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Abstract—In this paper, we consider anℓ0-norm penalized for-
mulation of the generalized eigenvalue problem (GEP), aimed at
extracting the leading sparse generalized eigenvector of amatrix
pair. The formulation involves maximization of a discontinuous
nonconcave objective function over a nonconvex constraintset,
and is therefore computationally intractable. To tackle the
problem, we first approximate the ℓ0-norm by a continuous
surrogate function. Then an algorithm is developed via iteratively
majorizing the surrogate function by a quadratic separable
function, which at each iteration reduces to a regular generalized
eigenvalue problem. A preconditioned steepest ascent algorithm
for finding the leading generalized eigenvector is provided. A
systematic way based on smoothing is proposed to deal with the
“singularity issue” that arises when a quadratic function is used
to majorize the nondifferentiable surrogate function. For sparse
GEPs with special structure, algorithms that admit a closed-form
solution at every iteration are derived. Numerical experiments
show that the proposed algorithms match or outperform existing
algorithms in terms of computational complexity and support
recovery.

Index Terms—Minorization-maximization, sparse generalized
eigenvalue problem, sparse PCA, smooth optimization.

I. I NTRODUCTION

T HE generalized eigenvalue problem (GEP) for matrix pair
(A,B) is the problem of finding a pair(λ,x) such that

Ax = λBx, (1)

whereA, B ∈ R
n×n, λ ∈ R is called the generalized eigen-

value andx ∈ R
n,x 6= 0 is the corresponding generalized

eigenvector. WhenB is the identity matrix, the problem in
(1) reduces to the simple eigenvalue problem.

GEP is extremely useful in numerous applications of high
dimensional data analysis and machine learning. Many widely
used data analysis tools, such as principle component analysis
(PCA) and canonical correlation analysis (CCA), are special
instances of the generalized eigenvalue problem [1], [2]. In
these applications, usuallyA ∈ S

n, B ∈ S
n
++ (i.e., A is

symmetric andB is positive definite) and only a few of the
largest generalized eigenvalues are of interest. In this case, all
generalized eigenvaluesλ and generalized eigenvectorsx are
real and the largest generalized eigenvalue can be formulated
as the following optimization problem

λmax(A,B) = max
x 6=0

x
T
Ax

xTBx
, (2)

or equivalently
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λmax(A,B) = max
x

{

x
T
Ax : xT

Bx = 1
}

. (3)

Despite the simplicity and popularity of the tools based on
GEP, there is a potential problem: in general the eigenvector
is not expected to have many zero entries, which makes the
result difficult to interpret, especially when dealing withhigh
dimensional data. An ad hoc approach to fix this problem
is to set the entries with absolute values smaller than a
threshold to zero. This thresholding approach is frequently
used in practice, but it is found to be potentially misleading,
since no care is taken on how well the artificially enforced
sparsity fits the original data [3]. Obviously, approaches that
can simultaneously produce accurate and sparse models are
more desirable.

This has motivated active research in developing methods
that enforce sparsity on eigenvectors, and many approaches
have been proposed, especially for the simple sparse PCA case.
For instance, Zou, Hastie, and Tibshirani [4] first recast the
PCA problem as a ridge regression problem and then imposed
ℓ1-norm penalty to encourage sparsity. In [5], d’Aspremont et
al. proposed a convex relaxation for the sparse PCA problem
based on semidefinite programming (SDP) and Nesterov’s
smooth minimization technique was applied to solve the SDP.
Shen and Huang [6] exploited the connection of PCA with
singular value decomposition (SVD) of the data matrix and ex-
tracted the sparse principal components (PCs) through solving
a regularized low rank matrix approximation problem. Journée
et al. [7] rewrote the sparse PCA problem in the form of
an optimization problem involving maximization of a convex
function on a compact set and the simple gradient method
was then applied. Although derived differently, the resulting
algorithm GPower turns out to be identical to the rSVD algo-
rithm in [6], except for the initialization and post-processing
phases. Very recently, Luss and Teboulle [8] introduced an
algorithm framework, called ConGradU, based on the well-
known conditional gradient algorithm, that unifies a variety of
seemingly different algorithms, including the GPower method
and the rSVD method. Based on ConGradU, the authors also
proposed a new algorithm for theℓ0-constrained sparse PCA
formulation.

Among the aforementioned algorithms for sparse PCA,
rSVD, GPower and ConGradU are very efficient and require
only matrix vector multiplications at every iteration, thus can
be applied to problems of extremely large size. But these
algorithms are not well suited for the case whereB is not
the identity matrix, for example, the sparse CCA problem,
and direct application of these algorithms does not yield a

http://arxiv.org/abs/1408.6686v2


2

simple closed-form solution at each iteration any more. To
deal with this problem, [9] suggested that good results could
still be obtained by substituting in the identity matrix for
B and, in [8], the authors proposed to substitute the matrix
B with its diagonal instead. In [10], [11], an algorithm was
proposed to solve the problem with the generalB (to the best
of our knowledge, this is the only one) based on D.C. (dif-
ference of convex functions) programming and minorization-
maximization. The resulting algorithm requires computinga
matrix pseudoinverse and solving a quadratic program (QP) at
every iteration whenA is symmetric and positive semidefinite,
and in the case whereA is just symmetric it needs to solve a
quadratically constrained quadratic program (QCQP) at each
iteration. It is computationally intensive and not amenable to
problems of large size. The same algorithm can also be applied
to the simple sparse PCA problem by simply restrictingB

to be the identity matrix, and in this special case only one
matrix vector multiplication is needed at every iteration and it
is shown to be comparable to the GPower method regarding
the computational complexity.

In this paper, we adopt the MM (majorization-minimization
or minorization-maximization) approach to develop efficient
algorithms for the sparse generalized eigenvalue problem.In
fact, all the algorithms that can be unified by the ConGradU
framework can be seen as special cases of the MM method.
Since the ConGradU framework is based on maximizing a
convex function over a compact set via linearizing the convex
objective, and the linear function is just a special minorization
function of the convex objective. Instead of only consider-
ing linear minorization function, in this paper we consider
quadratic separable minorization that is related to the well
known iteratively reweighted least squares (IRLS) algorithm
[12]. By applying quadratic minorization functions, we turn
the original sparse generalized eigenvalue problem into a
sequence of regular generalized eigenvalue problems and an
efficient preconditioned steepest ascent algorithm for finding
the leading generalized eigenvector is provided. We call the
resulting algorithm IRQM (iteratively reweighted quadratic
minorization); it is in spirit similar to IRLS which solves
the ℓ1-norm minimization problem by solving a sequence
of least squares problems. Algorithms of the IRLS type
often suffer from the infamous “singularity issue”, i.e., when
using quadratic majorization functions for nondifferentiable
functions, the variable may get stuck at a nondifferentiable
point [13]. To deal with this “singularity issue”, we propose a
systematic way via smoothing the nondifferentiable surrogate
function, which is inspired by Nesterov’s smooth minimization
technique for nonsmooth convex optimization [14], although
in our case the surrogate function is nonconvex. The smoothed
problem is shown to be equivalent to a problem that maximizes
a convex objective over a convex constraint set and the
convergence of the IRQM algorithm to a stationary point of
the equivalent problem is proved. For some sparse generalized
eigenvalue problems with special structure, more efficient
algorithms are also derived which admit a closed-form solution
at every iteration.

The remaining sections of the paper are organized as
follows. In Section II, the problem formulation of the sparse

generalized eigenvalue problem is presented and the surrogate
functions that will be used to approximateℓ0-norm are dis-
cussed. In Section III, we first give a brief review of the MM
framework and then algorithms based on the MM framework
are derived for the sparse generalized eigenvalue problems
in general and with special structure. A systematic way to
deal with the “singularity issue” arising when using quadratic
minorization functions is also proposed. In Section IV, the
convergence of the proposed MM algorithms is analyzed.
Section V presents numerical experiments and the conclusions
are given in Section VI.

Notation: R and C denote the real field and the com-
plex field, respectively.Re(·) and Im(·) denote the real and
imaginary part, respectively.Rn (Rn

+,R
n
++) denotes the set

of (nonnegative, strictly positive) real vectors of sizen. Sn

(Sn
+,S

n
++) denotes the set of symmetric (positive semidefinite,

positive definite)n × n matrices defined overR. Boldface
upper case letters denote matrices, boldface lower case letters
denote column vectors, and italics denote scalars. The super-
scripts(·)T and(·)H denote transpose and conjugate transpose,
respectively.Xi,j denotes the (i-th, j-th) element of matrixX
andxi denotes thei-th element of vectorx. Xi,: denotes the
i-th row of matrixX, X:,j denotes thej-th column of matrix
X. diag(X) is a column vector consisting of all the diagonal
elements ofX. Diag(x) is a diagonal matrix formed withx as
its principal diagonal. Given a vectorx ∈ R

n, |x| denotes the
vector with ith entry |xi| , ‖x‖0 denotes the number of non-
zero elements ofx, ‖x‖p := (

∑n
i=1 |xi|p)1/p , 0 < p <∞. In

denotes ann × n identity matrix. sgn(x) denotes the sign
function, which takes−1, 0, 1 if x < 0, x = 0, x > 0,
respectively.

