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Abstract—In this paper, we consider anfo-norm penalized for-
mulation of the generalized eigenvalue problem (GEP), aintkat Amax (A, B) = max {XTAX xTBx — 1} . ©)
extracting the leading sparse generalized eigenvector of matrix maxAT x

pair. The formulation involves maximization of a discontinuous . . - .
nonconcave objective function over a nonconvex constrainset, Despite the simplicity and popularity of the tools based on

and is therefore computationally intractable. To tackle the GEP, there is a potential problem: in general the eigenvecto
problem, we first approximate the ¢o-norm by a continuous IS not expected to have many zero entries, which makes the
surrogate function. Then an algorithm is developed via iteatively  result difficult to interpret, especially when dealing wiitgh

majorizing the surrogate function by a quadratic separable dimensional data. An ad hoc approach to fix this problem

function, which at each iteration reduces to a regular genealized . . .
eigenvalue problem. A preconditioned steepest ascent alghm S to set the entries with absolute values smaller than a

for finding the leading generalized eigenvector is provided A threshold to zero. This_ thresholding approa}ch is _freqygntl
systematic way based on smoothing is proposed to deal witheh used in practice, but it is found to be potentially misleaglin
“singularity issue” that arises when a quadratic function is used since no care is taken on how well the artificially enforced
to majorize the nondifferentiable surrogate function. For sparse sparsity fits the original datal[3]. Obviously, approaches t

GEPs with special structure, algorithms that admit a closeeform .
solution at every iteration are derived. Numerical experiments can simultaneously produce accurate and sparse models are

show that the proposed algorithms match or outperform exisng ~More desirable.

algorithms in terms of computational complexity and suppot This has motivated active research in developing methods

recovery. that enforce sparsity on eigenvectors, and many approaches
Index Terms—Minorization-maximization, sparse generalized have been proposed, especially for the simple sparse P@A cas

eigenvalue problem, sparse PCA, smooth optimization. For instance, Zou, Hastie, and Tibshirani [4] first recast th

PCA problem as a ridge regression problem and then imposed
¢1-norm penalty to encourage sparsity. [In [5], d’Aspremont et
) ) ~al. proposed a convex relaxation for the sparse PCA problem
T HE generalized eigenvalue problem (GEP) for matrix pajjased on semidefinite programming (SDP) and Nesterov's
(A, B) is the problem of finding a paifA, x) such that gmooth minimization technique was applied to solve the SDP.
Ax = \Bx, 1) Shen and Huang [6] exploited the connection of PCA with
singular value decomposition (SVD) of the data matrix and ex
whereA, B € R"*", X\ € R is called the generalized eigen-racted the sparse principal components (PCs) througlngplv
value andx € R",x # 0 is the corresponding generalizech regularized low rank matrix approximation problem. Jéarn
eigenvector. WherB is the identity matrix, the problem in et al. [7] rewrote the sparse PCA problem in the form of
(@) reduces to the simple eigenvalue problem. an optimization problem involving maximization of a convex
GEP is extremely useful in numerous applications of higlinction on a compact set and the simple gradient method
dimensional data analysis and machine learning. Many widebas then applied. Although derived differently, the resgit
used data analysis tools, such as principle componentsisalylgorithm GPower turns out to be identical to the rSVD algo-
(PCA) and canonical correlation analysis (CCA), are specidthm in [6], except for the initialization and post-prosesy
instances of the generalized eigenvalue problem [1], [2]. phases. Very recently, Luss and Teboullé [8] introduced an
these applications, usually € S", B € S, (i.e., A is algorithm framework, called ConGradU, based on the well-
symmetric andB is positive definite) and only a few of theknown conditional gradient algorithm, that unifies a variet
largest generalized eigenvalues are of interest. In thés,c@l seemingly different algorithms, including the GPower noeth
generalized eigenvaluesand generalized eigenvectatsare and the rSVD method. Based on ConGradU, the authors also
real and the largest generalized eigenvalue can be foretllaproposed a new algorithm for thig-constrained sparse PCA
as the following optimization problem formulation.
«T Ax Among the aforementioned algorithms for sparse PCA,
(2) rsSvD, GPower and ConGradU are very efficient and require
only matrix vector multiplications at every iteration, thaan
or equivalently be applied to problems of extremely large size. But these
) ) ) algorithms are not well suited for the case wh@eis not
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simple closed-form solution at each iteration any more. Tgeneralized eigenvalue problem is presented and the suerog
deal with this problem[]9] suggested that good resultsaouiunctions that will be used to approximafg-norm are dis-
still be obtained by substituting in the identity matrix forcussed. In Sectidnlll, we first give a brief review of the MM
B and, in [8], the authors proposed to substitute the matrfisamework and then algorithms based on the MM framework
B with its diagonal instead. I1_[10][_[11], an algorithm wasre derived for the sparse generalized eigenvalue problems
proposed to solve the problem with the gendato the best in general and with special structure. A systematic way to
of our knowledge, this is the only one) based on D.C. (difieal with the “singularity issue” arising when using quditra
ference of convex functions) programming and minorizatiominorization functions is also proposed. In Sectiod IV, the
maximization. The resulting algorithm requires computang convergence of the proposed MM algorithms is analyzed.
matrix pseudoinverse and solving a quadratic program (®P)3ectio Y presents numerical experiments and the concisisio
every iteration wher\ is symmetric and positive semidefinite are given in Sectioh VI.
and in the case whera is just symmetric it needs to solve a Notation R and C denote the real field and the com-
quadratically constrained quadratic program (QCQP) ah egglex field, respectivelyRe(-) and Im(-) denote the real and
iteration. It is computationally intensive and not ameeatol imaginary part, respectivelR™ (R, R, ) denotes the set
problems of large size. The same algorithm can also be abpl@ (nonnegative, strictly positive) real vectors of size S™
to the simple sparse PCA problem by simply restrictiBg (S7},S" , ) denotes the set of symmetric (positive semidefinite,
to be the identity matrix, and in this special case only ormsitive definite)n x n matrices defined oveR. Boldface
matrix vector multiplication is needed at every iteratiodat upper case letters denote matrices, boldface lower caseslet
is shown to be comparable to the GPower method regardidgnote column vectors, and italics denote scalars. Thersupe
the computational complexity. scripts(-)T and(-)¥ denote transpose and conjugate transpose,
In this paper, we adopt the MM (majorization-minimizatiomespectively.X; ; denotes thei{th, j-th) element of matrixX
or minorization-maximization) approach to develop effitie andz; denotes the-th element of vectok. X; . denotes the
algorithms for the sparse generalized eigenvalue problem.i-th row of matrix X, X. ; denotes thg-th column of matrix
fact, all the algorithms that can be unified by the ConGradX. diag(X) is a column vector consisting of all the diagonal
framework can be seen as special cases of the MM methetements ofX. Diag(x) is a diagonal matrix formed witk as
Since the ConGradU framework is based on maximizingi& principal diagonal. Given a vectar€ R", |x| denotes the
convex function over a compact set via linearizing the canveector with ith entry |z;|, ||x||, denotes the number of non-
objective, and the linear function is just a special minatian  zero elements of, HXHp =0, |xi|P)1/P 0<p<oo. I,
function of the convex objective. Instead of only considegtenotes an: x n identity matrix. sgn(z) denotes the sign
ing linear minorization function, in this paper we considefunction, which takes—1,0,1 if = < 0,z = 0,2 > 0,
quadratic separable minorization that is related to thel weéspectively.
known iteratively reweighted least squares (IRLS) aldonit
[12]. B_y_applying quadratic minori;ation functions, we ﬂur Il. PROBLEM FORMULATION
the original sparse generall_zed e_|genvalue problem into aGiven a symmetric matriA € S™ and a symmetric positive
sequence of regular generalized eigenvalue problems andd%ﬂnite matrixB € S , the main problem of interest is the
efficient preconditioned steepest ascent algorithm foririgd following £o- +T ed lized ei | bl
the leading generalized eigenvector is provided. We call g0 OWINg fo-horm reguiarized generalized eigenvaiue probiem
resulting algorithm IRQM (iteratively reweighted quadcat maximize x7Ax — p|x||,
minorization); it is in spirit similar to IRLS which solves subj:ct to x"Bx =1, )
the ¢;-norm minimization problem by solving a sequence ) o ) )
of least squares problems. Algorithms of the IRLS typwherep > 0 is the regularization parameter. This formulation

