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Coded Distributed Diversity: A Novel Distributed
Reception Technique for Wireless Communication

Systems
Junil Choi∗, David J. Love, and Patrick Bidigare

Abstract—In this paper, we consider a distributed reception
scenario where a transmitter broadcasts a signal to multiple
geographically separated receive nodes over fading channels, and
each node forwards a few bits representing a processed version
of the received signal to a fusion center. The fusion center then
tries to decode the transmitted signal based on the forwarded
information from the receive nodes and possible channel state
information. We show that there is a strong connection between
the problem of minimizing a symbol error probability at the
fusion center in distributed reception and channel coding in
coding theory. This connection allows us to design a unified
framework for coded distributed diversity reception. We focus
linear block codes such as simplex codes or first-order Reed-
Muller codes that achieve the Griesmer bound with equality
to maximize the diversity gain. Due to its simple structure,
no complex offline optimization process is needed to design
the coding structure at the receive nodes for the proposed
coded diversity technique. The proposed technique can support a
wide array of distributed reception scenarios, i.e., arbitrary M -
ary symbol transmission at the transmitter and received signal
processing with multiple bits at the receive nodes. Numerical
studies show that the proposed coded diversity technique can
achieve practical symbol error rates even with moderate signal-
to-noise ratio and numbers of the receive nodes.

Index Terms—Distributed reception, coded distributed diver-
sity, wireless sensor networks, coordinated multipoint (CoMP),
distributed antenna systems (DAS), the Griesmer bound.

I. I NTRODUCTION

Distributed transmission and/or reception have become pop-
ular in many wireless signal processing scenarios including
cellular systems, target detection in radar systems, wireless
sensor networks, and military communications. Coordinated
multipoint (CoMP) in the 3GPP standard [2]–[4] enables
multiple base stations to cooperate with each other to support
cell edge users by joint transmission (JT) [5], [6] or coordi-
nated scheduling/coordinated beamforming (CS/CB) [7], [8].
Distributed antenna systems (DAS) are also adopted to boost
performance in cellular systems [9]–[11]. The geographically
separated radio entities in radar systems can obtain different
information of a target (or multiple targets) and make better
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decisions, e.g., location or speed of the target [12]–[14].In
wireless sensor networks, transmission/reception techniques
are even more crucial because sensors are usually very cheap
and only can perform simple operations [15]–[18]. Military
communications where a squad of radio units serves as a
distributed array in battlefields can be considered as a form
of distributed multiple antenna systems [19], [20].

We focus on distributed reception [21]–[23] to provide di-
versity advantage in fading channels in this paper. We assume
that there is a transmitter that wants to send a signal to a
fusion center by the help of multiple geographically separated
receive nodes. Each node receives the broadcasted signal
from the transmitter through fading channels and forwards
the processed received signal to the fusion center. The fusion
center then tries to decode the transmitted signal using the
forwarded information from the receive nodes and, if available,
channel state information (CSI).

This scenario has been studied in [22] and [24] for cases
when the number of processing bits at each receive node
is greater than or equal to the number of bits representing
data symbol constellation. Our focus is on more practical case
when each receive nodequantizes the received signal before
forwarding it to the fusion center. This scenario is of particular
interest when the number of receive nodes islarge because the
data rate of the link from each receive node to the fusion center
might be constrained.

We show that there is a strong connection between the
problem of minimizing a symbol error probability at the
fusion center in distributed reception and channel coding in
coding theory. In coding theory, we achieve time diversity
in fading channels by transmitting channel coded data bits
using multiple channel instances [25]. Similarly, we can obtain
spatial diversity by exploiting multiple receive nodes that expe-
rience weakly correlated or independent channels in distributed
reception. This connection allows us to utilize well-established
channel coding techniques to develop good distributed recep-
tion strategies and achieve the maximum diversity gain. The
achieved diversity gain by distributed reception would give
range and/or data rate advantages.

The connection between the distributed reception problem
and channel coding has been first explored in [26]–[28] for
the distributed fault-tolerant classification problem in wireless
sensor networks. A codeword set matrix is generated by two
algorithms, i.e., cyclic column replacement and simulatedan-
nealing, for single bit and multiple bits receive node processing
in [26] and [27], respectively. Each codeword (or a symbol in
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a signal constellation set) forms a row in the codeword set
matrix and each column of the matrix represents the decision
rule employed at each receive node. The proposed approaches
in [26], [27]; however, are heuristic and do not guarantee
optimality in any sense. Moreover, those approaches need
complex offline optimization to generate code matrices for
every different number of the receive nodes.

In this paper, we consider three general scenarios: 1) fading
channels between the transmitter and the receive nodes, 2)
arbitraryM -ary data symbol transmission from the transmitter,
and 3) multiple bits processing at the receive nodes. To support
these scenarios effectively, we propose a unified frameworkof
processing at the receive nodes and decoding at the fusion
center. We dub the unified framework acoded diversity
technique. The coded diversity technique fully exploits the
connection of the distributed reception problem with coding
theory, and we are able to exploit efficient linear block codes
such as simplex codes or first-order Reed-Muller codes that
achieve the Griesmer bound with equality. We also develop
novel shortened concatenated repetition-simplex (SCRS) codes
for an arbitrary number of the receive nodes and show that
the SCRS codes are optimal with respect to the Griesmer
bound in many practical scenarios. The SCRS codes are very
easy to generate such that we do not need to perform any
kind of complex optimization process to generate a SCRS
code for an arbitrary number of receive nodes. We show the
performance of the proposed coded diversity technique by
analytical derivations and numerical studies as well.