II. PROBLEM FORMULATION

Given a symmetric matrixA ∈ S
n and a symmetric positive

definite matrixB ∈ S
n
++, the main problem of interest is the

following ℓ0-norm regularized generalized eigenvalue problem

maximize
x

x
T
Ax− ρ ‖x‖0

subject to x
T
Bx = 1,

(4)

whereρ > 0 is the regularization parameter. This formulation
is general enough and includes some sparse PCA and sparse
CCA formulations in the literature as special cases.

The problem (4) involves the maximization of a non-
concave discontinuous objective over a nonconvex set, thus
really hard to deal with directly. The intractability of the
problem is not only due to the nonconvexity, but also due to
the discontinuity of the cardinality function in the objective. A
natural approach to deal with the discontinuity of theℓ0-norm
is to approximate it by some continuous function. It is easy
to see that theℓ0-norm can be written as

‖x‖0 =

n
∑

i=1

sgn(|xi|).

Thus, to approximate‖x‖0 , we may just replace the prob-
lematic sgn(|xi|) by some nicer surrogate functiongp(xi),
wherep > 0 is a parameter that controls the approximation.
In this paper, we will consider the class of continuous even



3

functions defined onR, which are differentiable everywhere
except at0 and concave and monotone increasing on[0,+∞)
and gp(0) = 0. In particular, we will consider the following
three surrogate functions:

1) gp(x) = |x|p , 0 < p ≤ 1
2) gp(x) = log(1 + |x| /p)/log(1 + 1/p), p > 0
3) gp(x) = 1− e−|x|/p, p > 0.

The first is thep-norm-like measure (withp ≤ 1) used in
[15], [16], which is shown to perform well in promoting sparse
solutions for compressed sensing problems. The second is the
penalty function used in [11] for sparse generalized eigenvalue
problem and when used to replace theℓ1-norm in basis pursuit,
it leads to the well known iteratively reweightedℓ1-norm
minimization algorithm [17]. The last surrogate function is
used in [18] for feature selection problems, which is different
from the first two surrogate functions in the sense that it
has the additional property of being a lower bound of the
functionsgn(|x|). To provide an intuitive idea about how these
surrogate functions look like, they are plotted in Fig. 1 for
fixed p = 0.2.
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|x|p

log(1+|x|/p)/log(1+1/p)
1−exp(−|x|/p)

Figure 1. Three surrogate functionsgp(x) that are used to approximate
sgn(|x|), p = 0.2.

By approximating‖x‖0 with
∑n

i=1 gp(xi), the original
problem (4) is approximated by the following problem

maximize
x

x
T
Ax− ρ

∑n
i=1 gp(xi)

subject to x
T
Bx = 1.

(5)

With the approximation, the problem (5) is still a nonconvex
nondifferentiable optimization problem, but it is a continuous
problem now in contrast to the original problem (4). In
the following section, we will concentrate on the approx-
imate problem (5) and develop fast algorithms to solve it
based on the MM (majorization-minimization or minorization-
maximization) scheme.

Note that for simplicity of exposition, we focus on real-
valued matrices throughout the paper. However, the techniques
developed in this paper can be adapted for complex-valued
matrix pair(A,B), with A being ann× n Hermitian matrix
andB being ann×n Hermitian positive definite matrix. One
approach is to transform the problem to a real-valued one by
defining

x̃ = [Re(x)T , Im(x)T ]T

Ã =

[

Re(A) −Im(A)
Im(A) Re(A)

]

, B̃ =

[

Re(B) −Im(B)
Im(B) Re(B)

]

.

In this approach, the cardinality is considered for the realand
imaginary part of the vectorx separately. A more natural
approach is to consider directly the complex-valued version
of the ℓ0-norm regularized generalized eigenvalue problem

maximize
x∈Cn

x
H
Ax− ρ ‖x‖0

subject to x
H
Bx = 1,

where the ℓ0-norm can still be written as‖x‖0 =
∑n

i=1 sgn(|xi|), but with |xi| being the modulus ofxi now.
Notice that the three surrogate functionsgp(x) used to ap-
proximatesgn(|x|) are all functions of|x|, by taking |x| as
the modulus of a complex number, the surrogate functions
are directly applicable to the complex case. The quadratic
minorization function that will be described in Section III
can also be constructed similarly in the complex case and at
each iteration of the resulting algorithm we still need to solve
a regular generalized eigenvalue problem but with complex-
valued matrices.

III. SPARSEGENERALIZED EIGENVALUE PROBLEM VIA

MM SCHEME

A. The MM method

The MM method refers to the majorization-minimization
method or the minorization-maximization method, which is a
generalization of the well known expectation maximization
(EM) algorithm. It is an approach to solve optimization
problems that are too difficult to solve directly. The principle
behind the MM method is to transform a difficult problem into
a series of simple problems. Interested readers may refer to
[19] and references therein for more details.

Suppose we want to minimizef(x) over X ∈ R
n.

Instead of minimizing the cost functionf(x) directly, the
MM approach optimizes a sequence of approximate objective
functions that majorizef(x). More specifically, starting from a
feasible pointx(0), the algorithm produces a sequence{x(k)}
according to the following update rule

x
(k+1) ∈ argmin

x∈X
u(x,x(k)), (6)

wherex(k) is the point generated by the algorithm at iteration
k, and u(x,x(k)) is the majorization function off(x) at
x
(k). Formally, the functionu(x,x(k)) is said to majorize the

function f(x) at the pointx(k) provided

u(x,x(k)) ≥ f(x), ∀x ∈ X , (7)

u(x(k),x(k)) = f(x(k)). (8)

In other words, functionu(x,x(k)) is a global upper bound
for f(x) and coincides withf(x) at x(k).

It is easy to show that with this scheme, the objective value
is decreased monotonically at every iteration, i.e.,

f(x(k+1)) ≤ u(x(k+1),x(k)) ≤ u(x(k),x(k)) = f(x(k)). (9)

The first inequality and the third equality follow from the the
properties of the majorization function, namely (7) and (8)
respectively and the second inequality follows from (6).

Note that with straightforward changes, similar scheme can
be applied to maximization. To maximize a functionf(x),
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we need to minorize it by a surrogate functionu(x,x(k)) and
maximize u(x,x(k)) to produce the next iteratex(k+1). A
function u(x,x(k)) is said to minorize the functionf(x) at
the pointx(k) if −u(x,x(k)) majorizes−f(x) at x(k). This
scheme refers to minorization-maximization and similarlyit
is easy to shown that with this scheme the objective value is
increased at each iteration.

B. Quadratic Minorization Function

Having briefly introduced the general MM framework, let
us return to the approximate sparse generalized eigenvalue
problem (SGEP) in (5). To apply the MM scheme, the key
step is to find an appropriate minorization function for the
objective of (5) at each iteration such that the resulting problem
is easy to solve. To construct such a minorization function,
we keep the quadratic termxT

Ax and only minorize the
penalty term−ρ∑n

i=1 gp(xi) (i.e., majorizeρ
∑n

i=1 gp(xi)).
More specifically, at iterationk we majorize each of the sur-
rogate functionsgp(xi), i = 1, . . . , n at x(k)

i with a quadratic
function w

(k)
i x2

i + c
(k)
i , where the coefficientsw(k)

i and c
(k)
i

are determined by the following two conditions (forx
(k)
i 6= 0):

gp(x
(k)
i ) = w

(k)
i

(

x
(k)
i

)2

+ c
(k)
i , (10)

g′p(x
(k)
i ) = 2w

(k)
i x

(k)
i , (11)

i.e., the quadratic function coincides with the surrogate func-
tion gp(xi) at x

(k)
i and is also tangent togp(xi) at x

(k)
i .

Due to the fact that the surrogate functions of interest are
differentiable and concave forxi > 0 (also for xi < 0),
the second condition implies that the quadratic function isa
global upper bound of the surrogate functiongp(xi). Then the
objective of (5), i.e.,xT

Ax − ρ
∑n

i=1 gp(xi), is minorized

by the quadratic functionxT
Ax− ρ

∑n
i=1

(

w
(k)
i x2

i + c
(k)
i

)

,

which can be written more compactly as

x
T
(

A− ρDiag(w(k))
)

x− ρ

n
∑

i=1

c
(k)
i , (12)

wherew(k) = [w
(k)
1 , . . . , w

(k)
n ]T .

Example 1. To compute the quadratic functionw(k)
i x2

i + c
(k)
i

that majorizes the surrogate functiongp(xi) = |xi|p , 0 <

p ≤ 1 at x(k)
i 6= 0, we have the following two equations

corresponding to (10) and (11) respectively:
∣

∣

∣
x
(k)
i

∣

∣

∣

p

= w
(k)
i

(

x
(k)
i

)2

+ c
(k)
i , (13)

sgn(x
(k)
i )p

∣

∣

∣
x
(k)
i

∣

∣

∣

p−1

= 2w
(k)
i x

(k)
i . (14)

By solving (13) and (14), we can get the quadratic majoriza-
tion function

u(xi, x
(k)
i ) =

p

2

∣

∣

∣
x
(k)
i

∣

∣

∣

p−2

x2
i + (1− p

2
)
∣

∣

∣
x
(k)
i

∣

∣

∣

p

, (15)

which is illustrated in Fig. 2 withp = 0.5 andx(k)
i = 2.

