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Abstract

Linear, time-varying (LTV) systems composed of time shifts, frequency shifts, and complex am-

plitude scalings are operators that act on continuous finite-energy waveforms. This paper presents a

novel, resource-efficient method for identifying the parametric description of such systems, i.e., the time

shifts, frequency shifts, and scalings, from the sampled response to linear frequency modulated (LFM)

waveforms, with emphasis on the application to radar processing. If the LTV operator is probed with a

sufficiently diverse set of LFM waveforms, then the system can be identified with high accuracy. In the

case of noiseless measurements, the identification is perfect, while in the case of noisy measurements,

the accuracy is inversely proportional to the noise level. The use of parametric estimation techniques

with recently proposed denoising algorithms allows the estimation of the parameters with high accuracy.

I. INTRODUCTION

In active sensing, a physical system is probed by a known waveform to identify the physical parameters

of the system by processing the system response to the input waveform. This paper is concerned with

physical systems that are modeled by linear time-varying (LTV) systems described by time and frequency

shifted versions of the input waveform. For example, the response y(t) to an input waveform x(t) that

is time shifted by τ and frequency shifted by f would look like

y(t) = x(t− τ)ej2πft. (1)
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The time-varying nature of the system is due to the modulation by the complex sinusoid, which is

time-dependent. Such LTV system models are important in radar processing, channel estimation for

communication systems, and other areas, because the time and frequency shifts directly relate to path

distances and velocities of physical objects that affect the signal returns. In the communications literature

[1]–[3], the time and frequency shifts are often modeled probabilistically, while in radar applications they

are modeled as deterministic and fixed over short time intervals. This paper will concentrate on the latter.

LTV systems are good models for multipath channels in which multiple copies of the transmitted signal,

each with a time delay and a Doppler shift, are acquired by the receiver. Assuming the bandwidth of the

signal is small relative to the carrier frequency, the Doppler shift is adequately modeled by a frequency

shift (see Section II for a more details). Fig. 1 depicts a reference scene to illustrate a possible multipath

channel. Here, the transmitter and receiver are collocated, as is the case in a monostatic radar system.

Each object is identified by its path length, or, through the speed of light, the time delay from transmission

to reception. The moving car and airplane are further identified by a Doppler shift determined by their

(radial) velocities. The receiver processes the received signal using the transmitted signal as a reference.

The approach presented in this paper, as well as traditional approaches, is also readily adaptable to

other scenarios, such as a non-collocated transmitter and receiver. In this case, the receiver uses prior

information about the transmitted signal, e.g., predefined pilot tones that are common in communication

systems, or estimates the transmitted signal from the path directly from transmitter to receiver. The method

can also be adapted to a multi-antenna scenario in which the array is electronically steered. For clarity of

exposition, this paper concentrates on a collocated transmitter and receiver using a single omni-directional

antenna for each, so that we may assume the receiver has a perfect copy of the transmitted signal.

A. Existing Techniques for Identification

Traditional processing employs a matched filter (MF), which correlates the received signal against

hypothesized time and frequency shifts of the probe signal. Matched filtering is the maximum likelihood

estimator for a single return (i.e., scatterer) in white Gaussian noise [4], but the detection of multiple

targets is hampered by the spreading of the target peak. The spreading is captured in the ambiguity

function (i.e., 2-dimensional cross-correlation of time and frequency shifts) of the probe signal and limits

the resolution of the time shifts and frequency shifts of targets in close proximity [5]. An example

ambiguity function is shown in Fig. 2 for a linear frequency modulated (LFM) pulse. The waveform

will be described in greater detail in Section II-A, but the detail to note is the line of large intensity

from −50 ms to 50 ms that couples the time and frequency shifts. Thus, even in the absence of noise
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Fig. 1: In a multipath channel, the received signal (Rx) contains multiple copies of the transmitted signal

(Tx) that are reflections from various objects. If the Tx and Rx are collocated, then the time shift is

proportional to the distance from the Tx/Rx to the object and the frequency shift is proportional to the

object’s radial velocity. Note that any objects located along each circle would impart the same time shift.

the detection of multiple returns is fundamentally limited by the waveform itself, which is captured by

the ambiguity function. Two targets described by parameters that happened to fall on that line would be

indistinguishable from one another. Matched filtering, or approximations to it, still finds large utility in

practice because it is simply and efficiently computed by the fast Fourier transform [4].

Recently, other techniques have been proposed that are not fundamentally limited by the signal

ambiguity function. One technique uses ideas from the compressed sensing literature to efficiently identify

LTV systems composed of a small number of returns, relative to the entire time-frequency shift space

considered, and whose parameters live on a discretized grid of the time-frequency shift space [6]. This

technique leverages the rich set of analysis techniques and recovery algorithms offered by compressed

sensing. The chief disadvantage is the necessity to discretize the time-frequency shift space because

real-world LTV systems rarely conform to this assumption. The mis-match to the assumed discretized

basis has been shown to cause poor performance [7]. A similar but more general idea is explored in [8]

in which fundamental limits of identification are related to the time-frequency shift spread of the LTV

operator using a similar discretization of the time-frequency shift space.

Parametric techniques have also been proposed as an alternative to matched-filter processing, including

[9] and [10]. The common thread to both of these approaches is a sequential recovery of the time

shift followed by the frequency shift, or vice-versa. A primary drawback is the sequential nature of the

identification, especially when noise is considered. Errors in the first step propagate to the second step

and hamper the second stage of recovery. In fact, the technique proposed in [10] does not consider noise

in the analysis. These techniques are also less efficient because the targets must be resolvable in both
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Fig. 2: Ambiguity function of an LFM pulse.

steps of the recovery. The disadvantages will be discussed in more detail later and compared to the

requirements of the proposed technique.

B. Our Contributions

We propose a technique that allows simultaneous identification of the time shifts, frequency shifts,

and amplitude scalings of the returns from the LTV system. The technique utilizes linear frequency

modulation (LFM) pulses, i.e., linear chirps, as the probing waveform. An LFM waveform has the form

x(t) = ej2πfct
2

g(t)

where g(t) = 0 ∀t 6∈ [0, Tp] and fc is the chirp rate that defines how fast the frequency sweeps.

The returns from these probing waveforms, after pre-processing, are a superposition of sinusoids with

frequency determined by the time and frequency shift of the target. If a diverse set of LFM waveforms

with different chirp rates fc is used to probe the system, then we can determine the time shifts and

frequency shifts of the targets that produced the returns. When multiple targets are present, we show that
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Approach Num. of Samples Time-Bandwidth Resolution w/o noise Avg. Complexity Resolution w/ noise

Matched Filter [4] W · τmax
1

∆τ ·∆f ∆τ ∝ 1
W

, ∆f ∝ 1
M

poly(∆τ,∆f ) ∆τ ∝ 1
W

, ∆f ∝ 1
M

Friedlander [9] M ·K2 K2 ∞ poly(K) ∆τ ∝ 1
M3N

, ∆f ∝ 1
N3M

Bajwa et al. [10] – K2 ∞ poly(K) –

Herman, Strohmer [6] M ·K2 K2 ∆τ ∝ 1
W

, ∆f ∝ 1
M

poly(K) ∆τ ∝ 1
W

, ∆f ∝ 1
M

Harms et al. (this paper) M ·K K2 ∞ poly(K) ∆τ,∆f ∝ 1
(MN)3

TABLE I: Summary comparison of the approach described in this paper to several relevant alternative

approaches. The values listed indicate how the quantity scales in terms of the number of samples K,

number of pulses M , number of samples per pulse N , and maximum time shift considered τmax. Please

see Sections II and III for more details about these quantities and Section IV-F for more details about the

comparison. Other constants are left off for clarity, and poly(·) means polynomial scaling. A ‘–’ indicates

that the column is not addressed by the approach.

a diverse set of LFM pulses is sufficient to recover the description of each target. In the case of noisy

measurements, we show that the error in the estimated target parameters is proportional to the signal-to-

noise ratio (SNR). We also characterize the resource efficiency of the technique through analysis of the

time-bandwidth product of the LFM waveform, which is characterized by the largest possible time and

frequency shift of the target returns. A comparison of the technique presented in this paper and selected

other techniques is summarized in Table I. Notice that our approach improves on both the resolution

and the number of samples required. This work builds upon initial work [11] in which we presented

preliminary analysis of using a diverse set of LFM pulses for recovery from noiseless measurements. In

the present work, we expand the analysis to noisy measurements, expand the discussion of the usefulness

of diversity, and include expanded Monte Carlo numerical experiments.

