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Robust Multiple Signal Classification via
Probability Measure Transformation

Koby Todros, Member, IEEE, and Alfred O. Hero, Fellow, IEEE

Abstract—In this paper, we introduce a new framework for
robust multiple signal classification (MUSIC). The proposed
framework, called robust measure-transformed (MT) MUSIC, is
based on applying a transform to the probability distributi on of
the received signals, i.e., transformation of the probability mea-
sure defined on the observation space. In robust MT-MUSIC, the
sample covariance is replaced by the empirical MT-covariance.
By judicious choice of the transform we show that: (1) the
resulting empirical MT-covariance is B-robust, with bounded
influence function that takes negligible values for large norm
outliers, and (2) under the assumption of spherically contoured
noise distribution, the noise subspace can be determined from
the eigendecomposition of the MT-covariance. Furthermore, we
derive a new robust measure-transformed minimum description
length (MDL) criterion for estimating the number of signals, and
extend the MT-MUSIC framework to the case of coherent signals.
The proposed approach is illustrated in simulation examples that
show its advantages as compared to other robust MUSIC and
MDL generalizations.

Index Terms—Array processing, DOA estimation, probability
measure transform, robust estimation, signal subspace estimation.

I. I NTRODUCTION

The multiple signal classification (MUSIC) algorithm [1],
[2] is a well established technique for estimating direction-of-
arrivals (DOAs) of signals impinging on an array of sensors.
It operates by finding DOAs with corresponding array steering
vectors that have minimal projections onto the empirical noise
subspace, whose spanning vectors are obtained via eigende-
composition of the sample covariance matrix (SCM) of the
array outputs.

In the presence of outliers, possibly caused by heavy-tailed
impulsive noise, the SCM poorly estimates the covariance of
the array outputs, resulting in unreliable DOAs estimates.In
order to overcome this limitation, several MUSIC generaliza-
tions have been proposed in the literature that replace the SCM
with robust association or scatter matrix estimators, for which
the empirical noise subspace can be determined from their
eigendecomposition.

Under the assumption that the signal and noise components
are jointly α-stable processes [3], it was proposed in [4]
to replace the SCM with empirical covariation matrices that
involve fractional lower-order statistics. Althoughα-stable
processes are appropriate for modelling impulsive noise [5],
the assumption that the signal and noise components are
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jointly α-stable is restrictive. In [6], a less restrictive approach
considering circular signals contaminated by additiveα-stable
noise was developed that replaces the SCM with matrices com-
prised of empirical fractional-lower-order-moments. Although
this approach is less restrictive than the one proposed in [4],
violation of the signal circularity assumption, e.g., in the case
of BPSK signals, results in poor DOA estimation performance
[6].

In [7]-[9] it was proposed to apply MUSIC after passing the
data through a zero-memory non-linear (ZMNL) function that
suppresses outliers by clipping the amplitude of the received
signals. The ZMNL approach has simple implementation
having low computational complexity, and unlike the methods
proposed in [4], [6] it does not require restrictive assumptions
on the signal and noise probability distributions. Although
the ZMNL preprocessing may result in more accurate DOA
estimation than the methods in [4], [6], it may not preserve
the noise subspace which can lead to performance degradation
[10].

Under the assumption of normally distributed signals in
heavy tailed noise, a similar approach was proposed in [11]
that is based on successive outlier trimming until the remaining
data is Gaussian. Normality of the data is tested using the
Shapiro-Wilk’s test. Similarly to the ZMNL preprocessing,
the noise subspace may not be preserved after the trimming
procedure. Moreover, the key assumption that the signals are
Gaussian may not be satisfied in some practical scenarios.

In [12], a different MUSIC generalization was proposed that
replaces the SCM with empirical sign or rank covariances.
Using only the assumption of spherically distributed noise, it
was shown that convergent estimates of the noise subspace
can be obtained from their eigendecomposition. The influence
functions [13] of the empirical sign and rank covariance
matrices, that measure their sensitivity to an outlier, are
bounded [14]. In other words, these estimators are B-robust
[13]. However, it can be shown that the Frobenius norms of
their matrix valued influence functions do not approach zero
as the magnitude of the outlier approaches infinity, i.e., they
do not reject large outliers. Indeed, the empirical sign andrank
covariance matrices have influence functions with constant
Frobenius norms for spherically symmetric distributions.

In [15], robust M-estimators of scatter [16], [17], such as
the maximum-likelihood, Huber’s [17], and Tyler’s [18] M-
estimators, extended to complex elliptically symmetric (CES)
distributions, were proposed as alternatives to the SCM. Under
the class of CES distributions having finite second-order
moments, these estimators provide consistent estimation of
the covariance up to a positive scalar, resulting in consistent
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estimation of the noise subspace. Although this approach
can provide robustness against outliers with negligible loss
in efficiency when the observations are normally distributed,
it may suffer from the following drawbacks. First, when
the observations are not elliptically distributed, M-estimators
may lose asymptotic consistency [19], which may lead to
poor estimation of the noise subspace. Second, M-estimators
of scatter are often computed using an iterative fixed-point
algorithm that converges to a unique solution under some
regularity conditions. Each iteration involves matrix inversion
which may be computationally demanding in high dimensions,
or unstable when the scatter matrix is close to singular. More-
over, although the influence functions of M-estimators may be
bounded, they may not behave well for large norm outliers that
can negatively affect estimation performance. Indeed, similarly
to the method of [12], Tyler’s scatter M-estimator does not
reject large outliers and its matrix valued influence function
[15] has constant Frobenius norm for spherically symmetric
distributions.

In [20], a robust MUSIC generalization calledlp-MUSIC
was proposed that estimates the noise subspace by minimizing
the lp-norm (1 < p < 2) of the residual between the data
matrix and its low-rank representation. Thelp-norm with
p < 2 is less sensitive to outliers than thel2-norm. Therefore,
lp-MUSIC is more robust against impulsive noise as compared
to MUSIC that is based onl2-norm minimization of the
data fitting error matrix [20]. However, unlike MUSIC and
other robust generalizations, inlp-MUSIC the empirical noise
subspace is not determined by solving a simple eigendecom-
position problem. Indeed, in [20] the non-convexlp-norm
minimization is performed by alternating convex optimization
scheme that may converge to undesired local minima.

In this paper, we introduce a new framework for robust
MUSIC. The proposed framework, called robust measure-
transformed MUSIC (MT-MUSIC), is inspired by a measure
transformation approach that was recently applied to canonical
correlation analysis [21] and independent component analysis
[22]. Robust MT-MUSIC is based on applying a transform
to the probability distribution of the data. The proposed
transform is defined by a non-negative function, called the
MT-function, and maps the probability distribution into a set of
new probability measures on the observation space. By modi-
fying the MT-function, classes of measure transformationscan
be obtained that have useful properties. Under the proposed
transform we define the measure-transformed (MT) covariance
and derive its strongly consistent estimate, which is also shown
to be Fisher consistent [23]. Robustness of the empirical
MT-covariance is established in terms of boundedness of its
influence function. A sufficient condition on the MT-function
that guarantees B-robustness of the empirical MT-covariance
is also obtained.

In robust MT-MUSIC, the SCM is replaced by the empirical
MT-covariance. The MT-function is selected such that the
resulting empirical MT-covariance is B-robust, and the noise
subspace can be determined from the eigendecomposition of
the MT-covariance. By modifying the MT-function such that
these conditions are satisfied a class of robust MT-MUSIC
algorithms can be obtained.

Selection of the MT-function under the family of zero-
centered Gaussian functions, parameterized by a scale param-
eter, results in a new algorithm called Gaussian MT-MUSIC.
We show that the empirical Gaussian MT-covariance is B-
robust with influence function that approaches zero as the
outlier magnitude approaches infinity. Under the additional
assumption that the noise component has a spherically con-
toured distribution, we show that the noise subspace can be
determined from the eigendecomposition of Gaussian MT-
covariance. Note that this spherically contoured noise distri-
bution assumption is weaker than the standard i.i.d. Gaussian
noise assumption. We propose a data-driven procedure for
selecting the scale parameter of the Gaussian MT-function.
This procedure has the property that it prevents significant
transform-domain Fisher-information loss when the observa-
tions are normally distributed.

In this paper, a robust estimate of the number of signals
is proposed that is based on minimization of a measure-
transformed version of the minimum description length (MDL)
criterion [24]. This criterion, called MT-MDL, is obtained by
replacing the eigenvalues of the SCM with the eigenvalues of
the empirical MT-covariance. We show that under some mild
conditions, minimization of the MT-MDL criterion results in
strongly consistent estimation of the number of signals regard-
less the underlying distribution of the data. These conditions
are satisfied when the Gaussian MT-function is implemented
and the noise component has a spherically contoured distribu-
tion. The MT-MDL criterion with the Gaussian MT-function
is called the Gaussian MT-MDL.

The proposed Gaussian MT-MUSIC algorithm is extended
to the case of coherent signals impinging on a uniform linearly
spaced array (ULA) [25]. This extension is carried out through
forward-backward spatial smoothing of the empirical Gaussian
MT-covariance matrix.

The Gaussian MT-MUSIC algorithm and the Gaussian MT-
MDL criterion are evaluated by simulations to illustrate their
advantages relative to other robust MUSIC and MDL general-
izations. We examine scenarios of non-coherent and coherent
signals contaminated by several types of spherically contoured
noise distributions arising from the compound Gaussian (CG)
family. This family encompasses common heavy-tailed distri-
butions, such as thet-distribution, theK-distribution, and the
CG-distribution with inverse Gaussian texture, and have been
widely adopted for modeling radar clutter [26]-[29].