This paper is organized as follows. We show a motivating
example of this work and explain a general system model in
Section II. In Section III, we explain the general framework
and the diversity order analyses of the proposed coded diver-
sity technique. Practical code designs and their performance
implications for the coded diversity technique are explained
in Section IV. Numerical studies are presented in Section VI,
and conclusions follow in Section VII.

II. M OTIVATING EXAMPLE AND SYSTEM MODEL

We show a motivating example of this work and explain a
general system model.

A. Motivating Example

Consider single-input multiple-output (SIMO) system with
three geographically separated receive nodes. Theith receive
node operates with an input-output equation

yi = his+ ni, i = 1, 2, 3

with hi ∈ C is a channel from the transmitter to the node
i, s ∈ S ⊂ C is the transmitted signal selected fromS
with a uniform distribution, andni is complex additive white
Gaussian noise (AWGN) distributed asCN (0, 1). We assume
that the noise is spatially independent, i.e., each receivenode
experiences independent noise. We further assume that the
channel collected across the distributed arrayh = [h1 h2 h3]
is a spatially uncorrelated channel withCN (0, 1) entries and
the ith receive node has perfect knowledge ofhi and no
knowledge of the other users’ channels.

If the fusion center knowsh = [h1 h2 h3] and y =
[y1 y2 y3] perfectly, then as in a standard, centralized combin-
ing system, the fusion center can produce

ỹ =
yz∗

hz∗
(1)

where z = h/‖h‖ is the optimal linear combiner. The
processed output̃y is used to detected the transmitted symbol
s. However, the main focus of this paper is the case when each
receive node only can send the processed version ofyi, which
we denoteui throughout the paper, using a small number of
bits per channel use to the fusion center, and the fusion center
tries to decode the transmitted symbol based onui’s along
with possibly the knowledge ofh. We assume that each node
can forwardui without any error to the fusion center.1 Many
receive architectures in both commercial and military systems
fall into this distributed reception scenario.

In this example, we focus on the case when each node can
pass onlyone bit for ui per channel use to the fusion center;
however, the transmitted symbols is uniformly selected from
a quadrature phase shift keying (QPSK)

S =

{√
ρ

2
(1 + j),

√
ρ

2
(1 − j),

√
ρ

2
(−1 + j),

√
ρ

2
(−1− j)

}

where ρ denotes the transmit signal-to-noise ratio (SNR).
Thus, the fusion center needs to detect the transmitted symbol
using 3 bits (1 bit per receive node) per channel use.

With a naive approach, this problem can be mapped into a
binary hypothesis testing problem at each node. For example,
nodes 1 and 3 detect the real component such that

ui =

{
1 if Re(yi) ≥ 0

0 if Re(yi) < 0
, i = 1, 3

while node 2 detects the imaginary component as

u2 =

{
1 if Im(y2) ≥ 0

0 if Im(y2) < 0
,

and send their decisionsui to the fusion center. With an
assumption that each nodei has perfect knowledge of its
channelhi, a probability of incorrectly detecting the desired
component at nodei is given by

Pe(hi, ρ) = Q
(√

|hi|2ρ
)

(2)

for i = 1, 2, 3. With full CSI knowledge at the fusion center,
maximum likelihood (ML) detection will give a probability of
symbol error as

Pe,unc(h, ρ) = 1−

(
1− max

i∈{1,3}
Pe(hi, ρ)

)
(1− Pe(h2, ρ)) .

Let Pe,unc(ρ) = E [Pe,unc(h, ρ)] where expectation is taken
overh. Then, the diversity order is given as

− lim
ρ→∞

log(Pe,unc(ρ))

log ρ
= 1, (3)

1This assumption is reasonable for many scenarios, e.g., 1) the receive
nodes are connected with the fusion center through wired lines as in CoMP,
DAS, or radar systems, 2) the receive nodes and the fusion center are closely
located with each other in wireless sensor networks.
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Fig. 1: A conceptual figure of distributed reception.

meaning that the receiver can only get the diversity order 1.
This is a discouraging result because the distributed reception
with three nodes has not provided any increase in diversity.

Note that a better solution exists. As in the previous ap-
proach, node 1 and 2 detect the real and imaginary component,
respectively. However, node 3 now detects the product of the
real and imaginary components such that

u3 =

{
1 if Re(y3) Im(y3) ≥ 0

0 if Re(y3) Im(y3) < 0
.

Nodes 1 and 2 have a probability of incorrect detection as
in (2) while node 3 has a probability of detecting incorrectly
given by

Pe(h3, ρ) = 2Q
(√

|h3|2ρ
)(

1−Q
(√

|h3|2ρ
))

.

If we let Pe,(i)(h(i), ρ) be thei-th largest probability of error
among the nodes such that

Pe,(1)(h(1), ρ) ≥ Pe,(2)(h(2), ρ) ≥ Pe,(3)(h(3), ρ),

a probability of error at the fusion center is given by

Pe,code(h, ρ) = 1−
(
1− Pe,(2)(h(2), ρ)

) (
1− Pe,(3)(h(3), ρ)

)

with ML detection. Then, the diversity order becomes

− lim
ρ→∞

log(Pe,code(ρ))

log ρ
= 2

where Pe,code(ρ) = E [Pe,code(h, ρ)] with the expectation
taken overh.