The remainder of this paper is organized as follows. Section II sets up the model for LTV systems

and specifies the response of these systems to a train of LFM pulses. Section III discusses the proposed

processing scheme that first uses analog preprocessing on the received LFM pulses to setup a digital

frequency recovery algorithm. Section IV analyzes the proposed recovery algorithm performance from

the noiseless LTV system response, while Section V analyzes the performance using a noisy system

response. We finish up with numerical experiments to verify the proposed procedure in Section VI and

conclude in Section VII.
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II. LTV SYSTEM DESCRIPTION AND RESPONSE

An LTV system is an operator described by time shifts, frequency shifts, and complex scalings. The

LTV operator acts on probing waveforms and produces a response that consists of time-shifted, frequency-

shifted, and scaled copies of the probing waveform. Each parameter triplet (τk, fk, ck) is associated with a

target or object, owing to the physical interpretation of a radar scene or multipath communication system.

The objective is to identify the LTV operator by estimating each triplet (τk, fk, ck). In causal systems, as

considered in this paper, the time shifts are time delays, i.e., τk > 0. The system response is a superposition

of the modified probing waveforms. Fig. 3 shows a block diagram of the LTV system description where

x(t) denotes the probing waveform that illuminates the system and h(τ, f, c) = c·x(t − τ)ej2πft is the

operator corresponding to a single target. Assuming there are K targets, the received signal1 is

y(t) =

K∑
k=1

ckx(t− τk)ej2πfkt + ε(t) (2)

for t ∈ [0, T ] where T is the processing interval (during which the parameters are assumed fixed) and

ε(t) is a noise term. The time and frequency shifts are assumed to be limited2, i.e., fk ∈ (−fmax, fmax)

and τk ∈ (0, τmax) ∀k such that max(τk) < τmax and max(|fk|) < fmax. The choice of T is important

to ensure the parameters are (approximately) fixed over the processing interval. A moving target that has

a frequency shift due to the Doppler effect changes range, and hence the time shift changes, over time,

so T must be small enough so that the change in time shift is negligible.

As a quick aside about an LTV operator that produces a response of the form 2, we note that

general LTV operators with a continuous spreading function, such as those considered in [8], can be

decomposed into a finite sum of discrete targets of the form 2 if the spreading function admits a Fourier

decomposition. We also note that the advantages of the method described in this paper are found when

such a decomposition results in small K because our identification results are a function of K. Larger

K will require more resources. However, in many applications K is small or can be well-approximately

by a small number of targets.

1The received and transmitted signals are modeled as complex signals in this paper. This would be implemented in practice

using I/Q modulation [12].
2In practice, these limitations are set by the physical limits of the system and scenario. For example, a radar system has

limited sensitivity and can only detect returns from targets over some finite range and targets are limited to some finite velocity.
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x(t) -
∑K

k=1 h(τk, fk, ck) -
⊕?
ε(t)

- y(t)

Fig. 3: The LTV system described by (2). The system introduces time shifts τk, frequency shifts fk,

and complex scalings ck that modify the probing waveform x(t). Additive noise ε(t) corrupts the signal

returns to produce the received signal y(t).

A. Probing Waveform: Linear Frequency Modulated Pulses

The probing waveform must be designed to produce an identifiable system response. The important

property of a probing waveform is that it provides a sufficient number of degrees of freedom in the

system response. For example, a pure tone does not provide any information about the time shift because

the phase of the return is corrupted by the unknown phase imparted by the target.

The waveforms considered are linear frequency modulated (LFM) pulses, or windowed chirps, which

enjoy wide use in radar applications [4]. These waveforms are complex sinusoids in which the frequency

sweeps linearly in time across some bandwidth. Consider a train of M such pulses,

x(t) =

M−1∑
m=0

xm(t−mT )

where each pulse is a windowed LFM waveform with sweep rate fmc and frequency offset fm0

xm(t) = ej2π(f
m
c t

2+fm
0 t)g(t) (3)

with a square window function

g(t) =

1, 0 ≤ t ≤ Tp

0, otherwise.

Square windows allow a clear analysis, though other window functions are possible, e.g., a continuous

window that tapers at each end, but beyond the scope of the current analysis. The pulse duration is Tp,

and T is the pulse repetition interval (PRI). The time-frequency plot of an example pulse at baseband is

shown in Fig. 4a. The time-frequency characterization, however, does not completely capture the spectral

content of the LFM pulse because the total occupied bandwidth is slightly larger than the difference

between the starting and ending frequencies due to the windowing in time of the pulse. The Fourier

transform of (3) is

X(f) = F{xm(t)} =
∫ Tp

0
ej2π(f

m
c t

2+(fm
0 −f)t)dt. (4)

June 2, 2021 DRAFT
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Fig. 4: The time-frequency plot and the Fourier transform characterize the spectral content of an LFM

pulse with f0 = −100 Hz, fc = 2000 Hz/s, and Tp = 0.1 s. Most energy is contained in a bandwidth of

≈ 2fcTp

The integral in (4) is difficult to evaluate due to the quadratic term in the exponent. The integral can be

formulated in terms of Fresnel integrals and numerically evaluated as in [13]. The upshot is that most of

the energy is contained in a bandwidth of approximately 2fmc Tp with some energy leaking outside of this

bandwidth. Because the pulse duration is Tp, the time-bandwidth product of a single pulse is 2fmc T
2
p .

Other chirp, or chirp-like, pulses are possible such as a linear frequency-stepped pulse as analyzed in

[9]. In this case, fmc = 0 and fm0 = f0 + δf ·m where δf is the frequency step for each pulse.

B. LTV System Response to LFM Pulses

The response of the LTV operator to these LFM pulses is

y(t) =

K∑
k=1

M−1∑
m=0

ckxm(t− τk −mT )ej2πfkt + ε(t) =

M−1∑
m=0

ym(t)

where

ym(t) =

K∑
k=1

ckxm(t− τk −mT )ej2πfkt + εm(t) (5)

is the received signal for the mth pulse with

εm(t) =

ε(t), mT ≤ t ≤ (m+ 1)T

0, otherwise

June 2, 2021 DRAFT
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- t
0 τmax Tp T

To� - Tg� -

Fig. 5: Timing diagram of a pulse, the measurement period, and the guard period. We require that

Tg = T − Tp ≥ τmax and Tp > τmax. The measurement period To has a lower bound (described later)

that depends on the number of targets and the noise power.

the windowed noise process over the time interval of the mth pulse. The window g(t) limits the temporal

extent of xm(t), so ym(t) is guaranteed to be zero outside of the interval mT ≤ t ≤ Tp + τmax +mT

for m = 0, . . . ,M − 1. If T ≥ Tp+ τmax, then the received pulses ym1
(t) and ym2

(t) do not overlap for

m1 6= m2. We therefore have a guard interval of Tg = T − Tp during which no signal is transmitted,

and the requirement for non-overlapping received pulses is Tg ≥ τmax. We also restrict the measurement

interval for the mth pulse to

mT + τmax ≤ t ≤ mT + Tp

to ensure all returns from the mth pulse, and only those from the mth pulse, are present. We denote the

measurement interval as To = Tp−τmax. Fig. 5 provides a pictorial summary of the timing requirements.

