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Abstract—In this paper a spectrum sensing policy employing
recency-based exploration is proposed for cognitive radio net-
works. We formulate the problem of finding a spectrum sensing
policy for multi-band dynamic spectrum access as a stochastic
restless multi-armed bandit problem with stationary unknown
reward distributions. In cognitive radio networks the multi-
armed bandit problem arises when deciding where in the radio
spectrum to look for idle frequencies that could be efficiently
exploited for data transmission. We consider two models for
the dynamics of the frequency bands: 1) the independent model
where the state of the band evolves randomly independently from
the past and 2) the Gilbert-Elliot model, where the states evolve
according to a 2-state Markov chain. It is shown that in these
conditions the proposed sensing policy attains asymptotically
logarithmic weak regret. The policy proposed in this paper is an
index policy, in which the index of a frequency band is comprised
of a sample mean term and a recency-based exploration bonus
term. The sample mean promotes spectrum exploitation whereas
the exploration bonus encourages for further exploration for
idle bands providing high data rates. The proposed recency
based approach readily allows constructing the exploration bonus
such that it will grow the time interval between consecutive
sensing time instants of a suboptimal band exponentially, which
then leads to logarithmically increasing weak regret. Simulation
results confirming logarithmic weak regret are presented and
it is found that the proposed policy provides often improved
performance at low complexity over other state-of-the-art policies
in the literature.

Index Terms—Cognitive radio, opportunistic spectrum access
(OSA), restless multi-armed bandit (RMAB), online learning,
multi-band spectrum sensing

I. INTRODUCTION

When looking at the radio spectrum allocation tables one
might come to the discouraging conclusion that there are
very few radio resources available for new wireless systems
and services. However, a very different conclusion is reached
when one actually measures the true utilization of the radio
spectrum at a particular location and time. In fact it has been
demonstrated by measurement campaigns (e.g. [1]) that many
parts of the spectrum are heavily underutilized. Cognitive
radio (CR) is a technology that holds promise for more
efficient use of such underutilized radio spectrum. A cognitive
radio network consists of secondary users (SUs) that sense
the spectrum for idle frequencies that they could use for
transmission in an agile manner. When the SUs sense that
a part of the spectrum allocated to the primary users (PUs) is
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idle, the SUs may use those frequencies for data transmission.
When the PUs become active again the SUs need to be able to
detect the primary signal and vacate the band and search for
idle frequencies elsewhere in the spectrum. For an up-to-date
and extensive review of different spectrum sensing techniques
as well as various exploration and exploitation schemes for
CR, see, for example [2], [3].

Depending on the location and the spectral allocation of the
PUs, some frequency bands are idle more often than others.
Some bands may have higher bandwidths and experience less
interference, thus, potentially support higher data rates. Natu-
rally, it is desirable that the CRs focus on sensing those bands
that are persistently available and have a large bandwidth, i.e.,
bands that are expected to provide high data rates. However,
since the expected data rates are in practice unknown, the
CR needs to learn them. This learning problem resembles a
variation of the multi-armed bandit (MAB) [4] problem where
the objective is to learn and identify the subbands that provide
the highest data rates while not wasting too much time on
sensing frequencies with low data rates. In machine learning
this is also referred to as the exploration-exploitation tradeoff
problem [5].

In the classical MAB problem a player is faced with slot
machines (one armed bandits) the th one of which produces
an unknown expected reward , . The player’s
goal is to collect as much reward as possible over time,
i.e., to learn the machine that has the highest as fast as
possible. The dynamic rule governing the selection of the
machine to be played is called a policy and it is commonly
denoted by . In cognitive radio the analogous counterpart
of a slot machine is a frequency band suitable for wireless
transmissions whereas a reward corresponds to an achieved
data rate when the secondary user accesses an idle band. A
good recent review of the classical bandit problem and its
variations is given in [4].

The general description of the MAB problem given above
contains a rich blend of variations with different assumptions
and solutions. The MAB problems in the literature may be
broadly categorized into problems with independent rewards
and problems with Markovian rewards. These two categories
may be further subdivided into rested and restless bandit
problems and furthermore into problems with known statistics
and problems with unknown statistics. In the independent
MAB the rewards of each machine are generated by a time
independent random process whereas in the Markovian MAB
the rewards are generated by a Markov chain. The difference
between the rested MAB and the restless MAB (RMAB) is that
in the rested MAB the state of the machine can change only
when the machine is played, while in the restless MAB the
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state of the machine keeps evolving regardless of whether it is
played or not. The restlessness of the MAB has implications
only in the Markov case but not in the independent reward
case, since independent rewards naturally do not depend on
the past rewards nor the players actions.

The optimal strategy for the Markovian rested MAB with
known statistics is the so called Gittins index policy [6]. The
MAB with Markovian restless rewards with known statistics
is in general PSPACE-hard [7], but for a particular relaxed
version of the problem the optimal solution has been provided
by Whittle [8]. The optimal policy for the rested and restless
MAB problem with time independent rewards is obviously to
always play the machine with the highest expected reward. For
the restless Markovian MAB problem with unknown statistics
the optimal policy is generally not known.

In this paper we are interested in the RMAB problem with
unknown statistics - a problem that stems from multi-channel
dynamic spectrum access in cognitive radio. In particular
we consider the case where the rewards are independent in
time and the case where they evolve according to a 2-state
Markov chain (i.e. the Gilbert-Elliot model). The 2-state model
captures the fact that the spectrum is either idle or occupied,
hence it is particularly suitable for the CR problem. In the
RMAB problem the states of the non-activated machines may
change, similarly as the state of the spectrum band may change
regardless of whether it is sensed or not. Hence the RMAB
is a suitable model for the dynamic spectrum access problem.
Depending for example on the lengths of the time slots of
the SU and the PU either the independent reward model or
the Markovian reward model may be more appropriate. For
example, if the operational time slot of the secondary user
is much smaller than the time slot of the primary user the
Markovian model may be more suitable. This is because in
that case the PUs consecutive actions may be correlated from
the SUs point of view. On the other hand if the SU has a much
larger time slot than the primary user the independent reward
model can be more appropriate. In this paper we cover both
independent and Markovian reward cases.

In the Markov case, since computing the optimal policy is
in general PSPACE-hard [7], a weaker notion of optimality has
been used in the literature called the best single arm policy [9],
[10], [11]. The best single arm policy is defined as the policy
that produces the highest cumulative reward by always playing
only one arm, which is the arm with the highest stationary
mean reward. Note that in the i.i.d. MAB the best single arm
policy is also the optimal policy. In the rest of this paper the
term optimal policy always refers to the best single arm policy.

The success of a policy is measured by its expected
weak regret which is the difference between the expected total
payoff using policy and the total payoff expected when
the best single arm policy is used. In [12] it was shown
that when the rewards are independent for any policy, the
weak regret is asymptotically lower bounded by a function
that grows logarithmically in time. Consequently, policies
achieving logarithmic weak regret are called order optimal.