Thus, without increasing the number of bits sent from any of
the nodes to the fusion center or changing the channel model,
we have increased the diversity order from 1 to 2 by using
a smart detection scheme at each node. More generally, this
paper aims to address the following question:
“How should each receive node quantize yi into a small
number of bits to be sent to the fusion center when detecting
M -ary modulation in distributed reception?”
As we show later, this problem has intriguing ties to coding
theory.

B. System Model

We consider a network consists of the transmitter, the fusion
center, andN geographically separated receive nodes. The

conceptual figure of our system model is shown in Fig. 1.
The received signal at thei-th node,yi, is written as

yi = his+ ni, i = 1, · · · , N

where s ∈ S is the transmitted symbol from anM -ary
constellation

S = {s1, s2, . . . , sM} ⊂ C.

We assumehi and ni have the same distributions as in the
motivating example. We further assume thats is selected
from S with an equal probability and satisfiesE[s] = 0 and
E[|s|2] = ρ. We define the symbol error probability at thei-th
receive node as

Pe(hi, ρ) ,
1

M

∑

s∗∈S

Pr (s∗ 6= ŝ | s = s∗, hi, ρ) . (4)

Note that the majority of the distributed reception work has
been dedicated for binary modulation schemes, i.e., binary
hypothesis testing in AWGN channels without fading. In this
case,s ∈ S = {s1, s2}, and each node can make a hard
decision on the transmitted symbol. We consider generalized
distributed reception in this paper such that the transmitter can
send the symbol from an arbitraryM -ary constellation, and
each node also can send multiple bits to the fusion center.

III. C ODED DIVERSITY AND DIVERSITY ORDER

We first explain the general concept of coded distributed
diversity and then discuss the symbol detection schemes using
the quantized node information. We finish this section with
diversity order analyses with respect to the decoding schemes.

A. General Concept of Coded Diversity Technique

Note that theM -ary constellationS can be represented
with a log2(M)-bit message that we denote asb =
[b1 b2 · · · blog

2
(M)]. Each node quantizes its received signal

yi into aB-bit vector2 ui ∈ GF (2B). We assume

B ≤ log2(M)

to limit the overhead needed for the distributed decisions.This
gives rise to the concept of acompression ratio that is defined
as

K =
log2(M)

B

which satisfiesK ≥ 1. We assumeK is an integer value
throughout the paper. We leta = [a1 a2 · · ·aK ] be the
vectorized version ofb with entries inGF (2B). There are
multiple ways of convertingb into a using different primitive
polynomials ofGF (2B); however, using a specific primitive
polynomial does not affect average performance.

Commonly detectors forM -ary constellations are designed
using non-overlapping decisions regions. Denote the decision
regions by{W1, . . . ,WM} such that

W1

⋃
· · ·
⋃

WM = C.

2We letGF (q)m denote them-dimensional vector of elements inGF (q).
This is different fromGF (qm) which denotes the finite field of orderqm.
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Using the decision regions, the detection problem can be
formulated aŝs = sm0

with

m0 = argmax
1≤m≤M

1 (ỹ ∈ Wm)

with 1(·) denoting the indicator function which returns1 if
the argument is true. This can be also rewritten as

ŝ = argmin
s′∈S

‖ỹ − s′‖2.

In our problem; however, we assume that the number of
decision regions at each receive node is smaller thanM , i.e.,
the compression ratio is constrained asK ≥ 1. Let the non-
overlapping decision regions at nodei be

{
Di,1, . . . ,Di,2B

}

such that the union of the regions spans the complex plane.
The distributed reception problems can be succinctly stated as
determining the sets of decision regions

{
Di,1, . . . ,Di,2B

}
for

i = 1, . . . , N to minimize the probability of symbol detection
error at the fusion center. As shown in the motivating example
of Section II, this problem is nontrivial. We show how well-
developed coding techniques can be used to design the sets of
decision regions.

Because of the constraint on the compression ratioK ≥ 1,
we assume the decision regions

{
Di,1, . . . ,Di,2B

}
of node

i are constructed by certain linear combinations of the con-
stellation decision regions{W1, . . . ,WM}. To do this, we
formulate the problem using finite field notations.

To simplify the notation, letb denote the bit representation
of the the transmitted symbols. Suppose that the nodei first
performs a hard decision on the received signalyi to generate
a log2(M)-bit vector b̂i. If the node i detectss correctly,
then we havêbi = b. Note thatb̂i can be represented with a
K-entry vectorâi with entries inGF (2B). The nodei then
generatesui = fi (âi) using a function

fi : GF (2B)K → GF (2B)

and sendsui to the fusion center.
If each node receiveda (or equivalentlyb) without any

error, this problem can be formulated as a coding problem. The
K-dimensionalmessage a is transformed to anN -dimensional
vector codewordu = [u1 · · · uN ] with entries inGF (2B).
In the distributed reception case, each node is coding on noisy
data, and the vectoru is corrupted withnoise corresponding
to reception error at each node. Despite this, the goal in
distributed reception is very similar to code design in coding
theory. We must find a coding technique that minimizes
decoding error of the transmitted symbol at the fusion center.

Similar to the coding problem, we focus on the creation
of an M vector codeword set{u[1], . . . ,u[M ]} where each
codewordu[k] corresponds to a constellation pointsk ∈ S.
Further, we focus on linear block codes to enable efficient
encoding. This means that the functionfi is explicitly given
as

ui = fi (âi) = âig
T
i (5)

wheregi ∈ GF (2B)K . We can collect everything together in
vector form such that

u = c(s) + v

where c(s) ∈ GF (2B)N denotes the distributed detection
bits if all nodes make the correct bit decisions whens is
transmitted andv ∈ GF (2B)N representsnoise caused by
reception error at each node. Due to the linear structure, a
generator matrixG ∈ GF (2B)K×N can be given as

G =




g1

...
gN




T

and
c(s) = aG.

