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Abstract

We consider the problem of decentralized 20 questions with noise for multiple players/agents under the minimum
entropy criterion in the setting of stochastic search over a parameter space, with application to target localization. We
propose decentralized extensions of the active query-based stochastic search strategy that combines elements from the
20 questions approach and social learning. We prove convergence to correct consensus on the value of the parameter.
This framework provides a flexible and tractable mathematical model for decentralized parameter estimation systems
based on active querying. We illustrate the effectiveness and robustness of the proposed decentralized collaborative
20 questions algorithm for random network topologies with information sharing.

Index Terms
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I. INTRODUCTION

Consider a set of agents that try to estimate a parameter, e.g., estimate a target state or location, collectively. The
agents are connected by an information sharing network and can periodically query their local neighbors about the
state of the target. Each agent’s query is a binary question about target state that is formulated from the agent’s local
information. This decentralized estimation problem is an extension of the centralized version of the collaborative
20 questions framework studied in [1]. Unlike [1], where a global centralized controller jointly or sequentially
formulates optimal queries about target state for all agents, in the decentralized problem each agent formulates his
own query based on his local information. Thus the decentralized collaborative 20 questions problem is relevant
to large scale collaborative target tracking applications where there is no centralized authority. Examples include:
object tracking in camera networks [2]; road tracking from satellite remote sensing networks [3]; and wide area
surveillance networks [4].

In this paper we assume that the agents’ observations obey noisy query-response models where the queries
are functions of agents’ local information and successive queries are determined by a feedback control policy.
Specifically, in the 20 questions-type model considered in this paper, the observation of each agent is coupled with
the query region chosen by that agent, which is a function of its current local belief.

In the framework of [1] a controller sequentially selects a set of questions about the target state and uses the
noisy responses of the agents to formulate the next set of questions. The questions were binary partitions of the
target state space and the agents provided binary answers about the state of the target in the partition. The agents’
noisy response models were assumed to be binary symmetric channels (BSC) with known cross-over probability,
which could be different for each agent, e.g., to account for a mixture of human and cyber agents. Under general
conditions, it was shown that the optimal, entropy-minimizing joint query policy is equivalent to a sequential query
policy. Furthermore, this optimal query policy was shown to reduce to a simple bisection rule that equalizes the
posterior probabilities, the global belief function, that the target state lies in one of the partition elements.

In this paper we extend the collaborative 20 questions framework of [1] to the decentralized case. The proposed
decentralized algorithm consists of two stages: 1) local belief update; and 2) local information sharing. In stage
1 each agent implements the bisection query policy of [1] to update their local belief function. In stage 2 the
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local belief functions are averaged over nearest neighborhoods in the information sharing network. The information
sharing stage is implemented by a neighborhood averaging rule similar to the social learning model proposed by
Jadbabaie, et al., [5].

We analyze both qualitative and quantitative properties of the two stage decentralized collaborative 20 questions
algorithm and establish conditions under which the agents converge to a consensus estimate of the true state.

The mathematical analysis of algorithm convergence in this paper is inspired by that of Jadbabaie, et al., [5] for
social learning. However, we emphasize that the analysis of [5] is not directly applicable and requires significant
extension to cover the collaborative 20 questions framework we propose. First, in the 20 questions framework the
target space is continuous as contrasted with the discrete case studied in [5]. Second, the 20 questions framework
generates controlled observations that are not independent identically distributed, as required for the analysis in [5].
In particular, the controlled observation model leads to structured time-varying observation densities.

We establish the following theoretical properties of the proposed decentralized collaborative 20 questions algo-
rithm. The first property is proved for states of arbitrary dimension while the second two properties are only proven
for scalar states.
• A positive linear combination of the integrated agents’ belief functions over arbitrary sets forms a martingale

sequence over time. This fact is the starting point for establishing asymptotic consensus via the martingale
convergence theorem.

• The agents asymptotically achieve consensus in their beliefs about target state, i.e., their belief functions
converge to the same limit as time progresses (Thm. 1). Thus all agents asymptotically become in agreement
about uncertainty in target state.