This paper proposes a sensing policy that is asymptotically
order optimal when the rewards are independent. Further-
more, it is shown that asymptotically logarithmic expected

weak regret is achieved when the rewards are restless and
follow a Markov chain with two states (i.e. the Gilbert-Elliot
model). The proposed policy is an index policy consisting
of a sample mean term and an exploration bonus term. The
sample mean promotes exploitation whereas the exploration
bonus encourages for exploration. The exploration bonus in
this paper is based on recency, i.e., it promotes exploring such
bands that have not been sensed for a long time. The higher
the exploration bonus of a particular band, the more likely the
band will be explored in the near future. The exploration bonus
is designed such that asymptotically the time difference of two
consecutive sensing time instants on a suboptimal band grows
exponentially, which also provides an effortless intuition for
logarithmic weak regret. In this paper we in fact show that the
proposed policies achieve asymptotic logarithmic weak regret
and demonstrate by simulations that they can often outperform
other state-of-the-art policies or obtain equal performance with
reduced complexity. Asymptotic results are typically achieved
with finite sample size. However, the point at which the
asymptotic result begins to hold need to be determined by
simulations. Another advantage of the recency based policies
proposed in this paper is that the tradeoff between exploration
and exploitation becomes asymptotically deterministic. This
allows for simplifying the proposed policy in a practical imple-
mentation. For instance, in centralized cooperative spectrum
sensing, where a fusion center (FC) maintains and runs the
sensing policy on behalf of the (possibly unintelligent) SUs,
one would like to minimize the amount of control information
transmitted between the FC and the SUs. After a sufficient
number of sensings the exploration and exploitation time
instances have practically become deterministic. Then the FC
does not need to instruct the SUs at every time instant which
band to sense. Instead, the FC needs to communicate to the
SUs only at those time instants when the sensed band changes.
This could significantly reduce the amount of control traffic
the FC needs to transmit. However, we leave these kinds of
developments and quantitative results for future studies.

The proposed recency-based policy may find applications
also outside the spectrum sensing context. These possible
areas of application are (but not limited to) adaptive clinical
trials, webpage content experiments, internet advertising, game
playing and learning online the shortest path in a graph with
stochastic edge weights (see e.g. [13] and references therein).

A. Contributions and structure of the paper
Some preliminary ideas and results of this paper were

published by the authors in [14], where a special case of
the sensing policy proposed in this paper was developed. The
contributions of this paper are the following:

We generalise the idea of recency-based exploration in
RMAB formulation of multi-band spectrum sensing and
show how to find order optimal sensing policies for differ-
ent reward (data rate) distribution families. In particular
we find order optimal policies for bounded i.i.d. rewards
and for rewards generated by the Gilbert-Elliot model.
It is shown that the performance of the proposed sensing
policy can be enhanced when the type of the reward
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distribution is known, e.g., when the rewards are i.i.d.
Bernoulli, by simply modifying a constant in the explo-
ration bonus.
A nontrivial analysis of the expected weak regret of the
proposed policy for i.i.d. and Markovian rewards is pro-
vided and the weak regret is shown to be asymptotically
logarithmic.
We present extensive computer simulations demonstrat-
ing logarithmic weak regret of the proposed policy and
demonstrate that the policy often outperforms other state
of the art policies or achieves equal performance at
significantly lower computational cost.

The rest of the paper is organized as follows. In Section II
we give an overview of the related work in the area of MAB
problems and sensing policies in dynamic spectrum access.
In Section III we express mathematically using the RMAB
formulation the problem of finding a spectrum sensing policy.
In section IV we propose the spectrum sensing policy based on
the RMAB formulation for both i.i.d. and for Markovian data
rates (rewards). In section V we show how to optimize the
exploration bonus for particular reward distribution classes.
Section VI illustrates the performance of the policy and
verifies the analytical results using simulation examples. The
paper is concluded in Section VII.

II. RELATED WORK

Since the seminal paper by Lai and Robbins [12], much
of the work on the stochastic MAB problems has focused
on index policies with low expected weak regret and low
computational complexity. Many of these policies are built on
a principle called “optimism in the face of uncertainty”. This
principle states that an agent (learner) should stay optimistic
about actions whose exact expected response is uncertain. Poli-
cies based on this principle may be categorized in two groups:
optimistic initial value policies [5], [15] and exploration bonus
policies [12], [14], [15], [16], [17], [18].

In optimistic initial value policies the value of an action
is initialized with a high bias in order to guarantee sufficient
amount of exploration in the beginning of the learning process.
In [15] it was shown that setting the initial value sufficiently
high guarantees convergence to an -optimal policy. However,
selecting high enough initial values that lead also to a good
finite time performance is not a trivial task, which makes these
policies impractical for the purposes of this paper.

Policies based on exploration bonuses assign a bonus for
the actions based on, for example confidence, frequency or
recency. Confidence based policies [16], [12], [17] evoke
optimism through the use of an optimistic upper confidence
bound on the expected reward estimate of the actions which ef-
fectively makes insufficiently explored actions more attractive
for the agent. Frequency based policies assign bonuses to the
actions based on the number of times they have been taken. In
this regard most confidence based policies, such as the UCB by
[16], may also be seen to be frequency based since the value of
the confidence bound is inversely proportional to the number
of times the action has been taken. Recency-based policies,
such as the one proposed in this paper, promote exploration in

proportion to the time that has passed since the action was last
tried. As a consequence, actions that have not been taken for
a long time will be chosen more likely in the near future. The
rate at which exploration is promoted is gradually decreased in
time in order to guarantee convergence to the optimal action.
To the best of our knowledge, this paper is the first to develop
and analyze recency-based exploration in the bandit setting.

For the classical stochastic MAB problem with independent
rewards it was shown in [12] (and later generalized in [19])
that asymptotically order optimal policies have an expected
weak regret of . In [20] this lower bound was further
generalized for the case where the rewards are at rest and
evolve according to an irreducible and aperiodic Markov chain.
However, for general restless Markovian rewards (apart from
the special case of i.i.d. rewards, such as Bernoulli) theoretical
lower bounds on the weak regret have not been reported in the
literature.