The received pulse (5) is a superposition of frequency-offset chirps. Substituting (3) into (5) yields

ym(t) =

K∑
k=1

cke
j2πθmk ej2πν

m
k tej2π(f

m
c t

2+fm
0 t)g(t− τk) + εm(t)

where

θmk = fmc τ
2
k (6)

νmk = fk − 2fmc τk (7)

are, respectively, the phase offset and frequency offset of the chirp associated with the kth target return and

determined by the time shift and frequency shift of the kth target.3 The pure chirp term, ej2π(f
m
c t

2+fm
0 t),

does not depend on any parameter of the kth target.

3Note that there is a phase term fm0 τk that has been subsumed into the complex scaling ck assuming that fm0 = fRF , ∀m,

is the RF center frequency common to every LFM pulse. We present the analysis at baseband while acknowledging that ck has

a component due to fRF .
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Fig. 6: Block diagram describing the identification of an LTV system. The received signal y(t) is dechirped

and sampled. The samples are used to recover the constituent sinusoids in the processed returns. Finally,

the recovered frequencies are matched to recover the LTV system description.

III. IDENTIFICATION OF LTV SYSTEMS

The goal in LTV system identification is to identify (i.e., estimate or recover) the composite time

shifts, frequency shifts, and amplitude scalings by probing the system with known waveforms that provide

sufficient diversity in the system response. In the case of LFM probing waveforms, the identification is

split into three parts: 1) analog preprocessing and sampling of the received signal, 2) frequency estimation

(the parameters in (6) and (7)), and 3) matching of the recovered frequencies to determine the time and

frequency shifts (see Fig. 6).

A. Analog Receiver Processing

The analog preprocessing of the received returns is shown in Fig. 7. The received signal is first

dechirped to remove the pure chirp component. The dechirped received signal for the mth pulse is

ỹm(t) = e−j2π(f
m
c t

2+fm
0 t)ym(t) (8)

=

K∑
k=1

cke
j2πθmk ej2πν

m
k tg(t− τk) + ε̃m(t)

where ε̃m(t) = e−j2π(f
m
c t

2+fm
0 t)εm(t). The dechirped signal is a sum of complex sinusoids with fre-

quencies νmk and phases θmk . The noise term ε̃m(t) is phase modulated by the dechirping process, but

its magnitude is unaffected. For example, if the noise process εm(t) is independent complex (circularly

symmetric) Gaussian noise, then the dechirped noise process has the same statistics. The magnitude

|ε̃m(t)| is unaffected and the phase remains uniformly distributed in [0, 2π).

The dechirped signal is then sampled over the measurement interval so that the output measurements

are

ỹm[n] = ỹm(nTs) =

K∑
k=1

cke
j2πθmk ej2πν

m
k nTs + ε̃m[n] (9)
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e−j2π(f
m
c t

2+fm
0 t)

- HH��� -

t = nTs

ỹm(t)
ỹm[n]

Fig. 7: The receiver analog processing chain. The received signal is dechirped, then sampled and sent to

the digital processing stage.

for n = 0, ..., N − 1 with Ts the sampling period and ε̃m[n] = ε̃m(nTs). We first note that the Nyquist

criterion (to prevent aliasing of the different sinusoids in (9)) requires that Ts·max(νmk ) ≤ 1
2 , or

fs ≥ 2(fmax + 2fmc τmax) (10)

where fs = 1
Ts

is the sampling rate. Note that this Nyquist criterion does not depend directly on the

bandwidth of the probing LFM waveform, which is approximately 2fmc Tp. Generally, Tp � τmax, so the

sampling constraint on fs is much smaller than the bandwidth of the LFM waveform. There is also an

implicit relation between fmax and Tp requiring that the product cannot be too large, i.e., fmax·Tp < η

for some constant η. The product is proportional to the distance traveled by a moving target during time

Tp and cannot be too large to satisfy the assumption of the parameters remaining fixed.

The dechirping (8) converts the time and frequency shifted LFM pulses into complex sinusoids with

frequency and phase determined by the time and frequency shift. We can write ck = |ck|ej2πφk and (8)

becomes

ỹm[n] =

K∑
k=1

|ck|ej2πψ
m
k ej2πν

m
k nTs + ε̃m[n] (11)

with ψmk = φk + θmk = φk + fmc τ
2
k . We have transformed a chirp estimation problem into a sinusoid

estimation problem in which the frequencies and phases of the sinusoids are parametrically defined by the

time shifts, frequency shifts, and phase offsets of the LTV operator. The problem remains of recovering

the parameters of the sinusoids and solving for the LTV time shifts and frequency shifts.

B. Digital Receiver Processing

The dechirped and sampled signal ỹm[n] is the input to a digital processing stage that ultimately

recovers the LTV system description by recovering the K target triplets (τk, fk, ck). The digital recovery

proceeds in two steps (see Fig. 6). The first step is recovery of the frequencies (7) and phases (6) from

each pulse m = 1, . . . ,M . The parametric relationship between these frequencies and phases and the time

June 2, 2021 DRAFT
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shifts and frequency shifts is then exploited to recover the target triplets, as described in the following

sections. The case of noise free samples is analyzed first, followed by the case of noise corrupted samples.

The procedure is more clearly explained without considering noise in Section IV, and the extension to

the case of noisy measurements is straightforward in Section V.

IV. IDENTIFICATION OF LTV SYSTEMS FROM UNCORRUPTED SAMPLES

We begin by analyzing the noise-free case with ε(t) = 0, and by extension ε̃m[n] = 0. The noise-free

case is useful for two reasons. First, it gives a baseline for performance in terms of several benchmarks

considered. Second, it provides an intuitive understanding of the identification procedure. Given the

filtered, dechirped, and sampled measurements (9), we first recover the frequencies and phases of the

resulting sinusoids and then extract the time and frequency shifts from these frequencies and phases.

A. Recovery of Time Shifts and Frequency Shifts

The first stage of the digital processing is recovery of the frequencies and phases from the noise-free

samples (9), i.e., with ε̃[n] = 0. Specifically, ψmk and νmk are recovered from (11). The samples ỹm[n]

from each pulse are the input, and some frequency recovery algorithm is used to recover the constituent

frequencies. For completeness, we summarize the Kumaresan-Tufts (KT) algorithm [14] as one possible

frequency recovery technique but emphasize that other parametric techniques, such as MUSIC or ESPRIT,

could be easily used in its place. Additionally, we could use non-parametric Fourier-based techniques.

The KT algorithm solves the prediction equation y + Yh = 0 where h = [h[1], . . . , h[L]]T are the

coefficients of the predictor filter

H(z) = zL + h[1]zL−1 + · · ·+ h[L− 1]z + h[L] =

L∏
i=1

(z − ẑi),

L is the predictor order of the filter, and ẑi are the roots of the polynomial. Using the forward-backward

predictor matrix

Y =



y[L] y[L− 1] · · · y[1]
...

...
...

...

y[N − 1] y[N − 2] · · · y[N − L]

y∗[2] y∗[3] · · · y∗[L+ 1]
...

...
...

...

y∗[N − L+ 1] y∗[N − L+ 2] · · · y∗[N ]


,

June 2, 2021 DRAFT
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and forward-backward predictor vector y

y =
[
y[L+ 1] · · · y[N ] y∗[1] · · · y∗[N − L]

]T
,

the prediction equation solution is

h = −(YHY)−1YHy = −R−1r

where R = YHY is the data correlation matrix and r = YHy is the data correlation vector. Notice that

the structure of Y (and by extension R) means they have rank K, the number of constituent sinusoids.

The prediction filter H(z) has L roots, denoted by ẑi, where K roots lie on the unit circle and the rest

reside inside the unit circle. The recovered frequencies ν̂k are found from the K roots on the unit circle

ẑk = ej2πν̂kTs .

The phases ψ̂mk and amplitudes |ĉk| are recovered with the following least-squares problem. Let Fν̂

be the matrix of sinusoids with the estimated frequencies ν̂mk defined by [Fν̂ ]n,k = ej2πν̂
m
k nTs . Collecting

the samples into a vector ỹm = [ỹm[0], ..., ỹm[N − 1]]T , the least-squares solution is

ζ̂ = argmin
ζ
||Fν̂ζ − ỹm||22 (12)

with entries ζ̂k = |ĉk|ej2πψ̂
m
k . The procedure is summarized in Algorithm 1.