In fact, the idea of majorizing some penalty functions
by quadratic separable functions is well known in robust
regression [20]. It was first proposed to solve the absolute
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g
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i
)

u(x
i
,2)

Figure 2. The functiongp(xi) = |xi|
p with p = 0.5 and its quadratic

majorization function atx(k)
i = 2.

deviations curve fitting problem (i.e., regression withℓ1-norm
cost function) via iteratively solving a series of weightedleast
squares problems and the resulting algorithm is known as
the iteratively reweighted least squares (IRLS) algorithm[12].
Later the idea was applied in signal processing for sparse sig-
nal reconstruction in [15], [21]. Recently, the IRLS approach
has also been applied in Compressed Sensing [16]. Algorithms
based on this idea often have the infamous singularity issue
[13], that is, the quadratic majorization functionw(k)

i x2
i +c

(k)
i

is not defined atx(k)
i = 0, due to the nondifferentiability

of gp(xi) at xi = 0. For example, considering the quadratic
majorization function ofgp(xi) = |xi|p , 0 < p ≤ 1 in (15),

it is easy to see that the coefficientp
2

∣

∣

∣
x
(k)
i

∣

∣

∣

p−2

is not defined

at x
(k)
i = 0. To tackle this problem, the authors of [13]

proposed to define the majorization function at the particular
point x(k)

i = 0 as

u(xi, 0) =

{

+∞, xi 6= 0

0, xi = 0,

which implies that oncex(k)
i = 0, the next iteration will also

be zero, i.e.,x(k+1)
i = 0. This may impact the convergence

of the algorithm to a minimizer of the objective, if the
corresponding element of the minimizer is in fact not zero.
Another common approach for dealing with this singularity
issue is to incorporate a smallǫ > 0, for example, for the
quadratic majorization function ofgp(xi) = |xi|p , 0 < p ≤ 1

in (15), replace the coefficientp2

∣

∣

∣
x
(k)
i

∣

∣

∣

p−2

by

w
(k)
i =

p

2

(

(

x
(k)
i

)2

+ ǫ

)

p−2
2

,

which is the so called damping approach used in [16]. A
potential problem of this approach is that althoughǫ is small,
we have no idea how it will affect the convergence of the
algorithm, since the corresponding quadratic function is no
longer a majorization function of the surrogate function.
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C. Smooth Approximations of Non-differentiable Surrogate
Functions

To tackle the singularity issue arised during the construction
of the quadratic minorization function in (12), in this sub-
section we propose to incorporate a smallǫ > 0 in a more
systematic way.

The idea is to approximate the non-differentiable surrogate
function gp(x) with a differentiable function of the following
form

gǫp(x) =

{

ax2, |x| ≤ ǫ

gp(x)− b, |x| > ǫ,

which aims at smoothening the non-differentiable surrogate
function around zero by a quadratic function. To make the
function gǫp(x) continuous and differentiable atx = ±ǫ, the
following two conditions are neededaǫ2 = gp(ǫ) − b, 2aǫ =

g′p(ǫ), which lead toa =
g′

p(ǫ)

2ǫ , b = gp(ǫ)− g′

p(ǫ)

2 ǫ. Thus, the
smooth approximation of the surrogate function that will be
employed is

gǫp(x) =

{

g′

p(ǫ)

2ǫ x2, |x| ≤ ǫ

gp(x) − gp(ǫ) +
g′

p(ǫ)

2 ǫ, |x| > ǫ,
(16)

whereǫ > 0 is a constant parameter.

Example 2. The smooth approximation of the function
gp(x) = |x|p , 0 < p ≤ 1 is

gǫp(x) =

{

p
2ǫ

p−2x2, |x| ≤ ǫ

|x|p − (1− p
2 )ǫ

p, |x| > ǫ.
(17)

The case withp = 0.5 and ǫ = 0.05 is illustrated in Fig.
3. Whenp = 1, the smooth approximation (17) is the well
known Huber penalty function and the application of Huber
penalty as smoothed absolute value has been used in [22] to
derive fast algorithms for sparse recovery.
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g
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Figure 3. The functiongp(x) = |x|p with p = 0.5 and its smooth
approximationgǫp(x) with ǫ = 0.05.

With this smooth approximation, the problem (5) becomes
the following smoothed one:

maximize
x

x
T
Ax− ρ

∑n
i=1 g

ǫ
p(xi)

subject to x
T
Bx = 1,

(18)

wheregǫp(·) is the function given by (16). We now majorize the
smoothed surrogate functionsgǫp(xi) with quadratic functions

and the coefficients of the quadratic majorization functions are
summarized in Table I (we have omitted the coefficientc

(k)
i

since it is irrelevant for the MM algorithm). Notice that the
quadratic functionsw(k)

i x2
i + c

(k)
i are now well defined. Thus,

the smooth approximation we have constructed can be viewed
as a systematic way to incorporate a smallǫ > 0 to deal with
the singularity issue of IRLS type algorithms.

Although there is no singularity issue when applying the
quadratic minorization to the smoothed problem (18), a natural
question is if we solve the smoothed problem, what can we say
about the solution with regard to the original problem (5). In
the following, we present some results which aim at answering
the question.

Lemma 3. Let gp(·) be a continuous even function defined
on R, differentiable everywhere except at zero, concave and
monotone increasing on[0,+∞) with gp(0) = 0. Then the
smooth approximationgǫp(x) defined by(16) is a global lower

bound ofgp(x) and gǫp(x) + gp(ǫ)− g′

p(ǫ)

2 ǫ is a global upper
bound ofgp(x).

Proof: The lemma is quite intuitive and the proof is
omitted for lack of space.

Proposition 4. Let f(x) be the objective of the problem(5),
with gp(·) as in Lemma 3 andfǫ(x) be the objective of the
smoothed problem(18) with gǫp(·) as in (16). Let x⋆ be the
optimal solution of the problem(5) andx⋆

ǫ be the optimal solu-
tion of the smoothed problem(18). Then0 ≤ f(x⋆)−f(x⋆

ǫ ) ≤
ρn

(

gp(ǫ)− g′

p(ǫ)

2 ǫ
)

and limǫ↓0 ρn
(

gp(ǫ)− g′

p(ǫ)

2 ǫ
)

= 0.

Proof: See Appendix A.
Proposition 4 gives a suboptimality bound on the solution

of the smoothed problem (18) in the sense that we can solve
the original problem (5) to a very high accuracy by solving
the smoothed problem (18) with a small enoughǫ (say ǫ ≤
10−6, andǫ = 10−8 is used in our simulations). Of course, in
general it is hard to solve either problem (5) or (18) to global
maximum or even local maximum, since both of them are
nonconvex. But from this point, there may be advantages in
solving the smoothed problem with the smoothing parameterǫ
decreasing gradually, since choosing a relatively largeǫ at the
beginning can probably smoothen out some undesirable local
maxima, so that the algorithm can escape from these local
points. This idea has been used with some success in [16],
[22]. A decreasing scheme ofǫ will be considered later in the
numerical simulations.

D. Iteratively Reweighted Quadratic Minorization

With the quadratic minorization function constructed and
the smoothing technique used to deal with the singularity
issue, we are now ready to state the overall algorithm for the
approximate SGEP in (5).

First, we approximate the non-differentiable surrogate func-
tions gp(xi) by smooth functionsgǫp(xi), which leads to the
smoothed problem (18). Then at iterationk, we construct the
quadratic minorization functionxT

(

A− ρDiag(w(k))
)

x −
ρ
∑n

i=1 c
(k)
i of the objective via majorizing each smoothed
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Table I
SMOOTH APPROXIMATIONgǫp(xi) OF THE SURROGATE FUNCTIONSgp(xi) AND THE QUADRATIC MAJORIZATION FUNCTIONS

u(xi, x
(k)
i ) = w

(k)
i x2

i + c
(k)
i AT x

(k)
i .

