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Abstract—Convergence constrained power allocation (CCPA)
in single carrier multiuser (MU) single-input multiple-ou tput
(SIMO) systems with turbo equalization is considered in this
paper. In order to exploit full benefit of the iterative receiver,
its convergence properties need to be considered also at the
transmitter side. The proposed scheme can guarantee that the
desired quality of service (QoS) is achieved after sufficient
amount of iterations. We propose two different successive convex
approximations for solving the non-convex power minimization
problem subject to user specific QoS constraints. The results of
extrinsic information transfer (EXIT) chart analysis demonstrate
that the proposed CCPA scheme can achieve the design objective.
Numerical results show that the proposed schemes can achieve
superior performance in terms of power consumption as com-
pared to linear receivers with and without precoding as wellas
to the iterative receiver without precoding.

Index Terms—Power minimization, soft interference cancella-
tion, MMSE receiver, multiuser detection

I. I NTRODUCTION

Frequency domain equalization (FDE) for single-carrier
transmission [1] and multi-carrier schemes based on orthog-
onal division multiplexing (OFDM) [2] are two efficient
techniques for tackling the inter-symbol-interference (ISI)
problem in frequency selective fading channels. Both of afore-
mentioned techniques can be extended to multiuser commu-
nications yielding single-carrier frequency division multiple
access (FDMA) [3] and orthogonal frequency division multiple
access (OFDMA) [4], respectively. In OFDMA all available
subcarriers are grouped into different subchannels1 that are
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1The bandwidth of each subchannel is less than the coherence bandwidth
of the channel which results in flat fading subchannels.

assigned to distinct users. User separation at the receiverside
is straightforward due to the orthogonality of the subchannels.

Single-carrier FDMA can be viewed as a form of OFDMA
in which extra discrete fourier transform (DFT) and inverse
DFT (IDFT) are added at the transmitter and receiver ends,
respectively. DFT precoder spreads all the symbols across
the whole frequency band forming a virtual single carrier
structure. The advantage of FDMA as compared to OFDMA
is its lower peak-to-average power ratio (PAPR). However,
the optimal multi-user detection in single carrier FDMA in
the presence of frequency selective channel results in pro-
hibitive high computational complexity. A linear minimum
mean squared error (LMMSE) detector provides an attractive
low complexity scheme for the detection of FDMA signal in
the presence of ISI and multiuser interference (MUI) utilizing
the circulant structure of channel matrices [5], [6].

Iterative FDE technique can achieve a significant perfor-
mance gain over linear FDE in ISI channels [6]. In iterative
FDE, the key idea is to utilize the feedback from a soft-output
forward error correction (FEC) decoder that is updated accord-
ing to "turbo" principle. To exploit the full merit of iterative
receiver, the convergence properties of a receiver based on
the "turbo" principle needs to be taken into account jointlyat
the transmitter and the receiver. In [7], extrinsic information
transfer (EXIT) analysis [8] is utilized to determine the optimal
power allocation in a multiuser turbo coded code division mul-
tiple access (CDMA) system. In [9], the convergence analysis
for MMSE based iterative equalizer is performed by using
signal-to-noise (SNR) ratio variance charts [6]. Furthermore,
the authors in [9] use the convergence analysis to formulate
the transmitter power allocation problem in frequency selective
single-input single-output (SISO) channels with the iterative
receiver mentioned above, assuming the availability of perfect
channel state information (CSI) both at the transmitter andthe
receiver. In [10], [11], the impact of precoder design on the
convergence properties of the soft cancellation (SC) frequency
domain (FD) minimum mean-squared error (MMSE) equalizer
is demonstrated. In [12], precoder design for multiuser (MU)
multiple-input multiple-output (MIMO) ISI channels based
on iterative LMMSE detection is considered. The design
criterion of the precoder in [12] is to maximize the signal-to-
interference and noise ratio (SINR) at the end of the iterative
process. In [13], in-depth analysis of the power allocation
problem in single-carrier MIMO systems with iterative FD-

http://arxiv.org/abs/1310.8067v2


2

SC-MMSE equalization has been presented.
EXIT chart is one of the most powerful tools for analyzing

and optimizing parameters in iterative processing [14]–[16].
The convergence of an iterative process can be predicted by in-
vestigating the exchange of extrinsic information of the soft in
/ soft out (SftI/SftO) blocks in the form of mutual information
(MI) of transmitted bits and the corresponding log-likelihood
ratios (LLRs). This analysis can be made independently for
each block which eliminates the necessity of time consuming
chain simulations. When applied to joint equalizer and FEC
decoder design, the objective is to guarantee an open conver-
gence tunnel between the equalizer’s and the decoder’s EXIT
function. To be more specific, the EXIT function of the equal-
izer has to be above the inverse EXIT function of the decoder
until so called MI convergence point, which determines the
communication reliability represented by bit error probability
(BEP) achieved by the iterative equalizer. Therefore, the width
of the tunnel as well as the MI convergence point are the key
parameters when optimizing an iterative process using EXIT
charts [17], [18].

The contributions of this paper are summarized as follows:
We extend the convergence constrained power minimization
problem [13] for multiuser (MU) single-input multiple-output
(SIMO) system which results in joint optimization of multiple
transmitters and the iterative receiver. The presence of multiple
users makes the problem considerably more challenging due
to the multidimensionality of the EXIT functions. In [13],
only quadrature phase sift keying (QPSK) modulation was
considered. In this paper, we also derive a heuristic approach
for 16-ary quadrature amplitude modulation (16QAM). The
aim is to minimize the power consumption in single-carrier
FDMA with iterative detection subject to quality of service
(QoS) constraint. This can be adopted for example in long term
evolution (LTE) type of systems [19]. Unlike in [13] the joint
optimization of the multiple transmitters and the receiveris not
convex. Thus, we use block coordinate descent (BCD) method
[20] where the non-convex joint optimization problem is split
to separate transmitter and receiver optimization problems.
Furthermore, we show that this type of alternating optimization
converges to a local solution. Two efficient algorithms based
on successive convex approximation (SCA) method [21] are
proposed for solving the transmitter optimization problemfor
fixed receiver.

The rest of the paper is organized as follows: The system
model of single carrier uplink transmission with multiple
single-antenna users and a base station with multiple antennas
is presented in Section II. In Section III, iterative frequency
domain equalizer is described. Convergence constrained power
allocation (CCPA) for turbo equalizer is derived in Section
IV. In Section V, the algorithms for solving the CCPA
problem are derived. The performance of proposed algorithms
are demonstrated through simulations in Section VI. Finally,
conclusions are drawn in Section VII.