Algorithm 1 KT algorithm for recovering the frequency and phase of complex sinusoids from sampled

measurements
1: Data: ỹm[n]

2: Calculate coefficients h = −(YHY)−1YHy = −R−1r.

3: Find the roots on the unit circle, |ẑk| = 1, of H(z).

4: Calculate the frequencies ν̂mk = Ts

2πphase(ẑk).

5: Calculate ψ̂mk and |ĉk| from the least-squares solution ζ̂k.

Recovering ψmk and νmk from a single LFM pulse (i.e., M = 1) is insufficient to determine the

time and frequency shifts. Recovery of ν1k provides a linear relationship (7) to possible time shifts and

frequency shifts that could produce a sinusoid of that frequency. The recovered phase ψ1
k does not provide

information about the time shift due to the unknown target phase φk. For example, the line with positive

slope in Fig. 8 shows the constraint imposed by (7) in the case of a single target return (K = 1). There

exist infinitely many solutions.
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Fig. 8: The constraints imposed by two LFM pulses probing an LTV system consisting of a single target

with τmax = 0.01s and fmax = 100Hz. The line with positive slope corresponds to the constraint imposed

by the positive chirp, while the line with negative slope corresponds to the negative chirp. The intersection

of the lines is the time–frequency shift pair that explains the recovered frequency from each pulse.

However, we can send another LFM pulse with a different chirp rate, e.g., f2c = −f1c . The so-called

positive and negative chirp in combination provide sufficient information to recover the time and frequency

shift of the lone target. The frequencies in this case are

ν1k = fk − 2f1c τk and ν2k = fk + 2f1c τk (13)

and only one time–frequency shift pair satisfies both constraints simultaneously, shown by the intersection

of the lines in Fig. 8. The time shift and frequency shift are

τ1 =
ν11 − ν21
−4f1c

and f1 =
ν11 + ν21

2
.

Note that the only requirement is f2c 6= f1c (for a single target in the absence of noise).

The recovery is more complicated for multiple targets. For example, Fig. 9a shows the set of constraints

provided by four LFM pulses (M = 4) when there are five targets in the received signal. Each point of

intersection between any two lines satisfies the constraints imposed by the pair of LFM pulses. Recovery

requires the use of the phase information and more LFM pulses with different chirp rates. The procedure

to recover multiple targets, which is one of the main novelties of this paper, is presented in the next

subsection.
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(a) fc = ±3000 Hz/s.
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(b) fc = ±6000 Hz/s.

Fig. 9: The constraints imposed by four LFM pulses for an example scene with five targets, τmax = 0.01s

and fmax = 100Hz. The lines with positive slope enforce constraints from the positive chirp, while the

lines with negative slope enforce constraints from the negative chirp. The line intersections show all

possible time–frequency shift pairs that can explain the recovered frequencies. Both sets of constraints

are needed to disambiguate the true targets.

B. Resolving Ambiguity Between LFM Pulses

The recovered sinusoid parameters from each pulse are ψmk = φk + fmc τ
2
k and νmk = fk − 2fmc τk

for targets k = 1, . . . ,K and pulses m = 1, . . . ,M . This is a system of equations in which each target

contributes three unknowns (φk, τk, and fk) and each pulse contributes one linear constraint and one

quadratic constraint. We will first concentrate on the frequency νmk because it contains both the time shift

and frequency shift and is linear. For this constraint, each target contributes two unknowns (fk and τk)

while each pulse contributes a single constraint.

Collect the unknown parameters into a column vector

β = [f1, . . . , fK , τ1, . . . , τK ]T

and the recovered frequencies for the mth pulse into a column vector

νm = [νm1 , . . . , ν
m
K ]T .

The constraints from the mth pulse can be written via the matrix equation

Amβ = νm (14)
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with the matrix

Am =
[
IK −2fmc IK

]
=
[
1 −2fmc

]
⊗ Ik

representing the constraints and where ⊗ denotes the Kronecker product. The K ×K identity matrix is

denoted IK . The matrix equation (14) is underdetermined as there are 2K unknowns and K equations.

We can add more constraints by sending more LFM pulses. Each LFM pulse contributes a set of K

constraints of the form (14), while β must satisfy all sets of constraints simultaneously. However, the

frequencies νmk are unordered and the relationship between the pulses is not immediate. In other words,

if the recovered frequencies are sorted in ascending order so that νm1 ≤ νm2 ≤ . . . ≤ νmK , then νmk may

not have been produced by the same target as νpk for m 6= p. This is most easily understood by examining

the plot in Fig. 9a. The solid black lines show the constraints imposed by an LFM pulse with fc = 3000

Hz/s, and the dashed red lines show the constraints imposed by an LFM pulse with fc = −3000 Hz/s.

We know that each target produced a single frequency, so any set of 5 intersecting points satisfying this

constraint could explain the received signal.

We formalize this process by putting the constraints (14) into a single equation. The MK×2K matrix

A contains the constraints from each pulse and the MK× 1 vector ν contains the recovered frequencies

from each pulse:

A =


A1

...

AM

 =


1 −2f1c
...

...

1 −2fMc

⊗ IK = B⊗ IK , ν =


ν1

...

νM

 .
The parameter vector satisfies

Aβ = Pν (15)

where the matrix P = diag(IK ,P2, . . . ,PM ) is a block diagonal matrix where Pm are permutation

matrices that account for the unordered νms and match each frequency with the target that produced it.

As an illustrative example, consider Fig. 9a. The figure shows the linear constraints imposed by the

frequency relations in (13) for five targets (shown as blue circles). Without knowledge of the true target

locations (in time and frequency shift space), any set of five intersections between the red and black lines

that also satisfies τ ≤ τmax could explain the recovered frequencies. In this example scene, there are a

total of four valid explanations of the recovered frequencies. The pairs of lines with no ambiguities can

be matched with no further information. For example, the true target at a time shift of 1ms and frequency

shift of −80Hz can be matched. The ambiguous matchings are resolved through use of the recovered

phase terms and a second LFM pulse. We first explain how the phase information can be used.
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Consider the case of two LFM pulses (M = 2) and let f2c = −f1c . Index the frequencies for the first

pulse with k and for the second pulse with ` and note two relations:

ν1k − ν2`
−4fc

=
fk − f`
−4f1c

+
τk + τ`

2
(16)

ψ1
k − ψ2

`

2f1c
=
φk − φ`
2f1c

+
τ2k + τ2`

2
(17)

If k and ` correspond to the same target, then fk = f`, τk = τ`, φk = φ`, and the frequencies and the

phases satisfy
ν1k − ν2k
−4fc

= τk and
ψ1
k − ψ2

k

2f1c
= τ2k (18)

where both quantities only depend on τk. We check if the following relationship is satisfied(
ν1k − ν2`
−4f1c

)2

=
ψ1
k − ψ2

`

2f1c
. (19)

If this condition holds true, then we declare that k and ` describe the same target. Otherwise, we continue

checking. This procedure is summarized in lines 1-10 of Algorithm 2.

There is one more source of ambiguity caused by the unknown target phases φk. The hypothesized

time shift τh(k, `) is the time shift that results from (18)

τh(k, `) =
ν1k − ν2`
−4f1c

=
fk − f`
−4f1c

+
τk + τ`

2
. (20)

The relationship (19) can be satisfied even if k and ` do not correspond to the same target. Substitute

(17) into (19)

τh(k, `)
2 =

ψ1
k − ψ2

`

2f1c
=
φk − φ`
2f1c

+
τ2k + τ2`

2
,

and rearranging gives the condition on φk − φ` for ambiguity

φk − φ` = 2f1c τh(k, `)
2 − f1c

(
τ2k + τ2`

)
.