Surrogate functiongp(xi) Smooth approximationgǫp(xi) w
(k)
i

|xi|
p , 0 < p ≤ 1

{

p
2
ǫp−2x2

i , |xi| ≤ ǫ

|xi|
p − (1− p

2
)ǫp, |xi| > ǫ







p
2
ǫp−2,

∣

∣x
(k)
i

∣

∣ ≤ ǫ

p
2

∣

∣

∣
x
(k)
i

∣

∣

∣

p−2
,

∣

∣x
(k)
i

∣

∣ > ǫ

log(1 + |xi| /p)/ log(1 + 1/p), p > 0







x2
i

2ǫ(p+ǫ) log(1+1/p)
, |xi| ≤ ǫ

log(1+|xi|/p)−log(1+ǫ/p)+ ǫ
2(p+ǫ)

log(1+1/p)
, |xi| > ǫ







1
2ǫ(p+ǫ) log(1+1/p)

,
∣

∣x
(k)
i

∣

∣ ≤ ǫ

1

2 log(1+1/p)
∣

∣

∣
x
(k)
i

∣

∣

∣
(
∣

∣

∣
x
(k)
i

∣

∣

∣
+p)

,
∣

∣x
(k)
i

∣

∣ > ǫ

1− e−|xi|/p, p > 0







e−ǫ/p

2pǫ
x2
i , |xi| ≤ ǫ

−e−|xi|/p +
(

1 + ǫ
2p

)

e−ǫ/p, |xi| > ǫ











e−ǫ/p

2pǫ
,

∣

∣x
(k)
i

∣

∣ ≤ ǫ

e
−

∣

∣x
(k)
i

∣

∣/p

2p
∣

∣x
(k)
i

∣

∣

,
∣

∣x
(k)
i

∣

∣ > ǫ

surrogate functiongǫp(xi) at x
(k)
i by a quadratic function

w
(k)
i x2

i +c
(k)
i and solve the following minorized problem (with

the constant term ignored)

maximize
x

x
T
(

A− ρDiag(w(k))
)

x

subject to x
T
Bx = 1,

(19)

which is to find the leading generalized eigenvector of
the matrix pair (A − ρDiag(w(k)),B), where w

(k) =

[w
(k)
1 , . . . , w

(k)
n ]T andw(k)

i , i = 1, . . . , n are given in Table I.
The method is summarized in Algorithm 1 and we will refer
to it as IRQM (Iterative Reweighed Quadratic Minorization),
since it is based on iteratively minorizing the penalty function
with reweighted quadratic function.

Algorithm 1 IRQM - Iteratively Reweighed Quadratic Mi-
norization algorithm for the sparse generalized eigenvalue
problem (5).
Require: A ∈ S

n, B ∈ S
n
++, ρ > 0, ǫ > 0

1: Setk = 0, choosex(0) ∈ {x : xT
Bx = 1}

2: repeat
3: Computew(k) according to Table I.
4: x

(k+1) ←leading generalized eigenvector of the matrix
pair (A− ρDiag(w(k)),B)

5: k ← k + 1
6: until convergence
7: return x

(k)

At every iteration of the proposed IRQM algorithm, we
need to find the generalized eigenvector of the matrix pair
(A−ρDiag(w(k)),B) corresponding to the largest generalized
eigenvalue. SinceB ∈ S

n
++, a standard approach for this

problem is to transform it to a standard eigenvalue problem via
the Cholesky decomposition ofB. Then standard algorithms,
such as power iterations (applied to a shifted matrix) and
Lanczos method can be used. The drawback of this approach is
that a matrix factorization is needed, making it less attractive
when this factorization is expensive. Besides, as somew

(k)
i

become very large, the problem is highly ill-conditioned and
standard iterative algorithms may suffer from extremely slow
convergence.

To overcome these difficulties, we provide a preconditioned
steepest ascent method, which is matrix factorization freeand
employes preconditioning to deal with the ill-conditioning

problem. Let us derive the steepest ascent method without
preconditioning first. The key step is to reformulate the leading
generalized eigenvalue problem as maximizing the Rayleigh
quotient

R(x) =
x
T
Ãx

xTBx
(20)

over the domainx 6= 0, whereÃ = A − ρDiag(w(k)). Let
x
(l) be the current iterate, the gradient ofR(x) at x(l) is

2

x(l)TBx(l)

(

Ãx
(l) −R(x(l))Bx

(l)
)

,

which is an ascent direction ofR(x) atx(l). Let r(l) = Ãx
(l)−

R(x(l))Bx
(l), the steepest ascent method searches along the

line x
(l) + τr(l) for a τ that maximizes the Rayleigh quotient

R(x(l)+ τr(l)). Since the Rayleigh quotientR(x(l)+ τr(l)) is
a scalar function ofτ , the maximum will be achieved either
at points with zero derivative or asτ goes to infinity. Setting
the derivative ofR(x(l) + τr(l)) with respect toτ equal to 0,
we can get the following quadratic equation

aτ2 + bτ + c = 0, (21)

where

a = r
(l)T

Ãr
(l)
x
(l)T

Br
(l) − r

(l)T
Br

(l)
x
(l)T

Ãr
(l)

b = r
(l)T

Ãr
(l)
x
(l)T

Bx
(l) − r

(l)T
Br

(l)
x
(l)T

Ãx
(l)

c = r
(l)T

Ãx
(l)
x
(l)T

Bx
(l) − r

(l)T
Bx

(l)
x
(l)T

Ãx
(l).

Let us denoteBxx = x
(l)T

Bx
(l), Brr = r

(l)T
Br

(l) andBxr =
x
(l)T

Br
(l), by direct computation we have

b2 − 4ac =

(

BxxBrr

(

R(r(l))−R(x(l))
)

− 2Bxr

∥

∥

∥
r
(l)
∥

∥

∥

2

2

)2

+ 4
∥

∥

∥
r
(l)
∥

∥

∥

4

2

(

BxxBrr −B2
xr

)

.

According to Cauchy-Schwartz inequality, it is easy to see
thatBxxBrr−B2

xr ≥ 0, thusb2− 4ac ≥ 0, which implies that
the equation (21) has one or two real roots. By comparing
the Rayleigh quotientR(x(l) + τr(l)) at the roots of equation
(21) withR(r(l)) (the Rayleigh quotient corresponding toτ →
∞), we can determine the steepest ascent. It is worth noting
that the coefficients of the equation (21) can be computed
by matrix-vector multiplications and inner products only,thus
very efficient.
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Though the per-iteration computational complexity of this
steepest ascent method is very low, it may converge very
slow, especially when somew(k)

i become very large. To ac-
celerate the convergence, we introduce a preconditioner here.
Preconditioning is an important technique in iterative methods
for solving large system of linear equations, for example
the widely used preconditioned conjugate gradient method.
It can also be used for eigenvalue problems. In the steepest
ascent method, to introduce a positive definite preconditioner
P, we simply multiply the residualr(l) by P. The steepest
ascent method with preconditioning for the leading generalized
eigenvalue problem (19) is summarized in Algorithm 2. To use
the algorithm in practice, the preconditionerP remains to be
chosen. For the particular problem of interest, we choose a
diagonalP as follows

P =







Diag
(

ρw(k) + |diag(A)|
)−1

,
ρ‖w(k)‖

2

‖diag(A)‖2
> 102

In. otherwise.

In other words, we apply a preconditioner only when some
elements ofw(k) become relatively large. Since the precondi-
tionerP we choose here is positive definite, the directionPr

(l)

is still an ascent direction and the algorithm is still monoton-
ically increasing. For more details regarding preconditioned
eigensolvers, the readers can refer to the book [23].

In practice, the preconditioned steepest ascent method usu-
ally converges to the leading generalized eigenvector, butit
is not guaranteed in principle, since theRayleigh quotientis
not concave. But note that the descent property (9) of the
majorization-minimization scheme depends only on decreas-
ing u(x,x(k)) and not on minimizing it. Similarly, for the
minorization-maximization scheme used by Algorithm 1, to
preserve the ascent property, we only need to increase the
objective of (19) at each iteration, rather than maximizing
it. Since the steepest ascent method increases the objective
at every iteration, thus when it is applied (initialized with
the solution of previous iteration) to compute the leading
generalized eigenvector at each iteration of Algorithm 1, the
ascent property of Algorithm 1 can be guaranteed.

Algorithm 2 Preconditioned steepest ascent method for prob-
lem (19).

Require: A ∈ S
n, B ∈ S

n
++, w(k), ρ > 0

1: Set l = 0, choosex(0) ∈ {x : xT
Bx = 1}

2: Let Ã = A− ρDiag(w(k))
3: repeat
4: R(x(l)) = x

(l)T
Ãx

(l)/x(l)T
Bx

(l)

5: r
(l) = Ãx

(l) −R(x(l))Bx
(l)

6: r
(l) = Pr

(l)

7: x = x
(l) + τr(l), with τ chosen to maximizeR(x(l) +

τr(l))
8: x

(l+1) = x/
√
xTBx

9: l = l + 1
10: until convergence
11: return x

(l)

E. Sparse GEP with Special Structure

Until now we have considered the sparse GEP in the general
case withA ∈ S

n, B ∈ S
n
++ and derived an iterative

algorithm IRQM. If we assume more properties or some
special structure forA andB, then we may derive simpler and
more efficient algorithms. In the following, we will consider
the case whereA ∈ S

n
+ andB = Diag(b), b ∈ R

n
++. Notice

that although this is a special case of the general sparse GEP, it
still includes the sparse PCA problem as a special case where
B = In.

We first present two results that will be used when deriving
fast algorithms for this special case.

Proposition 5. Given a ∈ R
n, w,b ∈ R

n
++, ρ >

0, let Imin = argmin{ρwi/bi : i ∈ {1, . . . , n}},
µmin = −min{ρwi/bi : i ∈ {1, . . . , n}} and s =
∑

i/∈Imin

bia
2
i

(µminbi+ρwi)2
. Then the problem

maximize
x

2aTx− ρxTDiag(w)x

subject to x
TDiag(b)x = 1

(22)

admits the following solution:

• If ∃i ∈ Imin, such thata2i > 0 or s > 1, then

x⋆
i =

ai
µbi + ρwi

, i = 1, . . . , n,

whereµ > µmin is given by the solution of the scalar
equation

n
∑

i=1

bia
2
i

(µbi + ρwi)2
= 1.