This generates a code for the constellation pointsS as3

C = {c(s) : s ∈ S}. (6)

We can also define the minimum Hamming distance of the
code

dmin(C) = min
s,s′∈S:s6=s′

dH(c(s), c(s′))

wheredH(·, ·) denotes the Hamming distance metric.
To explain the procedure of the coded diversity technique

in words, each receive nodei processeŝai (which is nothing
but a hard-detected version ofyi) with the i-th column ofG
as in (5). Withu = [u1 · · · uN ] from all N receive nodes, the
fusion center detects the transmitted symbol by using decoding
schemes explained next.

B. Decoding Schemes at Fusion Center

For practical reasons, we assume that thei-th node has
knowledgeonly of S, yi, and hi. Each node passesB-bit
vectorui to the fusion center, and the fusion center tries to
detect the transmitted symbols ∈ S usingu = [u1 · · · uN ].
We consider the cases when the fusion center has knowledge
of h and lacks knowledge ofh. Note that the fusion center
does not have full access toy in our scenario, which prevents
the use of the linear combinerz = h/‖h‖ to estimate
ỹ as in (1) even with full knowledge ofh. We discuss
three different decoding schemes for distributed reception over
fading channels:

1) ML decoding with full CSI: If the fusion center has full
access toh, it computes

ŝ = argmax
s∈S

Pr (u1, . . . , uN | s,h)

= argmax
s∈S

N∏

i=1

Pr (ui | s, hi)

wherePr(·) denotes the probability that is computed as

Pr (ui | s, hi) =
1

π

∫

Di,ui

e−|yi−his|
2

dyi

with Di,ui
denoting the decision region of nodei correspond-

ing to theB-bit patternui.4

3This code generation method is completely different from the one proposed
in [26]. We briefly explain the scheme from [26] and compare itwith the
proposed coded diversity technique in Section V.

4In practice, we can generate empirical probabilities ofPr (ui | s, hi) in
advance to perform ML decoding with full CSI.
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2) Selected subset ML decoding with full CSI: If the
number of receive nodesN is very large, the complexity
of ML decoding can be excessive. With our coded diversity
framework; however, we can reduce decoding complexity
significantly while obtaining comparable performance with
ML decoding.

First, we assume that everyL-th receive node shares the
same processing rule, i.e.,

gi = gi+L = · · · = gi+⌊N−i

L ⌋L, i ∈ {1, . . . , L}

and gi 6= gk if i 6= k for i, k ∈ {1, . . . , L}. Let the set
of nodes that share the same processing rule with nodei as
Ii = {i, i + L, . . . , i +

⌊
N−i
L

⌋
L}. Because the fusion center

has full access toh, it can select the nodei† amongIi as

i† = argmax
k∈Ii

|hk|
2, i = 1, . . . , L,

perform ML decoding using bits from theL selected receive
nodes. This selected subset ML decoding is appropriate for
one of our code design explained in Section IV-B.

3) Minimum Hamming distance decoding without CSI: If
the fusion center does not have any knowledge ofh, it needs
to rely on the simple Hamming distance decoding. The fusion
center then tries to detect the transmitted symbol as

ŝ = argmin
s∈S

dH(c(s),u)

wherec(s) is the vector that would be sent from the allN
receive nodes ifs were perfectly decoded at each node and
u = [u1 · · · uN ].

C. Diversity Analysis

We present the diversity analyses of the proposed coded
diversity technique with three different decoding schemes
explained in the previous section in the following.

Lemma 1. A coded distributed diversity system using a
codeword set C = {c(s1), . . . , c(sM )} achieves a diversity
order of dmin(C) using ML decoding.

Proof: The diversity order of the probability of error
Pe,code,ML(ρ) can be obtained by analyzing the worst case
pairwise error probabilitymax

s6=s′
Pr(s → s′).

Instead of working with the optimal decoder directly, we
will bound performance on a suboptimal decoder. The consid-
ered suboptimal detector chooses

ŝ = argmax
s∈S

N∏

i=1

Pr (ui | ci(s), hi)

whereci(s) is thei-th entry ofc(s). In the event of a tie, it is
broken arbitrarily. Using the coding framework and pairwise
error probability,

N∏

i=1

Pr (ui | ci(s
′), hi)−

N∏

i=1

Pr (ui | ci(s), hi) > 0

or
∏

i:ci(s) 6=ci(s′)

(Pr (ui | ci(s
′), hi)− Pr (ui | ci(s), hi)) > 0.

Then, we can have a bound as in (7) wherePe(hi, ρ) is a
probability of symbol error at nodei defined in (4). Taking the
expectation overhi, the pairwise error probability is bounded
as

Pr(s → s′) ≤ E
[
(Pe(h, ρ))

dH (c(s),c(s′))
]

where the expectation is overh.5 Therefore,

max
s6=s′

Pr(s → s′) ≤ E
[
(Pe(h, ρ))

dmin(C)
]

which gives the lower bound of the diversity order ofdmin(C).
To obtain a lower bound onPr(s → s′) (or the upper bound

of the diversity order), we can consider a diversity combiner
that observe all{yi}i:ci(s) 6=ci(s′) and compute a maximum
ratio combining (MRC) combiner as

ỹ =

∑
i:ci(s) 6=ci(s′)

h∗
i yi∑

i:ci(s) 6=ci(s′)
|hi|2

.