Nomenclature – Following notations are used throughout
the paper: Vectors are denoted by lower boldface letters and
matrices by uppercase boldface letters. The superscriptsH and
T denote Hermitian and transposition of a complex vector
or matrix, respectively.C, R, B denote the complex, real

Fig. 1. The block diagram of the transmitter side of the system model.

and binary number fields, respectively.IN denotesN × N
identity matrix. The operator avg{·} calculates the arithmetic
mean of its argument, diag(·) generates diagonal matrix of its
arguments,⊗ denotes the Kronecker product and|| · || is the
Euclidean norm of its complex argument vector.

II. SYSTEM MODEL

Consider uplink transmission withU single antenna users
and a base station withNR antennas. The transmitter side
of the system model is depicted in Fig. 1. Each user’s data
streamxu ∈ BRu

c NQNF , u = 1, 2, . . . , U , is encoded by
FEC codeCu with a code rateRu

c ≤ 1. NQ denotes the
number of bits per modulation symbol andNF is the number
of frequency bins in discrete Fourier transform (DFT). The
encoded bitscu = [cu1 , c

u
2 , . . . , cNQNF

]T ∈ BNQNF are bit-
interleaved by multiplyingcu by pseudo-random permutation
matrix πu ∈ BNQNF×NQNF resulting a bit sequencec′u =
πuc

u. After the interleaving, the sequencec′u is mapped with
a mapping functionMu(·) onto a2NQ-ary complex symbol
bul ∈ C, l = 1, 2, . . . , NF , resulting a complex data vector
b
u = [bu1 , b

u
2 , . . . , b

u
NF

]T ∈ CNF . After the modulation, each
user’s data stream is spread across the subchannels by multi-
plying b

u by a DFT matrixF ∈ CNF×NF , ∀u = 1, 2, . . . , U ,2

where the elements ofF are given by

fm,l =
1√
NF

e(i2π(m−1)(l−1)/NF ), (1)

m, l = 1, 2, . . . , NF . Each user’s data stream is multiplied

with its associated power allocation matrixP
1

2

u , wherePu =
diag([Pu,1, Pu,2, . . . , Pu,NF

]T) ∈ RNF×NF , with Pu,l being
the power allocated to thelth frequency bin. Finally, before
transmission, each user’s data stream is transformed into the
time domain by the inverse DFT (IDFT) matrixF−1 and a
cyclic prefix is added to mitigate the inter block interference
(IBI).

The receiver side of the system model is depicted in Fig.
2. After the cyclic prefix removal, the signal can be expressed
as3

r = HuF
−1

P
1

2

uFb
u +

U
∑

y 6=u

HyF
−1

P
1

2

y Fb
y + v, (2)

where Hu = [H1
u,H

2
u, . . . ,H

NR
u ]T ∈ CNRNF×NF is

the space-time channel matrix for useru and H
r
u =

2The same amount of frequency domain resources are assumed tobe
allocated for each user in a cell.

3In this paper, single cell scenario is considered and the impact of inter-
cell-interference is excluded.
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Fig. 2. The block diagram of the receiver side of the system model.

circ{[hr
u,1, h

r
u,2, . . . , h

r
u,NL

,01×NF−NL
]T} ∈ CNF×NF is the

time domain circulant channel matrix for useru at the receive
antennar. The operator circ{} generates matrix that has a
circulant structure of its argument vector,NL denotes the
length of the channel impulse response,hr

u,l, l = 1, 2, . . . , NL,
r = 1, 2, . . . , NR, is the fading factor of multipath channel. A
vectorv ∈ CNRNF in (2) denotes white additive independent
identically distributed (i.i.d.) Gaussian noise vector with vari-
anceσ2. The signalr is transformed into the frequency domain
by using DFT matrixFNR

= INR
⊗ F ∈ C

NRNF×NRNF ,
resulting

r̃ = ΓP
1

2FUb+ FNR
v, (3)

where Γ = [Γ1,Γ2, . . . ,ΓU ] ∈ CNRNF×UNF and Γu =
bdiag{Γu,1,Γu,2, . . . ,Γu,NF

} ∈ CNRNF×NF is the space-
frequency channel matrix for useru expressed as

Γu = FNR
HuF

−1, (4)

andΓu,m ∈ CNR×NR is the diagonal channel matrix formth

frequency bin ofuth user. The power allocation matrix is com-
posed byP = diag(P1,P2, . . . ,PU ) ∈ RUNF×UNF , FU =

IU ⊗ F ∈ CUNF×UNF , and b = [b1T
,b2T

, . . . ,bU T
]T ∈

CUNF .

III. R ECEIVER

The block diagram of the frequency domain turbo equalizer
is depicted in Fig. 3. The frequency domain signal after the
soft cancelation can be written as

r̂ = r̃− ΓP
1

2FU b̃, (5)

where b̃ = [b̃1
T
, b̃2

T
, . . . , b̃U

T
]T ∈ CUNF is composed by

b̃
u = [b̃u1 , b̃

u
2 , . . . , b̃

u
NF

]T ∈ CNF . The soft symbol estimatẽbun
is calculated as [13]

b̃un = E{bun} =
∑

bi∈B

bi Pr(b
u
n = bi), (6)

whereB is the modulation symbol alphabet, and the symbol
a priori probability can be calculated by [22]

Pr(bun = bi) =

NQ
∏

q=1

Pr(c′
u
n,q = si,q)

=
(1

2

)NQ
NQ
∏

q=1

(1 − s̄i,q tanh(λ
u
n,q/2)), (7)

with s̄i,q = 2si,q − 1 and si = [si,1, si,2, . . . , si,NQ
]T is

the binary representation of the symbolbi, depending on the
modulation mapping.λu

n,q is thea priori LLR of the bit c′un,q,

Fig. 3. The block diagram of frequency domain turbo equalizer.

provided by the decoder of useru. After the soft cancelation,
the residual and the estimated received signal of useru are
summed in̆ru ∈ CNRNF as [23]

r̆u = r̂+ ΓuP
1

2

uFb̃
u. (8)

The time domain output of the receive filter for theuth user
can be written as

b̂
u = F

−1
Ω̆

H
u r̆u, (9)

where Ω̆u = [Ω̆
1

u, Ω̆
2

u, . . . , Ω̆
NR

u ]T ∈ CNRNF×NF is the
filtering matrix for theuth user andΩ̆

r

u ∈ CNF×NF is the
filtering matrix forrth receive antenna ofuth user. The effective
SINR of the prior symbol estimates foruth user after FEC
decoding can be expressed as