often suffer from the infamous “singularity issue”, i.e.hen 1S géneral enough and includes some sparse PCA and sparse
using quadratic majorization functions for nondiffereble CCA formulations in the literature as special cases.
functions, the variable may get stuck at a nondifferenéiabl The problem [(#) involves the maximization of a non-
point [I3]. To deal with this “singularity issue”, we progpa Cconcave dlscontlnuous_, obJ(_acuve over a nonconvex set, thus
systematic way via smoothing the nondifferentiable stateg really ha_rd to deal with directly. The |nt_ractab|llty of the
function, which is inspired by Nesterov’s smooth minimigat ProPlem is not only due to the nonconvexity, but also due to
technique for nonsmooth convex optimizatiénl[14], altl'imugthe discontinuity of the caro_llnallty fgnctlorj in the objieet A
in our case the surrogate function is nonconvex. The smdot{tural approach to deal with the discontinuity of thenorm
problem is shown to be equivalent to a problem that maximizEst0 approximate it by some continuous function. It is easy
a convex objective over a convex constraint set and tffeSe€ that thé,-norm can be written as
convergence of the IRQM algorithm to a stationary point of n
the equivalent problem is proved. For some sparse genedaliz Ixllg = sgn(|a)).
eigenvalue problems with special structure, more efficient i=1
algorithms are also derived which admit a closed-form smiut Thus, to approximatéx||,, we may just replace the prob-
at every iteration. lematic sgn(|x;|) by some nicer surrogate functiog),(z;),

The remaining sections of the paper are organized wberep > 0 is a parameter that controls the approximation.
follows. In Sectior(l, the problem formulation of the sparsin this paper, we will consider the class of continuous even



functions defined oR, which are differentiable everywhereln this approach, the cardinality is considered for the eeal
except a) and concave and monotone increasing@nt-co) imaginary part of the vectox separately. A more natural
and g,(0) = 0. In particular, we will consider the following approach is to consider directly the complex-valued versio
three surrogate functions: of the /y-norm regularized generalized eigenvalue problem
1) gp() = |o", 0<p<1 maximize x7Ax — p|x||
2) gp(z) = log(1 + [z] /p)log(1 + 1/p), p > 0 wecr 0

3) gplz) =1-— ef\m|/p’ »>0. subject to xBx =1,
The first is thep-norm-like measure (withp < 1) used in where the /o-norm can still be written as|x|, =
[15], [18], which is shown to perform well in promoting spars 5= sgn(|;|), but with |z;| being the modulus of; now.
solutions for compressed sensing problems. The seconé is [tbtice that the three surrogate functions(x) used to ap-
penalty function used in [11] for sparse generalized eigkm®/ proximatesgn(|z|) are all functions ofiz|, by taking || as
problem and when used to replace thenorm in basis pursuit, the modulus of a complex number, the surrogate functions
it leads to the well known iteratively reweighted-norm are directly applicable to the complex case. The quadratic
minimization algorithm [[17]. The last surrogate functio iminorization function that will be described in Sectibnl IlI
used in [18] for feature selection problems, which is déf@r can also be constructed similarly in the complex case and at
from the first two surrogate functions in the sense that dach iteration of the resulting algorithm we still need ttveo
has the additional property of being a lower bound of thg regular generalized eigenvalue problem but with complex-
functionsgn(|x|). To provide an intuitive idea about how these/alued matrices.
surrogate functions look like, they are plotted in Hig. 1 for

fixed p = 0.2. Ill. SPARSEGENERALIZED EIGENVALUE PROBLEM VIA
14 : : : : : : : MM SCHEME

RN e A. The MM method

12F
The MM method refers to the majorization-minimization
method or the minorization-maximization method, which is a
generalization of the well known expectation maximization
(EM) algorithm. It is an approach to solve optimization
problems that are too difficult to solve directly. The priplei
behind the MM method is to transform a difficult problem into
a series of simple problems. Interested readers may refer to
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Figure 1. Three surrogate functioms (x) that are used to approximate MM ‘?‘pproaCh op_tlmlzes a sequence Of approan_ate objective
sen(|z|), p = 0.2. functions that majoriz¢ (x). More specifically, starting from a

feasible pointx(?), the algorithm produces a sequerfoe”)}
By approximating ||x|, with >, g,(z;), the original according to the following update rule
problem [#) is approximated by the following problem

" x*+1) ¢ arg min u(x, x®), (6)
maximize xTAx —pY " gp(2;) 5) xEX
subjectto x"Bx = 1. wherex(®) is the point generated by the algorithm at iteration

With the approximation, the problerfil (5) is still a nonconvek, and u(x,x)) is the majorization function off(x) at

nondifferentiable optimization problem, but it is a contius  x*). Formally, the function(x, x*)) is said to majorize the

problem now in contrast to the original probler (4). Ifunction f(x) at the pointx) provided

the following section, we will concentrate on the approx- (k)

imate problem [(b) and develop fast algorithms to solve it u((,:;’x(k)) = f(xg,’c) e A, (")

based on the MM (majorization-minimization or minorizatio u(x™,x) = f(x). (8)

maximization) scheme. In other words, function:(x,x(*)) is a global upper bound
Note that for simplicity of exposition, we focus on realfgy f(x) and coincides withf (x) at x(*),

valued matrices throughout the paper. However, the teclesiq |t js easy to show that with this scheme, the objective value

developed in this paper can be adapted for complex-valygtjecreased monotonically at every iteration, i.e.,
matrix pair (A, B), with A being ann x n Hermitian matrix

andB being ann x n Hermitian positive definite matrix. One /(x*™) <u(x®, x®) <u(x®,xW) = f(x*)). (9)

approach is to transform the problem to a real-valued one ®)e first inequality and the third equality follow from thesth
defining 3 . or properties of the majorization function, namelyl (7) af#l (8)
x = [Re(x)", Im(x)"] respectively and the second inequality follows frdth (6).
A— Re(A) —Im(A) ] - { Re(B) —Im(B) Note that with straightforward changes, similar scheme can
| Im(A) Re(A) Im(B) Re(B) | be applied to maximization. To maximize a functigitx),



we need to minorize it by a surrogate functiofx, x(*)) and —y
maximize u(x,x*)) to produce the next iterate*+1)_ A 3t - - -2
function u(x, x*)) is said to minorize the functiorf(x) at

the pointx(®) if —u(x,x*)) majorizes— f(x) at x(¥). This
scheme refers to minorization-maximization and similatly

is easy to shown that with this scheme the objective value is
increased at each iteration.

B. Quadratic Minorization Function

Having briefly introduced the general MM framework, let
us return to the approximate sparse generalized eigenvalue T
problem (SGEP) in[{5). To apply the MM scheme, the key %
step is to find an appropriate minorization function for th% we 2. The functiorgy(z:) = [z:[? with p = 0.5 and its quadratic
objective of [) at each iteration such that the resultirapfem mgjorizafion furction aﬁ’gg :2 = 1% p=" q
is easy to solve. To construct such a minorization function, ! '
we keep the quadratic term” Ax and only minorize the
penalty term—p " | g,(z;) (i.e., majorizep >, gp(24)). o o _ _
More specifically, at iteratiok we majorize each of the sur-deviations curve fitting problem (i.e., regression withnorm
rogate functiong, (z;),i = 1,...,n at a:§k) with a quadratic C€OSt function) via iteratively solving a series of weightedst

k) 2 ( squares problems and the resulting algorithm is known as

function w§ i + cik), where the coeﬁicients;§k) and cgk) , . ) X
are determined by the following two conditions (fq(.tl“) £ 0): the iteratively reweighted least squares (IRLS) algorifagj.
Later the idea was applied in signal processing for spagse si

2 . .

gp(:vl(-k)) _ wl(k) (%(-k)) T Cgk)’ (10) nal reconstruction !rmS]J:[Zl]. Recently, the IRLS appm_a
has also been applied in Compressed Sensidg [16]. Algasithm
gz/)(arl(-k)) = 2w§’“)x§k), (11) based on this idea often have the infamous singularity issue