Taking the maximum over any pairs 6= s′ yields and average
probability of error with diversity orderdmin(C).

Lemma 2. If L, the number of distinctive processing rules, di-
vides the total number of receive nodes N , a coded distributed
diversity system using a codeword set C = {c(s1), . . . , c(sM )}
achieves a diversity order of dmin(C) using selected subset ML
decoding.

Proof: The diversity order of selected subset ML is upper
bounded by that of ML decoding, i.e.,dmin(C). To obtain the
lower bound, we again rely on the pairwise error probability.
First, we letG[1:L] be the generating matrix consists of the
first L columns ofG andCL = {cL(s1), . . . , cL(sM )} be the
resulting code fromG[1:L]. Denotedmin(CL) the minimum
Hamming distance ofCL. The symbol error probability at a
group Ii that shares the same processing rule with thei-th
node can be given as

Pe,Ii
(hIi

, ρ) =
∏

k∈Ii

Pe(hk, ρ)

wherehIi
=
[
hi, . . . , hi+⌊N−i

L ⌋L

]
. Similar to the proof of

Lemma 1, the pairwise error probability is bounded as

Pr(s → s′) ≤ E
[
(Pe,I(hI , ρ))

dH(cL(s),cL(s′))
]

= E
[
(Pe(h, ρ))

N
L
dH(cL(s),cL(s′))

]

where the expectation is overh and the equality comes from
the fact that there areN/L receive nodes inI. Thus, the worst
case pairwise error probability now becomes

max
s6=s′

Pr(s → s′) ≤ E
[
(Pe(h, ρ))

N
L
dmin(CL)

]
.

WhenL dividesN , it is obvious thatdmin(C) =
N
L dmin(CL)

which finishes the proof.
Remark: In generalN case, the diversity order of selected
subset ML would lie between⌊N

L ⌋dmin(CL) and N
L dmin(CL).

5Because we assume every node experiences i.i.d. Rayleigh fading channel,
we drop the receive node indexi.
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Pr




∏

i:ci(s) 6=ci(s′)

(Pr (ui | ci(s
′), hi)− Pr (ui | ci(s), hi)) > 0

∣∣∣∣∣∣
h, s, s′


 ≤

∏

i:ci(s) 6=ci(s′)

Pe(hi, ρ). (7)

Lemma 3. A coded distributed diversity system using a code-
word set C = {c(s1), . . . , c(sM )} achieves a diversity order
of ⌈dmin(C)/2⌉ using minimum Hamming distance decoding.

Proof: First, we letp = E [Pe(h, ρ)] to simplify notations.
Note that0 ≤ p ≤ 1. Now, consider again the pairwise error
probability. If the number of nodes with incorrect receptions
is ⌈dmin(C)/2⌉ or more, the error pattern will fall outside of
the Hamming sphere of radius⌊(dmin(C)− 1)/2⌋ centered at
the correct codeword. Thus, we have

Pe,code,H(ρ) ≤
N∑

i=⌈dmin(C)/2⌉

(
N

i

)
pi(1 − p)N−i

≤ N !

N∑

i=⌈dmin(C)/2⌉

pi(1− p)N−i

≤ N !
N∑

i=⌈dmin(C)/2⌉

pi

≤ (N + 1)! p⌈dmin(C)/2⌉

and

Pe,code,H(ρ) ≥ p⌈dmin(C)/2⌉(1 − p)N−⌈dmin(C)/2⌉.

Using the fact thatp → 0 as ρ → ∞, the diversity order is
bounded as

− lim
ρ→∞

log(Pe,code,H(ρ))

log ρ

≥ − lim
ρ→∞

log
(
(N + 1)! p⌈dmin(C)/2⌉

)

log ρ

→ ⌈dmin(C)/2⌉

and

− lim
ρ→∞

log(Pe,code,H(ρ))

log ρ

≤ − lim
ρ→∞

log
(
p⌈dmin(C)/2⌉(1 − p)N−⌈dmin(C)/2⌉

)

log ρ

→ ⌈dmin(C)/2⌉

which finishes the proof.

IV. CODE DESIGN AND PERFORMANCE IMPLICATIONS

Lemmas 1, 2, and 3 all show that the coding structure
across the receive nodes dictates system performance, and
it is better to have as large minimum Hamming distance as
possible for a codeC (or CL for selected subset ML). The
coding structure is heavily dependent on the number of nodes
N and the compression ratioK. In this section we aim to
clarify this relationship and look at some simple codes that
can be employed.

A. Code Bounds

The most common approaches to understand codes in
coding theory are metric ball bounds, particularly the sphere
packing bound and Gilbert-Varshamov bound. Recall that the
volume of a metric ball of radiust in GF (2B)N has a volume
given by

V (N, t) =

t∑

i=0

(
N

i

)
(2B − 1)i.

The sphere packing bound requires that theM balls of any
code of minimum distancedmin(C) must satisfy

MV

(
N,

⌊
dmin(C)− 1

2

⌋)
≤ 2N .

The Gilbert-Varshamov bound tells us that a linear code of
minimum distancedmin(C) exists for ourN nodeM -ary code
if

MV (N − 1, dmin(C)− 2) ≤ 2N .

These metric ball bounds are most useful in understanding
code properties whenK grows with N, particularly when
K/N converges to a fixed value asN → ∞. However, we
are more concerned with the case whereK is fixed and does
not scale withN . Moreover, we are interested in the case when
K is relatively small andN is not extremely large.