• Otherwise,

x⋆
i =











ai/ (µminbi + ρwi) , i /∈ Imin
√

(1− s) /bi, i = max{i : i ∈ Imin}
0, otherwise.

Proof: See Appendix B.

Proposition 6. Given a ∈ R
n with |a1| ≥ . . . ≥ |an| and

ρ > 0, then the problem

maximize
x

a
T
x− ρ ‖x‖0

subject to ‖x‖2 = 1
(23)

admits the following solution:

• If |a1| ≤ ρ, then

x⋆
i =

{

sgn(a1), i = 1

0, otherwise.
(24)

• Otherwise,

x⋆
i =

{

ai/
√

∑s
j=1 a

2
j , i ≤ s

0, otherwise,

wheres is the largest integerp that satisfies the following
inequality

√

∑p
i=1a

2
i >

√

∑p−1
i=1 a

2
i + ρ. (25)

Proof: See Appendix C.
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Let us return to the problem. In this special case, the
smoothed problem (18) reduces to

maximize
x

x
T
Ax− ρ

∑n
i=1 g

ǫ
p(xi)

subject to x
TDiag(b)x = 1.

(26)

The previously derived IRQM algorithm can be used here, but
in that iterative algorithm, we need to find the leading gener-
alized eigenvector at each iteration, for which another iterative
algorithm is needed. By exploiting the special structure ofthis
case, in the following we derive a simpler algorithm that at
each iteration has a closed-form solution.

Notice that, in this case,A ∈ S
n
+, the first termxT

Ax in the
objective is convex and can be minorized by its tangent plane
2xT

Ax
(k) at x(k). So instead of only minorizing the second

term, we can minorize both terms. This suggests solving the
following minorized problem at iterationk:

maximize
x

2xT
Ax

(k) − ρxTDiag(w(k))x

subject to x
TDiag(b)x = 1,

(27)

wherex(k) is the solution at iterationk andw(k) is computed
according to Table I. The problem is a nonconvex QCQP,
but by letting a = Ax

(k) and w = w
(k), we know from

Proposition 5 that it can be solved in closed-form. The
iterative algorithm for solving problem (26) is summarized
in Algorithm 3.

Algorithm 3 The MM algorithm for problem (26).
Require: A ∈ S

n
+, b ∈ R

n
++, ρ > 0, ǫ > 0

1: Setk = 0, choosex(0) ∈ {x : xTDiag(b)x = 1}
2: repeat
3: a = Ax

(k)

4: Computew(k) according to Table I.
5: Solve the following problem according to Proposition

5 and set the solution asx(k+1):

max
x
{2aTx− ρxTDiag(w(k))x : xTDiag(b)x = 1}

6: k = k + 1
7: until convergence
8: return x

(k)

In fact, in this special case, we can apply the MM scheme to
solve the original problem (4) directly, without approximating
‖x‖0 , i.e., solving

maximize
x

x
T
Ax− ρ ‖x‖0

subject to x
TDiag(b)x = 1.

(28)

First, we define a new variablẽx = Diag(b)
1
2x and

using the fact
∥

∥

∥
Diag(b)−

1
2 x̃

∥

∥

∥

0
= ‖x̃‖0, the problem can be

rewritten as

maximize
x̃

x̃
T
Ãx̃− ρ ‖x̃‖0

subject to x̃
T
x̃ = 1,

(29)

whereÃ = Diag(b)−
1
2ADiag(b)−

1
2 .

Now the idea is to minorize only the quadratic term by
its tangent plane, while keeping theℓ0-norm. Givenx̃(k) at

iterationk, linearizing the quadratic term yields

maximize
x̃

2x̃T
Ãx̃

(k) − ρ ‖x̃‖0
subject to ‖x̃‖2 = 1,

(30)

which has a closed-form solution. To see this, we first define
a = 2Ãx̃

(k) and sort the entries of vectora according to
the absolute value (only needed for entries with|ai| > ρ) in
descending order, then Proposition 6 can be readily appliedto
obtain the solution. Finally we need to reorder the solution
back to the original ordering. This algorithm for solving
problem (28) is summarized in Algorithm 4.

It is worth noting that although the derivations of Algo-
rithms 3 and 4 requireA to be symmetric positive semidef-
inite, the algorithms can also be used to deal with the more
general caseA ∈ S

n. When the matrixA in problem (26)
or (28) is not positive semidefinite, we can replaceA with
Aα = A + αDiag(b), with α ≥ −λmin(A)/bmin such that
Aα ∈ S

n
+, whereλmin(A) is the smallest eigenvalue of matrix

A andbmin is the smallest entry ofb. Since the additional term
αxTDiag(b)x in the objective is just a constantα over the
constraint set, it is easy to see that after replacingA with Aα

the resulting problem is equivalent to the original one. Then
the Algorithm 3 or 4 can be readily applied.

Algorithm 4 The MM algorithm for problem (28).
Require: A ∈ S

n
+, b ∈ R

n
++, ρ > 0

1: Setk = 0, choosẽx(0) ∈ {x̃ : x̃T
x̃ = 1}

2: Let Ã = Diag(b)−
1
2ADiag(b)−

1
2

3: repeat
4: a = 2Ãx̃

(k)

5: Sort a with the absolute value in descending order.
6: Computex̃(k+1) according to Proposition 6:

x̃
(k+1) ∈ argmax

x̃

{aT x̃− ρ ‖x̃‖0 : ‖x̃‖2 = 1}

7: Reorderx̃(k+1)

8: k = k + 1
9: until convergence

10: return x = Diag(b)−
1
2 x̃

(k)

IV. CONVERGENCE ANALYSIS

The algorithms proposed in this paper are all based on the
minorization-maximization scheme, thus according to subsec-
tion III-A, we know that the sequence of objective values
evaluated at{x(k)} generated by the algorithms is non-
decreasing. Since the constraint sets in our problems are
compact, the sequence of objective values is bounded. Thus,
the sequence of objective values is guaranteed to converge
to a finite value. The monotonicity makes MM algorithms
very stable. In this section, we will analyze the convergence
property of the sequence{x(k)} generated by the algorithms.

Let us consider the IRQM algorithm in Algorithm 1, in
which the minorization-maximization scheme is applied to
the smoothed problem (18). In the problem, the objective
is neither convex nor concave and the constraint set is also
nonconvex. But as we shall see later, after introducing a
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technical assumption on the surrogate functiongp(x), the
problem is equivalent to a problem which maximizes a convex
function over a convex set and we will prove that the sequence
generated by the IRQM algorithm converges to the stationary
point of the equivalent problem. The convergence of the
Algorithm 3 can be proved similarly, since the minorization
function applied can also be convexified. First, let us give the
assumption and present some results that will be useful later.

Assumption 1. The surrogate functiongp(x) is twice dif-
ferentiable on(0,+∞) and its gradientg′p(x) is convex on
(0,+∞).

It is easy to verify that the three surrogate functions listed
in Table (I) all satisfy this assumption. With this assumption,
the first result shows that the smooth approximationgǫp(x) we
have constructed is Lipschitz continuously differentiable.

Lemma 7. Let gp(·) be a continuous even function defined
on R, differentiable everywhere except at zero, concave and
monotone increasing on[0,+∞) with gp(0) = 0. Let As-
sumption 1 be satisfied. Then the smooth approximationgǫp(x)
defined by(16) is Lipschitz continuously differentiable with

Lipschitz constantL = max{ g
′

p(ǫ)

ǫ ,
∣

∣g′′p (ǫ)
∣

∣}.
Proof: See Appendix D.

Next, we recall a useful property of Lipschitz continuously
differentiable functions [24].

Proposition 8. If f : R
n → R is Lipschitz continuously

differentiable on a convex setC with some Lipschitz constant
L, thenϕ(x) = f(x) + α

2x
T
x is a convex function onC for

everyα ≥ L.

The next result then follows, showing that the smoothed
problem (18) is equivalent to a problem in the form of
maximizing a convex function over a compact set.

Lemma 9. There existsα > 0 such thatxT (A+ αB)x −
ρ
∑n

i=1 g
ǫ
p(xi) is convex and the problem

maximize
x

x
T (A+ αB)x− ρ

∑n
i=1 g

ǫ
p(xi)

subject to x
T
Bx = 1

(31)

is equivalent to the problem(18) in the sense that they admit
the same set of optimal solutions.

Proof: From Lemma 7, it is easy to see thatx
T
Ax −

ρ
∑n

i=1 g
ǫ
p(xi) is Lipschitz continuously differentiable. As-

sume the Lipschitz constant of its gradient isL, then according
to Proposition 8,xT

(

A+ L
2 I

)

x − ρ
∑n

i=1 g
ǫ
p(xi) is convex.

Since B is positive definite,λmin(B) > 0. By choosing
α ≥ L

2λmin(B) , we have thatxT (αB − L
2 I)x is convex.

The sum of the two convex functions, i.e.,x
T (A+ αB)x−

ρ
∑n

i=1 g
ǫ
p(xi), is convex.