However, notice that if there is an ambiguity from the solution of (15) then there will be at least

one other false target in addition to the one just described. In this case, target k will contribute to the

frequency and phase of the second LFM pulse (m = 2) and target ` will contribute to the first LFM

pulse (m = 1). The condition on the target phases in this case is

φk − φ` = −2f1c τh(`, k)2 + f1c
(
τ2k + τ2`

)
.

We can use (20) to find the condition under which both of these conditions are ambiguous: |fk − f`| =

2f1c |τk− τ`|, which is resolved if another pair of LFM pulses is sent with a different chirp rate f3c 6= f1c .
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C. Recovery of Target Amplitude and Phase

With the time and frequency shifts recovered and ambiguities resolved, the target phase φk is recovered

via φ̂k = 1
2(ψ̂

1
k + ψ̂2

k) and the amplitude is recovered via (12): |ĉk| = |ζ̂k|.

Algorithm 2 Algorithm for recovering the time and frequency shifts from the measurements

1: Data: ỹm[n]

2: Use Algorithm 1 to find the frequencies ν̂mk and phases ψ̂mk for k = 1, . . . ,K and m = 1, . . . ,M

3: Find possible target time and frequency shifts by solving (14) for m = 1, 2

4: for k = 1, ...,K do

5: for ` = 1, ...,K do

6: Calculate delay hypothesis τh(k, `).

7: if 0 ≤ τh(k, `) ≤ τmax and τh(k, `)2 =
ψ1

k−ψ2
`

2f1
c

then

8: Declare k possibly matched with `

9: end if

10: end for

11: end for

12: Detect ambiguous matchings where a sinusoid k has multiple matchings `, and vice-versa. Repeat

1-10 for m = 3, 4 to resolve the ambiguities.

13: Calculate the recovered frequency shift f̂k = 1
2 ν̂

1
k + ν̂2k .

14: Calculate the recovered time shift τ̂k = 1
4f1

c
ν̂1k − ν̂2k .

15: Calculate the recovered target phase φ̂k = 1
2 ψ̂

1
k + ψ̂2

k.

16: Calculate the recovered target amplitude |ĉk| = |ζ̂k|.

D. Sufficient Conditions for Perfect Noiseless Recovery

The following theorem, first presented in [11], establishes that we can perfectly recover the time and

frequency shifts if we transmit four LFM pulses, i.e., M = 4.

Theorem 1 (Perfect Recovery of Time Shifts and Frequency Shifts). For a given τmax and fmax and

M = 4, choose f2c = −f1c and f4c = −f3c such that f1c 6= f3c and satisfying Lemma 2 in Appendix B.

Take the samples ỹm[n] for m = 1, 2, 3, 4 with fs satisfying (10) and the number of samples per pulse

N satisfying N ≥ K + 1. Then Algorithms 1 and 2 perfectly recover the time shifts τk, frequency shifts

fk, and (complex) scalings ck.
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Proof: Algorithm 1 offers perfect reconstruction of the frequencies and phases in the absence of any

noise in the measurements [14]. Note that the matrix Y, and subsequently R, have rank K in this case.

The matching procedure in Algorithm 2 relies on νmk not being aliased and θm(τ) being bijective. The

restriction on fs ensures the former and Lemma 2 ensures the latter.

E. Resource Usage

We now provide a brief discussion of resource usage to highlight the advantages of our approach.

We concentrate on two main points of resource usage: 1) the rate of samples and number of samples

required for recovery and 2) the time-bandwidth product of the waveform used in recovery of the delay

and Doppler.

1) Sampling rate and number of samples: The sampling rate must satisfy the Nyquist condition (10) to

avoid anti-aliasing. The lower bound on fs depends on fmax and τmax, and an increase in either requires

a corresponding increase in fs. We first compare this sampling rate to the rate required to sample the

unprocessed LFM pulse (i.e., without dechirping). The bandwidth of an LFM pulse is approximately

W ≈ 1/Tp+fcTp meaning that processing of this signal directly (e.g., with cross-correlation processing)

would require a sampling rate proportional to W . In contrast, our approach requires a sampling rate (10)

of fs ≥ 2(fmax + 2fcτmax). Recall that To = Tp − τmax meaning Tp > τmax. To satisfy the assumption

of fixed parameters over the measurement interval, we require that fmax <
η
Tp

as well where η is a fixed

constant set by the physics of the scenario and generally η < 1. Our approach therefore requires a lower

sampling rate than a direct sampling of the LFM pulse.

In addition to the lower bound on the sampling rate, the frequency estimation step requires a minimum

number of samples, captured in Theorem 1, to recover the K frequencies associated with each target. In

the case of uncorrupted measurements, the KT algorithm requires N ≥ K + 1 measurements to recover

K distinct frequencies. Recall that the measurements used in the recovery algorithm are taken over the

measurement interval To, so we have a lower bound on the measurement interval

To ≥
N

fs
. (21)

Further, the transmitted pulse duration Tp and pulse repetition rate T (of each pulse) are set based on

To. First, choose a To satisfying (21), and then choose

Tp = To + τmax ≥
N

fs
+ τmax
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and

T = Tp + Tg ≥
N

fs
+ 2τmax

where Tg ≥ τmax. The total time processing time, denoted T , needed for M pulses is then T =M ·T .

2) Time-bandwidth Product: Given the previous discussion of sampling rate and number of samples,

the total time needed to recover the LTV characterization is T =M ·T . The bandwidth of an LFM pulse

is approximately W ≈ 1
Tp

+ fcTps, so that the time-bandwidth product, T ·W , of a single LFM pulse is

approximately T ·W ≈M ·T · (1/Tp + fcTp) , which means that T ·W must scale with 1 +K2.

3) Computational Complexity: On first inspection, the appearance of the permutation matrix in (15)

makes it look like the complexity of finding a solution to the matching problem is factorial in K. However,

note that many of the possible solutions will actually not be feasible given the τmax and fmax constraints.

Also, note that once a true target is found, then the frequency from each pulse corresponding to that

target can be eliminated from the search, effectively fixing that portion of the permutation matrix and

shrinking the size of the problem. The problem solution can then be found by performing comparisons

of parameters from pulse to pulse that is polynomial in K.

F. Discussion and Comparison

We now place this work in context of other recent advances in LTV system characterization. In [10]

and [9], sequential processing is employed. In the case of [10], the delays are first recovered followed

by Dopplers at each recovered delay; in the case of [9], the Dopplers are first recovered followed by the

delays at each recovered Doppler. One disadvantage to such a sequential approach is that errors in the

first stage propagate through to the second stage. In contrast, our approach in this paper requires only

one recovery stage so errors do not propagate. Both of these techniques also require the transmission of a

series of pulses. In the case of [9], these pulses are stepped-frequency pulses, quite similar in spirit to an

LFM pulse. Because a sequential technique is employed, an assumption must be made on the maximum

number of delays associated with any single Doppler. The required number of samples for recovery

depends on the number of distinct delays associated with each Doppler. As a worst-case scenario, if

there are K targets parameterizing an LTV system, then the minimum number of samples needed to

describe the system is on the order of K2. In contrast, the approach described in this paper requires the

minimum number of samples to be on the order of K.

The work [15] does not use a sequential technique, but instead uses a technique termed Doppler focusing

where multiple pulses are coherently processed to find delays at the Dopplers which are in focus, meaning
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Dopplers in a small interval around a nominal center. The approach uses low-rate samples, i.e., below

the bandwidth of the pulses, where the number of samples depends linearly on the number of targets K.

These low-rate samples are used to find the low-pass Fourier series coefficients of the received pulses.