[13], that is, the quadratic majorization functimﬁk)zf +c§k)

is not defined atrz(.k) = 0, due to the nondifferentiability
a?é gp(z;) atx; = 0. For example, considering the quadratic
majorization function ofg,(z;) = |z;|”,0 < p < 1 in @3),

i.e., the quadratic function coincides with the surrogatect
tion gp(z,;) at :cl(k) and is also tangent t@,(z;) at a:z(.k).
Due to the fact that the surrogate functions of interest
differentiable and concave far; > 0 (also for z; < 0),

- - p=2 ,
the second condition implies that the quadratic functioa isit is easy to see that the coefﬂmeﬂxgk)‘ is not defined
global upper bound of}he surrogate functigiz;). Thenthe 2™ = 0. To tackle this problem, the authors df [13]
objective of [§), i.e.x” Ax —p3 i, gp(xi)’k's mlnozlzed proposed to define the majorization function at the paricul
by the quadratic functiox” Ax — p>°7" (wf )x? + cg )) . point %(k) =0 as
which can be written more compactly as

rla o w o *) gy oo @i #0
X (A pDiag(w )) X p; ¢ (12) u(x;,0) {0’ 2 =0,
wherew® = [wl® | wP|T.

which implies that once:z(.k) = 0, the next iteration will also

Example 1. To compute the quadratic function"z? + ¢{*' e zero, i.e.z*™) = 0. This may impact the convergence
that majonz(g)s the surrogate funcuq;;;(x%) = [z;|”,0 < of the algorithm to a minimizer of the objective, if the
p < latz;” # 0, we have the following two equationscorresponding element of the minimizer is in fact not zero.
corresponding to{10) an@{111) respectively: Another common approach for dealing with this singularity
p 2 issue is to incorporate a small> 0, for example, for the
(k) ®) () 49 (13) - 1o Incorpol . v
T Wi =\ Ti G5 quadratic majorization function af,(z;) = |z;|", 0 <p <1
i)
sgn(z)p |z¥) pt 2w £ *) (14) in (@3), replace the coefficier xgk)’p by
By solving [13) and[{14), we can get the quadratic majoriza- i
tion function LB _ P <(I(k))2 . 6> g2

ng)) _Pr ’Iz('k)

2
which is illustrated in Figl2 withp = 0.5 andz'* = 2.

-2 ? 2
T +(1- g) ng) 3 (15)

7 I

u(;,

which is the so called damping approach used[in [16]. A
potential problem of this approach is that althouglk small,

In fact, the idea of majorizing some penalty functions/e have no idea how it will affect the convergence of the
by quadratic separable functions is well known in robusilgorithm, since the corresponding quadratic function @s n
regression[[20]. It was first proposed to solve the absolutenger a majorization function of the surrogate function.



C. Smooth Approximations of Non-differentiable Surrogatend the coefficients of the quadratic majorization functiare
Functions summarized in Tablg8 | (we have omitted the coefficieiﬁf

To tackle the singularity issue arised during the consipact Since it is irrelevant for the MM algorithm). Notice that the
of the quadratic minorization function ifi_{12), in this subguadratic functions" 22 + ¢{*) are now well defined. Thus,
section we propose to incorporate a smalb 0 in a more the smooth approximation we have constructed can be viewed
systematic way. as a systematic way to incorporate a smagH 0 to deal with

The idea is to approximate the non-differentiable surregahe singularity issue of IRLS type algorithms.

function g, () with a differentiable function of the following  Although there is no singularity issue when applying the

form quadratic minorization to the smoothed probléni (18), anaatu
oy Jaa®, |z] <e question is if we solve the smoothed problem, what can we say
gp(x) = gp(x) — b, |z > e about the solution with regard to the original probldh (). |

) _ _ ) ) the following, we present some results which aim at answgerin
which aims at smoothening the non-differentiable suregaf,e question.

function around zero by a quadratic function. To make the _ _ _
function g5 () continuous and differentiable at = +e, the Lemma 3. Let g,(-) be a continuous even function defined
following two conditions are needett? = g, (¢) — b, 2ae = ON R, differentiable everywhere except at zero, concave and
g;(e), b= gyle) 9, Thus, the Monotone increasing of0, +00) with ¢,(0) = 0. Then the

g,(€), which lead toa = =4 5 S D : .
smooth approximation of the surrogate function that will b%mOOth approximatiop; () defined ?,)gﬂ) is a global lower

employed is bound ofg,(z) and g;,(x) + g,(¢) — ~%5—¢ is a global upper
bound ofg,(z).

oy [ B o < e o |
gp(x) = g, (€) (16) Proof: The lemma is quite intuitive and the proof is
(@) = gp(€) + Z5=e, |zl > ¢, omitted for lack of space. [ ]

wheree > 0 is a constant parameter. Proposition 4. Let f(x) be the objective of the proble(h),

Example 2. The smooth approximation of the functionwith g,(-) as in Lemmd]3 and'.(x) be the objective of the

gp(z) =|z|", 0<p<lis smoothed problenfd8) with g:(-) as in (I6). Let x* be the
b op2.2 optimal solution of the probleift) andx} be the optimal solu-
(z) = g€ "X, lz| <€ (17) tion of the smoothed proble@8). Then0 < f(x*)— f(x}) <
I P_(1-D) 9,0 e ‘
2" — (1 - 5)6 ozl > e on (gp(e) — 2 e) and lim, o pn (gp(é) — PTE) =0.

The case withp = 0.5 and e = 0.05 is illustrated in Fig. : ;
B. Whenp = 1, the smooth approximatiof (IL7) is the well Proof: See AppendifA. u

. sl Propositior # gives a suboptimality bound on the solution
known Huber penalty function and the application of Huberf[othe smoothed probleniTl8) in the sense that we can solve

S:?i\?letyfae}sst ;Egﬁ:ﬂ;i ?gfgggfs\e/arlssocgrsybeen usédlin [szhe original problem[{5) to a very high accuracy by solving

' the smoothed probleni {1L8) with a small enouglsay e <
1075, ande = 1078 is used in our simulations). Of course, in
general it is hard to solve either problef (5) [ar](18) to globa
maximum or even local maximum, since both of them are
nonconvex. But from this point, there may be advantages in
solving the smoothed problem with the smoothing parameter
decreasing gradually, since choosing a relatively largethe
beginning can probably smoothen out some undesirable local
maxima, so that the algorithm can escape from these local
points. This idea has been used with some success In [16],
[22]. A decreasing scheme efwill be considered later in the
numerical simulations.

Figure 3. The functiong,(z) = ||’ with p = 0.5 and its smooth D. Iteratively Reweighted Quadratic Minorization

approximationg, (z) with ¢ = 0.05. With the quadratic minorization function constructed and

the smoothing technique used to deal with the singularity
With this smooth approximation, the problef (5) becoméssue, we are now ready to state the overall algorithm for the
the following smoothed one: approximate SGEP i {5).
First, we approximate the non-differentiable surrogatefu
) . (18) tions g,(z;) by smooth functiongy; (x;), which leads to the
subject to x" Bx = 1, smoothed problen(18). Then at iteratibnwe construct the
wheregs(+) is the function given by{16). We now majorize thequadratic minorization functiox” (A — pDiag(w*))) x —
smoothed surrogate functiopg(z;) with quadratic functions p> " *) of the objective via majorizing each smoothed

i=1 "1

maximize xTAx —p> " g5 (x;)
X



Table |

SMOOTH APPROXIMATIONg;(SL‘Z‘) OF THE SURROGATE FUNCTION@p(SL‘Z‘) AND THE QUADRATIC MAJORIZATION FUNCTIONS

(k) 2 (k)

u(:vi,ml(.k)) =w,; x; +c; AT mgk).
Surrogate functiory, (z;) Smooth approximatio, () wgk)
- )
Dep—2g2 ;| <e Ber—2, lz; | < e
P, 0<p<1 € v’ v= N (p—2
el 0= {|xi|P—<1—§>sP, il > c M o) > e
o e {:v(k){ <e
Te(pre) Tog(1F1/p)° lzi| < e 2¢(pte) log(1+1/p)’ i 1=
log(1 + s /p)/ log(1 +1/p), p > 0 {lsgf’lfzf%)1ég%1+e/p)+2(;m [HAC N O
Tog(1+1/p) i > e 2log(1+1/p)‘wg )ng )‘er) '
e —e/p (k)
=3 a2, lzi| < e “Zpe o] <
Loerlmlirp>0 gy e ) o—c/p e L)
—e~lzi +(1+Z>e , x| > € W, |:cZ |>5

surrogate functiongy (z;) at :vf.k) by a quadratic function problem. Let us derive the steepest ascent method without

i

the constant term ignored)

maximize x’ (A — pDiag(w(k))) x

X
subjectto x"Bx =1,

w(k)xg+c§k> and solve the following minorized problem (withPreconditioning first. The key step is to reformulate thelieg

generalized eigenvalue problem as maximizing the Rayleigh

guotient
(19)

xT Ax
R(x) = xTBx

(20)

which is to find the leading generalized eigenvector Qfyer the domainx # 0, whereA = A — pDiag(w®)). Let

the matrix pair (A — pDiag(w(®)),B), where w(*) =
,i=1,...,n are given in TablélI.

w0 (0

i

1T andw

The method is summarized in Algoritioh 1 and we will refer
to it as IRQM (Iterative Reweighed Quadratic Minorizatipn)
since it is based on iteratively minorizing the penalty fime which is an ascent direction f(x) atx®. Letr® = Ax® —

R(x)Bx(®, the steepest ascent method searches along the

with reweighted quadratic function.