• The agents achieve consensus in the state of the target, i.e., their belief functions asymptotically concentrate
on the true target state (Thm. 2).

In addition to theoretical analysis of the convergence of the proposed decentralized 20 questions algorithm,
numerical simulations of algorithm performance are provided, showing interesting convergence behavior that infor-
mation sharing brings. For a class of irreducible random graphs, the simulations show that little information sharing
improves target localization average and worst-case root mean-square-error (RMSE) significantly when compared
to the case of no information sharing, thus improving network-wide estimation performance.

Our work also differs from the works on 20 questions/active stochastic search of Jedynak, et al., [6], Castro and
Nowak [4], Waeber, et al., [7], and Tsiligkaridis, et al., [1] because we consider intermediate local belief sharing
between agents after each local bisection and update. In addition, in contrast to previous work, in the proposed
framework each agent incorporates the beliefs of its neighbors in a way that is agnostic of its neighbors’ error
probabilities. We finally remark that, as compared to [1], the proof of convergence of the proposed algorithm is
complicated by the fact that the entropy of the posterior distribution for each agent in the network is not generally
monotonically decreasing as a function of iteration. The analysis of [5] does not apply to our model since we
consider controlled observations, although we use a form of the social learning model of [5].

We remark that our work differs from the large literature on consensus, see Dimakis, et al., [8] for a survey
of gossip algorithms for sensor networks in the context of estimation, source localization and compression. Most
of the work on linear consensus focuses on deriving conditions on the connectivity of the network such that all
agents converge to the average of a static collection of measurements, along with rate of convergence analysis and
development of fast consensus-achieving algorithms. In [9], randomized gossip broadcast algorithms for consensus
were proposed and conditions for reaching consensus on the average value of the initial node measurements were
presented. The mean-square error of the randomized averaging procedure was also studied and shown to decay
monotonically to a steady-state value. In [10], gossip algorithms for linear parameter estimation were studied and
it was shown that, under appropriate conditions on the network structure and observation models, the distributed
estimator achieves the same performance as the best centralized linear estimator in terms of asymptotic variance.
In contrast, we consider a dynamic set of measurements, as there is novel information (or innovations) at each
iteration step, given in the form of binary responses to actively-designed queries based on local agent information.
These responses, over time, concentrate the agents’ posterior probability distributions on the true target state. We
believe that this a significant novel result since consensus-plus-controlled innovation type algorithms have not been
rigorously studied in the literature.

The focus of this paper is to obtain a decentralized extension of the centralized collaborative 20 questions problem
of [1], and not on extending the analysis of the social learning algorithm of [5]. The decentralized extension
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enjoys numerous applications in large-scale controlled sensor networks, where sensors spread over wide areas
can collaborate in an active manner to localize a target in the presence of errors. Other applications may include
extending active testing approaches in the decentralized setting for classification problems, for instance in vision,
recommendation systems, and epidemic networks. The 20 questions paradigm is motivated by asking the correct
type of questions in the correct order and is applicable to various other domains where computational effort and
time are critical resources to manage.

The outline of this paper is as follows. Section II introduces the notation. Section III briefly reviews some related
prior work. Section IV introduces the decentralized estimation algorithm and its convergence properties are studied
in Section V. The simulations are presented in Section VI followed by our conclusions in Section VII. The proofs
of convergence are given in the appendix.

II. NOTATION

We define X∗ the true parameter, the target state in the sequel, and its domain as the unit interval X = [0, 1]. Let
B(X ) be the set of all Borel-measurable subsets B ⊆ X . Let N = {1, . . . ,M} index the M agents in an interaction
network, denoted by the vertex set N and the directed edges joining agents are captured by E. The directed graph
G = (N , E) captures the possible interactions between agents. Define the (first order) neighborhood in G of agent
i as Ni = {j ∈ N : (j, i) ∈ E}. Define the probability space (Ω,F ,P) consisting of the sample space Ω generating
the unknown state X∗ and the observations {yi,t} at nodes 1 ≤ i ≤ M and at times t = 1, 2, . . ., an event space
F and a probability measure P. The expectation operator E is defined with respect to P.