The paper is organized as follows. In SectionII , the
robust MT-MUSIC framework is presented. In SectionIII ,
the Gaussian MT-MUSIC algorithm is derived. In Section
IV, we propose a measure-transformed generalization of the
MDL criterion for estimating the number of signals. In Section
V, a spatially smoothed version of the Gaussian MT-MUSIC
algorithm for coherent signals is developed. The proposed
approach is illustrated by simulation in SectionVI . In Section
VII , the main points of this contribution are summarized. The
proofs of the propositions and theorems stated throughout the
paper are given in the Appendix.
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II. ROBUST MEASURE-TRANSFORMEDMUSIC

In this section, the robust MT-MUSIC procedure is pre-
sented. First, the sensor array model is introduced. Second, a
general transformation on probability measures is established.
Under the proposed transform, we define the MT-covariance
matrix and derive its strongly consistent estimate. Robustness
of the empirical MT-covariance is studied by analyzing its
influence function. Finally, based on the assumed array model,
we propose a robust MT-MUSIC procedure that replaces the
SCM with the empirical MT-covariance of the received signals.

A. Array model

Consider an array ofp sensors that receive signals generated
by q < p narrowband incoherent far-field point sources with
distinct azimuthal DOAsθ1, . . . , θq. Under this model, the
array output satisfies [2]:

X (n) = AS (n) +W (n) , (1)

where n ∈ N is a discrete time index,X (n) ∈ Cp is
the vector of received signals,S (n) ∈ Cq is a zero-mean
latent random vector, comprised of the emitted signals, with
non-singular covariance, andW (n) ∈ Cp is an additive
spatially white noise with zero location parameter. The matrix
A , [a (θ1) , . . . , a (θq)] ∈ Cp×q is the array steering
matrix, wherea (θ) is the steering vector of the array toward
direction θ. We assume that the array is unambiguous, i.e.,
any collection ofp steering vectors corresponding to distinct
DOAs forms a linearly independent set. Therefore,A has
full column rank, and identification of its column vectors is
equivalent to the problem of identifying the DOAs. We also
assume thatS (n) andW (n) are statistically independent and
first-order stationary. To simplify notation, the time index n
will be omitted in the sequel except where noted.

B. Probability measure transform

We define the measure space(X ,SX , PX), whereX is the
observation space of a random vectorX ∈ Cp, SX is a σ-
algebra overX , andPX is a probability measure onSX . Let
g : X → C denote an integrable scalar function onX . The
expectation ofg (X) underPX is defined as

E [g (X) ;PX] ,

∫

X

g (x) dPX (x) , (2)

wherex ∈ X . The empirical probability measurêPX given
a sequence of samplesX (n), n = 1, . . . , N from PX is
specified by

P̂X (A) =
1

N

N
∑

n=1

δ
X(n) (A) , (3)

whereA ∈ SX , andδ
X(n) (·) is the Dirac probability measure

at X (n) [30].

Definition 1. Given a non-negative functionu : Cp → R+

satisfying
0 < E [u (X) ;PX] < ∞, (4)

a transform onPX is defined via the relation:

Q
(u)
X (A) , Tu [PX] (A) =

∫

A

ϕu (x) dPX (x) , (5)

whereA ∈ SX , x ∈ X , and

ϕu (x) ,
u (x)

E [u (X) ;PX]
. (6)

The functionu (·), associated with the transformTu [·], is
called the MT-function.

Proposition 1 (Properties of the transform). Let Q
(u)
X be

defined by relation (5). Then

1) Q
(u)
X is a probability measure onSX .

2) Q
(u)
X is absolutely continuous w.r.t.PX, with Radon-

Nikodym derivative [30]:

dQ
(u)
X (x)

dPX (x)
= ϕu (x) . (7)

3) Assume that the MT-functionu (·) is strictly positive, and
let g : X → Cm denote an integrable function over
X . If the covariance ofg (X) underPX is non-singular,
then it is non-singular under the transformed probability
measureQ(u)

X .

[A proof is given in AppendixA]

The probability measureQ(u)
X is said to be generated by the

MT-functionu (·). By modifyingu (·), such that the condition
(4) is satisfied, virtually any probability measure onSX can
be obtained.

C. The measure-transformed covariance

According to (7) the covariance ofX underQ(u)
X is given

by

Σ(u)
X

, E

[

(

X− µ
(u)
X

)(

X− µ
(u)
X

)H

ϕu (X) ;PX

]

, (8)

where

µ
(u)
X , E [Xϕu (X) ;PX] (9)

is the expectation ofX underQ(u)
X . Equation (8) implies that

Σ(u)
X

is a weighted covariance matrix ofX underPX, with
weighting functionϕu (·). Hence,Σ(u)

X
can be estimated using

only samples from the distributionPX. By modifying the MT-
function u (·), such that the condition (4) in definition 1 is
satisfied, the MT-covariance matrix underQ(u)

X is modified.
In particular, by choosingu (x) ≡ 1, we haveQ(u)

X = PX, for
which the standard covariance matrixΣX is obtained.

In the following proposition, a strongly consistent estimate
of Σ(u)

X
is constructed, based onN i.i.d. samples ofX.

Unlike the empirical MT-covariance proposed in [21], the
construction is based on complex observations and its almost
sure convergence conditions are different.
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Proposition 2 (Strongly consistent estimate of the MT-covari-
ance). Let X (n), n = 1, . . . , N denote a sequence of i.i.d.
samples fromPX, and define the empirical covariance estimate

Σ̂
(u)

X
,

N
∑

n=1

(

X (n)− µ̂(u)
X

)(

X (n)− µ̂(u)
X

)H

ϕ̂u (X (n))

(10)
where

µ̂(u)
X

,

N
∑

n=1

X (n) ϕ̂u (X (n)) (11)

and

ϕ̂u (X (n)) ,
u (X (n))

N
∑

n=1
u (X (n))

. (12)

If

E
[

‖X‖
2
2 u (X) ;PX

]

< ∞, (13)

where‖ · ‖2 denotes thel2-norm, thenΣ̂
(u)

X
→ Σ(u)

X
almost

surely (a.s.) asN → ∞. [A proof is given in AppendixB]

Note that foru(X) ≡ 1 the estimator N
N−1Σ̂

(u)

X
reduces

to the standard unbiased SCM. Also notice thatΣ̂
(u)

X
can

be written as a statistical functionalΨ(u)
X

[·] of the empirical
probability measurêPX defined in (3), i.e.,

Σ̂
(u)

X
=

E[(X− η
(u)
X [P̂X])(X − η

(u)
X [P̂X])

H ; P̂X]

E[u (X) ; P̂X]
, Ψ(u)

X
[P̂X],

(14)
where

η
(u)
X [P̂X] ,

E[Xu (X) ; P̂X]

E[u (X) ; P̂X]
. (15)

By (6), (8) and (14), when P̂X is replaced byPX we have

Ψ(u)
X

[PX] = Σ(u)
X

, which implies that̂Σ
(u)

X
is Fisher consistent

[23].

D. Robustness of the empirical MT-covariance

Here, we study the robustness of the empirical MT-

covarianceΣ̂
(u)

X
using its matrix valued influence function

[13]. Define the probability measurePǫ , (1 − ǫ)PX + ǫδy,
where0 ≤ ǫ ≤ 1, y ∈ Cp, and δy is the Dirac probability
measure aty. The influence function of a Fisher consistent
estimator with statistical functional H[·] at probability distri-
butionPX is defined as [13]:

IFH (y;PX) , lim
ǫ→0

H [Pǫ]− H [PX]

ǫ
=

∂H [Pǫ]

∂ǫ

∣

∣

∣

∣

ǫ=0

. (16)

The influence function describes the effect on the estimatorof
an infinitesimal contamination at the pointy. An estimator is
said to be B-robust if its influence function is bounded [13].
Using (14) and (16) one can verify that the influence function

of Σ̂
(u)

X
is given by

IF
Ψ

(u)
x

(y;PX) =
u (y)[(y − µ

(u)
X )(y − µ

(u)
X )H −Σ(u)

X
]

E[u(X);PX]
.

(17)

The following proposition states a sufficient condition for
boundedness of (17). This condition is satisfied for the Gaus-
sian MT-function proposed in SectionIII .

Proposition 3. The influence function (17) is bounded if the
MT-functionu(y) and the productu(y)‖y‖22 are bounded over
Cp. [A proof is given in AppendixD]

E. The robust MT-MUSIC procedure

In robust MT-MUSIC the measure transformation (5) is
applied to the probability distributionPX of the array output
X (n) (1). The MT-functionu (·) is selected such that the
following conditions are satisfied:

1) The resulting empirical MT-covariancêΣ
(u)

X
is B-robust.

2) Let λ(u)
1 ≥ · · · ≥ λ

(u)
p denote the eigenvalues ofΣ(u)

X
.

The p− q smallest eigenvalues ofΣ(u)
X

satisfy:

λ(u)
q > λ

(u)
q+1 = · · · = λ(u)

p , (18)

and their corresponding eigenvectors span the null-space
of AH , also called the noise subspace.

Let V̂(u) ∈ Cp×(p−q) denote the matrix comprised ofp− q

eigenvectors of̂Σ
(u)

X
corresponding to its smallest eigenvalues.