In [12] a class of confidence bound based policies that
achieve asymptotical logarithmic weak regret was presented
for the MAB problem. However, these policies require storing
the entire history of the observed rewards, which makes
their implementation impractical. The recency based policies
proposed in this paper require storing only a sample mean term
and an exploration bonus term for each of the frequency bands.
In [21], a class of policies based on sample means and upper
confidence bounds was proposed. These policies were simpler
compared to those in [12]. However, the policies in [21]
are distribution dependent and deriving the upper confidence
bounds in a closed form is often tedious. Among the most
celebrated bandit papers is [16], where a computationally
simple upper confidence bound (UCB) policy was proposed
and shown to be uniformly order optimal when the rewards
are independent and have a bounded support. This policy
was further developed in [22] (see Theorem 2.2 therein) by
improving a constant in the UCB policy. The recency based
policy proposed in this paper has similar desirable properties
as the UCB policy in terms of its simple implementation.
Additionally, the recency based policy has an intuitive ex-
planation for its asymptotically logarithmic weak regret. In
the UCB policy exploration bonus is based on confidence,
whereas in this paper the policies are based on recency. In
addition to this fundamental difference, we have observed in
our simulations that the policy proposed in this paper often
achieves lower weak regret than the UCB. Recently the KL-
UCB policy was proposed in [23]. It is an asymptotically
optimal policy (i.e. it achieves the lower bound of [12]) for
bounded i.i.d. rewards whose distributions are known except
for their parameterization. The KL-UCB was analytically
shown to have uniformly lower expected weak regret than the
UCB when the rewards are Bernoulli. Therefore, we compare
the policy proposed in this paper to the KL-UCB policy instead
of the UCB. However, the KL-UCB is computationally more
expensive than the policy proposed in this paper (as well as
the UCB) as it requires solving a constrained optimization
problem using dichotomic search or Newton’s iterations. For
example the average time complexity of binary search is

, where is the size of the search grid that
essentially sets the accuracy of the optimal upper confidence
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bound. In the proposed sensing policy no such search steps
are required. Interestingly, although being much simpler, our
simulations with independent rewards show that the proposed
recency based policy performs equally well or close to the
KL-UCB in many scenarios.

CR spectrum sensing policies stemming from the RMAB
formulation have been proposed for example in [9], [10],
[11], [24], [25], [26]. Among them [9] and [10] are the most
relevant ones for this work since they also model the sensing
problem as an RMAB problem with unknown statistics and use
the weak regret as the performance measure. In [9] a policy
achieving uniformly logarithmic weak regret in the RMAB
problem with unknown Markovian rewards was proposed
for centralized and decentralized CR networks. The policy
proposed in [9] operates in regenerative cycles that cleverly
allows for using an UCB type index policy. In this paper we
also employ regenerative cycles when learning the stationary
expectations of the Gilbert-Elliot channel in section IV-B. The
policy in [9], however, discards all observations made outside
the regenerative cycles making it an inefficient learner in some
cases. In this paper however all collected observations are
used for learning. In [10] a policy based on deterministic
sequencing of exploration and exploitation (DSEE) epochs
was proposed for the RMAB problem and shown to achieve
uniform logarithmic weak regret in centralized and distributed
channel sensing. The principle used in the policy proposed
in this paper, which is to grow the periods of exploitation
exponentially in time, echoes similar ideas as the policy in
[10]. However, the policy proposed in this paper is an index
policy whereas the DSEE policy operates explicitly in epochs
of exploration and exploitation by maintaining a dynamic
list of frequency bands to be either explored or exploited.
The policy proposed in this paper has a simple index form.
Moreover, our simulation results demonstrate that also a better
performance is often obtained by using the proposed policy.
The simulations also indicate that the deterministic nature of
the DSEE exploration epochs occasionally results in sudden
increases in the weak regret, which do not occur in the policy
proposed in this paper. In [24] it was shown that under the
assumption that the channels are identical and independent
2-state Markovian channels whose signs of correlation are
known, the RMAB problem can be solved with a simple my-
opic sensing policy. However, in practice the channels would
rarely obey the same statistics (e.g. radios are in different
locations, scattering environments and experience different
SINR and are mobile). Furthermore, the sign of correlation
of the channels is usually not known a priori. In our paper
the statistics of the underlying rewards are not assumed to be
known. In [25] the problem of finding optimal sensing policy
was cast as a partially observable Markov decision process
(POMDP) with unknown channels’ state transition probabili-
ties. The proposed algorithm works by estimating the transition
probabilities during exploration phases and then mapping the
obtained estimates in to so called policy zones for which the
optimal policies have been precomputed. However, apart from
a few special cases, it is not always possible to precompute
the optimal policies for a general multi band spectrum sensing
scenario. We mention [11] and [26] here as possible interesting

directions for future studies where the recency-based policies
proposed in this paper could be applied assuming either side
information or different optimization goals. In [11] the authors
formulate the learning problem of joint sensing and access
as a RMAB problem with side observations and assume that
the SUs sensing performance (detection probability and false
alarm probability) is known. The paper then proposes using an
UCB-type policy for solving the problem. Another interesting
application of RMAB formulation in CR was given in [26],
where the authors propose a PAC learning algorithm that
determines the amount of exploration needed in RMAB in
order to balance between the energy consumption of sensing
plus probing and access.

III. PROBLEM FORMULATION

A. System model
At time instant the CR network senses (and possibly

accesses) a frequency band , and observes
an achieved data rate (reward) with an unknown mean

. In this paper the data rates are assumed to be either i.i.d.
in time or evolve as a stationary 2-state Markov process. The
rates are assumed to be bounded which can be
achieved by normalizing the true data rates (bits/s) with the
highest Shannon capacity among the bands. Also, it is assumed
that the SUs have a way of estimating and feeding back the
achieved data rates to a central node, e.g. a fusion center that
runs and maintains the sensing policy for the whole network
or for a small subnetwork. All bands are assumed to evolve
independently from each other.

B. Objective
The objective of this paper is to develop a simple sensing

policy for the CR that achieves an order optimal tradeoff be-
tween exploration and exploitation. Quantitatively, the success
of a policy can be measured by its expected weak regret

. The weak regret of a policy is defined as the
difference of the total payoff achieved by the policy and the
total payoff achievable by the optimal single arm policy .
Mathematically this can be expressed as

(1)

where is the time index, is the optimality
gap of band , is the number of times band has been
sensed up to time using policy and . In
order to simplify the notation the superscript will be dropped
for the rest of the paper.

C. Discussion on the System Model
In practice the notion of the single best frequency band

may be ambiguous. Since the SUs may be scattered in space
they experience different channel fading and consequently
obtain different data rates in different locations. For the same
reason, the probabilities of detection and false alarm may
be different at different locations. Taking these factors into
account the optimal sensing policy becomes a function of
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the access policy (access policy tells who will get access to
the possibly idle band) and the employed sensing scheme.
Such joint optimization of sensing and access in CR has
been considered for example in [11], [27], [28]. Also, in
practice the rewards from different bands are not necessary
independent since high power primary transmissions (such as
TV-transmission) may cause out-of-band interference to the
neighboring bands.

In many potential CR settings, the data rates (rewards) are
non-stationary. For example the obtained throughputs depend
on the amount of traffic in the primary network that may vary
between peak and off-peak hours. Also the time-frequency-
location varying nature of the wireless channels and user
mobility will in practice cause the secondary users data rates to
be non-stationary. In these situations a sensing policy assuming
stationarity has to be occasionally restarted afresh. Alterna-
tively, in exploration bonus based policies the exploration
bonus could be tuned so that after a fixed period exploration
becomes more attractive again. In this paper, however, we
concentrate on the stationary problem alone.