ζu =
1

NF

NF
∑

m=1

Pu,mω
H
u,mγu,mγ

H
u,mωu,m

ωH
u,mΣr̂,mωu,m

, (10)

whereγu,m ∈ CNR consists of the diagonal elements ofΓu,m,
i.e., γu,m is the channel vector formth frequency bin of user

u. ωu,m =
[

[Ω̆
1

u][m,m], [Ω̆
2

u][m,m] . . . , [Ω̆
NR

u ][m,m]

]T
∈ CNR

is the receive beamforming vector formth frequency bin of
useru, andΣr̂,m ∈ CNR×NR is the interference covariance
matrix of themth frequency bin given by

Σr̂,m =

U
∑

l=1

Pl,mγl,mγ
H
l,m∆̄l + σ2

INR
. (11)

∆̄l = avg{1NF
−b̈

l} is the average residual interference of the
soft symbol estimates and̈bl = [|b̃l1|2, |b̃l2|2, . . . , |b̃lNF

|2]T ∈
CNF .

IV. CONVERGENCECONSTRAINED POWER ALLOCATION

In this section, the joint power allocation and receive beam-
forming optimization problem for iterative receiver is derived.
The general problem formulation follows from [13] where
CCPA is derived for single user MIMO systems. However, the
major difference compared to [13] is that the EXIT space now
hasU +1 dimensions which makes the problem considerably
more challenging.

This section is outlined as follows: at first, the general
problem formulation for multiuser SIMO systems is provided.
We show that the convergence is guaranteed as long as there
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exist a tunnel between theU +1-dimensional EXIT surfaces.
After that, we introduce a noveldiagonal sampling approach
which makes the problem solvable without performing ex-
haustive search. Then, we show how to transfer the MI
constraints to LLR variance constraints in the case of BPSK
and QPSK. Finally, we apply CCPA to the case of 16QAM
and show that the proposed convergence constraint guarantees
the convergence also for 16QAM. Gray mapping is assumed
throughout the derivation.

A. General Problem Formulation

Let ÎE
u denote the average MI between the transmitted

interleaved coded bitsc′u and the LLRs at the output of
the equalizer̂Lu [13, Eq. (18)]. For notational convenience,
equalizer refers to the combined block of the receive filter
and soft mapper / demapper. Similarly to [13] maximum a
posteriori (MAP) soft demapper / mapper is used in this paper.
Moreover, letÎA

u denote thea priori MI at the input of the
equalizer andf̂u : [0, 1]U → [0, 1] denote a monotonically
increasing EXIT function of the equalizer of theuth user.
Using similar definitions for the decoder of theuth user
replacinĝ with ,̊ the essential condition for the convergence
of the turbo equalizer can be written as

∃{I̊E
i ∈ [0, 1]}Ui=1

i6=u
: f̂u(I̊

E
1 , . . . , I̊

E
u, . . . , I̊

E
U ) ≥ f̊−1

u (I̊E
u) + ǫu

∀u = 1, 2 . . . , U,
(12)

i.e., for all u, there exists a set of outputs from the decoders
of all the users exceptu such that the EXIT function of the
equalizer of useru is above the inverse of the EXIT function of
the decoder of useru plus a parameterǫu, which controls the
minimum gap between theU + 1-dimensional EXIT function
of the equalizer of useru and the inverse of the decoder’s
EXIT function of useru. In other words, the convergence is
guaranteed as long as there exists an open tunnel between the
two EXIT surfaces until the convergence point. The constraint
(12) is much more challenging to deal with than [13] where
the EXIT chart was 2-dimensional. This is illustrated in the
case of two users in Fig. 4 where we can see the impact of the
a priori information coming from the other user’s decoder.

We demonstrate that (12) guarantees the convergence: Let
U = 2 and assume that there exists an open tunnel between
the EXIT surfaces until the convergence point as presented in
Fig. 4. Let I̊E,target

u , 0 ≤ I̊E,target
u ≤ 1, be the target MI point of

useru after iterations. Furthermore, letiu ∈ N be the index of
iteration andI̊E

u,iu
denote the MI after iterationiu such that

I̊E
u,iu+1 ≥ I̊E

u,iu
. Focusing on the user 1, the condition (12) is

written

f̂1(I̊
E
1 , I̊

E
2 ) ≥ f̊−1

1 (I̊E
1 ) + ǫ1, (13)

such that for each̊IE
1,i1

, 0 ≤ I̊E
1,i1

≤ I̊E,target
1 there exists at

least one̊IE
2,i2

, 0 ≤ I̊E
2,i2

≤ I̊E,target
2 that satisfies the condition.

Let the output value after the first activation of the decoder
1 be I̊E

1,1, such that (13) holds for some̊IE
2,̃i2

. Due to the
monotonicity of the EXIT function the condition (13) holds
for all indices i2 ≥ ĩ2. Activating the decoder of user 1

Fig. 4. An example of 3 dimensional formulation of the problem for user
1. U = 2, NF = 8, NR = 1, K = 11, ÎE,target

u = 0.8, I̊E,target
u = 0.9999,

ǫu = 0.1, u = 1, 2, Rc = 1/3, NL = 5.

again, the output of the equalizer becomesf̂1(I̊
E
1,2, I̊

E
2,̃i2

). If

the condition (13) does not hold at the point(I̊E
1 , I̊

E
2 , Î

E
1 ) =

(I̊E
1,2, I̊

E
2,̃i2

, f̂1(I̊
E
1,2, I̊

E
2,̃i2

)) in the 3-dimensional EXIT chart,

i.e., f̂1(I̊E
1,2, I̊

E
2,̃i2

)) < f̊−1
1 (I̊E

1,2) + ǫ1, there exists at least

one I̊E
2,i2

that satisfies (13). Hence,ĩ2 can be increased, i.e.,
decoder 2 can be activated until the condition holds4. This can
be repeated for all the points until the convergence point.

To make the problem tractable, continuous convergence
condition (12) is discretized and replaced with

∃
{

I̊E
i,ki

∈ [0, 1] : ki ∈ {1, 2, . . . ,K}
}U

i=1
i6=u

:

f̂u(I̊
E
1,k1

, . . . , I̊E
u,ku

, . . . , I̊E
U,kU

) ≥ f̊−1
u (I̊E

u,ku
) + ǫu,ku

,

∀ku = 1, 2, . . . ,K, ∀u = 1, 2 . . . , U, (14)

whereǫu,ku
= ǫu, ∀ku < Ku andǫu,Ku

= 0. Without loss of
generality, we can assumeKu = K, ∀u = 1, 2, . . . , U , i.e.,
the number of discrete points in the EXIT chart is the same for
all users. Furthermore, we will assume thatI̊E

u,ku+1 > I̊E
u,ku

,
∀ku = 1, 2, . . . ,K − 1, i.e., the indexing is ordered such that
the MI increases with the index.