The DOAs are estimated by finding theq highest maxima of
the measure-transformed pseudo-spectrum:

P̂ (u)(θ) ,
∥

∥

∥V̂
(u)Ha(θ)

∥

∥

∥

−2

2
. (19)

By modifying the MT-function u(·) such that the stated
conditions 1 and 2 are satisfied a family of robust MT-
MUSIC algorithms can be obtained. In particular, by choosing
u (x) ∝ ‖x‖

−2
2 one can verify using (8) that for zero-

centered symmetric distributions the resulting MT-covariance
is proportional to the sign-covariance, proposed for the robust
MUSIC generalization in [12]. Another particular choice of
MT-function leading to the Gaussian MT-MUSIC algorithm is
discussed in the following section.

III. T HE GAUSSIAN MT-MUSIC

In this section, we parameterize the MT-functionu (·; τ),
with scale parameterτ ∈ R++ under the Gaussian family
of functions centered at the origin. This results in a B-robust
empirical MT-covariance matrix that rejects large outliers. Un-
der the assumption of spherically contoured noise distribution,
we show that the noise subspace can be determined from the
eigendecomposition of the MT-covariance. Choice of the scale
parameterτ is also discussed.

A. The Gaussian MT-function

We define the Gaussian MT-functionuG (·; ·) as

uG (x; τ) ,
(

πτ2
)−p

exp
(

−‖x‖
2
2/τ

2
)

, τ ∈ R++. (20)

Using (6)-(8) and (20) one can verify that the resulting Gaus-
sian MT-covariance always takes finite values. Additionally,
notice that the Gaussian MT-function satisfies the condition
(13) in Proposition2, and therefore, the empirical Gaussian
MT-covariance, based on i.i.d. samples from any probability
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distribution PX, is strongly consistent. For any fixed scale
parameterτ , the Gaussian MT-function also satisfies the
condition in proposition3, resulting in a B-robust empirical

Gaussian MT-covariancêΣ
(uG)

X
(τ). The following proposi-

tion, which follows directly from (17) and (20), states that the
Frobenius norm of the corresponding influence function ap-
proaches zero as the contamination norm approaches infinity.

Proposition 4. For any fixed scale parameterτ of the Gaus-
sian MT-function (20), the influence function of the resulting
empirical Gaussian MT-covariance satisfies

∥

∥

∥IF
Ψ

(uG)
x

(y;PX)
∥

∥

∥

Fro
→ 0 as ‖y‖2 → ∞, (21)

where‖·‖Fro denotes the Frobenius norm. [A proof is given
in AppendixE]

Thus, unlike the SCM and other robust covariance ap-
proaches, the empirical Gaussian MT-covariance rejects large
outliers. This property is illustrated in Fig.1 for a standard
bivariate complex normal distribution, as compared to the
empirical sign-covariance, Tyler’s scatter M-estimator,and the
SCM.

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

||y||

||I
F

|| F
ro

 

 

Gaussian MT−Covariance (τ=1)
Gaussian MT−Covariance (τ=1.5)
Gaussian MT−Covariance (τ=2)
Tyler
Sign covariance
Sample covariance

Fig. 1. Frobenius norms of the influence functions associated with the
empirical Gaussian MT-covariance forτ = 1, τ = 1.5 and τ = 2, Tyler’s
scatter M-estimator, the empirical sign-covariance, and the SCM, versus the
contamination norm, for a bivariate standard complex normal distribution.
Notice that the influence function approaches zero for large‖y‖ only for the
proposed Gaussian MT-covariance estimator, indicating enhanced robustness
to outliers.

Notice that as the scale parameterτ of the Gaussian MT-
function (20) approaches infinity, the corresponding empirical

Gaussian MT-covariancêΣ
(uG)

X
(τ) approaches the non-robust

standard SCMΣ̂X, whose influence function is unbounded.
On the other hand, asτ decreases it can be shown using the

upper bound in (50) that the influence function of̂Σ
(uG)

X
(τ)

has a faster asymptotic decay, as illustrated in Fig.1, i.e., the
empirical Gaussian MT-covariance becomes more resilient to
large outliers. However, we note that this may come at the
expense of information loss. The trade-off between robustness
and information loss is discussed in SubsectionIII-D .

B. The Gaussian MT-covariance for spherically distributed
noise

We assume that the noise component in (1) has a complex
spherically contoured distribution, also known as a spherical

distribution [15] having stochastic representation:

W (n) = ν (n) ζ (n) , (22)

where ν (n) , ρ (n) / ‖ζ (n)‖2, ρ (n) ∈ R++ is a first-
order stationary process, andζ (n) ∈ Cp is a proper-complex
wide-sense stationary Gaussian process with zero-mean and
unit covariance, which is statistically independent ofρ (n).
The stochastic representation (22) is a direct consequence of
the following properties [15]: 1) Any spherically distributed
complex random vectorW can be represented asW = ρU,
whereρ is a strictly positive random variable, andU is uni-
formly distributed on the complex unit sphere and statistically
independent ofρ. 2) Any random vectorU that is uniformly
distributed on the complex unit sphere can be represented as
U = ζ/ ‖ζ‖2, where ζ is a complex random vector with
zero-mean spherically contoured distribution, for example a
complex Gaussian random vector with zero-mean and unit
covariance.

The structure of the resulting Gaussian MT-covariance of
the array output is given in the following theorem.

Theorem 1. Under the array model (1) and the spherical
noise assumption (22), the Gaussian MT-covariance ofX (n)
takes the form:

Σ(uG)
X

(τ) = AΣ
(g)
α2

S
(τ)AH + σ

2(h)
αW (τ) I, (23)

whereΣ
(g)
α2

S
(τ) is a non-singular covariance matrix of the

scaled signal componentα2 (n)S (n), α (n) ,

√

τ2

τ2+ν2(n) ,

under the transformed joint probability measureQ(g)
α,S with

the MT-functiong (α,S; τ) , (πτ
2

α2 )
−p

exp(−α2‖AS‖22/τ
2).

The termσ
2(h)
αW (τ), multiplying the identity matrixI, is the

variance of the scaled noise componentα (n)W (n) under
the transformed joint probability measureQ(h)

α,W with the MT-
function h (α; τ) , E [g (α,S; τ) ;PS]. [A proof is given in
AppendixF]

Thus, by the structure (23) and the facts that the steering ma-
trix A has full column rank and the MT-covarianceΣ(g)

α2
S
(τ)

is non-singular, we conclude that Condition2 in Subsection
II-E is satisfied.

C. The Gaussian MT-MUSIC algorithm

The empirical Gaussian MT-covariance is B-robust, and,
under the spherical noise assumption (22), the noise subspace
can be determined from the eigendecomposition of the Gaus-
sian MT-covariance. The Gaussian MT-MUSIC algorithm is
implemented by replacing the MT-function in (19) with the
Gaussian MT-function (20).

D. Choosing the scale parameter of the Gaussian MT-function

While de-emphasizing non-informative outliers, e.g., caused
by heavy-tailed distributions, the empirical Gaussian MT-
covariance is less informative than the standard sample-
covariance when the observations are normally distributed.
This is seen in the following theorem that follows from the
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Gaussian Fisher information formula [33] and elementary trace
inequalities [34].

Theorem 2. Assume that the probability distributionPX of the
array outputs (1) is proper complex normal. The ratio between
the Fisher information for estimatingθk ∈ {θ1, . . . , θq} under
the transformed probability measureQ(uG)

X (with the MT-
function (20)) and the corresponding Fisher information under
PX satisfy:

τ4

(λmax (ΣX) + τ2)2
≤

F (θk;Q
(uG)
x )

F (θk;PX)
≤

τ4

(λmin (ΣX) + τ2)2
,

(24)
whereλmin (·) and λmax (·) are the minimum and maximum
eigenvalues, respectively. [A proof is given in AppendixG]

Therefore, in order to prevent a significant transform-
domain Fisher information loss when the observations are
normally distributed, we propose to choose the following safe-
guard scale parameter:

τ =
√

cλmax (ΣX), (25)

where c is some positive constant that guarantees that the
Fisher information ratio (24) is greater than(c/(1 + c))2.
Since in practiceΣX is unknown, it is replaced by the
following empirical robust estimate that is based on its relation
(55) to the Gaussian MT-covariance for normally distributed
observations:

Σ̂X = τ2Σ̂
(uG)

X
(τ)
(

τ2I− Σ̂
(uG)

X
(τ)
)−1

, (26)

where the empirical Gaussian MT-covariancêΣ
(uG)

X
(τ)

is obtained using (10), and τ must be greater than

λmax

(

Σ̂
(uG)

X
(τ)
)

in order to guarantee positive definiteness

of Σ̂X. Therefore, substitution of (26) into (25) results in the
following data-driven selection rule:

τ =

√

(c+ 1)λmax

(

Σ̂
(uG)

X
(τ)
)

, (27)

which can be solved numerically, e.g., using fixed-point iter-
ation [41].

In the general case, when the observations are not neces-
sarily Gaussian, the selection rule (25) controls the amount of
second-order statistical information loss caused by the measure
transformation. Increasing the constantc increases the scale
parameterτ and reduces the information loss, while on the
other hand, makes the estimator more sensitive to large-norm
outliers, as illustrated in Fig.1.