These coefficients are shown to be samples of a sum of sinusoids determined by the delays, Dopplers,

and amplitudes of the targets. Parametric recovery techniques can then be used to recover the delays

present in the focus zone. Alternatively, compressed sensing-based techniques can be used if the delays

are assumed to lie on a grid. One disadvantage of this approach is the basis mismatch that occurs if the

actual delays do not lie on the assumed grid [7]. Another disadvantage of this approach results from the

Doppler focusing. The width of the focus zone is proportional to 1
MT where M is the number of pulses

and T is the pulse repetition interval. In the absence of any prior knowledge about Doppler locations,

a minimum number of focus zones must be used, and delays calculated from each, to ensure that all

Dopplers are covered. Each focus zone also has a resolution proportional to 1
MT meaning that all Dopplers

in this interval will be associated with the center Doppler. Our approach described in this paper avoids

this problem by recovering the delays and Dopplers directly.

V. IDENTIFYING LTV OPERATORS FROM NOISE-CORRUPTED SAMPLES

The likely more interesting situation in most applications is the case of noisy samples, i.e., ε̃m[n] 6= 0.

In this case, we can use the procedure described above with some modifications to make it more robust

to noisy measurements. To start, we assume the noise samples εm[n] are i.i.d. Gaussian, so the dechirped

noise samples ε̃m[n] are as well. We use Algorithms 1 and 2 with small modifications described below

that are more robust to noisy measurements. Due to the presence of noise, the estimate of the frequency

and phase will contain some error. However, the frequency estimator produces consistent estimates with

variance that approaches the Cramer-Rao lower bound (CRLB). The variance of the estimate tells us about

our ability to resolve closely spaced frequencies, and by extension targets. If two (or more) estimates

are too close to resolve, then the matching procedure cannot reliably distinguish between them. Where,

in the noiseless case, we had an ambiguity equality (for a single pulse), in the noisy case we have an

ambiguity interval. The processing of further LFM pulses shrinks the ambiguity interval to refine the

estimates and decrease the estimator variance (increase the estimator resolution), asymptotically achieving

zero variance. Finally, we show that the estimator of the time shifts, frequency shifts, and amplitudes

converges asymptotically to the true parameters, regardless of the parameter values. We further argue

that for most scenes of interest (i.e., locations of targets), we can achieve resolution proportional to the

noise power from a finite number of samples and pulses.
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A. Denoising via Atomic Norm Minimization

The KT algorithm described in the previous section, as well as many other spectral estimation al-

gorithms, is sensitive to SNR in the sense that there is typically a threshold SNR, below which, the

recovery breaks down. To improve the performance of the algorithm at lower input SNR, we propose

using a denoising step in the recovery. The procedure we propose uses atomic norm minimization to pre-

process the noisy samples to increase the SNR of the samples fed into the spectral estimation stage. The

errors that result from the denoising procedure are not necessarily independent or Gaussian, so we provide

justification by examining the empirical first and second order statistics of the denoised samples through

Monte Carlo simulations. We begin with a brief description of the atomic norm and its semidefinite

characterization before describing the denoising procedure.

We start by defining the set of atoms

A ={a(t;φ, τ, f) : τ ∈ [0, τmax), f ∈ (−fmax, fmax), φ}

where a(t;φ, τ, f) = ejφ+j2πftp(t− τ) with an (almost) arbitrary pulse p(t). We assume the atoms are

contained in L2, and the notation emphasizes that they are functions of t and parameterized by a phase

φ, time shift τ , and frequency shift f . These atoms are, not coincidentally, also the building blocks of

the LTV model (2). Note that ck = |ck|ejφk so that (2) can be written as a superposition of elements

from A scaled by real, positive coefficients |ck|, or we can subsume the phase term into the complex

coefficients and set φ = 0

y(t) =

K∑
k=1

|ck|a(t;φk, τk, fk) =
K∑
k=1

cka(t; 0, τk, fk).

The atomic norm [16]–[18] of a signal y(t) (relative to a set of atoms A) is

||y(t)||A = inf{γ > 0 : y ∈ γ· conv(A)}

= inf
ck,τk,fk

{
K∑
k=1

|ck| : y(t) =
K∑
k=1

cka(t; 0, τk, fk)

}
where the variables in the infimum satisfy |ck| ≥ 0, τk ∈ [0, τmax), fk ∈ [−fmax, fmax] and conv(·) is the

convex hull. The corresponding dual norm is

||z(t)||∗A = sup
a∈A
〈z(t), a〉 = sup

φ,τ,f
〈z(t), a(t;φ, τ, f)〉.

Additionally, we define a set of sampled atoms asAs = {as(n;φ, τ, f) : τ ∈ [0, τmax), f ∈ (−fmax, fmax), φ ∈

[0, 2π)} where as(n;φ, τ, f) = ejφ+j2πfnTsp(nTs − τ), with n = 0, ..., N − 1, are vectors in CN , and

Ts is the sampling interval. The sampled atomic set is useful because we want to denoise sampled

measurements.
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1) Dechirped and Sampled LFM Pulses: We are interested in the dechirped and sampled LFM pulses

ỹm[n]. These signals can be built using the sampled atomic set with p(nTs−τ) = ej2π(f
m
c τ

2−fm
0 τ)e−j2π(2f

m
c τ)nTs

so that as(n;φ, τ, f) = ejφej2π(f
m
c τ

2−fm
0 τ)ej2π(f−2f

m
c τ)nTs are sampled sinusoids with frequency depen-

dent on τ and f and phase dependent on φ and τ . As before, we can change the parameters to ν and ψ

so the atoms are as(n;ψ, ν) = ejψej2πνnTs . The measurements are

ỹm[n] =

K∑
k=1

|ck|as(n;ψk, νk) + ε̃m[n] (22)

where ε̃m[n] is independent, white Gaussian noise.

2) Denoising: We are now in a position to leverage a result from Bhaskar et al. [17] to denoise

measurements of the form (22). Consider ε̃m[n] independent Gaussian with variance σ2 and samples

ỹm[n], n = 0, ..., N − 1. We solve the following atomic soft thresholding (AST) problem.

ŷ = argmin
z

1

2
||z[n]− ỹm[n]||22 + η||z[n]||As

(23)

where η is a regularization parameter controlling the relative impact of the mean-squared error and the

atomic norm.

The following theorem captures the denoising performance for the estimate ŷ of the AST problem for

the case of Gaussian noise [17, Theorem 2].

Theorem 2 (AST with Gaussian noise). Let y?[n] =
∑K

k=1 gke
j2πnωk for complex numbers g1, .., gK and

unknown normalized frequencies ω1, ..., ωK ∈ [0, 1]. Consider measurements given by y[n] = y?[n]+w[n]

where w[n] ∼ N (0, σ2IN ) i.i.d. The estimate ŷ[n] obtained by solving (23) with η = σ
√
N logN has

asymptotic mean-squared-error

1

N
E||ŷ − y?||22 < σ

√
logN

N

K∑
k=1

|gk| (24)

for N sufficiently large (see [17] for details).

We apply Theorem 2 to our corrupted samples ỹm[n] by equating the frequencies ωk = νkTs and the

complex coefficients with the amplitude and phase gk = |ck|ejψk and by letting ε̃m[n] ∼ N (0, σ2IN )

i.i.d. If we write the uncorrupted measurements as

y?m[n] =

K∑
k=1

|ck|as(n;ψk, νk)
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and the denoised measurements as ŷm[n], then the error em[n] = ŷm[n]− y?m[n] satisfies

1

N
E||em[n]||22 < σ

√
logN

N

K∑
k=1

|ck|, (25)

for sufficiently large N , and we write the denoised measurements as ŷm[n] = y?m[n] + em[n]. Note that

em[n] is not guaranteed to be independent Gaussian, but empirically is zero mean with variance (25) and

tends to follow Gaussian statistics.

The optimization problem (23) relies on calculating the atomic norm of z[n]. This can be accomplished

via a semidefinite programming (SDP) problem [17] so that the solution of (23) is equivalent to the

solution of

min
t,u,x

1

2
||x− ỹ[n]||22 +

γ

2
(t+ u1) subject to

T (u) x

x∗ t

 � 0

where the function T (u) forms a Toeplitz Hermitian matrix from the entries in u (i.e., u1 on the diagonal,

uN in the upper right corner, etc.). The solution ŷ, which satisfies (24), is the argument of the vector x

from the optimization. The denoised measurements are then provided to modified versions of Algorithms

1 and 2.