2
x(OTBx®)

x() be the current iterate, the gradient Bfx) atx() is

(Ax(l) - R(x(l))Bx(l)) ,

line x® 4+ 7r® for a that maximizes the Rayleigh quotient

Algorithm 1 IRQM - Iteratively Reweighed Quadratic Mi- R(x() +7r(). Since the Rayleigh quotiedt(x") +7r(®) is
norization algorithm for the sparse generalized eigeraly scalar function of-, the maximum will be achieved either
at points with zero derivative or as goes to infinity. Setting

problem [B).

Require: A€S", B€S} ,p>0,e>0
1: Setk = 0, choosex(”) € {x: x"Bx = 1}

. repeat

2
3:  Computew®) according to Tablél I.
4. x(1 leading generalized eigenvector of the matriyyhere

pair (A — pDiag(w(®)), B)
k+—k+1

until convergence

- return x(*)

N o
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ar’ +br+c¢=0,

rOT ArDxOTRr(D) _ pOTRp(Ox (T A0
rOT A+ OTRBx _ ptOTRrDx(OT A5 (1)

the derivative ofR(x(") + 7r(V) with respect tor equal to 0,
we can get the following quadratic equation

(21)

FOT AxOxOTBx®) _ pOT B0 OT A 5D

At every iteration of the proposed IRQM algorithm, wd-et us denote3,, = xV"Bx(®), B,, = rOTBr(®) and B, =

need to find the generalized eigenvector of the matrix paif’’ Br(", by direct computation we have
(A —pDiag(w®)), B) corresponding to the largest generalized
eigenvalue. SincéB € S, a standard approach for this 2
problem is to transform it to a standard eigenvalue problem v

the Cholesky decomposition @. Then standard algorithms,
such as power iterations (applied to a shifted matrix) and
Lanczos method can be used. The drawback of this approacAdégording to Cauchy-Schwartz inequality, it is easy to see
that a matrix factorization is needed, making it less ativac that B, B, — B2, > 0, thusb? — 4ac > 0, which implies that

when this factorization is expensive. Besides, as smrﬁé

— 4ac = <BXXBH(R(r(l)) —R(x")) — 2By,

4
+4|r V|| (BB - BL).
2 Xr

2 2
<l )
2

the equation[{21) has one or two real roots. By comparing

become very large, the problem is highly ill-conditionedianthe Rayleigh quotienk(x(") + 7r(")) at the roots of equation

standard iterative algorithms may suffer from extremetmws! (1) with R(r(?) (the Rayleigh quotient correspondingte—

00), we can determine the steepest ascent. It is worth noting
To overcome these difficulties, we provide a preconditiondlat the coefficients of the equatioh {21) can be computed

steepest ascent method, which is matrix factorizationdres by matrix-vector multiplications and inner products oritys

employes preconditioning to deal with the ill-conditiogin very efficient.

convergence.



Though the per-iteration computational complexity of thi€. Sparse GEP with Special Structure

steepest ascent method is w low, it may converge veryynil now we have considered the sparse GEP in the general
slow, especially when some,™” become very large. To ac-case withA € S”, B € S7, and derived an iterative
celerate the convergence, we introduce a preconditioner h%lgorithm IRQM. If we assume more properties or some
Preconditioning is an important technique in iterativemels  special structure foA andB, then we may derive simpler and
for solving large system of linear equations, for examplgore efficient algorithms. In the following, we will conside
the widely used preconditioned conjugate gradient methgfe case wherd < S andB = Diag(b), b € R", . Notice

It can also be used for eigenvalue problems. In the steepggit although this is a special case of the general sparseiGEP
ascent method, to introduce a positive definite precon@tio stij|| includes the sparse PCA problem as a special case where
P, we simply multiply the residuat”) by P. The steepest B=1,.

ascent method with preconditioning for the leading germs#ell  \ye first present two results that will be used when deriving

eigenvalue probleni (19) is summarized in Algorithin 2. To usgst algorithms for this special case.
the algorithm in practice, the preconditiorf@rremains to be

chosen. For the particular problem of interest, we chooseP#oposition 5. Given a € R", w,b € R}, p >

diagonalP as follows 0, let Zyin = argmin{pw;/b; : i € {1,...,n}},
Umin = —min{pw;/b; : i € {1,...,n}} and s =
2
) i -1 p|[w® b4 Then the problem
p _ ) Diag (pw®) + |diag(A)[) m > 102 2 i T in Grmnbi i )? P

L. otherwise. maximize 2a’x — px”T Diag(w)x

x 22
subject to x”Diag(b)x =1 (22)

In other words, we apply a preconditioner only when someOI its the followi lution:
elements ofw(*) become relatively large. Since the precondfi‘ mits the following solution:

tionerP we choose here is positive definite, the directitaii?) e If 3i € Tpnin, such thata? > 0 or s > 1, then
is still an ascent direction and the algorithm is still maet . a; 1
ically increasing. For more details regarding precondgid Ti = ub; + pw;’ =Dt

eigensolvers, the readers can refer to the bbok [23].

i o where ;1 > umin iS given by the solution of the scalar
In practice, the preconditioned steepest ascent method usu

equation

ally converges to the leading generalized eigenvector,itbut n bia2
is not guaranteed in principlsince theRayleigh quotienis Z (bjrilw)? =1
not concave. But note that the descent propdrty (9) of the =1 Wi P

majorization-minimization scheme depends only on deereas, Otherwise,
ing u(x,x*)) and not on minimizing it. Similarly, for the

minorization-maximization scheme used by Algorithin 1, to ai/ (Pminbi + pwi), i ¢ Inin
preserve the ascent property, we only need to increase the ; = ¢ /(1 —s) /b, i =max{i: 1 € Tin}
objective of [I9) at each iteration, rather than maximizing 0, otherwise.

it. Since the steepest ascent method increases the objectiv .
at every iteration, thus when it is applied (initialized hvit Proof: See AppendikB. u
the solution of previous iteration) to compute the leadingroposition 6. Givena € R”™ with lai| > ... > |a,| and
generalized eigenvector at each iteration of Algorifimhk, t , > 0, then the problem

ascent property of Algorithml1 can be guaranteed. . T
maximize a’'x — p||x||,
X

23
subject to  [|x||, =1 (23)

Algorithm 2 Preconditioned steepest ascent method for prob-
lem (19). admits the following solution:
Require: A €S", BeSt,, w®, p>0 o If |a1| < p, then

1: Setl = 0, choosex(®) € {x: x"Bx = 1} {

2: Let A = A — pDiag(w(®)) * sgn(ai), i=1
repeat
R(x0) = x(OT Ax(D) /xOTBx(D
r() = Ax(®D — R(x®)Bx®

O — pr® e {ai/ Sja, i<s

(24)

0, otherwise.

o Otherwise,

Noahrow

x =x® 4+ 7r(® | with 7 chosen to maximize?(x() +
7))

x(+D) = x /v/XxTBx wheres is the largest integep that satisfies the following
9 I=I0+1 inequality
10: until convergence

11: return x(®) \/Zleaf > \/Zf;faf + - (25)
Proof: See AppendikC. [ |

0, otherwise,

o®




Let us return to the problem. In this special case, theerationk, linearizing the quadratic term yields
smoothed probleni_(18) reduces to ~
P ) maximize 2xTAZ® — p ||, o)

maximize xTAx — pZ?:l g;;(xi)

x (26) subject to  [|x[|, =1,
subject to  xTDiag(b)x = 1.

which has a closed-form solution. To see this, we first define
The previously derived IRQM algorithm can be used here, bat= 2Ax%*) and sort the entries of vectar according to

in that iterative algorithm, we need to find the leading genethe absolute value (only needed for entries Wit > p) in
alized eigenvector at each iteration, for which anotheattee descending order, then Propositidn 6 can be readily appdied
algorithm is needed. By exploiting the special structuréhed obtain the solution. Finally we need to reorder the solution
case, in the following we derive a simpler algorithm that dfack to the original ordering. This algorithm for solving
each iteration has a closed-form solution. problem [28) is summarized in Algorithii 4.