IV. ESTIMATION OF THE NUMBER OF SIGNALS

We estimate the number of signals using a measure-
transformed version of the minimum description length (MDL)
criterion [24], called MT-MDL, that is obtained by replacing
the eigenvalues of the SCM with the eigenvalues of the
empirical MT-covariance. The MT-MDL criterion takes the

form:

MDL(u) (k) = − log















(

p
∏

m=k+1

λ̂
(u)
m

)
1

p−k

1
p−k

p
∑

m=k+1

λ̂
(u)
m















(p−k)N

(28)

+
1

2
k (2p− k) logN,

whereλ̂(u)
1 ≥ . . . ≥ λ̂

(u)
p denote the eigenvalues of̂Σ

(u)

X
and

N is the number of observations (snapshots). The estimated
number of signals,̂q, is obtained by minimizing (28) over
k ∈ {0, . . . , p− 1}.

Under the conditions that the eigenvalues of the SCM
are strongly consistent with asymptotic convergence rate of
O
(

√

N−1 log logN
)

and that thep− q smallest eigenvalues
of the covariance matrix are equal and separated from its
q largest eigenvalues, it has been shown in [35] that mini-
mization of the MDL criterion leads to strongly consistent
estimates of the number of signals for any underlying proba-
bility distribution of the data. Thus, when the eigenvaluesof

Σ̂
(u)

X
andΣ(u)

X
satisfy these conditions, namelyλ̂(u)

k converges
almost surely toλ(u)

k for all k = 1, . . . , p with the same
asymptotic convergence rate as the eigenvalues of the SCM,
and the eigenvalues ofΣ(u)

X
satisfy (18), the resulting MT-

MDL based estimator,̂q, must be strongly consistent. This
rationale is used for proving the following Theorem that states
a sufficient condition for strong consistency of the estimator
q̂.

Theorem 3. Let X (n), n = 1, . . . , N denote a sequence of
i.i.d. samples from the probability distributionPX of the array
output (1), with MT-covarianceΣ(u)

X
whose eigenvalues satisfy

(18). If

E
[

u2 (X) ;PX

]

< ∞ and E
[

‖X‖
4
2 u

2 (X) ;PX

]

< ∞,

(29)
then q̂ → q a.s. asN → ∞. [A proof is given in AppendixI]

Notice that the Gaussian MT-function (20) always satisfies
the condition (29). Furthermore, as shown in subsectionIII-B ,
the Gaussian MT-covarianceΣ(uG)

X
(τ) satisfies Condition2

in SubsectionII-E for spherically distributed noise. Therefore,
in this case, minimization of the MT-MDL criterion with the
Gaussian MT-function (Gaussian MT-MDL) results in robust
and strongly consistent estimate of the number of signals.
We propose to choose the scale parameterτ of the Gaussian
MT-function using the same selection rule (27) that prevents
significant information loss for estimation of the DOAs (model
parameters), and does not require any knowledge about the
number of signals (model order). The idea of estimating
the DOAs and the number of signals using the same scale
parameterτ , i.e., under the same transformed probability
measure, arises from the intuition that if there is no significant
information loss for estimating the model parameters, then
there will be no significant information loss for estimating
the model order.
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V. THE SPATIALLY SMOOTHED GAUSSIAN MT-MUSIC
FOR COHERENT SIGNALS

In this section, we consider the case of coherent signals
contaminated by spherically distributed noise. In this scenario,
the components of the latent vectorS (n) in (1) are phase-
delayed amplitude-weighted replicas of a single first-order
stationary random signals(n), i.e.,

S (n) = ξs (n) , (30)

whereξ ∈ Cq is a vector of deterministic complex attenuation
coefficients. Similarly to the standard covarianceΣX, the noise
subspace cannot be determined from the eigendecomposition
of the Gaussian MT-covarianceΣ(uG)

X
(τ), and therefore, the

Gaussian MT-MUSIC will fail in estimating the DOAs. For-
tunately, similarly to [37], we show that for uniform linearly
spaced array (ULA) [25] the DOAs can be determined using
a spatially smoothed version of the Gaussian MT-covariance.

We partitionΣ(uG)
X

(τ) into L = p − r + 1 overlapping
forward and backward square sub-matrices of dimensionr <
q. The entries of thel-th forward sub-matrix are given by

[

C
(uG)
f,l (τ)

]

j,k
,

[

Σ(uG)
X

(τ)
]

l+j−1,l+k−1
, (31)

j, k = 1, . . . , r, and the entries of thel-th backward sub-matrix
are given by

[

C
(uG)
b,l (τ)

]

j,k
,

[

Σ(uG)
X

(τ)
]∗

p−l−j+2,p−l−k+2
, (32)

j, k = 1, . . . , r, where (·)
∗ denotes the complex conjugate.

These matrices correspond to overlapping forward and back-
ward subarrays of sizer, respectively. The forward spatially
smoothed Gaussian MT-covariance is defined as the average
over theL forward sub-matrices:

C
(uG)
f (τ) ,

1

L

L
∑

l=1

C
(uG)
f,l (τ) . (33)

Similarly, the backward spatially smoothed Gaussian MT-
covariance is defined as the average over theL backward sub-
matrices:

C
(uG)
b (τ) ,

1

L

L
∑

l=1

C
(uG)
b,l (τ) . (34)

The forward/backward spatially smoothed Gaussian MT-
covariance matrix is given by

C
(uG)
f/b (τ) ,

1

2

(

C
(uG)
f (τ) +C

(uG)
b (τ)

)

. (35)

We defineB , [b (θ1) , . . . ,b (θq)] ∈ Cr×q as the steering
matrix of a ULA with r < p sensors, whereb (θ) ,
[

1, e−i2π(d/λ) sin(θ), . . . , e−i2π(r−1)(d/λ) sin(θ)
]T

is the array
steering vector toward directionθ, andd is the sensors spacing,
i.e., B is a sub-matrix of the steering matrixA in (1)
comprised of its firstr rows. The following Proposition states
sufficient conditions under which the null-space ofBH can be
determined from the eigendecomposition ofC

(uG)
f/b (τ) (35).

The same conditions were proved in [37] for the spatially
smoothed SCM.

Proposition 5. DefineH , G−1
f Gb, whereGf , diag (ξ),

Gb , diag (δ), δ ,
(

Dp−1ξ
)∗

, andDl is the l-th power of
the diagonal matrixD , diag ([v (θ1) , . . . , v (θq)]) , v (θ) ,

exp (−i2π(d/λ) sin (θ)). Additionally, let λ(uG)
1 ≥ · · · ≥

λ
(uG)
r denote the eigenvalues ofC(uG)

f/b (τ). If the dimension
r of the forward and backward sub-matrices (31) and (32) is
chosen such that the resulting number of sub-matrices in each
direction (forward or backward)L satisfies:

1) L ≥ q, or
2) 2L ≥ q and the largest subset of equal diagonal entries

of H is at most of sizeL,

then ther−q smallest eigenvalues ofC(uG)
f/b (τ) satisfyλ(uG)

q >

λ
(uG)
q+1 = · · · = λ

(uG)
r , and their corresponding eigenvectors

span the null-space ofBH . [A proof is given in AppendixJ]

Hence, by proper choice ofr, such that either one of the
stated conditions above is satisfied, the spatially smoothed
Gaussian MT-MUSIC is obtained by replacing the empirical

Gaussian MT-covariancêΣ
(uG)

X
(τ) with its spatially smoothed

versionĈ(uG)
f/b (τ).

The number of signals is estimated using a measure-
transformed version of the modified MDL (MMDL) criterion
used in [38] for cases where forward/backward spatial smooth-
ing is performed. Similarly to (28), this criterion, called here
Gaussian MT-MMDL, is obtained by replacing the eigenval-
ues of the spatially smoothed SCM with the eigenvalues of
Ĉ

(uG)
f/b (τ). The Gaussian MT-MMDL criterion takes the form:

MDL
(uG)
f/b (k) = − log















(

r
∏

m=k+1

λ̂
(uG)
m

)
1

r−k

1
r−k

r
∑

m=k+1

λ̂
(uG)
m















(r−k)N

(36)

+
1

4
k (2r − k + 1) logN,

where λ̂
(uG)
1 ≥ . . . ≥ λ̂

(uG)
r denote the eigenvalues of

Ĉ
(uG)
f/b (τ) andN is the number of observations (snapshots).

The estimated number of signals,q̂, is obtained by minimizing
(36) over k ∈ {0, . . . , r − 1}.

Finally, we choose the scale parameterτ of the Gaussian
MT-function using the selection rule (27) with Ĉ

(uG)
f/b (τ)

instead ofΣ̂
(uG)

X
(τ).