Since the additional termαxT
Bx is just a constantα over

the constraint setxT
Bx = 1, it is obvious that any solution

of problem (31) is also a solution of problem (18) and vice
versa.

Generally speaking, maximizing a convex function over
a compact set remains a hard nonconvex problem. There is
some consolation, however, according to the following result
in convex analysis [25].

Proposition 10. Let f : Rn → R be a convex function. Let
S ∈ R

n be an arbitrary set andconv(S) be its convex hull.
Then

sup{f(x)|x ∈ conv(S)} = sup{f(x)|x ∈ S},

where the first supremum is attained only when the second
(more restrictive) supremum is attained.

According to Proposition 10, we can further relax the
constraintxT

Bx = 1 in problem (31) toxT
Bx ≤ 1, namely,

the problem

maximize
x

x
T (A+ αB)x− ρ

∑n
i=1 g

ǫ
p(xi)

subject to x
T
Bx ≤ 1

(32)

is still equivalent to problem (18) in the sense that they admit
the same set of optimal solutions.

Let us denote the objective function of problem (32) by
fα
ǫ (x) and defineB = {x ∈ R

n|xT
Bx ≤ 1}, then a pointx⋆

is referred to as a stationary point of problem (32) if

∇fα
ǫ (x

⋆)T (x− x
⋆) ≤ 0, ∀x ∈ B. (33)

Theorem 11. Let {x(k)} be the sequence generated by the
IRQM algorithm in Algorithm 1. Then every limit point of the
sequence{x(k)} is a stationary point of the problem(32),
which is equivalent1 to the problem(18).

Proof: Denote the objective function of the problem (18)
by fǫ(x) and its quadratic minorization function atx(k) by
q(x|x(k)), i.e.,q(x|x(k)) = x

T
(

A− ρDiag(w(k))
)

x. Denote
S = {x ∈ R

n|xT
Bx = 1} andB = {x ∈ R

n|xT
Bx ≤ 1}.

According to the general MM framework, we have

fǫ(x
(k+1)) ≥ q(x(k+1)|x(k)) ≥ q(x(k)|x(k)) = fǫ(x

(k)),

which means{fǫ(x(k))} is a non-decreasing sequence.
Assume that there exists a converging subsequencex

(kj) →
x
∞, then

q(x(kj+1)|x(kj+1)) = fǫ(x
(kj+1)) ≥ fǫ(x

(kj+1))

≥ q(x(kj+1)|x(kj)) ≥ q(x|x(kj)), ∀x ∈ S.
Letting j → +∞, we obtain

q(x∞|x∞) ≥ q(x|x∞), ∀x ∈ S.

It is easy to see that we can always findα > 0 such that
qα(x|x∞) = q(x|x∞) + αxT

Bx is convex andx∞ is still
a global maximizer ofqα(x|x∞) over S. Due to Lemma 9,
we can always chooseα large enough such thatfα

ǫ (x) =
fǫ(x) + αxT

Bx is also convex. By Proposition 10, we have

qα(x
∞|x∞) ≥ qα(x|x∞), ∀x ∈ B,

i.e., x∞ is a global maximizer ofqα(x|x∞) over the convex
setB. As a necessary condition, we get

∇qα(x∞|x∞)T (x− x
∞) ≤ 0, ∀x ∈ B.

1The equivalence of the problem (32) and (18) is in the sense that they
have the same set of optimal solutions, but they may have different stationary
points. The convergence to a stationary point of problem (32) does not imply
the convergence to a stationary point of problem (18).
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Since∇fα
ǫ (x

∞) = ∇qα(x∞|x∞) by construction, we obtain

∇fα
ǫ (x

∞)T (x− x
∞) ≤ 0, ∀x ∈ B,

implying that x∞ is a stationary point of the problem (32),
which is equivalent to the problem (18) according to Lemma
9 and Proposition 10.

We note that in the above convergence analysis of Algo-
rithm 1, the leading generalized eigenvector is assumed to be
computed exactly at each iteration. Recall that the Algorithm
2 is not guaranteed to converge to the leading generalized
eigenvector in principle, so if it is applied to compute the
leading generalized eigenvector,the convergence of Algorithm
1 to a stationary point is no longer guaranteed.

V. NUMERICAL EXPERIMENTS

To compare the performance of the proposed algorithms
with existing ones on the sparse generalized eigenvalue prob-
lem (SGEP) and some of its special cases, we present some
experimental results in this section. All experiments were
performed on a PC with a 3.20GHz i5-3470 CPU and 8GB
RAM.

A. Sparse Generalized Eigenvalue Problem

In this subsection, we evaluate the proposed IRQM al-
gorithm for the sparse generalized eigenvalue problem in
terms of computational complexity and the ability to extract
sparse generalized eigenvectors. The benchmark method con-
sidered here is the DC-SGEP algorithm proposed in [10],
[11], which is based on D.C. (difference of convex func-
tions) programming and minorization-maximization (to the
best of our knowledge, this is the only algorithm proposed
for this case). The problem that DC-SGEP solves is just (5)
with the surrogate functiongp(x) = log(1 + |x| /p)/log(1 +
1/p), but the equality constraintxT

Bx = 1 is relaxed to
x
T
Bx ≤ 1. The DC-SGEP algorithm requires solving a

convex quadratically constrained quadratic program (QCQP)
at each iteration, which is solved by the solver Mosek2 in
our experiments. In the experiments, the stopping condition is
∣

∣f(x(k+1))− f(x(k))
∣

∣ /max
(

1,
∣

∣f(x(k))
∣

∣

)

≤ 10−5 for both
algorithms. For the proposed IRQM algorithm, the smoothing
parameter is set to beǫ = 10−8.

1) Computational Complexity :In this subsection, we com-
pare the computational complexity of the proposed IRQM
Algorithm 1 with the DC-SGEP algorithm. The surrogate
functiongp(x) = log(1+ |x| /p)/log(1+1/p) is used for both
algorithms in this experiment. The preconditioned steepest
ascent method given in Algorithm 2 is applied to compute the
leading generalized eigenvector at every iteration of the IRQM
algorithm. To illustrate the effectiveness of the preconditioning
scheme employed in Algorithm 2, we also consider computing
the leading generalized eigenvector by invoking Algorithm
2 but without preconditioning, i.e., settingP = In. The
data matricesA ∈ S

n and B ∈ S
n
++ are generated as

A = C+C
T andB = D

T
D, with C ∈ R

n×n, D ∈ R
1.2n×n

and the entries of bothC and D independent, identically

2Mosek, available at http://www.mosek.com/

distributed and followingN (0, 1). For both algorithms, the
initial point x(0) is chosen randomly with each entry following
N (0, 1) and then normalized such that

(

x
(0)

)T
Bx

(0) = 1.
The parameterp of the surrogate function is chosen to be1
and the regularization parameter isρ = 0.1.

The computational time for problems with different sizes
are shown in Figure 4. The results are averaged over 100
independent trials. From Figure 4, we can see that the pre-
conditioning scheme is indeed important for the efficiency
of Algorithm 2 and the proposed IRQM algorithm is much
faster than the DC-SGEP algorithm. It is worth noting that
the solver Mosek which is used to solve the QCQPs for the
DC-SGEP algorithm is well known for its efficiency, while the
IRQM algorithm is entirely implemented in Matlab. The lower
computational complexity of the IRQM algorithm, compared
with the DC-SGEP algorithm, attributes to both the lower per
iteration computational complexity and the faster convergence.
To show this, the evolution of the objective function for one
trial with n = 100 is plotted in Figure 5 and we can see that
the proposed IRQM algorithm takes much fewer iterations
to converge. One may also notice that the two algorithms
converge to the same objective value, but this does not hold
in general since the problem is nonconvex.
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Figure 4. Average running time versus problem size. Each curve is an average
of 100 random trials.

2) Random Data with Underlying Sparse Structure :In
this section, we generate random matricesA ∈ S

n and
B ∈ S

n
++ such that the matrix pair(A,B) has a few

sparse generalized eigenvectors. To achieve this, we synthesize
the data through the generalized eigenvalue decomposition
A = V

−TDiag(d)V−1 andB = V
−T

V
−1, where the first

k columns ofV ∈ R
n×n are pre-specified sparse vectors and

the remaining columns are generated randomly,d is the vector
of the generalized eigenvalues.

Here, we choosen = 100 andk = 2, where the two sparse
generalized eigenvectors are specified as follows

{

Vi,1 = 1√
5

for i = 1, . . . , 5,

Vi,1 = 0 otherwise,
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Figure 5. Evolution of the objective function for one trial with n = 100.

{

Vi,2 = 1√
5

for i = 6, . . . , 10,

Vi,2 = 0 otherwise,

and the generalized eigenvalues are chosen as


















d1 = 10

d2 = 8

di = 12, for i = 3, 4, 5

di ∼ N (0, 1), otherwise.

We generate 200 pairs of(A,B) as described above
and employ the algorithms to compute the leading sparse
generalized eigenvectorx1 ∈ R

100, which is hoped to be
close toV:,1. The underlying sparse generalized eigenvec-
tor V:,1 is considered to be successfully recovered when
‖|x1| −V:,1‖2 ≤ 0.01. For the proposed IRQM algorithm, all
the three surrogate functions listed in Table I are considered
and we call the resulting algorithms “IRQM-log”, “IRQM-
Lp” and “IRQM-exp”, respectively. For all the algorithms, the
initial point x(0) is chosen randomly. Regarding the parameter
p of the surrogate function, three values, namely1, 0.3 and
0.1, are compared. The corresponding performance along the
whole path of the regularization parameterρ is plotted in Fig.
6, 7 and 8, respectively.