Define the belief of the i-th agent at time t on X as the posterior density pi,t(x) of target state x ∈ X based on all
of the information available to this agent at this time. Define the M × 1 vector pt(x) = [p1,t(x), . . . , pM,t(x)]T for
each x ∈ X . For any B ∈ B(X ), define Pt(B) as the vector of probabilities with i-th element equal to

∫
B pi,t(x)dx.

The interaction matrix A = {ai,j} (as in [5]) is defined to be any matrix A consisting of nonnegative entries where
each row sums to 1. We define the query point/target estimate of the i-th agent as X̂i,t. The query point is the
right boundary of the region Ai,t = [0, X̂i,t]. We let Fi,t(a) = Pi,t([0, a]) =

∫ a
0 pi,t(x)dx denote the cumulative

distribution function associated with the density pi,t(·).
We assume that each agent i constructs a query at time t of the form “does X∗ lie in the region Ai,t ⊂ X ?”.

We indicate this query with the binary variable Zi,t = I(X∗ ∈ Ai,t) to which each agent i responds with a binary
response Yi,t+1, which is correct with probability 1 − εi, and by assumption εi < 1/2. This model for the error
is equivalent to a binary symmetric channel (BSC) with crossover probability εi. The query region Ai,t at time t
depends on the accumulated information up to time t at agent i. Define the nested sequence of event spaces Ft,
Ft−1 ⊂ Ft, for all t ≥ 0, generated by the sequence of queries and responses. The queries {Ai,t : 1 ≤ i ≤M}t≥0

are measurable with respect to this filtration. The notation i.p. denotes convergence in probability and a.s. denotes
almost-sure convergence.

III. PRIOR WORK

A. 20 Questions & Stochastic Search

The paper by Jedynak, et al., [6] formulates the single player 20 questions problem as follows. A controller
queries a noisy oracle about whether or not the state of a target X∗ lies in a set An ⊂ R. Starting with a prior
distribution on the target’s state p0(·), the objective in [6] is to minimize the expected entropy of the posterior
distribution:

inf
π

Eπ [H(pN )] (1)

where π = (π0, π1, . . . ) denotes the controller’s query policy and the entropy is the standard differential entropy
[11]:

H(p) = −
∫
X
p(x) log p(x)dx.

The posterior median of pN is used to estimate the target state after N questions. Jedynak [6] shows the bisection
policy is optimal under the minimum entropy criterion. To be concrete, in Thm. 2 of [6], optimal policies are
characterized by:

Pn(An) :=

∫
An

pn(x)dx = u∗ ∈ arg max
u∈[0,1]

φ(u) (2)



4

where
φ(u) = H(f1u+ (1− u)f0)− uH(f1)− (1− u)H(f0)

is nonnegative. The densities f0 and f1 correspond to the noisy channel 1:

P(Yn+1 = y|Zn = z) =

{
f1(y), z = 1
f0(y), z = 0

where Zn = I(X∗ ∈ An) ∈ {0, 1} is the channel input. The noisy channel models the conditional probability of the
response to each question being correct. For the special case of a binary symmetric channel (BSC), u∗ = 1/2 and
the probabilistic bisection policy [6], [4] becomes an optimal policy. This algorithm provides an adaptive design
for the sequence of questions for all agents in the network.

In [1] the approach of [6] was extended to the case of multi-agent query strategies, denoted in [1] as collaborative
20 questions. In [1], optimality conditions are derived for optimal query strategies in the collaborative multiplayer
case where observations are communicated to a fusion center (or centralized controller) and were shown to generalize
the probabilistic bisection policy. Two policies were studied; a sequential bisection policy for which each player
responds to a single question about the state of the target, and a joint policy where all players are asked questions
simultaneously. It was proven that the maximum entropy reduction for the sequential bisection scheme is the same
as that of the jointly optimal scheme, and is given by the sum of the capacities of all the players’ channels. Thus,
the centralized controller is equivalent to a cascade of low-complexity controllers. Despite the fact that the optimal
sequential policy has access to a more refined filtration, it achieves the same average performance as the optimal
joint policy. This equivalence was also extended to the setting where the error channels associated with the players
are unknown.