VI. N UMERICAL EXAMPLES

We evaluate and compare the performance of the proposed
MT-MUSIC DOA estimator and the MT-MDL order estimator.
What follows is a summary of these comparisons. The DOAs
estimation performances are evaluated under the assumption
that the number of signals is known. We perform a separate
evaluation of the proposed MT-MDL estimator of the num-
ber of signals. We examine scenarios of non-coherent and
coherent signals. For non-coherent signals, the Gaussian MT-
MUSIC algorithm is compared to the standard SCM-based
MUSIC (SCM-MUSIC) [1] and to its robust generalizations
based on the ZMNL preprocessing (ZMNL-MUSIC) [9], the
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empirical sign-covariance (SGN-MUSIC) [12], Tyler’s scatter
M-estimator (TYLER-MUSIC) [15], [18] and the maximum-
likelihood (ML) estimators of scatter corresponding to each of
the considered non-Gaussian noise distributions (ML-MUSIC)
[15], [39]. The estimation performance of the number of
signals using the MT-MDL criterion (28) with the Gaussian
MT-function is compared to estimators using the standard
MDL criterion [24] based on the standard SCM (SCM-
MDL), and the MDL variants based on the SCM of the pre-
processed data with the ZMNL function (ZMNL-MDL) [10],
the empirical sign-covariance (SGN-MDL) [12], Tyler’s scatter
M-estimator (TYLER-MDL) [39] and the ML estimators of
scatter corresponding to each of the considered non-Gaussian
noise distributions (ML-MDL) [15], [39]. For coherent signals,
the spatially smoothed (SS) Gaussian MT-MUSIC algorithm,
discussed in SectionV, is compared to the spatially smoothed
versions of the SCM-MUSIC [37], ZMNL-MUSIC, SGN-
MUSIC [12], TYLER-MUSIC and ML-MUSIC. Estimation
performance of the number of signals using the Gaussian MT-
MMDL criterion (36) is compared to those obtained by the
modified MDL criterion for coherent signals [38] based on the
forward/backward spatially smoothed versions of the standard
SCM, the SCM of the preprocessed data with the ZMNL
function [9], the empirical sign-covariance [12], Tyler’s scatter
M-estimator and the ML estimators of scatter corresponding
to each non-Gaussian noise distribution considered in the
simulation examples.

We consider the followingp-variate complex spherical
compound Gaussian noise distributions with zero location
parameter and isotropic dispersionσ2

W
I: Gaussian, Cauchy,

K-distribution with shape parameterν = 0.75, and compound
Gaussian distribution with inverse Gaussian texture and shape
parameterλ = 0.1. Notice that unlike the Gaussian distribu-
tion, the other noise distributions are heavy tailed. Random
sampling from the considered noise distributions and their
applicability for modelling radar clutter are discussed indetail
in [15] and [29]. Let σ2

Sk
, k = 1, . . . , q denote the variances

of the received signals, the generalized signal-to-noise-ratio
(GSNR) is defined as GSNR, 10 log10

1
q

∑q
k=1 σ

2
Sk
/σ2

W
and

is used to index the estimation performance.

Following the approach proposed in subsectionIII-D , for
non-coherent signals, we select the scale parameterτ of the
Gaussian MT-function (20) as the solution of (27) with c = 5.
This choice of the constantc guarantees relative transform-
domain Fisher information loss of no more than≈ 30%.
The solution of (27) is obtained using fixed-point iteration
with initial condition τ0 = 5

√

1
p

∑p
k=1 σ̂

2
Xk

, where σ̂2
Xk

=

γ2[(MAD({Re(Xk,n)}
N
n=1))

2 + (MAD({Im(Xk,n)}
N
n=1))

2],
γ , 1/erf−1(3/4), is a robust median absolute deviation
(MAD) estimate of variance [17]. The maximum number
of iterations and the stopping criterion were set to 100 and
|τl − τl−1|/τl−1 < 10−6, respectively, wherel is an iteration
index. For coherent signals, we replaced the empirical Gaus-
sian MT-covariance in (27) with its spatially smoothed version
and applied the same selection procedure forτ .

The maximum number of iterations and the stopping crite-
rion in Tyler’s scatter M-estimator and the ML estimators of

scatter were set to 100 and

‖Σ̂
Tyler/ML
X,l − Σ̂

Tyler/ML
X,l−1 ‖Fro/‖Σ̂

Tyler/ML
X,l−1 ‖Fro < 10−6,

respectively.
In all examples, the performances versus GSNR were eval-

uated forN = 1000 i.i.d. snapshots. The performances versus
the number of snapshots were evaluated at the threshold GSNR
point obtained by the Gaussian MT-MUSIC algorithm forN =
1000 i.i.d. snapshots. The parameter spaceΘ , [−90◦, 90◦)
was sampled uniformly with sampling interval∆ = 0.0018◦.
All performance measures were averaged over104 Monte-
Carlo simulations.

A. Non-coherent signals

In this example, we considered five independent 4-QAM
signals with equal powerσ2

S
impinging on a 16-element

uniform linear array withλ/2 spacing from DOAsθ1 = −10◦,
θ2 = 0◦, θ3 = 5◦, θ4 = 15◦, and θ5 = 35◦. The average
RMSEs for estimating the DOAs and the error rates for esti-
mating the number of signals versus GSNR and the number of
snapshots are depicted in Figs.2-5 for each noise distribution.
Notice that for the Gaussian noise case, there is no significant
performance gap between the compared methods. For the
other noise distributions, the proposed Gaussian MT-MUSIC
and the Gaussian MT-MDL based estimation of the number
of signals outperform all other robust MUSIC and MDL
generalizations in the low GSNR and low sample size regimes,
with significantly lower threshold regions. This performance
advantage may be attributed to the fact that unlike the em-
pirical sign-covariance, Tyler’s scatter M-estimator, and the
ML estimators of scatter corresponding to each non-Gaussian
noise distribution, the influence function of the empirical
Gaussian MT-covariance is negligible for large norm outliers
(as illustrated in Fig.1), which are likely in low GSNRs
and become more defective when the sample size decreases.
Furthermore, unlike the ZMNL preprocessing based technique,
the proposed measure-transformation approach preserves the
noise subspace and effectively suppresses outliers without
significant information loss for estimating the DOAs and the
number of signals.

B. Coherent signals

In this example, we considered five coherent signals imping-
ing on a 22-element uniform linear array withλ/2 spacing
from DOAs θ1 = −17◦, θ2 = −3◦, θ3 = 2◦, θ4 = 13◦

and θ5 = 20◦. The signals were generated according to the
model (30), wheres (n) is a 4-QAM signal with powerσ2

S .
The attenuation coefficients were set toη1 = 0.8 exp(iπ/3),
η2 = 1, η3 = 0.9 exp(iπ/4), η4 = 0.7 exp(iπ/5) and
η5 = 0.6 exp(iπ/6). The dimension of the spatially smoothed
covariance was set tor = 16. The average RMSEs for
estimating the DOAs and the error rates for estimating the
number of signals versus GSNR are depicted in Figs.6-9 for
each noise distribution. Notice that for the Gaussian noise
case, there is no significant performance gap between the
compared MUSIC algorithms. Regarding the estimation of the
number of signals, the sign-covariance based modified MDL
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Fig. 2. Non-coherent signals in Gaussian noise:(a) Average RMSE versus
GSNR. (b) Probability of error for estimating the number of signals versus
GSNR. (c) Average RMSE versus the number of snapshots. (d) Probability
of error for estimating the number of signals versus the number of snapshots.
The performance measures versus GSNR were evaluated forN = 1000

i.i.d. snapshots. The performance measures versus the number of snapshots
were evaluated forGSNR = −11 [dB]. Notice that all algorithms perform
similarly.
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Fig. 3. Non-coherent signals in Cauchy noise:(a) Average RMSE versus
GSNR. (b) Probability of error for estimating the number of signals versus
GSNR. (c) Average RMSE versus the number of snapshots. (d) Probability
of error for estimating the number of signals versus the number of snapshots.
The performance measures versus GSNR were evaluated forN = 1000

i.i.d. snapshots. The performance measures versus the number of snapshots
were evaluated forGSNR = −11 [dB]. Notice that the Gaussian MT-
MUSIC outperforms all other compared algorithms in the low GSNR and
low sample size regimes. Also notice that the Gaussian MT-MDL criterion
leads to significantly lower error rates for estimating the number of signals.

−25 −20 −15 −10

10
−1

10
0

10
1

GSNR [dB]

A
ve

ra
ge

 R
M

S
E

 [d
eg

]

 

 

Gaussian MT−MUSIC
TYLER−MUSIC
SGN−MUSIC
ZNML−MUSIC
SCM−MUSIC
ML−MUSIC

(a)

−25 −20 −15 −10

0

0.2

0.4

0.6

0.8

1

GSNR [dB]

P
ro

ba
bi

lit
y 

of
 e

rr
or

 

 

Gaussian MT−MDL
TYLER−MDL
SGN−MDL
ZMNL−MDL
SCM−MDL
ML−MDL

(b)

10
2

10
3

10
4

10
−1

10
0

10
1

Number of snapshots

A
ve

ra
ge

 R
M

S
E

 [d
eg

]

 

 

Gaussian MT−MUSIC
TYLER−MUSIC
SGN−MUSIC
ZNML−MUSIC
SCM−MUSIC
ML−MUSIC

(c)

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

Number of snapshots

P
ro

ba
bi

lit
y 

of
 e

rr
or

 

 

Gaussian MT−MDL
TYLER−MDL
SGN−MDL
ZMNL−MDL
SCM−MDL
ML−MDL

(d)

Fig. 4. Non-coherent signals in K-distributed noise with shape parameter
ν = 0.75: (a) Average RMSE versus GSNR. (b) Probability of error for
estimating the number of signals versus GSNR. (c) Average RMSE versus
the number of snapshots. (d) Probability of error for estimating the number
of signals versus the number of snapshots. The performance measures versus
GSNR were evaluated forN = 1000 i.i.d. snapshots. The performance
measures versus the number of snapshots were evaluated forGSNR = −19