IV. THE PROPOSED POLICY

A. Policy for i.i.d. rewards
In this section we propose a spectrum sensing policy for

CR when the data rates (rewards) are bounded and
i.i.d. in time. The proposed sensing policy is an index policy
that contains an exploitation promoting sample mean term
and an exploration promoting bonus. Exploration bonuses are
awarded to the band according to recency, such that bands that
have not been sensed for a long time will get higher bonus
and consequently will be more likely to be sensed in the near
future. The proposed sensing policy is detailed in Fig. 1 and
equation (2).

Initialization:
Sense each band once.

Loop:
Sense band with the highest index ,
where is computed according to (2).

Fig. 1. The proposed sensing policy for i.i.d. rewards.

The index of band at time is given as

(2)

where is the sample mean of the rewards from band
, is the exploration bonus and is the last

time instant when band was sensed. The sample mean is
computed as , where is
the sequence of length of the sensing time instants of
band up to time .

The exploration bonus is a concave, strictly
increasing and unbounded function such that . An
example of such exploration bonus would be .
Fig. 2 shows the exploration bonus of a suboptimal band as a
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Fig. 2. The exploration bonus of a suboptimal channel as a function of time
in a two frequency band scenario for . In this
example the difference between the expected rewards of the optimal band and
the suboptimal band is . The time interval between two
consecutive sensing time instants (the zeroes) of the suboptimal band tends
to grow exponentially in time. In other words it means that the lengths of the
exploitation epochs grow exponentially. Since the time intervals between two
consecutive sensings of a suboptimal channel grow exponentially it means
that the total number of sensings must grow logarithmically in time.

function of time when using it in the proposed sensing policy.
It can be seen that the zeroes of the exploration bonus indicate
the sensing time instants of the subband and that the time
instants when the subband is sensed tend to grow exponentially
as sensing focuses on the band giving the highest rewards.

The effect of the choice of the exploration bonus on the
weak regret becomes now intuitive. Employing a that
increases fast from 0 means that asymptotically all bands
(including the suboptimal ones) will be sensed more often
compared to a choice of that increases slowly. Fast
growing will lead to aggressive exploration whereas slow
growing leads to aggressive exploitation. With aggressive
exploration the policy’s asymptotic weak regret can be reached
fast but its value will be high, whereas with aggressive
exploitation the convergence to the asymptotic regret will be
slow but the regret itself will be small. This trade-off is dealt
in more detail in section V.

The asymptotic weak regret of the policy in Fig. 1 is
summarized in Theorem 1.

Theorem 1. The asymptotic weak regret of the policy in Fig.
1 when the rewards are i.i.d. is

(3)

Proof: See appendix A

B. Markovian rewards
In practice the assumption that the state of a frequency

band evolves independently in time may not be always valid.
Following the line of [11], [24], [29], [30] we model the
evolution of the state of the spectrum band with a 2-state
Markov chain (see Fig. 3), also known as the Gilber-Elliot
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model. We propose a small modification for the sensing policy
in Fig. 1 so that provably asymptotically logarithmic weak
regret will be attained. The condition for the logarithmic weak
regret is that the Markov chain of the Gilbert-Elliot model
is ergodic (irreducible, aperiodic and such that all states are
positive recurrent). We employ the Gilbert-Elliot model due
to its correspondence with dynamic spectrum access scenario.
In a real CR network the SUs would be equipped with
signal detectors which perform binary hypothesis testing on
the availability of a particular frequency band. Assuming
that the detectors are well designed the secondary users may
then access the band only when the state of the spectrum
is detected to be idle. The two states in the Gilbert-Elliot
model correspond to these two possible outputs from the
detector: state 1 indicating that the band is occupied and state
0 indicating that the band is idle. Note, however, that the actual
observed rewards (data rates) from these two states can be any
two values between 0 and 1.

Fig. 3. Markov chain used to model the temporal dependency of the state
of a band. In this paper state 1 denotes that the band is occupied and state 0
that the band is idle.

Our policy construction for Markovian rewards is inspired
by [9] and [11] by making use of the regenerative property
of Markov chains. In particular, we constrain the periods of
exploration and exploitation of each frequency band to be an
integer multiple of a full regenerative cycle. Starting from
state a regenerative cycle of a Markov chain is a sequence
of states before the chain returns back to state . See Fig.
5 for an illustration of regenerative cycles. When the chain
is irreducible and aperiodic the lengths of the regenerative
cycles of a given state are i.i.d. (see e.g. [31],[32]). This
”trick” of breaking the observed states of a Markov chain into
regenerative cycles is often used in order to employ the theory
of independent random variables, for example, when proving
the strong law of large numbers for Markov chains [32]. The
proposed policy for Markovian rewards is shown in Fig. 4.
Fig. 5 illustrates the regenerative cycles during the first 12
sensing time instants in a 2 band scenario with the proposed
sensing policy.

The main difference to the policy in Fig. 1 is that each
time a band is selected for sensing it will be sensed until at
least one full regenerative cycle is observed. This also helps in
making the analysis of the weak regret in appendix B simpler
and intuitive.

Since the Bernoulli distribution is a special case of two-
state Markov chain, the proposed sensing policy in Fig. 4 can
naturally also achieve asymptotically logarithmic weak regret
with Bernoulli distributed rewards. However, in practice, due
to the fact that the policy in Fig. 4 forces the CR to sense
the same band for at least one full regenerative cycle, it often
tends to perform slightly worse with i.i.d. rewards than the

Initialization:
Sense each band for one regenerative cycle.

Loop:
After each full regenerative cycle sense
band with the highest index , where

is computed according to (2).

Fig. 4. The proposed sensing policy for rewards evolving according to a
2-state Markov chain.

1 2 3 4 5 6 7 8 9 10 11 12

(idle) 0

(occupied) 1

(idle) 0

(occupied) 1

Time

Band 2

Band 1

Fig. 5. Illustration of the first 12 sensing time instants using the proposed
sensing policy. The number of bands is 2 and they are assumed to follow
a 2-state Markov-chain. The horizontal axis indicates time and the vertical
axis indicates the states of the two bands. The dashed line indicates the state
evolution of the band. The green solid line shows the sensed states by the SU.
The lengths of the regenerative cycles of band 1 are denoted as ,
and similarly for band 2. At time instants 1-2 the SU senses one regenerative
cycle at band 1. During time instants 3-8 the SU senses 3 regenerative cycles at
band 2 and at time instants 9-12 the SU senses band 1. The indices of the bands
are recalculated after each observed full regenerative cycle. Consequently the
decision to keep sensing the same band or to switch to another is also made
after each observed regenerative cycle. In this example these index update
and decision time instants correspond to 2,4,5,8 and 12.

policy in Fig. 1.
The following theorem summarizes the asymptotic weak

regret of the policy in Fig. 4.