Notice that, in this case € S”, the first termx” Ax in the It is worth noting that although the derivations of Algo-
objective is convex and can be minorized by its tangent plarithms[3 and ¥ require\ to be symmetric positive semidef-
2xT Ax(F) at x(®), So instead of only minorizing the secondnite, the algorithms can also be used to deal with the more
term, we can minorize both terms. This suggests solving theneral caseA € S™. When the matrixA in problem [26)
following minorized problem at iteratiof: or (28) is not positive semidefinite, we can replatewith
A, = A + aDiag(b), with & > —Apin(A)/bmin such that

x . (27) An € S%, wherehn,in (A) is the smallest eigenvalue of matrix
subject to  x” Diag(b)x =1, A andb,,;, is the smallest entry d. Since the additional term
axTDiag(b)x in the objective is just a constant over the

onstraint set, it is easy to see that after repladingith A,
He resulting problem is equivalent to the original one. The
tehe Algorithm[3 of# can be readily applied.

maximize  2x”7 Ax(®) — pxTDiag(w®))x

wherex(¥) is the solution at iteratiok andw'*) is computed
according to Tabldll. The problem is a nonconvex QCQ
but by lettinga = Ax®) andw = w(*), we know from
Proposition[b that it can be solved in closed-form. Th

iterative algorithm for solving probleni_(26) is summarizeg - .
in Algorithm (3. Algorithm 4 The MM algorithm for problem[(28).

Require: A €8S}, beR},,p>0
1: Setk = 0, choosex(?) € {x: %x"x = 1}
2: Let A = Diag(b)~ 2 ADiag(b) ™2
3: repeat
4. a=2Ax%
5
6

Algorithm 3 The MM algorithm for problem[{26).
Require: A€ S}, beR}, ,p>0,e>0
1: Setk = 0, choosex(?) € {x : x"Diag(b)x = 1}

z rer;eEtAx(k) Sorta with the absolute value in descending order.
A Co_mputew(’“) according to Tablg | Computex*+1) according to Propositiof 6:
5. Solve the following problem according to Proposition D € argmax{a’x — p |||, ¢ %], = 1}
and set the solution ag*+1): x
. < (k+1)
To T (B)yw . wT T B 7:  Reorderx

m&x{Qa x — px' Diag(w'"™)x : x* Diag(b)x = 1} & h—k+l

66 k=k+1 9: until convergence
. . _1i-

7: until  convergence 10: return x = Diag(b) %"

return x(*)

®

In fact, in this special case, we can apply the MM scheme to IV. CONVERGENCE ANALYSIS
solve the original probleni4) directly, without approxiting

[l , i-€., Solving The algorithms proposed in this paper are all based on the

minorization-maximization scheme, thus according to sabs
maximize x7 Ax — p|x]|, tion =A] we know that the sequence of objective values
x (28)  evaluated at{x(*)1 generated by the algorithms is non-
decreasing. Since the constraint sets in our problems are
First, we define a new variable = Diag(b)zx and compact, the sequence of objective values is bounded. Thus,
the sequence of objective values is guaranteed to converge
to a finite value. The monotonicity makes MM algorithms
R very stable. In this section, we will analyze the convergenc
maximize xTAx —p|%/, property of the sequendex(®)} generated by the algorithms.
. (29) Let us consider the IRQM algorithm in Algorithid 1, in
which the minorization-maximization scheme is applied to
where A = Diag(b)~2 ADiag(b) 2. the smoothed problen{(l18). In the problem, the objective
Now the idea is to minorize only the quadratic term bys neither convex nor concave and the constraint set is also
its tangent plane, while keeping tig-norm. Givenx(*) at nonconvex. But as we shall see later, after introducing a

subject to x” Diag(b)x = 1.

using the fact’Diag(b)*%iH = [|x||,, the problem can be
rewritten as 0

subjectto x



technical assumption on the surrogate functigyiz), the Proposition 10. Let f : R® — R be a convex function. Let
problem is equivalent to a problem which maximizes a conveske R™ be an arbitrary set andonv(S) be its convex hull.
function over a convex set and we will prove that the sequenthen

generated by the IRQM algorithm converges to the stationary

point of the equivalent problem. The convergence of the sup{f(x)[x & conv(5)} = sup{f(x)[x € 5},
Algorithm [3 can be proved similarly, since the minorizatiofyhere the first supremum is attained only when the second
function applied can also be convexified. First, let us ghe t (more restrictive) supremum is attained.

assumption and present some results that will be useful late _ N
According to Propositiof_10, we can further relax the

Assumption 1. The surrogate functiory,(z) is twice dif- jnstraint«’ Bx — 1 in problem [31) tox” Bx < 1, namely,

ferentiable on(0, +oo) and its gradientg, () is convex on the problem
(0, +00).
aximize xT (A +aB)x — g (x
It is easy to verify that the three surrogate functions diste maxniee x (A+aB)x=p2igp(®) (32)

H T
in Table 1) all satisfy this assumption. With this assurapti subject to x" Bx < 1

the first result shows that the smooth approximatipfx) we s still equivalent to probleni{18) in the sense that they iadm
have constructed is Lipschitz continuously differentéabl the same set of optimal solutions.
Lemma 7. Let g,(-) be a continuous even function defined Let us denote the objective function of problem](32) by

on R, differentiable everywhere except at zero, concave and (X) and defineB = {x € R"[x"Bx < 1}, then a point*
monotone increasing off), +o0) with g,(0) = 0. Let As- 1S referred to as a stationary point of probldml(32) if

sumptiorL ] be satisfied. Then the smooth approximagjéen) Ve (x — x*) < 0. VxeB 33
defined by(I6) is Lipschitz continuously differentiable with ) (e =x) <0, Vx ’ (33)
Lipschitz constanf, = max{@a |95 (e)]}- Theorem 11. Let {x(*)} be the sequence generated by the

IRQM algorithm in AlgorithnidL. Then every limit point of the

Proof: See AppendiXD. (B . .
Next, we recall a useful property of Lipschitz continuousl\?v?:?;:e ri]scee{xuivz};llelzsﬁt?oStLaetlo?gt?ller?E’:_'nat) of the probler@2)
differentiable functions[24]. q P '

Proposition 8. If f : R®™ — R is Lipschitz continuously
differentiable on a convex sét with some Lipschitz constant
L, theny(x) = f(x) + $x”x is a convex function o’ for
everya > L.

Proof: Denote the objective function of the probleln](18)
by f.(x) and its quadratic minorization function at* by
q(x|x®), i.e.,q(x|x®) = xT (A — pDiag(w¥)) x. Denote
S={xeR"x'Bx =1} andB = {x € R"|x'Bx < 1}.
According to the general MM framework, we have
The next result then follows, showing that the smoothed
problem [IB) is equivalent to a probl?em in the form of Je(x") > g(x* D x") > g(x® xW) = f.(xM)

3

maximizing a convex function over a compact set. which means{ f.(x*))} is a non-decreasing sequence.
Lemma 9. There existsy > 0 such thatx” (A + aB)x — Assume that there exists a converging subsequeffee —
P>y g5(x;) is convex and the problem x*°, then

maximize x7 (A+aB)x — PZ?:1 g;(xi) 31) q(x(kj+1)|x(kj+1)) - fe(x(ijrl)) > fe(x(kj+l))

subjectto x'Bx =1 > q(x® D xF)y > g(x|xF)) vx € S.

is equivalent to the problerff8) in the sense that they admit) etiing j —s +o0, we obtain

the same set of optimal solutions.