B. Diagonal Sampling

A 3-dimensional EXIT chart for user 1 is depicted in Fig.
4 for the case ofU = 2. ÎA

1,k1
/I̊E

u,ku
, u = 1, 2, denotes thea

priori information for the equalizer of the user 1 provided
by the decoder of the useru. Double arrows withǫ̂1,k1

,
k1 = 1, 2, . . . , 11, are placed at the diagonal sample points
where the condition (14) is checked andǫ̂1,k1

≥ ǫ1,k1
. In this

example, we have selectedK = 11 even though in many cases
smallerK is enough to guarantee the convergence. Intuitively,
a sufficient value ofK depends on the shape of the decoder
EXIT function. However, this is left as a future study.

The number of constraints in (14) isKU . However, to find
the optimal solution, we need to know how to pick up the

4If U > 2, all the decoders (excluding the decoder of user 1) can be
activated until (13) holds.
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optimal set of sample points from{I̊E
i ∈ [0, 1]}Ui=1

i6=u
for each

u = 1, 2, . . . , U . For finding the best set of sample points, i.e.,
the path from origin to the convergence point which leads to
a minimum power consumption, one should be able to check
all the possible paths inU + 1 dimensional EXIT space from
origin to the convergence point and choose the one which
gives the best result. This leads to a combinatorial optimization
problem which is difficult to solve.

If the EXIT surfaces of the decoder and the equalizer
do not intersect at any sampled point, the only active con-
straints are the ones where there is noa priori information
available from the other users. This can be justified by
the fact that the EXIT function is monotonically increasing
with its arguments, i.e.,f̂u(I̊E

1,k1
, . . . , I̊E

u,ku
, . . . , I̊E

U,kU
) ≤

f̂u(I̊
E
1,k̃1

, . . . , I̊E
u,k̃u

, . . . , I̊E
U,k̃U

) if I̊E
u,ku

≤ I̊E
u,k̃u

∀u =

1, 2, . . . , U . In such a case, we can write the constraint (14)
as

f̂u(0, 0, . . . , 0, I̊
E
u,ku

, 0, . . . , 0) ≥ f̊−1
u (I̊E

u,ku
) + ǫu,ku

,

∀u = 1, 2 . . . , U, ∀ku = 1, 2, . . . ,K. (15)

This is the tightest possible constraint and it clearly cannot
provide the best solution because with high probability there
is another sampling which guarantees the convergence with
lower power consumption. However, if the user does not know
the modulation coding scheme (MCS), i.e., FEC code and
modulation mapping, of other users at the transmitter, one may
consider of using the constraint (15) to guarantee the reliable
communication.

A pragmatic approach is to check only the points in theU+
1-dimensional EXIT space where all the decoder’s outputs are
equal, i.e., we check theK points on the line from the origin
to the convergence point. Thus, we can write the constraint
(14) as

f̂u(I̊
E
1,k, . . . , I̊

E
u,k, . . . , I̊

E
U,k) ≥ f̊−1

u (I̊E
u,k) + ǫu,k,

∀k = 1, 2, . . . ,K, ∀u = 1, 2 . . . , U. (16)

A sophisticated guess is that the active constraints lie on
the line from the origin to the convergence point due to
the smoothness of the decoder surface. We will denote this
approach asdiagonal sampling.

C. BPSK / QPSK

Similarly to [13], the MI constraint of (14) can be trans-
formed to variance constraint using the approximation of the
inverse of the so called J-function [16]

σ2
Z = J−1(IZ) ≈

(

− 1

H1
log2(1 − I

1

H3

Z )

)
1

H2

, (17)

whereσ2
Z is the LLR variance,IZ is the MI and the param-

etersH1, H2 and H3 can be found by least squares (LS)
curve fitting with the constellation constrained capacity (CCC)
equation [24]. Now, the MI constraint of (16) can be written
as

σ̂2
u(I̊

E
1,k, . . . , I̊

E
u,k, . . . , I̊

E
U,k) ≥ σ̊2

u,k,

∀k = 1, 2, . . . ,K, ∀u = 1, 2 . . . , U, (18)

where σ̂2
u(I̊

E
1,k, . . . , I̊

E
u,k, . . . , I̊

E
U,k) =

J−1(f̂u(I̊
E
1,k, . . . , I̊

E
u,k, . . . , I̊

E
U,k)), is the variance of the

conditional LLR distribution at the output of the equalizerof
useru depending on the MI at the output of all the decoders
and σ̊2

u,k = J−1
2 (f̊−1

u (I̊E
u,k) + ǫu,k) is the variance of the

conditional LLR distribution at the input of the decoder of
useru depending on the MI at the output of the decoder of
useru.

In [13], a result presented in [25] is used to find an analytical
expression of the LLR variance at the output of the equalizer
in the case of QPSK. We can use the same result by noting
that ∆̄l in (11) is a function of the output of the decoder of
user l and hence, the SINR (10) is a function of the outputs
of the decoders of all the usersζu(I̊E

1,k, . . . , I̊
E
u,k, . . . , I̊

E
U,k).

Equation [13, Eq. (17)] can be extended to the multiuser case
as

σ̂2
u(I̊

E
1,k, . . . , I̊

E
u,k, . . . , I̊

E
U,k) =

4ζu(I̊
E
1,k, . . . , I̊

E
u,k, . . . , I̊

E
U,k)

1− ζu(I̊E
1,k, . . . , I̊

E
u,k, . . . , I̊

E
U,k)∆̄u,k

. (19)

Substituting (19) to (18) the convergence constraint is written
as

ζu(I̊
E
1,k, . . . , I̊

E
u,k, . . . , I̊

E
U,k) ≥ ξu,k,

∀u = 1, 2 . . . , U, ∀k = 1, 2, . . . ,K, (20)

where

ξu,k =
σ̊2
u,k

4 + σ̊2
u,k∆̄u,k

, (21)

is a constant that depends on the FEC code.