Theorem 2. The asymptotic weak regret of the policy in Fig. 4
when the rewards are evolving according to a 2-state Markov
process is logarithmic, i.e.,

(4)

Proof: See appendix B

C. Intuition on asymptotic logarithmic weak regret
Next we provide the intuition why the proposed policies

in Fig. 1 and Fig. 4 attain asymptotically logarithmic weak
regret. Detailed proofs can be found in appendices A and B.

As was seen in (1) the expected weak regret depends on the
number of times that a suboptimal frequency band is sensed. In
order to show that the weak regret is logarithmic one needs to
show that the expected number of sensings of any suboptimal
band is upper bounded logarithmically. Our analysis is based
on investigating the interval between two consecutive sensing
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time instants of any suboptimal band (the instants of the zeroes
seen in Fig. 2) after sufficient number of samples from each
band has been accumulated. It is shown that the time difference
between the first and the (for large enough ) sensing time
instant of a suboptimal band grows exponentially in time and
that this fact consequently leads to logarithmically growing
weak regret.

Since the rewards are bounded and since by definition
and , at any given time for any band

there always exists a future time instant when the band will be
sensed again. In other words the policy never completely stops
exploring and consequently each band will be asymptotically
sensed infinitely often. After sufficient amount of exploration
due to the strong law of large numbers the indices of a
suboptimal band and the optimal band may be approximated
respectively as

where is the time instant of the sensing of (subopti-
mal) band . The latter inequality follows from the fact that the
exploration bonus is always greater or equal to
zero. This is to say that the sample mean terms behave asymp-
totically like constants and that for sufficiently large the
times of exploration and exploitation are practically controlled
by the exploration bonus . Hence, asymptotically
a suboptimal band will not be sensed sooner than when

, i.e., when

Since and strictly increasing, concave and
unbounded on , the inverse function
and is strictly increasing, convex and unbounded
on . Consequently , where the
equality holds only when . For the sensing

and so on for the sensing
time instant . This implies
that asymptotically

(5)

The above intuition is based on the strong law of large
numbers which states that there exists a finite time instant
when approximating the sample mean terms with the true
mean values is good enough and after which the number of
suboptimal sensings will increase only logarithmically. This
is illustrated graphically in Fig. 6, where after time instant

the number of sensings of a suboptimal band grows
logarithmically.

While much of the recent work in this area has concentrated
on finding finite time upper bounds on the expected weak
regret, the bounds derived in this paper are asymptotic by
nature. Most of the recent derivations of finite time weak regret
bounds in the literature owe themselves to the framework first
given in [16] by using Chernoff/Hoeffding type concentration
inequalities. The policies proposed in this paper are not
applicable to this proofing technique, since the exploration

Fig. 6. Example of the asymptotic behavior of the number of suboptimal
sensings for one sample path. The x-axis indicates the suboptimal sensing
time instants and the y-axis indicates the ordinal of the sensing (the number of
suboptimal sensings). The length of each horizontal line indicates the sensing
time instant for that the th sensing. For the first sensings the number of
suboptimal sensings might in the worst case grow linearly with time, but
with probability one for large enough (here ) the growth will slow down
to logarithmic.

bonuses here are based on recency - not confidence explicitly.
However, in Appendices A and B, we show that for every run
of the proposed policy with probability 1, there exists a finite
time instant after which the weak regret grows logarithmically.
In practice, this means that whenever the policy is set running,
the weak regret converges with probability 1 to a logarithmic
rate in a finite time.

V. CONSTRUCTING THE EXPLORATION BONUS

In this section we present how to find the exploration bonus
. The goal is to find a feasible exploration bonus

that brings the leading constant of the asymptotic weak regret
in the i.i.d. case as close as possible to the asymptotic lower
bound given in [12]. Here by the term ”feasible”, we mean an
exploration bonus within the proposed class of recency-based
policies that is also simple to compute. Deriving a policy that
would match the lower bound of Lai and Robbins in [12] is
out of the scope of this paper, since to that end the proposed
policy would need nontrivial estimates of the Kullback-Leibler
divergences between the reward distributions. Here we will
only consider the case of (general) independent rewards and
Bernoulli rewards, since the lower bound of [12] applies to
those cases. Interestingly, the lower bound for the weak regret
in the general restless Markov case is not known, but deriving
is omitted in this paper.

A. Independent rewards: general case

In [12], Lai and Robbins showed that for any consistent
policy , the following lower bound holds for the number of
sensings of a suboptimal band:

(6)

where is the Kullback-Leibler divergence of the
reward distribution of the suboptimal band to the reward
distribution of the optimal band and is the total
number of suboptimal sensings by policy . We would like
the asymptotic leading constant of the weak
regret of our policy in (5) to be as close as possible (from
above) to . Hence, we are looking for a
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that satisfies

(7)

as close as possible to equality. Since is a
convex function in the pair ( , ) [33], one can conclude
that it is best approximated from below by that is
convex. Consequently, since needs to be convex, the
exploration bonus itself should be concave. This is
also supported by intuition and by keeping in mind Fig.2: If
the difference in the mean reward between the optimal band
and the suboptimal band is small (close to 0), one can afford
to increase the exploration bonus fast in the beginning since
both the optimal and suboptimal bands need to be explored
many times in order to find out which one of them has a
larger expected reward. On the other hand, if the difference in
the mean reward is big (close to 1), one can still increase the
exploration bonus fast in the beginning but should gradually
slow it down in order to inhibit excessive exploration.

For deriving an exploration bonus for bounded i.i.d. rewards
we observe the following result due to Pinsker’s inequality:

Theorem 3. Let be continuous random vari-
ables with integrable probability density functions and

. Let . Then

(8)

where denotes the Kullback-Leibler divergence.

Proof:

(9)

where is the total variation distance between and
. Equation (8) then follows from (9). The second inequality

is due to the fact that we are integrating over the unit interval
. The last step in (9) is due to Pinsker’s inequality

(see e.g. [34]). With practically the same arguments (and by
replacing integrals with sums), the above result can be derived
for and that are bounded discrete random variables.

Using the fact that from Theorem 3, we
can find the exploration bonus for the case when the rewards
are assumed to be independent and bounded in . Keep-
ing in mind that asymptotically at the sensing time instants

and requiring that ,
it is possible to find to be

(10)

Using (10) as the exploration bonus in the proposed policy
(listed in Fig. 1), the leading constant of the asymptotically
logarithmic weak regret will approach according to (5).

For illustration purposes we simulate the proposed policy
with the exploration bonus given in (10) in a two frequency

band scenario. The rewards (data rates) from band 1 are i.i.d.
uniform between and the rewards from band 2 are i.i.d.
uniform between . With these the expected rewards are

and so that . Fig. 7 plots the rate of
change of the number of sensings of band 1 with respect to

. As expected by (5), the rate of change asymptotically
converges to .
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Fig. 7. The simulated rate of change of the number of sensings of band 1
with respect to . The curve has been averaged over 1000 Monte Carlo
simulations. The simulated rate of change approaches the theoretical value

.