Proof: From LemmdJ, it is easy to see that Ax — gB[) 2 qxx), ¥x €

p>_iy g5(xzi) is Lipschitz continuously differentiable. As- |t is easy to see that we can always fiad> 0 such that
sume the Lipschitz constant of its gradienListhen according ¢, (x|x>) = ¢(x[x>*) + ax”Bx is convex andx™ is still
to PropositiofBx” (A + £I)x — p>_"" g5(x;) is convex. a global maximizer ofy, (x|x>°) over S. Due to Lemmdlo,
Since B is positive definite,\,in(B) > 0. By choosing we can always choose large enough such that®(x) =
a > ﬁn(B)’ we have thatx”(aB — ZI)x is convex. f,(x)+ ax”Bx is also convex. By Propositidi]L0, we have
The sum of the two convex functions, i.&? (A + aB)x —
Py iy g5(xs), is convex.

Since the additional termx” Bx is just a constant over o x s g global maximizer of, (x|x>) over the convex
the constraint sek” Bx = 1, it is obvious that any solution setB. As a necessary condition, we get
of problem [(31) is also a solution of problem 118) and vice
versa. n Vo (x®x*) T (x = x>) <0, ¥x € B.

Generally speaking, maximizing a convex function over

a compact set remains a hard nonconvex problem. There isThe equivalence of the problefi132) aildl(18) is in the senaetitey
have the same set of optimal solutions, but they may haverdift stationary

§ome ConSOIat'On' however, accordlng to the followmg IlteSlﬂyoints. The convergence to a stationary point of problen) @2s not imply
IN convex anaIyS|s[Q5]. the convergence to a stationary point of probl€ml (18).

0o (X|X%°) > qo (x]x>), Vx € B,
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SinceV f&(x™) = Vg, (x*°|x>) by construction, we obtain distributed and following\'(0,1). For both algorithms, the
o ooNT . initial point x(*) is chosen randomly with each entry following
VIEE) (e =x¥) <0, ¥x € B, N(0,1) and then normalized such théx(o))TBx(O) = 1.

implying thatx® is a stationary point of the problerh (32),The parametep of the surrogate function is chosen to be
which is equivalent to the probleri{18) according to Lemmand the regularization parametersis=0.1.
and Propositiof 10. | The computational time for problems with different sizes

We note that in the above convergence analysis of Algare shown in Figurél4. The results are averaged over 100
rithm [, the leading generalized eigenvector is assumed toibhdependent trials. From Figufé 4, we can see that the pre-
computed exactly at each iteration. Recall that the Alganit conditioning scheme is indeed important for the efficiency
is not guaranteed to converge to the leading generalizgfdAlgorithm [2 and the proposed IRQM algorithm is much
eigenvector in principleso if it is applied to compute the faster than the DC-SGEP algorithm. It is worth noting that
leading generalized eigenvecttre convergence of Algorithm the solver Mosek which is used to solve the QCQPs for the

(Il to a stationary point is no longer guaranteed. DC-SGEP algorithm is well known for its efficiency, while the
IRQM algorithm is entirely implemented in Matlab. The lower
V. NUMERICAL EXPERIMENTS computational complexity of the IRQM algorithm, compared

To compare the performance of the proposed aIgorithr‘r’Yéth the DC-SGEP algorithm, attributes to both the lower per

. . ; . [teration computational complexity and the faster coneagg.
with existing ones on the sparse generalized eigenvalug prg : ) . .
lem (SGEP) and some of its special cases, we present <ol show this, the evolution of the objective function for one
X 1Al with n — 100 is plotted in Figuréd b and we can see that

experimental results in this section. All experiments wer] e proposed IRQM algorithm takes much fewer iterations
performed on a PC with a 3.20GHz i5-3470 CPU and SGE‘ prop gon i u wer lteratl
0 converge. One may also notice that the two algorithms

RAM. converge to the same objective value, but this does not hold

_ _ in general since the problem is nonconvex.
A. Sparse Generalized Eigenvalue Problem

2

In this subsection, we evaluate the proposed IRQM a 10
gorithm for the sparse generalized eigenvalue problem
terms of computational complexity and the ability to extrac
sparse generalized eigenvectors. The benchmark methed ¢
sidered here is the DC-SGEP algorithm proposed[in [1C
[11], which is based on D.C. (difference of convex func
tions) programming and minorization-maximization (to the
best of our knowledge, this is the only algorithm propose
for this case). The problem that DC-SGEP solves is just (!
with the surrogate functiog,(z) = log(1 + |z| /p)/log(1 +
1/p), but the equality constraint’ Bx = 1 is relaxed to
x'Bx < 1. The DC-SGEP algorithm requires solving a
convex quadratically constrained quadratic program (QCQI
at each iteration, which is solved by the solver M&sak 10'250 o s p 0
our experiments. In the experiments, the stopping condito Problem size n
|f(x(k+1)) - f(x(k))‘ /max (1, |f(x(k))|) < 107 for both
algorithms. For the proposed IRQM algorithm, the smoothi
parameter is set to be= 1078,

1) Computationa] Complexityl:n.this subsection, we com- 2) Random Data with Underlying Sparse Structurdn
pare the computational complexity of the proposed IRQMhis section, we generate random matricks € S" and
Algorithm [I with the DC-SGEP algorithm. The surrogatgy € S, such that the matrix paifA,B) has a few
function g, (z) = log(1+ |z[ /p)/log(1+1/p) is used for both gyarse generalized eigenvectors. To achieve this, weesiath
algorithms in this experiment. The preconditioned St€EPgfe data through the generalized eigenvalue decomposition
ascent method given in Algorithii 2 is applied to compute thg _ V-TDiag(d)V~! andB = V-7V, where the first
leading generalized eigenvector at every iteration of R@M 1. -qjumns of V € R"*" are pre-specified sparse vectors and

algorithm. To illustrate the effectiveness of the prectinding 1o remaining columns are generated randorhlg the vector
scheme employed in Algorithf 2, we also consider computing he generalized eigenvalues.

the leading generalized eigenvector by invoking Algorithm Here. we choose — 100 andk —
but without preconditioning, i.e., settin = I,. The '
data matricesA € S" and B € S, are generated as
A = C+CT andB = D7D, with C € R"*", D € R!:2nxn» Vil =
and the entries of botlC and D independent, identically {Vii _

—o&— DC-SGEP
—4— IRQM (without preconditioning)
—+&— IRQM (proposed)

Average running time (s)

igure 4. Average running time versus problem size. Eachecisran average
100 random trials.

2, where the two sparse
generalized eigenvectors are specified as follows

for 1=1,...,5,

otherwise,

|
= s

2Mosek, available at http://www.mosek.com/
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Figure 5. Evolution of the objective function for one trialtivn = 100.

%72 = for

Vi

i=6,...,10,

1
NG
0 otherwise,

and the generalized eigenvalues are chosen as

di =10

do = 8

d; = 12, for i—3,4,5
d; ~N(0,1), otherwise.

We generate 200 pairs ofA,B) as described above
and employ the algorithms to compute the leading spa
generalized eigenvectar; € R which is hoped to be
close toV. ;. The underlying sparse generalized eigenve
tor V., is considered to be successfully recovered wh
ll[x1] = V.1]l, < 0.01. For the proposed IRQM algorithm, all
the three surrogate functions listed in Table | are considle:

Chance of exact recovery
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Regularization parameter p
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Chance of exact recovery versus regularizatioranpeter p.
Parametep = 1 is used for the surrogate functions.

—&— IRQM-exp, p=0.3
—<— IRQM-Lp, p=0.3 |
—*— IRQM-log, p=0.3
—6— DC-SGEP, p=0.3|

S
L

and we call the resulting algorithms “IRQM-log”, “IRQM- Figure 7. ! _
Lp” and “IRQM-exp”, respectively. For all the algorithm:ha Parametep = 0.3 is used for the surrogate functions.
initial point x(?) is chosen randomly. Regarding the parameter

p of the surrogate function, three values, namgly.3 and
0.1, are compared. The corresponding performance along
whole path of the regularization parameteis plotted in Fig.
[6,[@ and8, respectively.