The most applicable bound to this situation is the Griesmer
bound [29], [30]. The Griesmer bound shows that the smallest
N of a codeC that can achieve a minimum Hamming distance
of dmin(C) must satisfy

N ≥
K−1∑

i=0

⌈
dmin(C)

2iB

⌉

Removing the ceiling function to generate a further lower
bound gives us the following bound.

Lemma 4. The minimum distance of any 2B-ary of length N
code C must satisfy

N2(K−1)B

1 + 2B + · · ·+ 2(K−1)B
≥ dmin(C).

Proof: The Griesmer bound can be lower bounded as

N ≥

(
K−1∑

i=0

1

2iB

)
dmin(C).

Reformulating this by scaling both sides,

N2(K−1)B

1 + 2B + · · ·+ 2(K−1)B
≥ dmin(C).
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B. Code Selection

The Griesmer bound gives us insight into code choice for
many different scenarios (e.g., see [30]). There are a few
cases when optimal codes in terms of the Griesmer bound
can be found. The following codes are optimal in the sense of
achieving the Griesmer bound with equality.

1) Simplex Codes
First note that ifdmin(C) = 2(K−1)B, then

K−1∑

i=0

2(K−1)B

2iB
= 1 + 2B + · · ·+ 2(K−1)B

=
2KB − 1

2B − 1
= N

The simplex code, which is the dual code of the Hamming
code, can achieve this minimum Hamming distance. If we
denoteGF (2B) as{0, 1, 2, · · · , q− 1}, a generator matrix of
the 2B-ary simplex code is given as

Gsimplex =




0 0 · · · 0 · · · 1 1
0 0 · · · 0 q − 1 q − 1
...

...
...

...
...

...
0 1 · · · 1 q − 1 q − 1
1 0 · · · q − 1 · · · q − 2 q − 1



.

(8)
In words, the generator matrixGsimplex is theK × (2KB −
1)/(2B − 1) matrix with columns chosen to correspond to all
non-zero vectors inGF (2B)K with first non-zero entry fixed
to one.

2) First-Order Reed-Muller Codes
A first-order Reed-Muller code exists forN = 2(K−1)B with
minimum distancedmin(C) = 2(K−2)B(2B − 1). It achieves
the Griesmer bound with equality because

K−1∑

i=0

⌈
2(K−2)B(2B − 1)

2iB

⌉

=

⌈
2B − 1

2B

⌉
+ (2B − 1) + · · ·+ 2(K−2)B(2B − 1)

= 1 + 2(K−1)B − 1

= N.

This code has a generator matrix of

GRM1 =




1 1 · · · 1 1 · · · 1 1
0 0 · · · 0 0 · · · q − 1 q − 1
0 0 · · · 0 0 q − 1 q − 1
...

... · · ·
...

...
...

...
...

0 0 · · · 0 1 q − 1 q − 1
0 1 · · · q − 1 0 · · · q − 2 q − 1




.

This corresponds to all possible vectors inGF (2B)K−1 with
a one appended to the top of the vector.

3) Shortened Concatenated Repetition-Simplex (SCRS)
Codes

A simple approach to code design whenN 6= 2(K−1)B and
N 6= (2KB − 1)/(2B − 1) is to shorten a concatenated code
consisting of a shorter simplex code and a repetition code. In
this case, the outer code is the simplex code and the inner
code is a repetition code.

To construct our code, we first define two variables

Nout =
(2KB − 1)

(2B − 1)
, Nin =

⌈
N(2B − 1)

(2KB − 1)

⌉
,

and construct theK ×NoutNin, generator matrix

Gconcat = 11×Nin
⊗Gsimplex

= [Gsimplex Gsimplex · · · Gsimplex]

whereGsimplex is the K × Nout simplex code’s generator
matrix given in (8),11×Nin

is theNin row vector of all ones
(i.e., 11×Nin

= [1 1 · · · 1]), and⊗ represents the Kronecker
product. If we let

N
′

= NoutNin −N,

then the extended code uses the shortened generator matrix
given by

Gextend = Gconcat

[
IN

000N ′×N

]

where IN is the N × N identity matrix and000N ′×N is the
N

′

×N all zero matrix.

C. SCRS Codes Analyses

A SCRS code achieves a minimum distance of

dmin(C) ≥

⌊
N(2B − 1)

(2KB − 1)

⌋
2(K−1)B. (9)

WhenN = K(2KB − 1)/(2B − 1), the code is optimal with
respect to the Griesmer bound because

K−1∑

i=0

⌈
N(2B − 1)2(K−1)B

2iB(2KB − 1)

⌉
=

K−1∑

i=0

K
2(K−1)B

2iB

= K
K−1∑

i=0

2iB

= K

(
2KB − 1

2B − 1

)

= N.

For arbitraryN , the following lemma states that the SCRS
codes are optimal in terms of the Griesmer bound whenK =
2.

Lemma 5. The length N SCRS code with K = 2 formed
from concatenating the 2B-ary simplex code and repetition
code has the following properties:
1) The minimum Hamming distance becomes

dmin(C) = α2B + r − 1

where α =
⌊
N/(2B + 1)

⌋
, N = α(2B + 1) + r, and r is the

remainder when N is divided by Nout = (2B + 1).
2) The code achieves the Griesmer bound with equality.
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Proof: For any lengthN = αNout + r, the generator
matrix can be written as

G = [Gsimplex Gsimplex · · · Gsimplex︸ ︷︷ ︸
α

GK×r]

whereGsimplex is K ×Nout matrix given as

Gsimplex =

[
1 0 1 1 · · · 1
0 1 1 2 · · · q − 1

]
,

where the matrixGK×r consists of the firstr columns of
Gsimplex. The minimum distance of this code is

dmin(C) = α2B + dK×r

where dK×r is the minimum distance of the code with
generator matrixGK×r.