B. Bernoulli rewards
Next we construct the exploration bonus for the case when

the rewards are known to be independent Bernoulli distributed.
By assuming the data rates to be Bernoulli variables (in
addition to being independent), it is possible to obtain a tighter
version of the Pinsker’s inequality and hence use greedier
exploitation than what would be achieved by the exploration
bonus in (10).

Theorem 4. Assume two Bernoulli random variables and
in . Let the success probability (probability of value 1) of

be and the success probability of be . Furthermore,
let . Then

(11)

Proof:

(12)

where is the total variation distance between and
and the last inequality is due to Pinsker’s inequality. Hence

solving for yields equation (11).
Note that the theorem above holds for any Bernoulli process

(and not only when the rewards are either 0 or 1). Employing
Theorem 4 we obtain the tailored exploration bonus for
Bernoulli distributed rewards as

(13)
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Theorem 3 provides a lower bound for the KL-divergence of
all independent rewards bounded in , whereas Theorem
4 provides a tighter lower bound when the rewards are
also known to be Bernoulli. Hence, when there is a priori
information about the type of the reward distributions (in this
case, Bernoulli) it is possible to use an exploration bonus that
favors more aggressive exploitation. In other words, when the
reward distribution is known apart from its expectation, it is
possible to more carefully balance the trade-off between the
convergence to the optimal frequency band and the achieved
asymptotic regret.

VI. SIMULATION EXAMPLES

In this section we illustrate the performance of the proposed
sensing policies in various scenarios with independent and
Markovian data rates (rewards) by simulations. Here the
performance measure is the number of suboptimal sensing,
i.e., the number of times when other than the band with the
highest stationary expectation was sensed. The performance of
the policies is compared against 3 other cutting edge policies
KL-UCB [17], DSEE [10] and RCA [9]. In order to guarantee
the DSEE and RCA policies to achieve finite time logarithmic
weak regret, one needs to define appropriate parameter values
for them (parameter for the DSEE and parameter for
the RCA). To this end one would need to know certain non-
trivial upper bounds for the parameters of the underlying
Markov processes. This information may not be available in
practice. In addition, it has been empirically shown in [10],
[9] that these theoretical parameter values, although being
sufficient, are not necessary and that often better performance
is achieved with lower values of and . However, setting

and to low fixed values might improve their performance
in some scenarios but might lead to significant performance
degradation in other scenarios. According to [10], by letting
the policy parameter of the DSEE to slowly grow with
time eliminates the need for any a priori system knowledge
with an arbitrary small sacrifice in the asymptotic weak regret.
In the simulations we have set the DSEE policy parameter

with the goal of obtaining the best possible
overall performance in different scenarios. In our experiments,
it provided the most stable outcome with a good finite perfor-
mance. In all the scenarios considered here, the weak regret
with was practically the same as with that
was used in the simulations of [10]. Similarly according to
[9], letting the parameter of the RCA policy to grow slowly
in time will not sacrifice the asymptotic regret much. In the
simulations of RCA we have used and ,
where the value is taken from the simulations of [9]. All
the simulations are sensing time instants long
and the presented curves are averages of 10000 independent
runs. The curves have been normalized by in order
to illustrate convergence to a logarithmic rate.

A. Independent rewards

First we simulate the performance of the proposed sensing
policy when the rewards are independent. We consider the case

when the rewards are Bernoulli distributed and the case when
the rewards can obtain any values between [0,1].

Fig. 8 shows the expected number of suboptimal sensing in
a 5 band scenario. The availability of the band is assumed to be
Bernoulli distributed such that the reward is 1 when the band
is sensed idle and accessed and 0 when the band is sensed
occupied. It is assumed that trying to access an occupied
band would cause a collision between the SU and the PU and
produce no throughput. The average data rates of the bands are
then . In the implementation of
the KL-UCB we have assumed Bernoulli distribution, hence
it represents here an asymptotically optimal policy. For the
proposed policy we show the results using the exploration
term in (13) for Bernoulli rewards. It can be seen that in this
case the proposed sensing policy performs close to the KL-
UCB policy while being computationally much simpler. The
DSEE policy has a significant drop in its performance around
after 10000 sensing time instants. This seems to be due to
the deterministic nature of the exploration epochs, which in
this scenario often occurs around . In this scenario
the RCA policy takes the longest time before converging to a
logarithmic rate.
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Fig. 8. Mean number of suboptimal sensings with Bernoulli rewards. The
expected rewards of the bands are . It can
be seen that in this case the proposed sensing policy gives almost as good
performance as the KL-UCB policy that has been shown to be asymptotically
optimal. However, the proposed policy is much simpler than the KL-UCB.

Fig. 9 shows the average number of suboptimal sensing in
a 2-band scenario where the reward distributions of the bands
are shown in Fig. 10. In this case, the KL-UCB policy for
Bernoulli rewards is no longer asymptotically optimal. How-
ever, according to the authors of [17] it should still achieve
good performance with general [0,1] bounded rewards. For the
DSEE we have again used the parameter value and
for the RCA the parameter and . In order
to simulate the RCA policy in this scenario we have assumed
that the SU would be capable of distinguishing between the
101 possible rewards (states) shown on the horizontal axis of
Fig. 10. For the proposed, policy we have used the exploration
bonus given in (10) optimized for general i.i.d. [0,1] bounded
rewards and the exploration bonus optimized for Bernoulli
rewards. We also observed that the proposed policy opti-
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Fig. 9. Average number of suboptimal sensings with IID rewards with
reward PMFs shown in Fig. 10. The KL-UCB policy is the one optimized
for Bernoulli rewards. For the proposed sensing policy we have used the
exploration bonus given in (10) and (13). It can be seen that the exploration
bonus optimized for Bernoulli rewards gives still excellent performance even
though the actual rewards are not Bernoulli distributed.
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Fig. 10. The data rate (reward) PMFs of the two bands simulated in Fig. 9.
The expected rewards are and . This corresponds
to a difficult scenario where the two bands have almost the same expected
rewards.

mized for Bernoulli rewards achieves excellent performance
even when the reward distributions are not Bernoulli. In this
scenario the proposed policy assuming Bernoulli rewards and
the DSEE policy achieve the lowest number of suboptimal
sensings.