B. Frequency and Phase Recovery

Taking the denoised measurements as input, we make two standard modifications to Algorithm 1

that better handle noise in the measurements. The first change is replacement of the correlation matrix

R with the proxy correlation matrix R̃. The proxy correlation matrix is computed by first finding the

singular value decomposition (SVD) of the correlation matrix R = USVH . The proxy is then formed

from R̃ = ŨS̃Ṽ
H

where S̃ contains only the K largest singular values and Ũ and Ṽ contain the

corresponding K singular vectors. In the absence of noise, R is of rank K and therefore only contains

K non-zero singular values. In the presence of noisy measurements, R is full rank but the singular values

cluster into two groups: the largest K contain most of the information about the constituent frequencies

while the remaining are close to zero and contain information about the noise. Using only the K largest

reduces the effect of the noise [14].

The second change occurs when finding the K roots of the prediction filter. In the absence of noise, K

of the roots will be on the unit circle while the rest reside inside the unit circle. When noise is present,

the K roots we are after will likely not lie exactly on the unit circle. We therefore search for the K roots

that are closest to the unit circle [14]. Note that if K is unknown a priori, which is often the case in

practice, K can be estimated from the clustering of the larger singular values of R discussed above.
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Algorithm 3 Algorithm for recovering the frequency and phase of sinusoids from corrupted measurements

1: Data: ỹm[n]

2: Calculate proxy correlation matrix R̃ from the K largest singular values of YHY.

3: Calculate the coefficients h = −R̃−1YHy.

4: Find the K roots ẑk of H(z) closest to the unit circle.

5: Calculate ν̂k = Ts

2πphase(ẑk).

6: Calculate ψ̂k and |ĉk| from the least-squares solution β̂k.

The variance of the frequency estimate approaches the asymptotic Cramer-Rao bound, summarized in

the following lemma (Theorem 4.1 of [19]).

Lemma 1. Given N uniform samples of a signal consisting of a superposition of sinusoids, e.g., given by

the model (9), corrupted by independent circularly symmetric complex Gaussian noise with variance σ2,

the KT algorithm (Algorithm 3) produces a consistent estimate of the frequencies ν̂k, k = 1, . . . ,K, that

is asymptotically efficient, that is, the variance of the estimate approaches, as N → ∞, the asymptotic

Cramer-Rao bound

lim
N→∞

var(ν̂k) ·N3 =
6

SNRkT 2
s

(26)

where SNRk = |ck|2
σ2 is the signal to noise ratio for the kth target. Additionally, the estimate of the

amplitude ĉk is consistent and asymptotically efficient in the sense that it also approaches the asymptotic

Cramer-Rao bound

lim
N→∞

var(ĉk) ·N = σ2.

Lemma 1 tells us that the estimates of the frequencies and amplitudes converge to the true values

(ν̂k → νk and ĉk → ck as N →∞) and that the rate of convergence is close to the Cramer-Rao bound,

at least to first order. The variance of the frequency estimate decays, to first order, as

var(ν̂k) ≈
6

N3SNRkT 2
s

, (27)

and the variance of the amplitude decays as

var(ĉk) ≈
σ2

N
.

We use these convergence rates as a rough measure of the resolution offered by the KT algorithm.
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C. Recovery of Time Shifts and Frequency Shifts

Note that the uncertainty introduced into the estimate of the phases ψmk = φk + fmc τ
2
k causes trouble

when trying to recover τk. Because the relationship is quadratic, error introduced into ψ̂mk affects recovery

of smaller values of τk more than larger ones. In fact, as τk → 0, the SNR → 0 as well. We therefore

do not use the phase information for recovery from noisy measurements.

Uncertainty in the estimated frequencies affects the relation (15) by introducing an error term γ ∈

CM ·K into the recovered frequencies ν̂ = ν+γ. The vector ν contains the true frequencies, and because

the estimator in Algorithm 3 is consistent (see Lemma 1), we consider γ to be a zero mean vector with

independent entries and variances (27). The following theorem establishes that if γ contains errors of

finite variance and the chirp rates of the transmitted LFM pulses are different, then solving a least-squares

problem produces an exact solution β̂ asymptotically.

We first remind the reader of the problem formulation. With noisy measurements, the accuracy of the

estimate depends on the number of LFM pulses used, M , because the number of measurements increases

with M . We make this explicit by writing all vectors and matrices that have size dependent on M as a

function of M , e.g., ν̂(M) and A(M). The vector of estimated frequencies is ν̂(M) = [ν̂1 · · · ν̂M ]T and

ν̂(M) = ν(M) + γ(M) where ν(M) contains the true frequencies and γ(M) contains the errors. The

matrix

A(M) =


1 −2f1c
...

...

1 −2fMc

⊗ IK

contains the constraints relating the time shifts and frequency shifts, and P(M) is a block diagonal

permutation matrix. The vector β∗ contains the true time shifts and frequency shifts of the targets (whose

size is not a function of M ).

Theorem 3. (Asymptotically Perfect Recovery with Noise) Fix τmax and fmax. Choose {fac } for a =

0, 1, . . . ,M such that

1) fac 6= f bc for a 6= b, and

2) fac = −fa−1c for a odd.

If γ(M) is a vector of zero mean independent random variables with finite variance, the solution β̂(M)

to

β̂(M) = arg min
β,P(M)

||A(M)β −P(M)ν̂(M)||22 (28)
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converges in probability to the true parameters as M →∞:

β̂(M)
p→ β∗.

The proof relies on the weak law of large numbers and is provided in Appendix A. Note that requirement

(2) on {fac } can be relaxed at the expense of slower convergence of β(M).

Algorithm 4 Recovering the time and frequency shifts from the noisy frequency and phase estimates.

1: Data: ν̂mk for k = 1, . . . ,K and m = 1, . . . ,M

2: Find possible target time and frequency shifts by solving

min
β,P
||Amβ −Pmν̂m||22

for m = 1, . . . ,M

3: for k = 1, ...,K do

4: for ` = 1, ...,K do

5: Calculate the slope fc(k, `) between possible target k and possible target ` (as calculated in step

2)

6: end for

7: end for

8: Find the slope that maximizes the distance from each of the slopes fc(k, `). Send the (M + 1)th

pulse with this slope.

9: The estimated time and frequency shifts are in β

10: Estimate the target amplitudes ĉk using the least-squares estimate from Algorithm 3

VI. NUMERICAL EXPERIMENTS

We examine how well this procedure works using numerical experiments. The KT algorithm provides

perfect recovery of frequencies in the absence of noise, so we first generate a scene with targets at various

time and frequency shifts. We ensure that some of these targets are very close to each other in time and

frequency. The algorithm recovers all the targets to machine precision when two pulses of different chirp

rate are used to generate the measurements. We then explore the recovery of targets from noise-corrupted

measurements by first examining the accuracy of the recovery procedure through Monte Carlo trials at

a range of SNR environments. The accuracy experiences a threshold SNR at which the error blows up.
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Fig. 10: Recovery from noise-free measurements is perfect to machine precision.

We then pre-process the measurements with the denoising procedure to show that at the same input SNR

range, the recovery has not yet reached the threshold.

A. Noise-free Recovery

We first ensure that we can perfectly recover the time shifts, frequency shifts, and amplitudes from

uncorrupted samples. The results are shown in Fig. 10. The red x shows the true target location, while

the blue circle shows the recovered parameters. The recovery is to machine precision, meaning the errors

were no larger than 10−10.