From Fig.[6, we can see that for the case= 1, the
best chance of exact recovery achieved by the three IRC
algorithms are very close and all higher than that achiev
by the DC-SGEP algorithm. From Figl 7 ahH 8, we can s
that asp becomes smaller, the best chance of exact recov
achieved by IRQM-exp, IRQM-log and DC-SGEP stay almo
the same as in the cape= 1 (in fact decrease a little bit when
p = 0.1), but the performance of IRQM-Lp degrades a lo
This may be explained by the fact that abecomes smaller,
the surrogate functiofx|” tends to the functiosgn(|z|) much
faster than the other two surrogate functions. So when0.1
for example, it is much more pointed and makes the algoritt
easily get stuck at some local point. In this sense, the kgpd
and exp-based surrogate functions seem to be better cho
as they are not so sensitive to the choicepof
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—*— IRQM-log, p=0.1
—6— DC-SGEP, p=0.1
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Figure 8.
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Regularization parameter p

Chance of exact recovery versus regularizatiormnpeter p.
§meteqa = 0.1 is used for the surrogate functions.
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3) Decreasing Scheme of the Smoothing Parameteks popular algorithms are essentially variations of the galiwesd
have been discussed in the end of SecfionII-C, choosingpawer method (GPower) proposed lifi [7]. Thus we choose the
relatively large smoothing parameterat the beginning and GPower methods, namelPower,, and GPower,,, as the
decreasing it gradually may probably lead to better perfdsenchmarks in this section. The Matlab code of the GPower
mance than the fixed scheme. In this section, we considealgorithms was downloaded from the authors’ website. For
such a decreasing scheme and compare its performance whith proposed Algorithnh]3, the surrogate function is chosen
the fixed ¢ scheme in which the smoothing parameter i® be g,(z) = |z|, such that the penalty function is just
fixed to bee = 107%. The decreasing scheme that wehe ¢;-norm, which is the same as {@Power,,. We call the
will adopt is inspired by the continuation approach [in1[22}esulting algorithn”MM,,” and the Algorithni#% is referred
The idea is to apply the IRQM algorithm to a successioilw as” MM,,” in this section.
of problems with decreasing smoothing parametefs > Note that for GPower methods, direct access to the original
e > ... > €™ and solve the intermediate problems witllata matrixC is required. When only the covariance matrix
less accuracy, wher& is the number of decreasing stepsis available, a factorization of the forrhA = C7C is
More specifically, at step = 0,...,7, we apply the IRQM needed (e.g., by eigenvalue decomposition or by Cholesky
algorithm with smoothing parametef) and stopping criterion decomposition). If the data matri is of sizem x n, then
| FxHD) — f(x)| /max (1, | f(x*)]) < Ve®/10 and the per-iteration computational costd@mn) for all the four
then decrease the smoothing parameter for the next stdgorithms under consideration.
by e+ = ~e® with v = (™) /eO)1/T At each step 1) Computational Complexitytn this subsection, we com-
the IRQM algorithm is initialized with the solution of thepare the computational complexity of the four algorithms
previous step. The initial smoothing parameter is chosen mgntioned above, i.e.GPower;,, GPower,,, MM,, and
@ = ||x®|_ /4, wherex(®) is the random initial point MM,,. The data matrixC € R"™*" is generated ran-
and the minimum smoothing parameter is set'@$ = 10~%, domly with the entries independent, identically distréuit
which is the parameter used in the fixescheme. The numberand following (0, 1). The stopping condition is set to be
of decreasing steps is set o= 5 in our experiment. |fxEHDY — f(x®)| /max (1, | f(x*))]) < 1075 for all the

The remaining settings are the same as in the previous salgorithms. The smoothing parameter for algorithid,, is
section and the log-based surrogate function with paramefized to bee = 10~8. The regularization parametgiis chosen
p = 0.3 is used for the IRQM algorithm. The performance ofuch that the solutions of the four algorithms exhibit sémil
the two schemes are shown in Hig. 9. From the figure, we ceardinalities (with about 5% nonzero entries).
see that the decreasing scheme of the smoothing parametdthe average running time over 100 independent trials for
achieves a higher chance of exact recovery. problems with different sizes are shown in Figlré 10. From
the figure, we can see that the tWpnorm penalized methods
are faster than the twé;-norm penalized methods and the
. proposedM My, is the fastest among the four algorithms, es-
pecially for problems of large size. For the tépnorm penal-
ized methods, the propos&dM,, is slower thanGPower,,,
which may result from the fact thatM,, minorizes both the
: quadratic term and thé penalty term whileGPower,, keeps
the ¢, penalty term. It is worth noting that th@Powery, is
specialized for¢/; penalty, while AlgorithmB can also deal
with various surrogate functions other than thepenalty.

: 2) Random Data Drawn from a Sparse PCA Modkl:this
subsection, we follow the procedure [n [6] to generate ramdo

1

0.9

0.8F

o
3

o
)
T

Chance of exact recovery
o o
> (5]
-

o
w
T

o
)
T

o IRQM-log, decreasing ¢ data_l with a covariance matrix having sparse eigenvect«nrs. T
01r —%— IRQM-log, fixed € il achieve this, we first construct a covariance matrix thragh
0 o : o ) eigenvalue decompositioh = VDiag(d)VT, where the first

" Regularization parameter p k columns ofV € R"*"™ are pre-specified sparse orthonormal

vectors. A data matrixC € R™*" is then generated by
Figure 9. - Chance of exact recovery versus regularizatioampeterp. The - drawingm samples from a zero-mean normal distribution with
log-based surrogate function with parametet 0.3 is used. covariance matrixA, that is, C ~ N(O, A).
Following the settings in[[7], we choose= 500, k = 2,
and m = 50, where the two orthonormal eigenvectors are

B. Sparse Principal Component Analy$B =1,,) specified as follows

In this section, we consider the special case of the sparse . _
generalized eigenvalue problem in which the matBxis Vin= g for i=1,...,10,
the identity matrix, i.e., the sparse PCA problem, which has Vii=0 otherwise,

received most of the recent attention in the literature.his t X ,
case, the matrixA is usually a (scaled) covariance matrix. Vie =g for i=11...,20,
Although there exists a vast literature on sparse PCA, most Vie=0 otherwise.



13

10 ‘ ‘ ‘ biological questions. But the amount of data created in an
- —%-— MM-L1 (proposed)

—— GPower-L1 experiment is usually large and this makes the interpmtati

— %= - GPower-L0 of these data challenging. PCA has been applied as a tod in th
-k MM-LO (proposed) =1 studies of gene expression data and their interpretafi6h [2
Naturally, sparse PCA, which extracts principal composent
with only a few nonzero elements can potentially enhance the
interpretation.

In this subsection, we test the performance of the al-
gorithms on gene expression data collected in the breast
cancer study by Bild et al[ [27]. The data set contains 158
samples over 12625 genes, resulting in5 x 12625 data
matrix. Figure[ IR shows the explained variance versus cardi
e nality for five algorithms, including the simple threshalgi

200 300 400 500 600 700 800 900 1000 scheme. The proportion of explained variance is computed

Problem size n asxngA(CTC)XSPCA/XgCA(CTC)XPCA, Wherexsp(;A is

Figure 10. Average running time versus problem size. Eachecis an the sparse eigenvector extracted by sparse PCA algorithms,
average of 100 random trials. xpca IS the true leading eigenvector afitlis the data matrix.
The simple thresholding scheme first computes the regular
principal componenkpca and then keeps a required number
of entries with largest absolute values. From the figure, ave c
see that the proportion of variance being explained ine®as
as the cardinality increases as expected. For a fixed céitdina
e two GPower algorithms and the two proposed MM algo-
rithms can explain almost the same amount of variance, all
higher than the simple thresholding scheme, especiallynwhe
the cardinality is small.