B. Non-Bayesian Social Learning

In Jadbabaie, et al., [5] it is assumed that Θ denotes a finite set of possible states of the world and the objective is
to study conditions for asymptotic agreement on the true state of the world, denoted by θ∗. A set N = {1, . . . ,M}
of agents interacting over a social network (directed graph) G = (N , E) is considered, where E encodes the edges
between agents. An edge connecting agent i and agent j is the ordered pair (i, j) ∈ E, denoting that agent j has
access to the belief of agent i. The interactions are captured by an interaction matrix A, where ai,j denotes the
strength associated with the communication of agent j’s belief to agent i.

The belief of agent i at time t ≥ 0, defined on Θ, is denoted by pi,t(θ). Conditioned on the state of the world
θ, at each time t ≥ 1, an observation set yt = (y1,t, . . . , yM,t) is generated by the likelihood function l(·|θ). The
signal yi,t ∈ Y is a private signal observed by agent i at time t and Y is a finite set. Independence across time is
also assumed.

The notion of observational equivalence is key to the results derived in [5], which are related to identifiability.
Two states are observationally equivalent from the point of view of an agent if the likelihood of the two states
are identical. More specifically, elements of the set Θθ

i = {θ̃ ∈ Θ : li(y|θ̃) = li(y|θ), ∀y ∈ Y} are observationally
equivalent to state θ from the point of view of agent i.

The belief of each agent i is updated by neighborhood averaging of the form:

pi,t+1(θ) = ai,ipi,t(θ)
li(yi,t+1|θ)
Zi,t(yi,t+1)

+
∑
j∈Ni

ai,jpj,t(θ) (3)

where Ni = {j ∈ N : (j, i) ∈ E} is the neighborhood set of agent i. The denominator Zi,t(yi,t+1) is the
normalizing factor of the Bayesian update given by Zi,t(yi,t+1) =

∑
θ∈Θ pi,t(θ)li(yi,t+1|θ). The parameters ai,i are

called the self-reliances that indicates the relative value of self belief, while the ai,j are the relative values placed
on the neighbors’ beliefs by agent i. As noted in [5], although the first term in (3) is the Bayesian update of the
local belief function, the second term is a linear combination of the neighboring beliefs. Equation (3) is not a true
Bayesian belief update but is considerably simpler to implement.

In Proposition 3 of [5], the following assumptions are stated:
• strong network connectivity (i.e., there exists a directed path from every agent to any other agent)

1The function I(A) denotes the indicator function throughout the paper-i.e., I(A) = 1 if A is true and zero otherwise.
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• ai,i > 0,∀i.
• ∃i such that pi,0(θ∗) > 0.
• @θ 6= θ∗ that is observationally equivalent to θ∗ from the point of view of all agents in the network.

Under these assumptions, it is proven in [5] that all agents in the network learn the true state of the world almost
surely-i.e., pi,t(θ∗)→ 1 with probability 1 for all i ∈ N as t→∞.

IV. DECENTRALIZED COLLABORATIVE 20 QUESTIONS FOR TARGET LOCALIZATION

Motivated by the work of [1] and [5], we proceed as follows. Starting with a prior distribution pi,0(x) on the true
target state X∗, the aim is to reach consensus on the correct state X∗ across the network through repeated querying
and information sharing. Our proposed decentralized collaborative 20 questions target localization algorithm consists
of two stages. Motivated by the optimality of the bisection rule for symmetric channels proved by Jedynak, et al.,
[6], the first stage of the decentralized estimation algorithm is to bisect the posterior of each agent i ∈ N at X̂i,t

and refine its own belief through Bayes’ rule. The second stage consists of each agent averaging its neighbor’s
beliefs and its own. This is repeated until convergence. The matrix A contains the weights for collaboration between
agents and are allowed to be zero when there is no edge in the information sharing network G; if ai,j = 0, then
agent i cannot directly observe information from agent j at any time. Algorithm 1 gives the details of the proposed
two stage implementation.