[dB]. Notice that the Gaussian MT-MUSIC outperforms all other compared
algorithms in the low GSNR and low sample size regimes. Also notice that
the Gaussian MT-MDL criterion leads to significantly lower error rates for
estimating the number of signals.
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Fig. 5. Non-coherent signals in spherical compound Gaussian noise
with inverse-Gaussian texture and shape parameterλ = 0.1: (a) Average
RMSE versus GSNR. (b) Probability of error for estimating the number of
signals versus GSNR. (c) Average RMSE versus the number of snapshots. (d)
Probability of error for estimating the number of signals versus the number
of snapshots. The performance measures versus GSNR were evaluated for
N = 1000 i.i.d. snapshots. The performance measures versus the number of
snapshots were evaluated forGSNR = −22 [dB]. Notice that the Gaussian
MT-MUSIC outperforms all other compared algorithms in the low GSNR and
low sample size regimes. Also notice that the Gaussian MT-MDL criterion
leads to significantly lower error rates for estimating the number of signals.
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criterion results in better estimation performance. This may be
attributed to the fact that in the sign-covariance based modified
MDL criterion [12] the eigenvalues are estimated in a more
stable manner. For the other noise distributions, the spatially
smoothed Gaussian MT-MUSIC and the Gaussian modified
MT-MDL based estimation of the number of signals outper-
form all other robust MUSIC and MDL generalizations in the
low GSNR and low sample size regimes, with significantly
lower breakdown thresholds. Again, as in the non-coherent
case, this performance advantage may be attributed to the
following facts. First, unlike the empirical sign-covariance,
Tyler’s scatter M-estimator and the ML-estimators of scatter
corresponding to each non-Gaussian noise distribution, the
influence function of the empirical Gaussian MT-covariance
is very small for large norm outliers. Such outliers are likely
in low GSNRs and become more frequent when the sample
size is small. Second, unlike the ZMNL preprocessing based
technique, the proposed measure-transformation approachpre-
serves the noise subspace and effectively suppresses outliers
without significant performance loss in estimating the DOAs
and the number of signals.
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Fig. 6. Coherent signals in Gaussian noise:(a) Average RMSE versus
GSNR. (b) Probability of error for estimating the number of signals versus
GSNR. (c) Average RMSE versus the number of snapshots. (d) Probability
of error for estimating the number of signals versus the number of snapshots.
The performance measures versus GSNR were evaluated forN = 1000 i.i.d.
snapshots. The performance measures versus the number of snapshots were
evaluated forGSNR = −12 [dB]. Notice that there is no significant perfor-
mance gap between the compared MUSIC algorithms. The sign-covariance
based modified MDL criterion results in better estimation ofthe number of
signals. This may be attributed to the fact that the sign-covariance based
modified MDL criterion [12] involves more stable eigenvalues estimation.

VII. C ONCLUSION

In this paper, a new framework for robust MUSIC was
proposed that applies a transform to the probability distribution
of the data prior to forming the sample covariance. Under
the assumption of spherically contoured noise distribution, a
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Fig. 7. Coherent signals in Cauchy noise:(a) Average RMSE versus
GSNR. (b) Probability of error for estimating the number of signals versus
GSNR. (c) Average RMSE versus the number of snapshots. (d) Probability
of error for estimating the number of signals versus the number of snapshots.
The performance measures versus GSNR were evaluated forN = 1000 i.i.d.
snapshots. The performance measures versus the number of snapshots were
evaluated forGSNR = −14 [dB]. Note that similarly to the non-coherent
case, the Gaussian MT-MUSIC estimator has significantly lower GSNR and
sample size threshold regions than the other methods. Also notice that the
Gaussian MT-MMDL estimator of the number of signals outperforms all other
MDL based estimators with significantly lower probability of error at the low
GSNR and low sample size regimes.

new robust MUSIC algorithm, called Gaussian MT-MUSIC,
was presented based on a Gaussian shaped measure transform
(MT) function. Furthermore, a new robust generalization of
the MDL criterion for estimating the number of signals,
called MT-MDL, was derived that is based on replacing the
eigenvalues of the SCM with those of the empirical MT-
covariance. The proposed Gaussian MT-MUSIC algorithm
was extended to the case of coherent signals by applying
spatial smoothing to the empirical Gaussian MT-covariance.
Exploration of other classes of MT-functions may result in
additional robust MUSIC algorithms that have different useful
properties. Furthermore, extending the MT-MDL criterion to
sample-starved scenarios [44] or to cases where there is
additional information on the sample eigenvalues distribution
[45] are worthwhile topics for future research.

APPENDIX

A. Proof Proposition1:

Property 1:
Sinceϕu (x) is nonnegative, then by Corollary 2.3.6 in [31]
Q

(u)
X is a measure onSX . Furthermore,Q(u)

X (X ) = 1 so that
Q

(u)
X is a probability measure onSX .

Property 2:
Follows from definitions 4.1.1 and 4.1.3 in [31].
Property 3:
Equivalently, we show that if the covariance ofg (X) under
Q

(u)
X is singular, then it must be singular underPX.
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Fig. 8. Coherent signals in K-distributed noise with shape parameter ν =

0.75: (a) Average RMSE versus GSNR. (b) Probability of error for estimating
the number of signals versus GSNR. (c) Average RMSE versus the number
of snapshots. (d) Probability of error for estimating the number of signals
versus the number of snapshots. The performance measures versus GSNR
were evaluated forN = 1000 i.i.d. snapshots. The performance measures
versus the number of snapshots were evaluated forGSNR = −25 [dB]. Note
that similarly to the non-coherent case, the Gaussian MT-MUSIC estimator
has significantly lower GSNR and sample size threshold regions than the other
methods. Also notice that the Gaussian MT-MMDL estimator ofthe number
of signals outperforms all other MDL based estimators.

According to (7), the covariance ofg (X) underQ(u)
X is

given by:

Σ
(u)
g(x) , E

[

(g (X)− µ
(u)
g(x))(g(X)− µ

(u)
g(x))

Hϕu (X) ;PX

]

,

whereµ(u)
g(x) , E [g (X)ϕu (X) ;PX] is the expectation of

g (X) underQ(u)
X . SinceΣ(u)

g(x) is singular, there exists a
non-zero vectora ∈ Cm such that

aHΣ
(u)
g(x)a = E

[

∣

∣

∣a
H
(

g (X)− µ
(u)
g(x)

)∣

∣

∣

2

ϕu (X) ;PX

]

= 0.

Therefore, by (2), (6), the strict positiveness ofu (·) and
Proposition 2.3.9 in [31]

E

[

∣

∣

∣a
H
(

g (X)− µ
(u)
g(x)

)∣

∣

∣

2

;PX

]

= 0. (37)

The covariance ofg (X) underPX given by

Σg(x) , E

[

(

g (X)− µg(x)

)(

g (X)− µg(x)

)H

;PX

]

,

whereµg(x) , E [g (X) ;PX] is the expectation ofg (X)
underPX. Hence, one can verify that

aHΣg(x)a +
∣

∣

∣a
H
(

µg(x) − µ
(u)
g(x)

)∣

∣

∣

2

(38)

= E

[

∣

∣

∣a
H
(

g (X)− µ
(u)
g(x)

)∣

∣

∣

2

;PX

]

= 0,

where the last equality stems from (37). Since the second
summand in the l.h.s. of (38) is nonnegative we conclude that
aHΣg(x)a = 0, which implies thatΣg(x) is singular.
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(d)

Fig. 9. Coherent signals in spherical compound Gaussian noise with
inverse-Gaussian texture and shape parameterλ = 0.1: (a) Average
RMSE versus GSNR. (b) Probability of error for estimating the number of
signals versus GSNR. (c) Average RMSE versus the number of snapshots. (d)
Probability of error for estimating the number of signals versus the number
of snapshots. The performance measures versus GSNR were evaluated for
N = 1000 i.i.d. snapshots. The performance measures versus the number of
snapshots were evaluated forGSNR = −24 [dB]. Note that similarly to the
non-coherent case, the Gaussian MT-MUSIC estimator has significantly lower
GSNR and sample size threshold regions than the other methods. Also notice
that the Gaussian MT-MMDL estimator of the number of signalsoutperforms
all other MDL based estimators with significantly lower probability of error
at the low GSNR and low sample size regimes.

B. Proof Proposition2:

By the real-imaginary decompositions of the MT-covariance

Σ(u)
X

and its empirical version̂Σ
(u)

X
, given in Lemmas1 and

2 in AppendixC, it is sufficient to prove that̂Σ
(g)

Z
→ Σ(g)

Z

a.s. asN → ∞. According to (10)-(12)

lim
N→∞

Σ̂
(g)

Z
= lim

N→∞

1

N

N
∑

n=1

Z (n)ZT (n) ϕ̂g (Z (n))

− lim
N→∞

µ̂(g)
Z

lim
N→∞

µ̂(g)T
Z

, (39)

where

lim
N→∞

1

N

N
∑

n=1

Z (n)ZT (n) ϕ̂g (Z (n))

=

lim
N→∞

1
N

N
∑

n=1
Z (n)ZT (n) g (Z (n))

lim
N→∞

1
N

N
∑

n=1
g (Z (n))

(40)

and

lim
N→∞

µ̂(u)
Z

=

lim
N→∞

1
N

N
∑

n=1
Z (n) g (Z (n))

lim
N→∞

1
N

N
∑

n=1
g (Z (n))

. (41)

In the following, the limits of the series in the r.h.s. of (40)
and (41) are obtained. Since{Z (n)}

N
n=1 is a sequence of
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i.i.d. samples ofZ, then the random matrices
{

Z (n)ZT (n) g (Z (n) ,Z (n))
}N

n=1
in the r.h.s. of (40)

define a sequence of i.i.d. samples ofZZT g (Z). Moreover,
if the condition in (13) is satisfied, then for any pair of
entriesZk, Zl of Z we have that

E [|ZkZlg (Z)| ;PZ]

= E
[∣

∣

∣Zkg
1/2 (Z)

∣

∣

∣

∣

∣

∣Zlg
1/2 (Z)

∣

∣

∣ ;PZ

]

≤
(

E
[

|Zk|
2
g (Z) ;PZ

]

E
[

|Zl|
2
g (Z) ;PZ

])1/2

≤ E
[

‖X‖
2
2 u (X) ;PX

]

< ∞,

where the first semi-inequality stems from the Hölder
inequality for random variables [31], and the second one
stems from the definitions ofZ andg (Z) in Lemma1 in
AppendixC. Therefore, by Khinchine’s strong law of large
numbers (KSLLN) [30]

lim
N→∞

1

N

N
∑

n=1

Z (n)ZT (n) g (Z (n)) = E
[

ZZT g (Z) ;PZ

]

a.s.