D. A Heuristic Approach for 16QAM

Similarly to QPSK case, the MI at the output of the
demapper can be transformed to the variance of the conditional
LLR distribution by using (17). However, the parametersH1,
H2 and H3 are found by fitting the function (17) with the
corresponding 16QAM results [26]. Let J2 and J4 denote the
J-functions for QPSK and 16QAM, respectively. With these
notations, the MI constraint of (16) in the case of 16QAM
can be written as

J−1
4 (f̂u(I̊

E
1,k, . . . , I̊

E
u,k, . . . , I̊

E
U,k)) ≥ J−1

4 (f̊−1
u (I̊E

u,k) + ǫu,k),

∀k = 1, 2, . . . ,K, ∀u = 1, 2 . . . , U.
(22)

The difference in the system model of different modulation
schemes arises in the soft demapper. To achieve the final form
of the convergence constraint in (20) we used the expression
(19) where Gray mapped QPSK is assumed. In 16QAM this
mapping between the SINR and the variance of the LLR
distributions does not hold anymore. However, substituting the
parameter values from [26, Table I] to (17), it can be easily
verified that J−1

4 (IZ) ≥ J−1
2 (IZ)

5, ∀IZ ∈ [0, 1]. Using this

5Equality holds whenIZ = 0 or IZ = 1.
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result, we can obtain that when modulation order increases,
larger LLR variance is needed to achieve the same SINR, i.e.,

J−1
4 (f̂u(I̊

E
1,k1

, . . . , I̊E
u,ku

, . . . , I̊E
U,kU

)) ≥
J−1
2 (f̂u(I̊

E
1,k1

, . . . , I̊E
u,ku

, . . . , I̊E
U,kU

)) =

4ζu(I̊
E
1,k1

, . . . , I̊E
u,ku

, . . . , I̊E
U,kU

)

1− ζu(I̊E
1,k1

, . . . , I̊E
u,ku

, . . . , I̊E
U,kU

)∆̄u,ku

. (23)

We can conclude that for 16QAM the convergence constraint
(20) is conservative, i.e., the resulting EXIT curve of the equal-
izer is never above the truêIE

u,k, ∀u, k. Hence, the convergence
constraint (20) guarantees the convergence for 16QAM. It
should be noticed that the difference in convergence constraint
between the QPSK and 16QAM arises in (21) whereσ̊2

u,k is
obtained using either J−1

2 or J−1
4 depending on the modulation.

V. TRANSMITTER - RECEIVER OPTIMIZATION

In this section, algorithms for solving the transmitter-
receiver (Tx-Rx) optimization problem is presented. In Section
V-A, the joint Tx-Rx optimization problem is split to separate
transmitter and receiver optimization problems. The non-
convex Tx optimization problem for fixed Rx is considered
in Sections V-B and V-C.

The power minimization problem with the convergence
constraint derived in the previous section is expressed as

minimize
P,Ω̆

k
tr{P}

subject to ζu(I̊
E
1,k, . . . , I̊

E
u,k, . . . , I̊

E
U,k) ≥ ξu,k,

∀u = 1, 2 . . . , U, ∀k = 1, 2, . . . ,K,
Pu,m ≥ 0,
u = 1, 2, . . . , U,m = 1, 2, . . . , NF ,

(24)

whereΩ̆
k

is the receive filter at thekth MI index.

A. Alternating Optimization

Our objective is to jointly optimize the power allocation at
the transmitter and the beamforming vectors at the receiver
while the convergence of the iterative receiver is guaranteed.
Differentiating the Lagrangian of (24) with respect to the
receive beamforming vectors and equating to zero, the optimal
receive beamforming vector formth frequency bin ofuth user
at thekth MI index is given by

ω
k
u,m = ηkuΣ

−1
r̂,m,kγu,m

√

Pu,m, (25)

whereηku ∈ R. Hence, the optimal receiver (25) is actually
the MMSE receiver used in [23, Chapter 5] up to a scalar
multiplier leading to exactly the same SINR. The scaling factor
ηku should be chosen such that it matches with the assumptions
made in soft demapper. With the notations given in Section
III, turbo equalizer works properly only if the scaling factor
ηku is chosen to be [26]ηku = 1

avg{b̈u}ζu,k+1
.

The joint transmitter-receiver optimization problem can be
solved by using the alternating optimization where we splitthe
non-convex joint optimization problem to separate transmitter
and receiver optimization. We start with a feasible initial

guess6 P̂
(0) and calculate the optimal receive filter. After

that, the problem (24) is solved for a fixed̆Ω
k
. A monotonic

convergence of alternating optimization to a local optima can
be justified by the fact that each step improves the objective.
The overall algorithm is presented inAlgorithm 1, where

P
∗ represents a solution of problem (24) for fixed̆Ω

k
and

Ω̆
k∗

represents the optimal̆Ω
k

for fixed P. In the following
sections, we will be focusing on solving the problem (24) for

fixed Ω̆
k
, denoted as power allocation problem (PAP).

Algorithm 1 Alternating Optimization.

1) 1: Initialize P̂ = P̂
(0)

2: repeat
3: Calculate the optimal̆Ω

k
from

Ω̆
k

u = 1
avg{b̈u}ζu,k+1

Σ
−1
r̂,kΓuP̂

1

2

u .

4: Set Ω̆
k
= Ω̆

k∗
and solve problem (24)

with variablesP.
5: UpdateP̂ = P

∗

6: until Convergence

To ease the handling of (24), we write the problem in
equivalent form by splitting the convergence constraint as
follows:

1

NF

NF
∑

m=1

tku,m ≥ ξu,k

tku,n =
Pu,n|ωk

u,n
H
γu,n|2

∑U
l=1 Pl,n|ωk

u,n
H
γl,n|2∆̄k + σ2||ωk

u,n||2
. (26)

At the optimal point the constraints hold with equality and
hence, we can relax the equality in (26) leading to equivalent
formulation

minimize
P,Ω̆

∑U
u=1

∑NF

m=1 Pu,m

subject to 1
NF

∑NF

m=1 t
k
u,m ≥ ξu,k

u = 1, 2, . . . , U, k = 1, 2, . . . ,K,
Pu,n|ω

k
u,n

H
γu,n|

2

∑
U
l=1

Pl,n|ωk
u,n

H
γl,n|

2∆̄k+σ2||ωk
u,n||

2
≥ tku,n,

k = 1, 2, . . . ,K, u = 1, 2, . . . , U,
n = 1, 2, . . . , NF ,
Pu,n ≥ 0,
u = 1, 2, . . . , U, n = 1, 2, . . . , NF .

(27)

B. Successive Convex Approximation via Variable Change

Similarly to [28], we introduce new variablesαu,m ∈ R,
such thatPu,m = eαu,m , ∀u = 1, 2, . . . , U,m = 1, 2, . . . , NF .