B. Markovian rewards
Next we present the simulation results with Markovian

rewards of the proposed sensing policy listed in Fig. 4. Fig.
11 shows the expected number of suboptimal sensings when
there are 10 bands whose availability for secondary use evolves
according to a 2-state Markov chain (i.e. the Gilbert-Elliot
model). Also in this scenario when the band is in state 1 the
band is occupied by the primary user and when the band
is in state 0 the band is idle. The reward from sensing a
band that is idle is 1 whereas sensing an occupied band
produces 0 reward. The transition probabilities of the bands
are [0.01, 0.01, 0.02, 0.02, 0.03, 0.03, 0.04, 0.04,
0.05, 0.05] and [0.08, 0.07, 0.08, 0.07, 0.08, 0.07,
0.02, 0.01, 0.02, 0.01]. The corresponding stationary expected
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Fig. 11. The simulated mean number of suboptimal sensings
in a scenario with very slowly varying spectrum with 10 bands
and Markovian rewards. The transition probabilities are

and

making the typical state evolutions of the bands to be ...0,0,0,0,...0,1,1,1,1,....
Due to the slowly varying states of the spectrum this scenario would be highly
attractive for CR. The KL-UCB policy has is the one optimized for Bernoulli
rewards and in the DSEE policy we have set the parameter . For
the RCA we have used and . In the proposed policy

the exploration bonus is . In this scenario the
proposed policy achieves clearly the lowest number of sensings on suboptimal
bands.

rewards are [0.83, 0.11, 0.80, 0.30, 0.67, 0.20, 0.71,
0.22, 0.13, 0.27]. This scenario corresponds to a case where
the state of the spectrum evolves slowly between occupied
and unoccupied, i.e., the spectrum is either persistently idle or
persistently occupied. Such scenario would be very attractive
for opportunistic spectrum use. In the proposed, policy we

have used the exploration bonus .
Fig. 11 shows that the proposed policy achieves uniformly
lowest number of suboptimal sensings compared to the other
three policies.

Fig. 12 shows the average number of suboptimal sensings
for the proposed sensing policy in a scenario where the state
of the spectrum is highly dynamic. In this scenario the state
transition probabilities are close to 1 causing the bands to
all the time alternate between idle and occupied state, which
makes this scenario less attractive for practical cognitive radio
employment. In the DSEE we have again set and
in the RCA and . In the proposed policy we

have used the exploration bonus .
In this scenario the proposed policy is on par with the RCA
with while the DSEE has the lowest number of
suboptimal sensings.

VII. CONCLUSIONS

In this paper we have proposed asymptotically order optimal
sensing policies for cognitive radio that carry out recency-
based exploration through the use of carefully developed
exploration bonuses. We have proposed policies for the cases
in which the state of the spectrum evolves independently from
the past and when the state evolves as a 2-state Markov
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Fig. 12. The simulated mean number of suboptimal sensings in a highly
dynamic spectrum with 5 bands and Markovian rewards. The transition
probabilities are and

making the typical state evolutions of the
bands to be ...,0,1,0,1,0,.... Since the spectrum is highly dynamic this scenario
would be less attractive for cognitive radio employment. The KL-UCB policy
has is the one optimized for Bernoulli rewards and in the DSEE policy we have
set the parameter to . For the RCA we have used
and . In the proposed policy we have used the exploration bonus

. In this scenario the proposed policy and the
RCA perform equally well while the DSEE has the best performance.

process. The proposed policies are built upon the idea of
recency-based exploration bonuses that force each band to
be sensed infinitely many times while ultimately pushing the
exploration instants of suboptimal bands exponentially far
apart from each other. We have proved using analytical tools
that the proposed policies attain asymptotically logarithmic
weak regret when the bounded rewards are independent and
when they are Markovian. Furthermore, we have shown that
when there is information about the type of the secondary user
throughput distributions, it is possible to construct policies
with better performance. Our simulation results have shown
that the proposed policies provide typically performance gains
over the state-of-the-art policies. The simulation results have
also indicated that the expected weak regret would also be
uniformly logarithmic.

APPENDIX A
PROOF OF THEOREM 1

In this section, we give a formal proof that the proposed
policy in Fig. 1 attains asymptotically logarithmic weak regret
when the rewards are independent. The proof is based on the
fact that the event happens only a finite
number of times when and henceforth asymptotically
the suboptimal band will be sensed only when its exploration
bonus has become large enough (see Fig. 2). Asymptotically,
this event happens at an exponentially decreasing rate with
probability 1. In order to keep the notation simple the deriva-
tion is given for the case of two bands, however, without loss
of generality. The result will generalize to multiple frequency
bands by comparing each suboptimal band against the optimal
band separately. Since the optimal band is asymptotically
sensed exponentially more often than any of the suboptimal
bands, the asymptotic weak regret will be logarithmic.

Here we use the following notation for the suboptimal
band: , where is the sequence
of length of the sampling instants up to time and

. Variables with denote the corresponding values
for the optimal band. Furthermore, is the
difference of the true mean of the optimal band and the true
mean of the suboptimal band.

Next we show that for each sample path (run of the sensing
policy) there exists with probability 1 a time instant
when the suboptimal band is sensed and after which the event

does not take place any more.
In other words, one can show that for any and large
enough the sample mean of the optimal band will be larger
by than the sample mean of the suboptimal band.
After this point the explorations of the suboptimal band will
be almost surely dictated by the exploration bonus. To this end
we use the following lemma by Kolmogorov (see e.g. [35] p.
27):

Lemma 1. (Kolmogorov’s strong law). Let be
independent with means and variances .
If the series converges, then

(14)

where a.e. stands for almost everywhere.

Proof: See [36] p. 590.
Note that Lemma 1 implies that for any

(15)

where i.o. stands for infinitely often. Now, for any

where is the sampling instants of the optimal band and
is the sampling instant the suboptimal band. Note that

since the rewards are bounded in and the exploration
function is increasing and unbounded, there always exists a
time instant when the index of any given band will be the
largest (and hence sensed). Consequently both bands will be
sensed infinitely many times, i.e., and .

Take the event
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Now we can notice that in order for to be negative at
least one of or have to be negative. Hence, we get that

The last inequality is due to the fact that for any (real) random
variable , .

Since and have finite variances we notice using
Lemma 1 that,

Hence we conclude that

(16)

In other words, for any with probability 1 there exists
a time instant when the sample average of the optimal band
will be at least larger than the sample average of
the suboptimal band. Consequently, for any two consecutive
sensing time instants and of a suboptimal band, for
which , the following will hold:

(17)

Since the difference between the sensing
time instants of the suboptimal band will asymptotically
grow exponentially. When the time difference between two
consecutive sensing time instants increases exponentially the
number of sensings must grow logarithmically and hence the
expected number of suboptimal sensings is

(18)

APPENDIX B
PROOF OF THEOREM 2

In order to prove that the policy in Fig. 4 has logarithmic
weak regret with Markovian rewards one needs to show, simi-
larly as in the independent rewards case, that with probability
1 there exists a time instant after which the sample mean of
the rewards of the optimal band is always greater than that of
the suboptimal band. In the proof for independent rewards in
appendix A the past sensing time instants did not play a role
in showing the convergence of the reward sample means to
the true expected reward from a band. This was because the
rewards were assumed to be independent from the past. With

Markovian rewards, however, the sensing policy, i.e. how the
sensing time instant is selected plays a role whether the reward
sample means converge to the true stationary mean or not. In
order to simplify the notation we have dropped the indexing
of the bands and focus only to one of the bands by showing
that its reward sample average converges to its true stationary
mean almost surely. Rest of the proof follows essentially the
same path as the proof for the i.i.d. case in appendix A.