It is obvious thatdK×r = 0 if r = 0, 1 and dK×r = 1 if
r = 2. For more generalr, theK × r code has a(r−K)× r
parity check matrix




1 0 · · · 0 1 1

0 1
. . . 0 1 2

... · · ·
...

...
...

0 0 · · · 0 1 r − 3
0 0 · · · 1 1 r − 2



.

By checking the minimum number of columns in the parity
check matrix for which a nontrivial combination gives the all
zero out, we can see thatdK×r = r− 1 for r > 0. Therefore,
dmin(C) = α2B + r − 1.

Note that the Griesmer bound forK = 2 tells us that to
provide a minimum distance ofd requires a code of length
at leastd + 1 when d = 1, 2, . . . , 2B. This means that our
K × r code is optimal in the sense of achieving equality in
the Griesmer bound. For the entire code, note that

α2B + r − 1 +

⌈
α2B + r − 1

2B

⌉
= α2B + r − 1 + α+ 1

= α(2B + 1) + r

= N.

This shows that the SCRS codes are optimal in terms of the
Griesmer bound.

Note that the case whenK = 2 is a very practical scenario
in distributed reception. For example, the scenario corresponds
to the case when the transmitter sends 16QAM (or QPSK)
symbol and each receive node forwards QPSK (or BPSK)
symbol to the fusion center. It would be very unlikely for the
receive nodes (that might consists of cheap sensors) to senda
high-order modulation symbol than QPSK to the fusion center
in distributed reception.

Remark: The proposed SCRS codes are suitable to selected
subset ML decoding explained in Section III-B because every
Nout-th receive node shares a common processing rule in the
SCRS codes.

D. Achievable Rate

The achievable rate (or the mutual information) given chan-
nel realizations contained in the vectorh is given by

I(h) =
∑

s∈S

∑

u∈U

Pr(s)Pr(u | s,h) log2

(
Pr(u | s,h)

Pr(u | h)

)

whereU denotes the set of all2NB possible outputs from
the receive nodes. In most communication systems, the source
can be modeled well as uniformly distributed overS, which
simplifies the mutual information to

Iu(h) =
1

M

∑

s∈S

∑

u∈U

{
Pr(u | s,h)

× log2

(
Pr(u | s,h)

1
M

∑
s′∈S Pr(u | s′,h)

)}
.

Given this, the average achievable rate is given by

Ravg = E [Iu(h)] (10)

with the expectation taken with respect toh.
Note that all of these achievable rate expressions are depen-

dent on the quantization structure used at each receive node.
This is implicit because the transition probabilities between
the input symbols and output symbols are dependent on this
quantization structure. However, in general, it is hard to derive
transition probabilities analytically, which prevents tohave a
closed-form expression of the achievable rate of the proposed
coded diversity technique. Thus, we numerically study the
achievable rate of the proposed coded diversity technique in
Section V and show that the proposed scheme can provide
benefits even with respect to the achievable rate in some
scenarios.

V. NUMERICAL STUDIES

We perform Monte-Carlo simulations to evaluate the pro-
posed coded diversity technique in this section. We assume
all channel entries are independent, Rayleigh distributed, i.e.,
hi ∼ CN (0, 1) for all i, during simulation; however, the
proposed techniques can be applied to any kind of channel
models of interest. The proposed scheme is based on the SCRS
codes to simulate different numbers of the receive nodeN .

We first compare the proposed coded diversity technique to
the scheme from [26]. In [26], the optimized codeword set
matrix for local decision and decoding rules using simulated
annealing for QPSK constellation data symbols,B = 1
processing at each receive node, andN = 10 nodes is given
as6

Codeword Set Matrix:(6, 12, 4, 9, 12, 9, 12, 6, 1, 3).

Each integer in the matrix represents binary column vector
of the matrix, e.g., the integer 12 in column 2 represents
[0 0 1 1]T . Each row and column of the matrix represents

6The concept of the codeword set matrix is similar to a code forthe
constellation pointsS in (6). Both matrices represent the constellation points
S. However, local decision rules are completely different, i.e., the local
decision rules in [26] are based on the codeword set matrix while the proposed
scheme relies on the generator matrixG.
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Fig. 2: Symbol error rate (SER) vs. SNR in dB scale with
M = 4 and N = 10. Each receive node of the proposed
scheme and the scheme from [26] forwardsB = 1 bit per
channel use to the fusion center while uncoded transmission
relies onB = log2 M forwarded bits per channel use from
each node.
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approx. ML decoding, N=14
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approx. ML decoding, N=30

Fig. 3: Symbol error rate (SER) of the proposed coded
diversity technique with ML and selected subset ML decoding
schemes according to SNR in dB scale.M = 8 andB = 1.

one of QPSK constellation point and decision rule of each
receive node, respectively. For example, if node 2 (which
corresponds to column 2 in the codeword set matrix) detects
the transmitted symbol as the first or second (third or fourth)
QPSK constellation points, it forwards 0 (1) to the fusion
center. WithN binary bits forwarded from all the receive
nodes, the fusion center adopts the same decoding rule with
the proposed coded diversity technique for the fair comparison.