Algorithm 1 Decentralized Estimation Algorithm
1: Input: G = (N , E),A = {ai,j : (i, j) ∈ N ×N}, {εi : i ∈ N}
2: Output: {X̌i,t : i ∈ N}
3: Initialize pi,0(·) to be positive everywhere.
4: repeat
5: For each agent i ∈ N :
6: Bisect posterior density: Pi,t(Ai,t) = 1/2.
7: Obtain (noisy) binary response yi,t+1 ∈ {0, 1}.
8: Belief update:

pi,t+1(x) = ai,ipi,t(x)
li(yi,t+1|x,Ai,t)
Zi,t(yi,t+1)

+
∑
j∈Ni

ai,jpj,t(x), x ∈ X (4)

where the observation probability mass function (p.m.f.) is:

li(y|x,Ai,t) = f
(i)
1 (y)I(x ∈ Ai,t) + f

(i)
0 (y)I(x /∈ Ai,t),

y ∈ Y (5)

and f (i)
1 (y) = (1− εi)I(y=1)ε

I(y=0)
i , f

(i)
0 (y) = 1− f (i)

1 (y).
9: Calculate target estimate: X̌i,t =

∫
X xpi,t(x)dx.

10: until convergence

Some simplifications occur in Algorithm 1. The normalizing factor Zi,t(y) is given by
∫
X pi,t(x)li(y|x, X̂i,t)dx

and can be shown to be equal to 1/2 (see proof of Lemma 1 in Appendix A). The bisection query points are
medians X̂i,t = F−1

i,t (1/2) and the observation distribution becomes:

li(y|x, X̂i,t) = f
(i)
1 (y)I(x ≤ X̂i,t) + f

(i)
0 (y)I(x > X̂i,t).

where the distributions f (i)
z (·) are defined in (8). We note that the conditioning on the query region Ai,t (or query

point X̂i,t) is necessary as the binary observation y is linked to the query in the 20 questions model, in which
the correct answer is obtained with probability 1 − εi and the wrong answer is obtained with probability εi (also
see Assumptions 1,2 in Section V). An example of this observation density is illustrated in Fig. 1. We note two
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Fig. 1. An example of a time-varying observation density based on query point X̂i,t in one dimension.

important differences between our density update (4) and the update (3). The density li(y|x, X̂i,t) depends on
the query point X̂i,t, which is time-varying and as a result, the density li(y|x, X̂i,t) is time-varying, unlike the
time-invariant case in (3). Thus, the identifiability assumptions made in [5] are not applicable for our problem. In
addition the update (4) holds pointwise for every x ∈ X and the sequence {pi,t(x)}t≥0 may not be bounded as
t → ∞ for a fixed x ∈ X , unlike the discrete case in (3). In the next section we consider the basic convergence
properties of the decentralized estimation algorithm driven by actively controlled queries.

V. CONVERGENCE OF DECENTRALIZED ALGORITHM

In this section convergence properties of Algorithm 1 are established under the assumptions below. The two
main theoretical results, Thm. 1 and Thm. 2, establish that the proposed algorithm attains asymptotic agreement
(consensus) and asymptotic consistency, respectively. A number of technical lemmas are necessary and are proven
in the appendices. A block diagram showing the interdependencies between the lemmas and theorems in this section
is shown in Fig. 2.

Lemma 1 Lemma 2 Lemma 3

Lemma 4

Lemma 5

Theorem 1
(Asymptotic Agreement)

Theorem 2
(Consistency)

Fig. 2. The flow of the analysis for establishing convergence of the proposed decentralized 20-questions algorithm to the correct consensus
limit.