(42)
Similarly, it can be shown that if the condition in (13) is
satisfied, then by the KSLLN

lim
N→∞

1

N

N
∑

n=1

Z (n) g (Z (n)) = E [Zg (Z) ;PZ] a.s., (43)

and

lim
N→∞

1

N

N
∑

n=1

g (Z (n)) = E [g (Z) ;PZ] a.s. (44)

Remark 1. By (44), the definition ofg (Z) in Lemma1 in
AppendixC, and the assumption in (4) the denominator in
the r.h.s. of (40) and (41) is non-zero almost surely.

Therefore, since the sequences in the l.h.s. of (40) and (41)
are obtained by continuous mappings of the elements of the
sequences in their r.h.s., then by (42)-(44), and the
Mann-Wald Theorem [32]

lim
N→∞

1

N

N
∑

n=1

Z (n)ZT (n) ϕ̂g (Z (n)) (45)

=
E
[

ZZT g (Z) ;PZ

]

E [g (Z) ;PZ]
= E

[

ZZTϕg (Z) ;PZ

]

a.s.

and

lim
N→∞

µ̂
(g)
Z

=
E [Zg (Z) ;PZ]

E [g (Z) ;PZ]
= E [Zϕg (Z) ;PZ] a.s., (46)

where the last equalities in (45) and (46) follow from the
definition ofϕg (·) in (6).
Thus, since the sequence in the l.h.s. of (39) is obtained by
continuous mappings of the elements of the sequences in its
r.h.s., then by (45) and (46), the Mann-Wald Theorem, and

(8) it is concluded that̂Σ
(g)

Z
→ Σ(g)

Z
a.s. asN → ∞.

C. Real-imaginary decomposition of the MT-covariance and
its empirical estimate

The real-imaginary decomposition of the MT-covariance of
X underQ(u)

X is given in the following Lemma that follows
directly from (6), (8) and (9).

Lemma 1. Let U andV denote the real and imaginary
components ofX, respectively. Define the real random
vectorZ ,

[

UT ,VT
]T

and the MT-functiong (Z) , u (X).

Let
[

Σ(g)
Z

]

1,1
,
[

Σ(g)
Z

]

1,2
,
[

Σ(g)
Z

]

2,1
and

[

Σ(g)
Z

]

2,2
denote

the p× p submatrices of the real-valued MT-covarianceΣ(g)
Z

satisfying

Σ(g)
Z

=





[

Σ(g)
Z

]

1,1

[

Σ(g)
Z

]

1,2
[

Σ(g)
Z

]

2,1

[

Σ(g)
Z

]

2,2



 .

The real-imaginary decomposition of the MT-covariance of
X underQ(u)

X takes the form:

Σ(u)
X

=

(

[

Σ(g)
Z

]

1,1
+
[

Σ(g)
Z

]

2,2

)

(47)

+ i

(

[

Σ(g)
Z

]

2,1
−
[

Σ(g)
Z

]

1,2

)

.

Similarly, the real-imaginary decomposition of the empirical
MT-covariance ofX underQ(u)

X is given in the following
Lemma that follows directly from (10)-(12).

Lemma 2. Let X (n), n = 1, . . . , N denote a sequence of
samples fromPX, and letU (n), V (n) denote the real and
imaginary components ofX (n), respectively. Define the real
random vectorZ (n) ,

[

UT (n) ,VT (n)
]T

and the

MT-functiong (Z (n)) , u (X (n)). Let
[

Σ̂
(g)

Z

]

1,1
,
[

Σ̂
(g)

Z

]

1,2
,

[

Σ̂
(g)

Z

]

2,1
and

[

Σ̂
(g)

Z

]

2,2
denote thep× p submatrices of the

real-valued empirical MT-covariancêΣ
(g)

Z
satisfying

Σ̂
(g)

Z
=







[

Σ̂
(g)

Z

]

1,1

[

Σ̂
(g)

Z

]

1,2
[

Σ̂
(g)

Z

]

2,1

[

Σ̂
(g)

Z

]

2,2






.

The real-imaginary decomposition of the empirical
MT-covariance ofX underQ(u)

X takes the form:

Σ̂
(u)

X
=

(

[

Σ̂
(g)

Z

]

1,1
+
[

Σ̂
(g)

Z

]

2,2

)

(48)

+ i

(

[

Σ̂
(g)

Z

]

2,1
−
[

Σ̂
(g)

Z

]

1,2

)

.

D. Proof Proposition3:

The influence function (17) can be written as:

IF
Ψ

(u)
x

(y;PX) = cu (y)

(

∥

∥

∥y − µ
(u)
X

∥

∥

∥

2

2
G (y) −Σ(u)

X

)

,

(49)
wherec , E−1[u(X);PX], G (y) , ψ (y)ψH (y) and

ψ (y) ,
y − µ

(u)
X

∥

∥

∥y − µ
(u)
X

∥

∥

∥

2

.
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Since‖ψ (y)‖2 = 1 for anyy ∈ Cp, the real and imaginary
components ofG (y) in (49) are bounded. Thus, the
influence functionIF

Ψ
(u)
x

(y;PX) is bounded ifu (y) and

u (y) ‖y‖
2
2 are bounded.

E. Proof Proposition4:

According to (17)
∥

∥

∥IF
Ψ

(u)
x

(y;PX)
∥

∥

∥

2

Fro
(50)

= cu2 (y)

(

∥

∥

∥y − µ
(u)
X

∥

∥

∥

4

2
− 2

∥

∥

∥y − µ
(u)
X

∥

∥

∥

2

Σ
(u)
x

+ tr

[

(

Σ(u)
X

)2
]

)

≤ c

(

(

√

u (y) ‖y‖2 +
√

u (y)
∥

∥

∥µ
(u)
X

∥

∥

∥

2

)4

+ u2 (y) tr

[

(

Σ(u)
X

)2
]

)

,

wherec , E−2[u(X);PX], ‖y‖
2
Σ
, yHΣy, and the

semi-inequality follows from the triangle-inequality andthe
positive semi-definiteness ofΣ(u)

X
. By (20),

u (y) = uG (y; τ) =
(

πτ2
)−p

φ (r)

and

u (y) ‖y‖
2
2 =

(

πτ2
)−p

(

τ4

4

∂2φ (r)

∂r2
+

τ2

2
φ (r)

)

,

wherer , ‖y‖2 andφ (r) , exp
(

−r2/τ2
)

. Therefore, since

for any fixedτ we haveφ (r) → 0 and ∂2φ(r)
∂r2 → 0 as

r → ∞, we conclude that (21) holds.

F. Proof of Theorem1

According to (1) and (22), the conditional probability
distribution,P

X|ν,S, of X given ν andS is proper complex
normal with location parameterµ

X|ν,S = AS and covariance
matrix Σ

X|ν,S = ν2I. Therefore, using (2), (20) and the law
of total expectation one can verify that:

E [uG (X; τ) ;PX] = E [g (α,S; τ) ;Pα,S] = E [h (α; τ) ;Pα] ,
(51)

E [XuG (X; τ) ;PX] = AE
[

α2Sg (α,S; τ) ;Pα,S

]

, (52)

and

E
[

XXHuG (X; τ) ;PX

]

= AE
[

α4SSHg (α,S; τ) ;Pα,S

]

AH

+ E
[

α2ν2h (α; τ) ;Pν

]

I, (53)

whereα ,

√

τ2

τ2+ν2 ,

g (α,S; τ) ,

(

πτ2

α2

)−p

exp (−α2‖AS‖22/τ
2),

andh (α; τ) , E [g (α,S; τ) ;PS]. Notice that by (22) the
expectation in the second summand of (53) can be rewritten
as:

E
[

α2ν2h (α; τ) ;Pν

]

= E
[

|αW |
2
h (α, τ) ;Pα,W

]

(54)

− |E [αWh (α, τ) ;Pα,W ]|
2
,

where the scalarW denotes any of the identically distributed
components of the noise vectorW. Thus, using (6), (8) and
(51)-(54) the relation (23) is easily obtained. Finally, since
the MT-functiong(·, ·; ·) is strictly positive andα2S has a
non-singular covariance under the joint probability measure
Pα,S, by Property3 in Proposition1 the MT-covariance
Σ

(g)
α2

S
(τ) must be non-singular.