JiN

N
O\

Average running time (s)

The eigenvalues are fixed éf = 400, do = 300 andd; = 1,
fori=3,...,500.
We randomly generate 500 data matriegs= R™*" and

eigenvectorx; € R*%, which is hoped to recoveV. ;. We
consider the underlying sparse eigenvedfoy is successfully
recovered wherjxffV:J\ > 0.99. The chance of successful
recovery over a wide range of regularization parameter
is plotted in Figurd_11. The horizontal axis shows the nc 1
malized regularization parameter, thatpismax; ||C. ;|| for
GPower,, andp/ max; ||CZH§ for GPowery,andMM,,. For
MMy, algorithm, we usg/ (2 HCTCHOO,Q) , where|-||, , is
the operator norm induced by|| ., and||-||,. From the figure,
we can see that the highest chance of exact recovery achie
by the four algorithms is the same and for all algorithms it
achieved over a relativelv wide ranae af

o
©

o
©

o
3

o
2

0.9

Proportion of explained variance
o
[}

04l —6— GPower-L1 ]
08 RN | ’ —>— GPower-L0
: \‘.‘ —%— MM-L1 (proposed)
\"‘. 0.3r —#— MM-LO (proposed) |7
0.7 \\. il Simple Thresholding
> ; I 02 : . .
o 06r!/ H B 0 500 1000 1500 2000
§ B | Cardinality
8 : |
5 05! ' ,
g I: \: Figure 12. Trade-off curves between explained variancecandinality.
[ " .
5 04 J : 1
g |F
g f | |
6 0.3-‘ B
([ VI. CONCLUSIONS
0.2f | GPower-L1 B .. .
LIl — — . cpower-to \ We have developed an efficient algorithm IRQM that allows
01t | -—-=MM-L1 (proposed) \ i to obtain sparse generalized eigenvectors of a matrix pair.
""" MM-LO (proposed) ' After approximating the/,-norm penalty by some nonconvex
% o1 02 03 04 05 06 07 08 09 1 surrogate functions, the minorization-maximization sobe
Normalized regularization parameter is applied and the sparse generalized eigenvalue problem
Figure 11. Chance of exact recovery versus normalized aggation is turned into a sequence of regu'fir genera}hz_ed eigenvalue
parameter. problems. The convergence to a stationary point is proved. N

merical experiments show that the proposed IRQM algorithm

3) Gene Expression Data DNA microarrays allow mea- outperforms an existing algorithm based on D.C. progrargmin

suring the expression level of thousands of genes at the samé&rms of both computational cost and support recovery. Fo
time and this opens the possibility to answer some complsgarse generalized eigenvalue problems with specialtstaic
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(but still including sparse PCA as a special instance), twihen the third optimality condition (40) is just > fimin,
more efficient algorithms that have a closed-form solutibn aincew; > 0, p > 0, b; > 0. Let us consider the optimality
every iteration are derived again based on the minorizatiozondition in two different cases:

maximization scheme. On both synthetic random data andl) p > pmin- In this casepDiag(b)+ pDiag(w) = 0, from
real-life gene expression data, the two algorithms are showhe first optimality condition[(38) we get

experimentally to have similar performance to the statéief

art. x = (Diag(ub + pw)) ' a. (43)
Substituting it into the second optimality conditién(39ields
APPENDIXA b boa
PROOF OFPROPOSITIONZ] — 4 L E—— 44
- Z (ubi + pw;)? Z (ubi + pw;)? (44)
Proof: From Lemmd3, it is easy to show that i€Tmin ¢ Imin

and it is easy to see that the left hand side is monotonically
6) , Vx € R".  decreasing fop: € (ftmin, +00). If i € Ziyin, such thata? >
(34) 0, then the left hand side of (¥4) tendsteo as i — fimin.
Since problemd{5) and{lL8) have the same constraint set, Wfice that the left hand side goesas ;. — +oo, thus we
have are guaranteed to find @ € (umin, +00) satisfying equation
F(x2) > F(x). (35) (@A). In practice, we may use bisection method to find the

. o value of ju. If a? = 0, Vi € Tpnin, there still exists a: > fimin
From the fact thai* is a global maximizer of probleni](5), that satisfies equatiof (44) if and only if

) 2 100 = £ = pn (aple) - h

we know b2
Fx") = f(x0). (36) S LY 45
- . Z (Hminbi + pw;)? (43)
Combining [3%), [(36) and (36), yields ¢ Tmin
d9.(e) If (d5) does not hold, it implie$: = pimin-
f(X) > f(x*) > f(x2) > fo(x2) — pn (gp(e) - pTe> . 2) ;v = pmin- In this case, we cannot computevia equation
(@3) anymore. Then to obtain, we first notice from[(38) that
T Y vi¢T, 46
N N g;(ﬁ) Ty = Mminbi I pwiv ? ¢ min - ( )
0< f(x") = f(x5) < pn | gple) — €). . , _ :
2 Then, according to equatioh (39), faf, i € Z., they just

Sinceg, () is concave and monotone increasingian+oc), Need to satisfy the following equation

it is easy to show thay,(e) > g, (e)e > 0, for any e > 0. ) bia?
Hence ) 2 baf=1- 3 (Hminbi + pw;)?’ (47)
gp(e) 1€ Lmin ¢ Timin i !
gp(€) > gple) — 5 € > 0. (37) o _
When card(Zyin) > 1, (@7) has infinite number of solutions
Sinceg,(+) is continuous and monotone increasing@n+oo) and we may choose arbitrary one. ]
andg,(0) = 0, we havelim, g, (¢) = 0. Together with [(37),
we can conclude that APPENDIXC
g,,(€) PROOF OFPROPOSITIONG
lim ( g,(e) — Z—¢) = 0. .
€l0 2 Proof: The problem[(Z2B) can be rewritten as
Sincep andn are constants, the proof is complete. ] ma}{ximizc}a {_ps + max {aTX xlly =1, %], < S}}
se{l,...,n x
APPENDIX B The inner maximization has a closed-form solution
PROOF OFPROPOSITIONY]
. . . a;/ /> _1a%, i<s
Proof: First notice that the probleni (R2) is a nonconvex T} = =1 "=
QCQP but with only one constraint, thus the strong duality 0 otherwise,

holds [28], [29]. The optimality conditions for this prolbfe

then the problem becomes
are

- - imize { — NN 2
(uDiag(b) + pDiag(w))x = a (38) ’S“;‘{)f'm'?zl‘}?{ ps+ 21_1%}

T .
) x Dlég(b)x (39) It's easy to see that the optimalis the largest integep that
pDiag(b) + pDiag(w) (40)  satisfies the following inequality

Let us defi B
et us define 3P a2 >/ a2 + . (48)

Imin: i ibiZ' 1,..., 41 . . .. 3
arg min{puw; /bi : 1 € { ni} (41) By squaring both sides of this inequality, we get

and
Pmin = —min{pw; /b; : i € {1,...,n}}. (42) a2 > p* +2p\/ 0 a2,

o
o =



which means|a,| > p is a necessary condition fof (48) to[11]
be satisfied. Thus, in practice to find the largest integ#rat
satisfies[(48) we only need to check for g} with |a,| > p. [12]
If 0 < Ja1| < p, it is easy to see that the solution of the

problem [2B) is given by[(24). [ |

[13]
APPENDIXD

PROOF OFLEMMA [7] 114

Proof: From the wayg;,(z) is constructed, it is continu-
ously differentiable. It remains to show that the gradient  [15]

. ng(E):zr, x| <€
(g5) (@) =1,

gp(x), |z[>€ [16]

is Lipschitz continuous. From the fact thegj(x) is concave
and monotone increasing ai, +oc), we know thatg,,(z) [17]

is non-increasing or{0, +-c0) and g, (z) > 0. Since g5 ()
is an even function(g;)' (z) is odd. Thus,(g;)' (z) is non-
increasing on(—oo, —¢), linearly increasing on—e, ¢] and
non-increasing orfe, +o0o). In addition, (g;)/ (r) < 0 when
x <0and (g;)/ (r) > 0 whenz > 0. With (g;)/ (x) having
these properties, to show the Lipschitz continuit)(g)g)/ (x), [20]

it is sufficient to show tha(g;)' (z) is Lipschitz continuous

(18]

[19]

on [—e, €] and (e, +00) respectively. [21]
on e, (g5) () = ng(E)SC, which is Lipschitz continu-
ous with Lipschitz constan?@. (22]

on (e, +00), (¢5) (x) = g} (x), from Assumptior(lL we

know that g, () is convex and differentiable o0, +oc). [23]
Since g, (x) is also non-increasing, we can conclude that
g,(z) < 0 and is non-decreasing o0, +o00). Thus, on |24
(¢e,400), |gy(x)| is bounded by|g/(¢)| and the Lipschitz
continuity of (g5)’ () on (e, +o0) follows. n @
[26]
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