω :







−{∇vf0(v
⋆) + λ⋆∇v[u(v

⋆, κ⋆)− κ⋆ǫ− u(v⋆, 0)]}
∈ NV(v

⋆),
−{λ⋆∇κ[u(v

⋆, κ⋆)− κ⋆ǫ − u(v⋆, 0)]} ∈ N(0,+∞)(κ
⋆),

λ⋆[u(v⋆, κ⋆)− κ⋆ǫ− u(v⋆, 0)] = 0
λ⋆ ≥ 0,v⋆ ∈ V , κ > 0.

In order to prove Theorem 3, we first prove the following
lemma illustrating the relationship betweenΩ0 andΩ.

Lemma 4: Suppose that there exists(v[j], κ[j], λ[j]) ∈ Ω,
such that (v[j], κ[j], λ[j]) → (v̂, 0, λ̂), then we have that
(v̂, λ̂) ∈ Ω0.

Proof: We only need to consider two cases in terms of
λ[j] being zeros or not.

Case one: suppose there exists a subsequence{λ[ki]} of
{λ[j]} such thatλ[ki] = 0, i = 0, 1, 2, . . . . As λ[ki]’s belong
to Ω, we have−∇vf0(v

[ki ]) ∈ NV(v
[ki]), which implies that

−∇vf0(v̂) ∈ NV(v̂), as i→ ∞. This indicates(v̂, 0) ∈ Ω0.
Case two: suppose thatλ[n] 6= 0, for sufficiently largen. In

this case, we have∇κ[u(v
[n], κ[n]) − κ[n]ǫ] = 0, asκ[n] > 0

andN(0,+∞)(κ
[n]) = 0. Based on (57), letn → ∞ such that

κ[n] → 0, we have

f(v̂)− ǫ = 0. (75)

Furthermore, asκ[n] 6= 0, based on the KKT pairs inΩ, we
have

−∇vf0(v
[n])− λ[n]κ[n]

{∇v[u(v
[n], κ[n])− u(v[n], 0)]

κ[n]

}

∈ NV(v
[n]), (76)

and

λ[n]κ[n]
{

∇κ[u(v
[n], κ[n])− κ[n]ǫ]

}

= 0. (77)

According to (56), we have

∂

∂κ
∇vu(v

[n], κ[n]) =∇v

(
∂

∂κ
u(v[n], κ[n])

)

=−∇vF (v
[k],−κ[n]). (78)

Therefore, we have

lim
n→+∞

∇vu(v
[n], κ[n])−∇vu(v

[k], 0)

κ[n]
=

− lim
n→+∞

∇vF (v
[n],−κ̄[n]) = −∇vF (v̂, 0) = ∇vf(v̂),(79)

whereκ̄[n] ∈ (0, κ[n]), ∀n, due to the mean-value theorem.
Dividing both sides of equations (76) and (77) byλ[n]κ[n],

respectively, letn → ∞ and suppose thatλ[n]κ[n] → +∞,
based on (75) and (79), we have

−∇vf(v̂) ∈ NV(v̂), f(v̂)− ǫ = 0. (80)

However, this contradicts the constraint qualification (72).
Therefore, we conclude thatλ[n]κ[n] 9 +∞. We thus assume
that λ[n]κ[n] → λ̂ with 0 ≤ λ̂ < +∞. Let n → ∞, based on
(75), (76), (77) and (79), we obtain

−
{

∇vf0(v̂) + λ̂∇vf(v̂)
}

∈ NV(v̂), λ̂[f(v̂)− ǫ] = 0. (81)

This indicates that(v̂, λ̂) ∈ Ω0. We thus complete the proof.

Based on Lemma 4, we further investigate whetherκ
converges to zero. The answer is positive in most scenarios
except two special cases. Suppose that(v̂, κ̂) is a KKT point
of the problemP̃DC. We consider two particular cases in terms
of whether the SCB programPSCB attaining its optimal value
at the interior point or not.

Case one: When the SCB programPSCB attains the optimal
value at the interior point of its feasible region, then program
P̃SCB also attains its optimal value at the interior point of its
feasible region based on Theorem 2. In this scenario, the DC
constraint inP̃SCB does not need to be tight. Thus,κ̂ is not
necessary to be zero and it has multiple choices, while(v̂, 0)
still belongs toΩ0.

Case two: When all the optimal solutions of the SCB
programPSCB make the probability constraint tight. In this
scenario, we have[u(v̂, κ̂) − κ̂ǫ]− u(v̂, 0) = 0. This reveals
thatκ = 0 is a minimizer of the function[u(v̂, κ)− κǫ] with
respect toκ, i.e.,

Pr

{

max
1≤k≤K

dk(v̂,h) > 0

}

= ǫ, (82)

where the calculation is based on (54). On the other hand, as
κ̂ satisfies the KKT conditions of program̃PDC, we have

∇κ[u(v̂, κ̂)− κ̂ǫ] = 0. (83)

According to [38, Theorem 10] and [39, Appendix A4], the
minimizer (i.e.,κ̂ 6= 0 in (83)) of the function[u(v̂, κ) − κǫ]
with respect toκ satisfies

Pr

{

max
1≤k≤K

dk(v,h) > −κ̂
}

≤ ǫ. (84)

Combining (82) and (84), we conclude that
Pr {max1≤k≤K dk(v̂,h) ∈ (−κ̂, 0]} = 0. This implies
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that the optimization variableκ in P̃DC converges to zero, if
for any c > 0, we have

Pr

{

max
1≤k≤K

dk(v̂,h) ∈ [−c, 0]
}

6= 0. (85)

From numerical examples in Section IV, we will demonstrate
that variableκ will indeed converge to zero.

Finally, based on Lemma 4, we only need to prove that
the sequence generated by the stochastic DC programming
algorithm converges to a KKT point of the program̃PDC.
This directly follows [24, Property 3]. We thus complete the
proof.

APPENDIX E
PROOF OFTHEOREM 4

By [14, Theorem 7.50] and [24, Theorem 6], we have
that the SAA estimatēl(v, κ;v[j], κ[j]) (33) converges to
l(v, κ;v[j], κ[j]) uniformly on the convex compact setV with
probability one asM → +∞, i.e.,

sup
v∈V

|l̄(v, κ;v[j], κ[j])− l(v, κ;v[j], κ[j])| → 0,M→+∞,(86)

with probability one. Furthermore, by [14, Theorem
5.5], we have V ⋆

M (v[j], κ[j]) → V ⋆(v[j], κ[j]) and
D(P⋆

M (v[j], κ[j]),P⋆(v[j], κ[j])) → 0 with probability one as
M → +∞. Therefore, we complete the proof.
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