G. Proof of Theorem2

SincePX is proper complex normal with location parameter
µ

X
= 0 and covariance matrixΣX, by (6) and (7) the

transformed probability distributionQ(uG)
X generated by the

Gaussian MT-function (20) is proper complex normal with
location parameterµ(uG)

X = 0 and covariance matrix

Σ(uG)
X

(τ) =
(

Σ−1
X

+ τ−2I
)−1

. (55)

According to the Gaussian Fisher information formula, stated
in [33], the Fisher informations for estimatingθk underPX

andQ(uG)
X are given by:

F (θk;PX) = tr

[

(

Σ−1
X

∂ΣX

∂θk

)2
]

(56)

and

F
(

θk;Q
(uG)
X

)

= tr





(

(

Σ(uG)
X

(τ)
)−1 ∂Σ(uG)

X
(τ)

∂θk

)2


 ,

(57)
respectively. By (55) and the matrix identity
∂C−1

∂α = −C−1 ∂C
∂αC

−1 [42], whereC is some invertible
complex matrix andα ∈ R, we have

∂Σ(uG)
X

∂θk
= Σ(uG)

X
Σ−1

X

∂ΣX

∂θk
Σ−1

X
Σ(uG)

X
. (58)

Therefore, using (55)-(58) and Lemma3 in AppendixH we
obtain that:

F
(

θk;Q
(uG)
X

)

(59)

≤ tr

[

(

Σ−1
X

∂ΣX

∂θk

)2
]

λ2
max

(

Σ−1
X

Σ(uG)
X

(τ)
)

= F (θk;PX)

(

τ2

τ2 + λmin (ΣX)

)2

and

F
(

θk;Q
(uG)
X

)

(60)

≥ tr

[

(

Σ−1
X

∂ΣX

∂θk

)2
]

λ2
min

(

Σ−1
X

Σ(uG)
X

(τ)
)

= F (θk;PX)

(

τ2

τ2 + λmax (ΣX)

)2

.

The relations in (24) are obtained from (59) and (60).
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H. Some useful trace inequalities

Lemma 3. Let A, B andC denote Hermitian matrices with
the same dimensions, and assume thatA andC are
positive-definite andB is positive-semidefinite.

tr [AB]λmin (AC)≤tr [ABAC] ≤ tr [AB]λmax (AC) ,
(61)

whereλmin (·) andλmax (·) denote the minimal and maximal
eigenvalues, respectively.

Proof: By the invariance of the trace operator to
multiplication order of two matrices, inequalities (I) and(II)
in [34], and the fact thatA1/2CA1/2 is Hermitian and
similar toAC we conclude that

tr [ABAC] ≤ tr
[

A1/2BA1/2
] ∥

∥

∥A
1/2CA1/2

∥

∥

∥

S
(62)

= tr [AB]λmax (AC)

and

tr [ABAC] ≥ tr
[

A1/2BA1/2
]

∥

∥

∥

∥

(

A1/2CA1/2
)−1

∥

∥

∥

∥

−1

S

= tr [AB]λmin (AC) , (63)

where‖·‖S denotes the spectral-norm [43].

I. Proof of Theorem3

Assume that

Σ̂
(g)

Z
−Σ(g)

Z
= O

(

√

N−1 log logN
)

a.s., (64)

whereΣ(g)
Z

andΣ̂
(g)

Z
are defined in the real-imaginary

decompositions ofΣ(u)
X

andΣ̂
(u)

X
, respectively, in Appendix

C. Then,Σ̂
(u)

X
−Σ(u)

X
= O

(

√

N−1 log logN
)

a.s., and
therefore, by Lemma 3.2 in [35] we obtain that the

descendingly ordered eigenvalues ofΣ̂
(u)

X
andΣ(u)

X
satisfy

λ̂
(u)
k − λ

(u)
k = O

(

√

N−1 log logN
)

a.s. fork = 1, . . . , p.

Using this result and applying thatλ(u)
k , k = 1, . . . , p satisfy

(18), the strong consistency of̂q follows directly from the
proof of Theorem 3.1 in [35]. Therefore, in order to
complete the proof, we show that under the condition (29)
the assumption in (64) is satisfied.

Similarly to (14), the empirical MT-covariancêΣ
(g)

Z
can be

written as a statistical functionalΨ(g)
Z

[P̂Z] of the empirical

probability measurêPZ = 1
N

N
∑

n=1
δZn

, where

Ψ(g)
Z

[PZ] = Σ(g)
Z

. The Taylor expansion ofΨ(g)
Z

[P̂Z] about
PZ is given by [36]:

Ψ(g)
Z

[P̂Z] = Ψ(g)
Z

[PZ]+
∂Ψ(g)

Z
[(1 − ǫ)PZ + ǫP̂Z]

∂ǫ

∣

∣

∣

∣

∣

ǫ=0

+R
(g)
Z ,

(65)
whereR(g)

Z denotes the reminder term.

Using (8)-(11) and (14), one can verify that

∂Ψ(g)
Z

[(1− ǫ)PZ + ǫP̂Z]

∂ǫ

∣

∣

∣

∣

∣

ǫ=0

=
E
[

g (Z) ; P̂Z

]

E [g (Z) ;PZ]

(

Σ̂
(g)

Z
−Σ(g)

Z

+
(

µ̂(g)
Z

− µ
(g)
Z

)(

µ̂(g)
Z

− µ
(g)
Z

)T
)

=
1

N

N
∑

n=1

H (Z (n))

is a V-statistic [36] with zero-mean kernel
H(Z) , g(Z)

E[g(Z);PZ] ((Z− µ
(g)
Z )(Z− µ

(g)
Z )T −Σ(g)

Z
). By

condition (29) and the definitions ofZ andg (·) in Lemma1
in AppendixC, H (Z) must have finite variance entries.
By (65) and (66) we have that

R
(g)
Z =



1−
E
[

g (Z) ; P̂Z

]

E [g (Z) ;PZ]





(

Σ̂
(g)

Z
−Σ(g)

Z

)

(66)

−
E
[

g (Z) ; P̂Z

]

E [g (Z) ;PZ]

(

µ̂(g)
Z

− µ
(g)
Z

)(

µ̂(g)
Z

− µ
(g)
Z

)T

.

Therefore, each entry ofR(g)
Z satisfies:

∣

∣

∣

∣

[

R
(g)
Z

]

k,l

∣

∣

∣

∣

≤ |C|

∣

∣

∣

∣

[

Σ̂
(g)

Z

]

k,l
−
[

Σ(g)
Z

]

k,l

∣

∣

∣

∣

(67)

+ |D|
∣

∣

∣

[

µ̂(g)
Z

]

l
−
[

µ
(g)
Z

]

l

∣

∣

∣ a.s.,

where

C , 1−
E
[

g (Z) ; P̂Z

]

E [g (Z) ;PZ]
(68)

= c
1

N

N
∑

n=1

(g (Z (n))− E [g (Z) ;PZ]) ,

D ,
E
[

g (Z) ; P̂Z

]

E [g (Z) ;PZ]

([

µ̂(g)
Z

]

k
−
[

µ
(g)
Z

]

k

)

(69)

= c
1

N

N
∑

n=1

(

Zk (n)−
E [Zkg (Z) ;PZ]

E [g (Z) ;PZ]

)

g (Z (n)) ,

c , E−1[g(Z);PZ], and second equality in (69) stems from
(9) and (11), with Zk andZk(n) denoting thek-th entry of
Z andZ(n), respectively.
Under the condition (29), and the definitions ofZ, Z (n) and
g (·) in Lemmas1, 2 in AppendixC, the summands in (68)
and (69) have finite variances. Therefore, by the i.i.d.
assumption and the law of iterated logarithm (LIL) [36] we
have that

C = O
(

√

N−1 log logN
)

a.s. (70)

and
D = O

(

√

N−1 log logN
)

a.s. (71)

Furthermore, under condition (13) that follows from (29)

µ̂
(u)
Z

andΣ̂
(u)

Z
are strongly consistent, as shown in Appendix

B. Hence, by (67), (70) and (71), we conclude that the
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reminder (66) satisfiesR(g)
Z = o

(

√

N−1 log logN
)

a.s.
Thus, by Theorem 6.4.2 in [36] we conclude that (64)
holds.

J. Proof of Proposition5

Similarly to the proof of Theorem1, it can be shown that
under the array model (1), the coherent signals model (30),
and the compound Gaussian noise assumption (22), the
Gaussian MT-covariance matrix of the array output takes the
form:

Σ(uG)
X

(τ) = ddHσ
2(g)
α2s (τ) + σ

2(h)
αW (τ)I, (72)

whered , Aξ andσ2(g)
α2s (τ) is the variance ofα2 (n) s (n),

α ,

√

τ2

τ2+ν2 , under the transformed joint probability

measureQ(g)
α,s with the MT-function

g (α, s; τ) ,

(

πτ2

α2

)−p

exp (−α2‖d‖22 |s|
2
/τ2).

The termσ
2(h)
αW (τ) is the variance ofα (n)W (n) under the

transformed joint probability measureQ(h)
α,W with the

MT-function h (α; τ) , E [g (α, s; τ) ;Ps].
The Gaussian MT-covariance (72) is structured similarly to
the standard covarianceΣX for coherent signals [37].
Therefore, by the ULA assumption and (31)-(35), the proof
follows using the same argumentations in [37] for the
spatially smoothed version ofΣX.
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