6Can be found by e.g., using zero forcing algorithm [27].
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The PAP with new variables can be equivalently written as

minimize
α,t

∑U
u=1

∑NF

m=1 e
αu,m

subject to 1
NF

∑NF

m=1 t
k
u,m ≥ ξu,k

u = 1, 2, . . . , U, k = 1, 2, . . . ,K,

(∗∗) eαu,n |ωk
u,n

H
γu,n|

2

∑
U
l=1

eαl,n |ωk
u,n

H
γl,n|

2∆̄k+σ2||ωk
u,n||

2
≥ tku,n,

k = 1, 2, . . . ,K, u = 1, 2, . . . , U,
n = 1, 2, . . . , NF ,

(28)
where t = {tku,m : u = 1, 2, . . . , U, k = 1, 2, . . . ,K,m =
1, 2, . . . , NF}, and α = {αu,m : u = 1, 2, . . . , U,m =
1, 2, . . . , NF}. Taking the natural logarithm of the constraint
(∗∗) yields

αu,n + 2 ln(|ωk
u,n

H
γu,n|)

− ln(

U
∑

l=1

eαl,n |ωk
u,n

H
γl,n|2∆̄k + σ2||ωk

u,n||2) ≥ ln tku,n.

(29)

It is well known that logarithm of the summation of the
exponentials is convex. Hence, the left hand side (LHS) of the
constraint (29) is concave. The RHS of (29) can be locally
approximated with its best convex upper bound, i.e., linear
approximation ofln tku,n at a pointt̂ku,n:

Y (tku,n, t̂
k
u,n) = ln t̂ku,n +

(tku,n − t̂ku,n)

t̂ku,n
. (30)

A local convex approximation of (28) can be written as

minimize
α,t

∑U
u=1

∑NF

m=1 e
αu,m

subject to
∑NF

m=1 t
k
u,m ≥ NF ξu,k, u = 1, 2, . . . , U,

k = 1, 2, . . . ,K,

αu,n + 2 ln(|ωk
u,n

H
γu,n|)−

ln(
∑U

l=1 e
αl,n |ωk

u,n
H
γl,n|2∆̄k + σ2||ωk

u,n||2) ≥
Y (tku,n, t̂

k
u,n), u = 1, 2, . . . , U,

k = 1, 2, . . . ,K, n = 1, 2, . . . , NF ,
(31)

and it can be solved efficiently by using standard optimization
tools, e.g., interior-point methods [29].

The SCA algorithm starts by a feasible initializationt̂ku,n =

t̂
k(0)
u,n , ∀u, k, n. After this, (31) is solved yielding a solution
t
k(∗)
u,n which is used as a new point for the linear approx-

imation. The procedure is repeated until convergence. The
SCA algorithm is summarized inAlgorithm 2. By projecting
the optimal solution from the approximated problem (31) to
the original concave function (RHS in (29)) the constraint
becomes loose and thus, the objective can always be reduced.
Hence, this algorithm is guaranteed to monotonically converge
to a local optimum.

C. Successive Convex Approximation via Geometric Program-
ming

Another algorithm for solving the PAP can be derived by
using the approach introduced in [30] where the SCA is
implemented via series of geometric programs (GPs) [29].
The inequality of weighted arithmetic mean and weighted

Algorithm 2 Successive convex approximation algorithm.

1: Set t̂ku,n = t̂
k(0)
u,n , ∀u, k, n.

2: repeat
3: Solve Eq. (31).
4: Updatet̂ku,n = t

k(∗)
u,n , ∀u, k, n.

5: until Convergence.

geometric mean states that for any set ofΦm, αm > 0,
m = 1, 2, . . . , NF ,

∑NF

m=1 Φmαm

Φ
≥ Φ

√

√

√

√

NF
∏

m=1

αΦm
m , (32)

whereΦ =
∑NF

m=1 Φm. ChoosingΦm = t̂m∑NF
n=1

t̂n
, t̂m > 0,

m = 1, 2, . . . , NF , and denotingαm = tm
Φm

, we have

NF
∑

m=1

tm ≥
NF
∏

m=1

(
tm
Φm

)Φm , (33)

for all Φm, tm > 0, m = 1, 2, . . . , NF . Therefore, the summa-
tion constraint can be replaced by its monomial underestimate

and a local approximation of (24) for fixed̆Ω
k

can be written
in the form of GP as

minimize
P,t

tr{P}

subject to
∏NF

n=1(
tku,n

Φk
u,n

)Φ
k
u,n ≥ NF ξu,k,

u = 1, 2, . . . , U, k = 1, 2, . . . ,K,

Pu,m|ωk
u,m

H
γu,m|2 ≥

(
∑U

l=1 Pl,m|ωk
u,m

H
γl,m|2∆̄k + σ2|ωk

u,m|2)tku,m,
u = 1, 2, . . . , U, k = 1, 2, . . . ,K,
m = 1, 2, . . . , NF ,
Pu,m ≥ 0, u = 1, 2, . . . , U,m = 1, 2, . . . , NF .

(34)
Now the objective is a posynomial, the LHSs of the inequality
constraints are monomials and the RHSs are posynomials.
Hence, (34) is in the form of GP, which can be transformed to
a convex optimization problem [29]. Now,Algorithm 2 can be
used replacing (31) in step 3 by (34). Because the monomial
approximation is never above the approximated summation
(33), the same arguments about the convergence used in Sec.
V-B can be used here. Hence, SCA with approximation (34)
is guaranteed to monotonically converge to a local optimum.

VI. N UMERICAL RESULTS

In this section, we will show the results obtained by
the simulations to evaluate the performance of the proposed
algorithms. The following abbreviations for the algorithms are
used: SCAVC stands for successive convex approximation via
variable change presented in Section V-B and SCAGP denotes
successive convex approximation via geometric programming
presented in Section V-C. The stopping criterion ofAlgorithm
1 andAlgorithm 2 is that the change of the objective function
is less than or equal to a small specific value between
two consecutive iterations. In simulations, we used 0.05 for
Algorithm 1 and 0.01 forAlgorithm 2.
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OES stands for the best possible orthogonal allocation
obtained by performing exhaustive search over all possible
combinations and ZFSCMMSE denotes spatial ZF concate-
nated with FD-SC-MMSE. The power allocation for both OES
and ZFSCMMSE is simplified to a single user loading [13]. EP
denotes the single carrier transmission without precoding, i.e.,
equal power is used for all users across the frequency band,
where the power level satisfying the convergence constraints
is found by using bisection algorithm.