Fig. 2 compares the symbol error rate (SER) of the proposed
scheme (using the SCRS codes) and the scheme in [26] for
QPSK constellation data symbols according to the transmit
SNR ρ with N = 10 receive nodes. We also plot the
results of centralized combining withz = h/‖h‖ in (1) and
uncodedB = log2 M bits transmission from each receive
node to the fusion center for comparison purpose. In uncoded

transmission, the fusion center perform majority decoding
based on the forwardedN estimated symbols from the receive
nodes.

In both ML decoding and minimum Hamming distance de-
coding, the proposed scheme outperforms the scheme in [26].7

It is expected to have these results because the corresponding
SCRS code has the minimum Hamming distance of 6 while
the scheme in [26] has the minimum Hamming distance of 5.
According to Lemma 1 and 3, the diversity orders of the SCRS
code are 6 and 3 for ML and minimum Hamming distance
decoding, respectively, while those of the scheme in [26] are
5 and 3, respectively. The results in Fig. 2 perfectly match
with the derivations of Lemma 1 and 3. Note that the SCRS
code with ML decoding shows the same diversity order with
uncoded transmission with much less transmission overhead
from the receive nodes to the fusion center. Because we have
an explicit expression of the SCRS code for an arbitrary
number of the receive nodesN , the proposed coded diversity
technique is very practical and easy to implement.

We compare the proposed diversity technique with ML and
selected subset ML decoding schemes in Fig. 3. We setM = 8
andB = 1 (which givesNout = 7 for the SCRS code) with
different numbers of the receive nodesN . WhenNout (or L
with the notation in the selected subset ML decoding section)
dividesN , it is clear that selected subset ML has the same
diversity order with ML decoding although selected subset ML
suffers from a certain SNR loss. Note that even whenNout

does not divideN (the case whenN = 30 in Fig. 3), selected
subset ML gives comparable diversity gain with ML decoding
with much less complexity.

In Figs. 4a and 4b, we plot SER of the proposed coded
diversity technique according toρ with different values ofM ,
B, andN . We can see from the figures that as the number
of the receive nodes increases, we have better SER with the
sameρ. Moreover, the number of the receive nodesN does not
need to be large to achieve practical SER of10−2 or 10−3 with
moderateρ for all cases, which clearly shows the practicality
of the proposed coded diversity technique.

Finally, we perform simulations to verify the average
achievable rate of the proposed scheme which is explain in
Section IV-D. We compareRavg in (10) of the proposed
coded diversity technique, centralized combining, and uncoded
transmission. To simplify simulations, we setS with QPSK
constellation,B = 1, and N = 3, which is the same
setup as the motivating example in Section II. We consider
two different scenarios, i.e., 1) Rayleigh fading channelsfor
all channels between the transmitter and the receive nodes,
2) normalized Rayleigh fading channels such that channel
amplitudes are normalized as|h1| = |h3| = 1.5 and|h2| = 0.3
for all channel realizations. The second scenario would be the
case when the second node is in a deep fade while two other
nodes are in stably good channel conditions.

We plot the results of the scenarios 1 and 2 in Figs. 5a and
5b, respectively. In the first scenario, the proposed schemeand
uncoded transmission are comparable with each other. This

7We do not consider selected subset ML in this case because selected subset
ML is not suitable to the scheme in [26].
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Fig. 4: Symbol error rate (SER) vs. SNR in dB scale with different values ofM , B, andN .
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(a) Rayleigh fading for all channels.
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(b) Fading channel with normalized channel gain of|h1| = |h3| = 1.5
and |h2| = 0.3.

Fig. 5: Achievable rate vs. SNR in dB scale withM = 4, N = 3, andB = 1.

results are reasonable because the proposed coding structure
is not intended to increase the achievable rate. However, the
proposed scheme outperforms uncoded transmission in the
second scenario. This is because the second node that pro-
cesses the imaginary component of the transmitted symbol is
in a deep fade in uncoded transmission, resulting in significant
achievable rate degradation. On the contrary, the proposed
coded diversity is even better in the second scenario than
the first since the fusion center can obtain much of mutual
information only from node 1 and 3 that are in good channel
conditions.

VI. CONCLUSION

We proposed a unified framework for coded diversity
distributed reception in this paper. We consider distributed
reception for the case when a transmitter broadcasts a signal
to multiple geographically separated receive nodes through
fading channels, and each receive node processes and forwards
the received signal to a fusion center. The fusion center then

tries to detect the transmitted signal exploiting the forwarded
data from all the receive nodes and channel state information
if available. The proposed coded diversity technique is based
on the strong connection between the distributed reception
problem and coding problem in coding theory. By leveraging
this connection, we are able to adopt appropriate linear block
codes, e.g., simplex and first-order Reed-Muller codes that
achieve the Griesmer bound with equality, to design processing
rules at the receive nodes and maximize the diversity gain.
We also developed novel shortened concatenated repetition-
simplex (SCRS) codes to support an arbitrary number of the
receive nodes. We analytically proved that the SCRS codes are
optimal with respect to the Griesmer bound in many practical
scenarios. We also evaluated the proposed coded diversity
technique by numerical studies. Because of its simple and
flexible structure, the proposed technique can be applied to
various scenarios including cellular systems, wireless sensor
networks, and radar systems.

The proposed coded diversity technique only can support
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an integer value of compression ratio. Supporting an arbitrary
value of compression ratio is a nontrivial problem, and it
would be an interesting future research topic to generalizethe
proposed framework in this direction.
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