The exploration bonus of a band that is not sensed grows
unboundedly so that the index of that band will also grow
unboundedly. As a consequence for any band there always
exists a future time instant when its index will be the largest
one and when it will be sensed again. Since every time a band
is selected for sensing and since it is sensed for at least one
full regenerative cycle, the number of regenerative cycles spent
on sensing each band approaches infinity as the policy runs
infinitely long. This in mind we may use the strong law of
large numbers for Markov chains to prove the convergence of
the reward sample mean to the true stationary expected reward.

Let denote the reward (data rate) that the CR obtains
when it senses and accesses the band in idle state and let

denote the reward obtained when the band is sensed and
accessed in occupied state. The expected reward from the band
is then

(19)

where is the stationary probability of state 0 and the
stationary probability of state 1.

Denote the total number of sensings of the band at time
instant as . Assume that is the time instant at the
end of one of the regenerative cycles. Denote the length of
the j 0-cycle (regenerative cycle starting and ending in state

) as . Notice that ’s are i.i.d. with mean
(see e.g. [32] Theorem 1.41), where is the stationary
probability of state 0. It can be shown that (see e.g. [37],
[31] or [32]) , where is the sample
average of the lengths of the 0-cycles observed up to time

. This result is a consequence of the independence of the
lengths of the regenerative cycles and the strong law of large
numbers. Then the following will also hold:

(20)

Similarly for the 1-cycles (regenerative cycles starting and
ending in state 1) we have and

(21)

where is the sample average of the lengths of the 1-
cycles observed until time .

On the other hand the reward sample average of all the
sensings up to time is , where is the
sum of the rewards collected from the band up to time .
It is assumed that the last observed reward whenever the
SU decides to hop to another band is not counted in the
sample average (although naturally the reward is collected).
The sample average can be further expressed as
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where is the number of visits to state during the
observed -cycles up to time . By denoting the total number
of sensings during 0-cycles as and the total number of
sensings during 1-cycles as we get

. Since the channel must either in be in state 1 or
state 0 it must hold that . Similarly,

. Using these we may further express
the sample average as

Next we notice that

Substituting these we get

Using (20) and (21) we get that

which is equivalent with

(22)

Now again denote the sample average of the optimal band
by and a suboptimal band by respectively. Using
the same steps as in section A (15)-(16) with i.i.d. rewards
and the result of (22) we get that

(23)

This means that with probability 1 there exists a finite time
instant when the sample average of the optimal band is at
least by larger than that of a suboptimal band and
will stay larger from there on. Denoting the time instant of
the start of the regenerative cycle at a suboptimal band by

for which , the following will hold:

(24)

Since the Markov chains are assumed to be recurrent, all ob-
served regenerative cycles are of finite length with probability
1. This guarantees that the use of regenerative cycles will not
make the policy to get stuck sensing a suboptimal band forever.
Since in (24) the difference between the
start of a new regenerative cycle will asymptotically grow ex-
ponentially for any suboptimal band. When the time difference

between two consecutive regenerative cycles (that are always
finite) increases exponentially the number of sensing must
grow logarithmically. Hence the expected number of sensings
of any suboptimal band is

(25)

ACKNOWLEDGMENT

Prof. Santosh Venkatesh, University of Pennsylvania is
acknowledged for useful discussions.

The authors wish to thank the anonymous reviewers for their
constructive comments that have improved the quality of the
paper.

REFERENCES

[1] D. Cabric, S. M. Mishra, and R. W. Brodersen, “Implementation Issues
in Spectrum Sensing for Cognitive Radios,” in Proc. of the ASILOMAR
conf., vol. 1, Nov. 2004, pp. 772–776.

[2] J. Lundén, V. Koivunen, and H. V. Poor, Spectrum exploration and
exploitation, in Principles of Cognitive Radio, Chapter 5., E. Biglieri,
A. Goldsmith, L. Greenstein, N. Mandayam, and H. V. Poor, Eds.
Cambridge University Press, 2012.

[3] E. Axell, G. Leus, E. Larsson, and H. V. Poor, “Spectrum Sensing for
Cognitive Radio : State-of-the-Art and Recent Advances,” IEEE Signal
Process. Mag., vol. 29, no. 3, pp. 101–116, May 2012.

[4] S. Bubeck and N. Cesa-Bianchi, “Regret Analysis of Stochastic and
Nonstochastic Multi-armed Bandit Problems,” Foundations and Trends
in Machine Learning, vol. 5, no. 1, pp. 1–122, 2012.

[5] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge University Press, 1998, vol. 1.

[6] J. C. Gittins, “Bandit Processes and Dynamic Allocation Indices,” J. R.
Stat. Soc. Series B Stat. Methodol., vol. 41, no. 2, pp. 148–177, 1979.

[7] C. H. Papadimitriou and J. N. Tsitsiklis, “The Complexity of Optimal
Queuing Network Control,” Math. Oper. Res., vol. 24, no. 2, pp. 293–
305, 1999.

[8] P. Whittle, “Restless Bandits: Activity Allocation in a Changing World,”
J. Appl. Probab., vol. 25A, pp. 287–298, 1988.

[9] C. Tekin and M. Liu, “Online Learning of Rested and Restless Bandits,”
IEEE Trans. Inf. Theory, vol. 58, no. 8, pp. 5588–5611, August 2012.

[10] H. Liu, K. Liu, and Q. Zhao, “Learning in a Changing World: Rest-
less Multi-Armed Bandit with Unknown Dynamics,” IEEE Trans. Inf.
Theory, vol. 59, no. 3, pp. 1902–1916, March 2013.

[11] Z. Zhang, H. Jiang, P. Tan, and J. Slevinsky, “Channel Exploration
and Exploitation with Imperfect Spectrum Sensing in Cognitive Radio
Networks,” IEEE J. Sel. Areas Commun., vol. 31, no. 3, pp. 429–441,
2013.

[12] T. L. Lai and H. Robbins, “Asymptotically Efficient Adaptive Allocation
Rules,” Adv. in Appl. Math., vol. 6, no. 1, pp. 4–22, 1985.

[13] R. Kleinberg, “Nearly Tight Bounds for the Continuum-Armed Bandit
Problem,” in Adv. Neural Inf. Process. Syst., 2004, pp. 697–704.

[14] J. Oksanen, V. Koivunen, and H. V. Poor, “A Sensing Policy Based
on Confidence Bounds and a Restless Multi-Armed Bandit Model,” in
Proc. of the ASILOMAR conf., 2012, pp. 318–323.

[15] E. Even-Dar and Y. Mansour, “Convergence of Optimistic and Incre-
mental Q-Learning,” in NIPS, 2001, pp. 1499–1506.

[16] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time Analysis of the
Multiarmed Bandit Problem,” Machine Learning, vol. 47, pp. 235–256,
2002.
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