B. Estimation of the Time and Frequency Shift from Noisy Samples

The accuracy of the recovery procedure from noisy measurements, at various SNR environments, is

shown in Fig. 11 for each parameter (time shift, frequency shift, and amplitude). The RMSE at each SNR

value is averaged over 1000 Monte Carlo trials in which a random realization of noise has been added

to measurements containing k = 3 targets with randomly generated parameters. The time shift parameter

was chosen uniformly from the interval [0, τmax) and the frequency shift parameter uniformly from the
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Fig. 11: Recovery error from noisy measurements over 1000 Monte Carlo trials. Note the threshold at

≈ 10 dB below which the error increases rapidly.
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Fig. 12: Recovery from noisy measurements that are first denoised using atomic norm denoising.

interval (−fmax, fmax). The error is proportional to the noise level up to about 10 dB, below which the

errors start to grow much faster.

To show the improvement that can be gleaned from denoising, Fig. 12 shows the the results of running

the same Monte Carlo trials described above, with the addition of the atomic norm denoising procedure

described in Section V-A. The denoising is performed on the measurements after the random noise of

the indicated input SNR has been added. This means that for a given SNR value in both Fig. 11 and

Fig. 12, AWGN of the same variance is added to the measurements. The results in Fig. 12 show that

the threshold point is not reached even at 0 dB SNR while it is reached at approximately 10 dB SNR in

Fig. 11.

Finally, to investigate the effective resolution limits of the approach, in Fig. 13 we performed the same

Monte Carlo trials described above but the time shift parameter has been drawn uniformly at random from

the interval [0, τmax/10) and the frequency shift parameter has been drawn uniformly at random from the
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Fig. 13: Recovery error from noisy measurements over 1000 Monte Carlo trials with the parameters

limited to [0, τmax/10) and (−fmax/10, fmax/10).

interval (−fmax/10, fmax/10). This ensures that more targets are chosen with parameters that are closely

spaced in the time shift frequency shift plane. The error is shown to still be roughly proportional to the

amount of noise down to about 20 dB SNR, at which point it grows faster. This seems to be consistent

with Fig. 11 as the threshold, at which point the error grows rapidly, occurs at a 10 dB higher SNR

because the reduction in the parameter space, from which the parameters are chosen, has been reduced

by a factor of 10 in each dimension. This means that the parameters are likely to be much closer to

each other. We emphasize here that the limits on resolution using this method is an open problem and

requires further investigation and that the choice of LFM parameters, namely the chirp rate fmc , has not

been optimized in any way for recovery. These average-case errors seem to align with our intuition on

the recovery.

VII. CONCLUSIONS AND FUTURE WORK

We have proposed a novel technique for identifying LTV systems using LFM pulses as probing

waveforms. This technique leverages a vast array of frequency recovery, or estimation, algorithms in

the existing literature. We have shown that the KT algorithm, along with a denoising procedure, provides

excellent numerical results in simulated Monte Carlo trials. The primary advantage to our approach is

that the resources needed (e.g., bandwidth and acquisition time) scale proportionally to the complexity of

the LTV system, i.e., the number of scatterers in a radar scene or multi path sources in a communication

system. We also operate in a continuous parameter space, so we have resolution limits that scale with

the amount of noise present in the measurements, all the way down to infinite resolution if there is

no noise. A full analysis of the resolution limits using this approach is an open problem that requires
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non-asymptotic versions of the main results. Additionally, the optimal choice of LFM chirp rates fmc is

an open problem.

APPENDIX A

PROOF OF THEOREM 3

Two sources of errors can cause errors in the solution to (28), and the proof relies on proving that

each has vanishing influence asymptotically. First, the corruption of the frequency estimates ν̂k = νk+γk

by γk causes an error in the estimate of the target parameters. The law of large numbers ensures that

this source of error has vanishing influence. Second, the unordered nature of the estimated frequencies,

captured by the permutation matrix P, means that multiple solutions can exist for finite M . Diversity

in the selection of fmc ensures that the solution to (28), simultaneously for all M pulses, is unique

asymptotically. We note here that this latter source of error is highly dependent on the particular LTV

system (or target scene) and the choice of fmc . The fmc can be adaptively chosen to most effectively

identify the LTV parameters.

With the mild constraint that fmc 6= f qc for some m 6= q, i.e., every pulse does not have the same chirp

rate, we can use the Moore-Penrose pseudoinverse of A to write (28) as

min
β,P
||β − (A∗A)−1A∗Pν̂||22. (29)

The estimated frequencies ν̂ = ν + γ we assume are corrupted by γ that is independent and has finite

variance. The term (A∗A)−1A∗Pγ is the error in the parameter estimates due to the error in the frequency

estimates (which is in turn due to the noise). We will show that this term gets smaller as more pulses are

processed. Recall that A = B ⊗ IK , and we can write the first term in the pseudoinverse (A∗A)−1 =

((B∗B)−1)⊗ IK . The matrix B contains two columns, the first is all ones and the second contains the

chirp rates of the pulses fmc . If we restrict our choice of chirp rates such that for m odd, the chirp rate

is fmc = −fm−1c , then the two columns of B have zero inner product and the Gram matrix is diagonal4.

The pseudoinverse of A is thus ((B∗B)−1B∗) ⊗ I. Let us write G = B∗B where G is diagonal with

g11 =M and g22 =
∑M

m=1 4(f
m
c )2 ≥ 4M minm(f

m
c )2. The pseudoinverse of B is thus a scaled version

of B∗. The first column of B is scaled by 1/M and the second columns is scaled by 1/
∑M

m=1 4(f
m
c )2,

which is bounded by a quantity proportional to 1/M . The error term for each target parameter, after

carrying out the matrix multiplication, is a scaled sum of each individual frequency error. Concentrating

4Note that this requirement can be relaxed, but the resulting Gram matrix is not diagonal and the estimate variance vanishes

more slowly.
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on the frequency shifts, which are contained in the first half of the vector β, we get the error for the kth

frequency shift to be
M∑
m=1

1

M
γmk .

Each γmk has the same variance σ̃2, which approaches (27), and these are all independent of each other.

The independence is a direct result of the assumption of independent noise. Each pulse is processed

separately by the same deterministic recovery algorithm, so if the noise in the input to the algorithm

is independent, then the errors in the output of the algorithm are also independent. The variance of the

scaled sum is therefore reduced by the factor 1/M , so the error is vanishing as M →∞.

The matrix P affects the recovery for a small number of pulses by introducing ambiguity into the

recovered parameters, i.e., even in the absence of noise, the solution to (29) might not be unique. By

requiring a variety of chirp rates in the pulses, we ensure the set of solutions from each pulses cluster

around the true parameters while the ambiguous solutions are spread in the time shift–frequency shift

plane. Asymptotically, the clustering becomes tighter because the noise variance is vanishing with 1/M .

APPENDIX B

AMBIGUOUS PHASE TERMS

Recall the delay-phase mapping (6). To highlight the dependence on the delay τk, let us write θm(τ). To

prevent ambiguous phase terms, the complex exponential ej2πθ
m(τ) must be bijective over 0 ≤ τ ≤ τmax,

which requires the quadratic function θm(τ) to be bijective over 0 ≤ τ ≤ τmax and its range limited

to an interval of length at most 1. The following lemma provides necessary and sufficient conditions to

prevent these ambiguities.

Lemma 2 (Ambiguous Phase Terms). Let 0 ≤ τ ≤ τmax. The function (of τ ) ej2πθ
m(τ) = ej2πf

m
c τ

2

is

bijective if and only if

0 < |fmc | ≤
1

τ2max

. (30)

Proof: A function is bijective over an interval if and only if it is strictly increasing or decreasing

over that interval. We examine θm(τ) and its derivative on the interval 0 ≤ τ ≤ τmax. The derivative is

d

dτ
θm(τ) = 2fmc τ. (31)

At τ = 0, θm(0) = 0 and d
dτ θ

m(τ)|τ=0 = 0. At τ = τmax, θm(τmax) = fmc τ
2
max and the derivative also

has the same sign as fmc . In either case, θm(τ) is monotonically increasing or decreasing on 0 ≤ τ ≤ τmax.
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We require

|θm(τmax)| = |fmc |τ2max < 1 (32)

leading directly to (31).
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