From Fig. 6, we can see that for the casep = 1, the
best chance of exact recovery achieved by the three IRQM
algorithms are very close and all higher than that achieved
by the DC-SGEP algorithm. From Fig. 7 and 8, we can see
that asp becomes smaller, the best chance of exact recovery
achieved by IRQM-exp, IRQM-log and DC-SGEP stay almost
the same as in the casep = 1 (in fact decrease a little bit when
p = 0.1), but the performance of IRQM-Lp degrades a lot.
This may be explained by the fact that asp becomes smaller,
the surrogate function|x|p tends to the functionsgn(|x|) much
faster than the other two surrogate functions. So whenp = 0.1
for example, it is much more pointed and makes the algorithm
easily get stuck at some local point. In this sense, the log-based
and exp-based surrogate functions seem to be better choices
as they are not so sensitive to the choice ofp.
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Figure 6. Chance of exact recovery versus regularization parameter ρ.
Parameterp = 1 is used for the surrogate functions.
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Figure 7. Chance of exact recovery versus regularization parameter ρ.
Parameterp = 0.3 is used for the surrogate functions.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Regularization parameter ρ

C
ha

nc
e 

of
 e

xa
ct

 r
ec

ov
er

y

 

 

IRQM−exp, p=0.1
IRQM−Lp, p=0.1
IRQM−log, p=0.1
DC−SGEP, p=0.1

Figure 8. Chance of exact recovery versus regularization parameter ρ.
Parameterp = 0.1 is used for the surrogate functions.
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3) Decreasing Scheme of the Smoothing Parameterǫ: As
have been discussed in the end of Section III-C, choosing a
relatively large smoothing parameterǫ at the beginning and
decreasing it gradually may probably lead to better perfor-
mance than the fixedǫ scheme. In this section, we consider
such a decreasing scheme and compare its performance with
the fixed ǫ scheme in which the smoothing parameter is
fixed to be ǫ = 10−8. The decreasing scheme that we
will adopt is inspired by the continuation approach in [22].
The idea is to apply the IRQM algorithm to a succession
of problems with decreasing smoothing parametersǫ(0) >
ǫ(1) > · · · > ǫ(T ) and solve the intermediate problems with
less accuracy, whereT is the number of decreasing steps.
More specifically, at stept = 0, . . . , T , we apply the IRQM
algorithm with smoothing parameterǫ(t) and stopping criterion
∣

∣f(x(k+1))− f(x(k))
∣

∣ /max
(

1,
∣

∣f(x(k))
∣

∣

)

≤
√
ǫ(t)/10 and

then decrease the smoothing parameter for the next step
by ǫ(t+1) = γǫ(t) with γ = (ǫ(T )/ǫ(0))1/T . At each step
the IRQM algorithm is initialized with the solution of the
previous step. The initial smoothing parameter is chosen as
ǫ(0) =

∥

∥x
(0)

∥

∥

∞ /4, wherex
(0) is the random initial point

and the minimum smoothing parameter is set asǫ(T ) = 10−8,
which is the parameter used in the fixedǫ scheme. The number
of decreasing steps is set toT = 5 in our experiment.

The remaining settings are the same as in the previous sub-
section and the log-based surrogate function with parameter
p = 0.3 is used for the IRQM algorithm. The performance of
the two schemes are shown in Fig. 9. From the figure, we can
see that the decreasing scheme of the smoothing parameter
achieves a higher chance of exact recovery.
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Figure 9. Chance of exact recovery versus regularization parameterρ. The
log-based surrogate function with parameterp = 0.3 is used.

B. Sparse Principal Component Analysis(B = In)

In this section, we consider the special case of the sparse
generalized eigenvalue problem in which the matrixB is
the identity matrix, i.e., the sparse PCA problem, which has
received most of the recent attention in the literature. In this
case, the matrixA is usually a (scaled) covariance matrix.
Although there exists a vast literature on sparse PCA, most

popular algorithms are essentially variations of the generalized
power method (GPower) proposed in [7]. Thus we choose the
GPower methods, namelyGPowerℓ1 and GPowerℓ0 , as the
benchmarks in this section. The Matlab code of the GPower
algorithms was downloaded from the authors’ website. For
the proposed Algorithm 3, the surrogate function is chosen
to be gp(x) = |x| , such that the penalty function is just
the ℓ1-norm, which is the same as inGPowerℓ1 . We call the
resulting algorithm”MMℓ1” and the Algorithm 4 is referred
to as”MMℓ0” in this section.

Note that for GPower methods, direct access to the original
data matrixC is required. When only the covariance matrix
is available, a factorization of the formA = C

T
C is

needed (e.g., by eigenvalue decomposition or by Cholesky
decomposition). If the data matrixC is of sizem × n, then
the per-iteration computational cost isO(mn) for all the four
algorithms under consideration.

1) Computational Complexity:In this subsection, we com-
pare the computational complexity of the four algorithms
mentioned above, i.e.,GPowerℓ1 , GPowerℓ0 , MMℓ1 and
MMℓ0 . The data matrixC ∈ R

n×n is generated ran-
domly with the entries independent, identically distributed
and followingN (0, 1). The stopping condition is set to be
∣

∣f(x(k+1))− f(x(k))
∣

∣ /max
(

1,
∣

∣f(x(k))
∣

∣

)

≤ 10−5 for all the
algorithms. The smoothing parameter for algorithmMMℓ1 is
fixed to beǫ = 10−8. The regularization parameterρ is chosen
such that the solutions of the four algorithms exhibit similar
cardinalities (with about 5% nonzero entries).

The average running time over 100 independent trials for
problems with different sizes are shown in Figure 10. From
the figure, we can see that the twoℓ0-norm penalized methods
are faster than the twoℓ1-norm penalized methods and the
proposedMMℓ0 is the fastest among the four algorithms, es-
pecially for problems of large size. For the twoℓ1-norm penal-
ized methods, the proposedMMℓ1 is slower thanGPowerℓ1 ,
which may result from the fact thatMMℓ1 minorizes both the
quadratic term and theℓ1 penalty term whileGPowerℓ1 keeps
the ℓ1 penalty term. It is worth noting that theGPowerℓ1 is
specialized forℓ1 penalty, while Algorithm 3 can also deal
with various surrogate functions other than theℓ1 penalty.

2) Random Data Drawn from a Sparse PCA Model:In this
subsection, we follow the procedure in [6] to generate random
data with a covariance matrix having sparse eigenvectors. To
achieve this, we first construct a covariance matrix throughthe
eigenvalue decompositionA = VDiag(d)VT , where the first
k columns ofV ∈ R

n×n are pre-specified sparse orthonormal
vectors. A data matrixC ∈ R

m×n is then generated by
drawingm samples from a zero-mean normal distribution with
covariance matrixA, that is,C ∼ N (0,A).

Following the settings in [7], we choosen = 500, k = 2,
and m = 50, where the two orthonormal eigenvectors are
specified as follows

{

Vi,1 = 1√
10

for i = 1, . . . , 10,

Vi,1 = 0 otherwise,
{

Vi,2 = 1√
10

for i = 11, . . . , 20,

Vi,2 = 0 otherwise.
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Figure 10. Average running time versus problem size. Each curve is an
average of 100 random trials.

The eigenvalues are fixed atd1 = 400, d2 = 300 anddi = 1,
for i = 3, . . . , 500.

We randomly generate 500 data matricesC ∈ R
m×n and

employ the four algorithms to compute the leading sparse
eigenvectorx1 ∈ R

500, which is hoped to recoverV:,1. We
consider the underlying sparse eigenvectorV:,1 is successfully
recovered when

∣

∣x
T
1 V:,1

∣

∣ > 0.99. The chance of successful
recovery over a wide range of regularization parameterρ
is plotted in Figure 11. The horizontal axis shows the nor-
malized regularization parameter, that isρ/maxi ‖C:,i‖2 for
GPowerℓ1 andρ/maxi ‖C:,i‖22 for GPowerℓ0andMMℓ0 . For

MMℓ1 algorithm, we useρ/
(

2
∥

∥C
T
C
∥

∥

∞,2

)

, where‖·‖∞,2 is

the operator norm induced by‖·‖∞ and‖·‖2. From the figure,
we can see that the highest chance of exact recovery achieved
by the four algorithms is the same and for all algorithms it is
achieved over a relatively wide range ofρ.
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Figure 11. Chance of exact recovery versus normalized regularization
parameter.

3) Gene Expression Data :DNA microarrays allow mea-
suring the expression level of thousands of genes at the same
time and this opens the possibility to answer some complex

biological questions. But the amount of data created in an
experiment is usually large and this makes the interpretation
of these data challenging. PCA has been applied as a tool in the
studies of gene expression data and their interpretation [26].
Naturally, sparse PCA, which extracts principal components
with only a few nonzero elements can potentially enhance the
interpretation.