The results are obtained with the following parameters:
NF = 8, QPSK (NQ = 2) and 16QAM (NQ = 4) with
Gray mapping, and systematic repeat accumulate (RA) code
[31] with a code rate 1/3 and 8 internal iterations. The signal-
to-noise ratio per receiver antenna averaged over frequency
bins is defined by SNR= tr{P}/(NRNFσ

2). We consider two
different channel conditions, namely, a static 5-path channel
where path gains are generated randomly, and a quasi-static
Rayleigh fading 5-path average equal gain channel.

For verifying the accuracy of the method, EXIT simulations
were carried out in a static channel and the trajectories were
obtained through chain simulations with a random interleaver
of size 240000 bits. The EXIT curve of the decoder is obtained
by using 200 blocks for each a priori value with the size of
a block being 6000 bits. EXIT curves of the equalizer with
SCAGP and the decoder as well as the trajectories for two
and four users with QPSK and 16QAM are depicted in Fig. 5.
WhenU = 2 and QPSK is used, the gap between the EXIT
curves satisfies the preset condition and the convergence points
are very close to the preset values. Furthermore, trajectory
matches closely to the EXIT curves which indicates that
the algorithm works properly. When the modulation order is
increased to 16QAM there exists slight discrepancy between
the EXIT curves and the trajectory. This happens due to
the inequality (23). Hence, due to the conservativeness of
the convergence constraint in the case of 16QAM, the real
chain simulation provides larger MI than the approximated
EXIT curves and therefore, the actual trajectory reaches the
convergence point. Therefore, due to the lower bound natureof
convergence constraint in (24) the convergence is guaranteed
also with 16QAM.

To get further insight for the tradeoff betweenǫ and the
required SNR to satisfy the constraints we ran all the algo-
rithms in a static channel with variousǫ and checked the SNR
and the number of iterations required to achieve the target
point. The results are shown in Table I. It can be seen that
decreasingǫ from 0.2 to 0.1 requires only one or two more
iterations and the required SNR can be decreased roughly 1
dB depending on the algorithm used. The required SNR can
be further reduced about 0.5 dB by decreasingǫ to 0.01 while
the number of iterations is approximately tripled.

For QPSK, MI target can be converted to bit error proba-
bility (BEP) by using the equation [8]

Pb ≈
1

2
erfc

(

√

J−1
2 (ÎA,target

1 ) + J−1
2 (ÎE,target

1 )

2
√
2

)

. (35)

In Fig. 6, four different BEP target values were considered
for u = 1, 2, namely10−3, 10−4, 10−5, 10−6 correspond-

Fig. 5. Verification EXIT chart in static channel for SCAGP
with NF = 8, K = 5, NR = U , I̊

E,target
u = 0.9999,

∀u, (Î
E,target
1

, Î
E,target
2

, Î
E,target
3

, Î
E,target
4

) = (0.9999, 0.9, 0.8, 0.7) and
(ǫ1, ǫ2, ǫ3, ǫ4) = (0.2, 0.1, 0.05, 0.01). WhenU = 2, parameters of users 1
and 2 are used.

ing to the MI targets(I̊E,target
u , ÎE,target

u ) = (0.99, 0.6185),
(I̊

E,target
u , Î

E,target
u ) = (0.9987, 0.673), (I̊

E,target
u , Î

E,target
u ) =

(0.9998, 0.7892), (I̊E,target
u , ÎE,target

u ) = (0.9998, 0.9819), re-
spectively.K = 1 denotes the case where only one of the con-
vergence constraints for each user is taken into account. More
specifically, it means that̂IA,target

u = 0, and ÎE
u,k = ÎE,target

u ,
u = 1, 2, k = K. The feedback from the decoder is not taken
into account and hence, it corresponds to the linear equalizer.
It can be seen that OES, SCAGP and SCAVC achieve the best
result whenK = 5. ZFSCMMSE withK = 5 is 1.77 dB -
2.9 dB worse in terms of SNR, depending on the BEP target
and the algorithm used.

It is worth noticing that the solution obtained by SCAGP and
SCAVC in this particular case is very close to the orthogonal
solution (OES). This is due to the fact that when∆̄l = 0,
∀l = 1, 2, . . . , U in (11) all the interference is canceled and
the optimal receiver is the filter matched to the channel. In
this case, the optimal allocation strategy to maximize (10)is
to allocate power on the strongest bin. However, this would
not necessarily satisfy the constraint in (24) if∆̄l = 1, ∀l =
1, 2, . . . , U . Thus, the power has to be distributed to several
bins which results in higher power consumption. Hence, if
the tightest constraint, i.e.,̄∆l = 1, ∀l = 1, 2, . . . , U , can be
satisfied using only one frequency bin, it is indeed the best
solution. This is the case when the interference level is low,
as it is in the case presented in Fig. 6. When the number of
users increases, so does the interference and the orthogonal
solution may not be feasible. This can be seen by writing the
SINR constraint for OES as

1

NF

∑

m∈Nu
F

Pu,m||γu,m||2
Pu,m||γu,m||2∆̄k + σ2

≥ ξu,k, (36)

whereN u
F is the set of frequency bins allocated to useru and

N l
F ∩ N u

F = ∅, ∀l 6= u,
⋃U

u=1 N u
F = NF . Now, (36) can be
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TABLE I
REQUIRED SNRAND NUMBER OF ITERATIONS WITH VARIOUSǫ FOR ALGORITHM. THE ELEMENTS IN THE TABLE ARE IN THE FORM OFSNR(DB) /
ITERATIONS FOR USER1 / ITERATIONS FOR USER2.U = 2, NR = 2, NQ = 2, K = 11, ÎA,TARGET

u = 0.9999, ∀u, ÎE,TARGET
1

= 0.7, ÎE,TARGET
1

= 0.9.