In this subsection, we test the performance of the al-
gorithms on gene expression data collected in the breast
cancer study by Bild et al. [27]. The data set contains 158
samples over 12625 genes, resulting in a158 × 12625 data
matrix. Figure 12 shows the explained variance versus cardi-
nality for five algorithms, including the simple thresholding
scheme. The proportion of explained variance is computed
asxT

SPCA(C
T
C)xSPCA/x

T
PCA(C

T
C)xPCA, wherexSPCA is

the sparse eigenvector extracted by sparse PCA algorithms,
xPCA is the true leading eigenvector andC is the data matrix.
The simple thresholding scheme first computes the regular
principal componentxPCA and then keeps a required number
of entries with largest absolute values. From the figure, we can
see that the proportion of variance being explained increases
as the cardinality increases as expected. For a fixed cardinality,
the two GPower algorithms and the two proposed MM algo-
rithms can explain almost the same amount of variance, all
higher than the simple thresholding scheme, especially when
the cardinality is small.
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Figure 12. Trade-off curves between explained variance andcardinality.

VI. CONCLUSIONS

We have developed an efficient algorithm IRQM that allows
to obtain sparse generalized eigenvectors of a matrix pair.
After approximating theℓ0-norm penalty by some nonconvex
surrogate functions, the minorization-maximization scheme
is applied and the sparse generalized eigenvalue problem
is turned into a sequence of regular generalized eigenvalue
problems. The convergence to a stationary point is proved. Nu-
merical experiments show that the proposed IRQM algorithm
outperforms an existing algorithm based on D.C. programming
in terms of both computational cost and support recovery. For
sparse generalized eigenvalue problems with special structure



14

(but still including sparse PCA as a special instance), two
more efficient algorithms that have a closed-form solution at
every iteration are derived again based on the minorization-
maximization scheme. On both synthetic random data and
real-life gene expression data, the two algorithms are shown
experimentally to have similar performance to the state-of-the-
art.

APPENDIX A
PROOF OFPROPOSITION4

Proof: From Lemma 3, it is easy to show that

fǫ(x) ≥ f(x) ≥ fǫ(x) − ρn

(

gp(ǫ)−
g′p(ǫ)

2
ǫ

)

, ∀x ∈ R
n.

(34)
Since problems (5) and (18) have the same constraint set, we
have

fǫ(x
⋆
ǫ ) ≥ f(x⋆). (35)

From the fact thatx⋆ is a global maximizer of problem (5),
we know

f(x⋆) ≥ f(x⋆
ǫ ). (36)

Combining (34), (35) and (36), yields

fǫ(x
⋆
ǫ ) ≥ f(x⋆) ≥ f(x⋆

ǫ ) ≥ fǫ(x
⋆
ǫ )− ρn

(

gp(ǫ)−
g′p(ǫ)

2
ǫ

)

.

Thus,

0 ≤ f(x⋆)− f(x⋆
ǫ ) ≤ ρn

(

gp(ǫ)−
g′p(ǫ)

2
ǫ

)

.

Sincegp(·) is concave and monotone increasing on[0,+∞),
it is easy to show thatgp(ǫ) ≥ g′p(ǫ)ǫ ≥ 0, for any ǫ > 0.
Hence

gp(ǫ) ≥ gp(ǫ)−
g′p(ǫ)

2
ǫ ≥ 0. (37)

Sincegp(·) is continuous and monotone increasing on[0,+∞)
andgp(0) = 0, we havelimǫ↓0 gp(ǫ) = 0. Together with (37),
we can conclude that

lim
ǫ↓0

(

gp(ǫ)−
g′p(ǫ)

2
ǫ

)

= 0.

Sinceρ andn are constants, the proof is complete.

APPENDIX B
PROOF OFPROPOSITION5

Proof: First notice that the problem (22) is a nonconvex
QCQP but with only one constraint, thus the strong duality
holds [28], [29]. The optimality conditions for this problem
are

(µDiag(b) + ρDiag(w))x = a (38)

x
TDiag(b)x = 1 (39)

µDiag(b) + ρDiag(w) � 0. (40)

Let us define

Imin = argmin{ρwi/bi : i ∈ {1, . . . , n}} (41)

and
µmin = −min{ρwi/bi : i ∈ {1, . . . , n}}. (42)

Then the third optimality condition (40) is justµ ≥ µmin,
sincewi > 0, ρ > 0, bi > 0. Let us consider the optimality
condition in two different cases:

1) µ > µmin. In this case,µDiag(b)+ρDiag(w) ≻ 0, from
the first optimality condition (38) we get

x = (Diag(µb+ ρw))−1
a. (43)

Substituting it into the second optimality condition (39),yields

∑

i∈Imin

bia
2
i

(µbi + ρwi)2
+

∑

i/∈Imin

bia
2
i

(µbi + ρwi)2
= 1, (44)

and it is easy to see that the left hand side is monotonically
decreasing forµ ∈ (µmin,+∞). If ∃i ∈ Imin, such thata2i >
0, then the left hand side of (44) tends to+∞ asµ→ µmin.
Notice that the left hand side goes to0 asµ→ +∞, thus we
are guaranteed to find aµ ∈ (µmin,+∞) satisfying equation
(44). In practice, we may use bisection method to find the
value ofµ. If a2i = 0, ∀i ∈ Imin, there still exists aµ > µmin

that satisfies equation (44) if and only if

∑

i/∈Imin

bia
2
i

(µminbi + ρwi)2
> 1. (45)

If (45) does not hold, it impliesµ = µmin.
2)µ = µmin. In this case, we cannot computex via equation

(43) anymore. Then to obtainx, we first notice from (38) that

xi =
ai

µminbi + ρwi
, ∀i /∈ Imin. (46)

Then, according to equation (39), forxi, i ∈ Imin, they just
need to satisfy the following equation

∑

i∈Imin

bix
2
i = 1−

∑

i/∈Imin

bia
2
i

(µminbi + ρwi)2
. (47)

When card(Imin) > 1, (47) has infinite number of solutions
and we may choose arbitrary one.

APPENDIX C
PROOF OFPROPOSITION6

Proof: The problem (23) can be rewritten as

maximize
s∈{1,...,n}

{

−ρs+max
x

{

a
T
x : ‖x‖2 = 1, ‖x‖0 ≤ s

}

}

.

The inner maximization has a closed-form solution

x⋆
i =

{

ai/
√

∑s
j=1 a

2
j , i ≤ s

0 otherwise,

then the problem becomes

maximize
s∈{1,...,n}

{

−ρs+
√

∑s
i=1a

2
i

}

.

It’s easy to see that the optimals is the largest integerp that
satisfies the following inequality

√

∑p
i=1a

2
i >

√

∑p−1
i=1 a

2
i + ρ. (48)

By squaring both sides of this inequality, we get

a2p > ρ2 + 2ρ

√

∑p−1
i=1 a

2
i ,
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which means|ap| > ρ is a necessary condition for (48) to
be satisfied. Thus, in practice to find the largest integerp that
satisfies (48) we only need to check for allp’s with |ap| > ρ.
If 0 < |a1| ≤ ρ, it is easy to see that the solution of the
problem (23) is given by (24).

APPENDIX D
PROOF OFLEMMA 7

Proof: From the waygǫp(x) is constructed, it is continu-
ously differentiable. It remains to show that the gradient

(

gǫp
)′
(x) =

{

g′

p(ǫ)

ǫ x, |x| ≤ ǫ

g′p(x), |x| > ǫ

is Lipschitz continuous. From the fact thatgp(x) is concave
and monotone increasing on(0,+∞), we know thatg′p(x)
is non-increasing on(0,+∞) and g′p(x) > 0. Since gǫp(x)

is an even function,
(

gǫp
)′
(x) is odd. Thus,

(

gǫp
)′
(x) is non-

increasing on(−∞,−ǫ), linearly increasing on[−ǫ, ǫ] and
non-increasing on(ǫ,+∞). In addition,

(

gǫp
)′
(x) ≤ 0 when

x < 0 and
(

gǫp
)′
(x) ≥ 0 whenx > 0. With

(

gǫp
)′
(x) having

these properties, to show the Lipschitz continuity of
(

gǫp
)′
(x),

it is sufficient to show that
(

gǫp
)′
(x) is Lipschitz continuous

on [−ǫ, ǫ] and (ǫ,+∞) respectively.

On [−ǫ, ǫ],
(

gǫp
)′
(x) =

g′

p(ǫ)

ǫ x, which is Lipschitz continu-

ous with Lipschitz constant
g′

p(ǫ)

ǫ .

On (ǫ,+∞),
(

gǫp
)′
(x) = g′p(x), from Assumption 1 we

know that g′p(x) is convex and differentiable on(0,+∞).
Since g′p(x) is also non-increasing, we can conclude that
g′′p (x) ≤ 0 and is non-decreasing on(0,+∞). Thus, on
(ǫ,+∞),

∣

∣g′′p (x)
∣

∣ is bounded by
∣

∣g′′p (ǫ)
∣

∣ and the Lipschitz
continuity of

(

gǫp
)′
(x) on (ǫ,+∞) follows.
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