ǫ1 = ǫ2 OES SCAGP SCAVC ZFSCMMSE EP
0.01 4.56 / 23 / 16 4.53 / 19 / 16 4.54 / 17 / 17 6.56 / 11 / 10 12.79 / 2 / 2
0.1 5.29 / 6 / 6 5.12 / 6 / 5 5.13 / 6 / 5 7.08 / 5 / 4 12.79 / 2 / 2
0.2 6.89 / 4 / 4 6.28 / 4 / 4 6.30 / 4 / 4 7.96 / 3 / 4 12.79 / 2 / 2

4 6 8 10 12 14 16 18 20 22
10

−6

10
−5

10
−4

10
−3

SNR (dB)

B
E

P

 

 
EP, K=1
ZFSCMMSE, K=1
SCAVC, K=1
SCAGP, K=1
EP, K=5
ZFSCMMSE, K=5
OES, K=5
SCAGP, K=5
SCAVC, K=5

Fig. 6. Thea posteriori BEP comparison.U = 2, NF = 8, NR = 2,
targets =[10−3, 10−4, 10−5, 10−6], ǫu = 0.1, ∀u.

written in the form of
∑

m∈Nu
F

1

Pu,m||γu,m||2∆̄k + σ2
≤ Nu

F − ξu,kNF ∆̄k

σ2
, (37)

whereNu
F is the cardinality of the setN u

F . From the non-
negativity of the right hand side (RHS) of Eq. (37) we get a
necessary constraint for the minimum number of the frequency
bins that has to be allocated to useru as

Nu
F ≥ ξu,kNF ∆̄k, ∀k = 1, 2, . . . ,K. (38)

As it was seen in Section IV,ξu,k and ∆̄k depend on the
channel code used. Thus, we can conclude that the feasibility
of OES algorithm can be controlled by varying the channel
code. The following results are presented for 16QAM with
Rc = 1/3 only where the OES algorithm is not feasible due
to (38).

Fig. 7 shows the minimum SNR required to achieve the
corresponding MI target for user 1 for each of the proposed
algorithms in the case ofU = 2. It is shown that precoding
with K = 1 yields 5 - 8 dB worse results in terms of power
consumption than the best solution withK = 5. ZFSCMMSE
with K = 1 gives roughly the same results than SCAVC and
SCAGP withK = 1 due to the high SNR regime. However,
when the precoding is performed withK = 5, SCAVC and
SCAGP achieves 2-3 dB gain compared to ZFSCMMSE.
EP with K = 5 performs close to SCAVC, SCAGP and
ZFSCMMSE withK = 1 when the target is low. When the
target is ÎE,target

1 = 0.9999, the EP algorithms withK = 1
andK = 5 are approximately equal and 3-4 dB worse than

Fig. 7. SNR using the corresponding MI target for user 1.U = 2, NF = 8,
NR = 2, NQ = 4, ÎE,target

2
= 0.8, I̊E,target

u = 0.9999, u = 1, 2, ǫu = 0.1,
u = 1, 2, NL = 5.

precoding withK = 1. This is due to the fact that the scenario
is interference limited, i.e., when the power is increased the
interference is also increased because all the users transmit
with equal power using the entire bandwidth. As expected, EP
with K = 1 requires the highest SNR among all the algorithms
used.

Fig. 8 shows the minimum SNR required to achieve the
corresponding MI target for user 1 for each of the proposed
algorithms in the case ofU = 4. The results are similar to
the case ofU = 2: ZFSCMMSE withK = 1 requires more
power than SCAGP and SCAVC withK = 1 when the MI
target is low. However, when MI target increases ZFSCMMSE
performs roughly equal to SCAGP and SCAVC. EP withK =
5 requires smaller SNR than ZFSCMMSE when the MI target
is low. The linear receivers SCAGP and SCAVC withK = 1
are 10-13 dB away from nonlinear receivers, depending on the
target MI.

As it was seen in Section V both SCAGP and SCAVC are
to be solved via series of convex problems. For solving a
convex problem, there exist many efficient tools [29]. Hence,
the complexity analysis boils down to the comparison of how
many times the optimization problem needs to be solved for
each of the algorithms to achieve the convergence according
to criteria described in the beginning of this section. The
number of times thatAlgorithm 1 needs to be performed
varies typically between 1 - 8 depending on the simulation
setup. The more users, the more iterations is needed. The
number of times thatAlgorithm 2 needs to be performed in
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Fig. 8. SNR using the corresponding MI target for user 1.U = 4, NF = 8,
NR = 4, NQ = 4, Î

E,target
u = 0.8, u = 2, 3, 4, I̊E,target

u = 0.9999, ∀u,
ǫu = 0.1, ∀u, NL = 5.

Algorithm 1 varies between 3 - 13.
The motivation of using SC-FDMA is its favorable PAPR

properties. The PAPR of EP is only 1.27 dB for 16QAM due
to the equal sizes of DFT and IDFT at the transmitter and
receiver. However, the PAPR is increased when power alloca-
tion is performed across the frequency band. To demonstrate
the effect of power allocation on the coverage of a cell, we
measured the PAPR at the output of IFFT in the transmitter
and constructed the complementary cumulative distribution
functions (CCDF) Prob(PAPR > δ) for each algorithm. The
results are shown in Fig. 9, whereδ corresponds the PAPR
value in horizontal axis. It can be seen that power allocation
increases the PAPR significantly. Furthermore, withK = 5
the PAPR is higher than withK = 1 due to the fact that the
allocation withK = 5 is more orthogonal. However, it can be
seen from Fig. 8 that the required SNR is reduced.

Let us consider an example where the maximum trans-
mission power is to be configured according to 8 dB PAPR
which corresponds to10−4.70 value in CCDF for SCAVC and
K = 5. For that same value of CCDF, the PAPR is 6.86 dB
for SCAVC andK = 1. Hence, increasingK from one to five
the total power gain is 13.22 dB - (8 dB - 6.86 dB) = 12.08
dB. Therefore, the coverage ofK = 5 precoded transmission
is significantly larger than in the case ofK = 1. However,
SCAVC with K = 5 requires 18.55 dB lower SNR than EP
with K = 5. Using the same 8 dB example than above the
total power gain is 11.82 dB. However, this is only the worst
case comparison, i.e., DFT and IDFT sizes are not necessarily
equal in practise, which results in the increase of PAPR of EP
algorithm [32]. As a conclusion, even with the worst case
comparison, SCAVC and SCAGP can achieve significantly
larger coverage than EP with a significantly lower average
power consumption.

VII. C ONCLUSIONS

In this paper, we have derived the convergence constrained
power allocation (CCPA) problem for iterative frequency do-
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main multiuser SIMO detector. Furthermore, with our novel
problem derivation the generalization for higher order modula-
tions is straightforward. Moreover, we derived two successive
convex approximations for finding a local solution of the prob-
lem. Numerical results indicate that significant gains in terms
of average power consumption can be achieved compared to
the linear receivers with and without precoding as well as to
the iterative receiver without precoding. Furthermore, itwas
shown that the peak-to-average power ratio (PAPR) increase
due to precoding is minor compared to the gain in the average
power consumption. Thus, the maximum cell size is increased
by the precoding. Algorithms proposed in this work allow
the full utilization of iterative receiver and its convergence
properties.
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