To simplify the analysis of Algorithm 1, we make the following assumptions. These assumptions are no stronger
than those made in [1] and [5].

Assumption 1. (Conditional Independence) We assume that the players’ responses are conditionally independent.
In particular,

P(Yt+1 = y|Ft) =

M∏
i=1

P(Yi,t+1 = yi|Ft) (6)

and each player’s response is governed by the conditional distribution:

li(yi|x,Ai,t) := P(Yi,t+1 = yi|Ai,t, X∗ = x)

=

{
f

(i)
1 (yi), x ∈ Ai,t
f

(i)
0 (yi), x /∈ Ai,t

(7)
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Assumption 2. (Memoryless Binary Symmetric Channels) We model the players’ responses as independent (mem-
oryless) binary symmetric channels (BSC) [11] with crossover probabilities εi ∈ (0, 1/2). The probability mass
function f (i)

z (Yi,t+1) = P(Yi,t+1|Zi,t = z) is:

f (i)
z (yi) =

{
1− εi, yi = z
εi, yi 6= z

(8)

for i = 1, . . . ,M, z = 0, 1. The assumption εi < 1/2 implies that the response of each agent i is almost correct.

Assumption 3. (Strong Connectivity & Positive Self-reliances) As in [5], we assume that the network is strongly
connected and all self-reliances ai,i are strictly positive. 2 The strong connectivity assumption implies that the
interaction matrix A is irreducible. An example of a strongly connected network is shown in the figure below.

1

2 3

4
5

A =


a1,1 0 0 a1,4 0
a2,1 a2,2 0 a2,4 0
0 a3,2 a3,3 a3,4 0
0 0 0 a4,4 a4,5

0 0 a5,3 0 a5,5


The starting point for studying the convergence of Algorithm 1 is Equation (4), which propagates the vector of

belief functions forward in time. The density evolution (4) can be concisely written in matrix form as:

pt+1(x) = (A + Dt(x))pt(x), x ∈ X (9)

where A is the time-invariant interaction matrix and Dt(x) is a diagonal time-varying matrix dependent on the
responses yt+1 = (y1,t+1, . . . , yM,t+1), the query regions Ai,t ⊂ X and the state x ∈ X . The ith diagonal entry of
Dt(x) is given by:

[Dt(x)]i,i = ai,i

(
li(yi,t+1|x,Ai,t)
Zi,t(yi,t+1)

− 1

)
(10)

We remark that the convergence analysis result of Jadbabaie, et al., [5] does not apply here since the distributions
li(·|x,Ai,t) are time-varying because the query regions Ai,t are time-varying.

Proposition 1 provides bounds on the dynamic range of Ax, where x is any arbitrary vector. The coefficient of
ergodicity of an interaction matrix A is defined as [12], [13]:

τ1(A) =
1

2
max
i 6=j
‖AT (ei − ej)‖1 =

1

2
max
i 6=j

M∑
l=1

|ai,l − aj,l| (11)

This coefficient does not exceed 1. The most non-ergodic interaction matrix is the identity matrix A = IM , for
which τ1(A) = 1 and there is no information sharing. As another example, a matrix A with fixed self-reliances
α ∈ (0, 1) and uniform off-diagonal weights-i.e., 1−α

M−1 , has τ1(A) = |α− 1−α
M−1 |.

Proposition 1. (Contraction Property of A) Assume A = {ai,j} is a M × M stochastic matrix. Let x be an
arbitrary non-negative vector. Then, we have for all pairs (i, j):

[Ax]i − [Ax]j ≤ τ1(A)
(

max
i
xi −min

i
xi

)
For a proof, see Theorem 3.1 in [12].
Note that irreducibility of the matrix A implies that there exists r such that Ar is a stochastic matrix with

positive entries [12], further implying that τ1(Ar) < 1. Therefore, under Assumption 3, Proposition 1 will establish
a contraction property required for the convergence proof of Theorem 1.

Next, we recall a tight smooth approximation to the non-smooth maximum and minima operators. Similar results
have appeared in Prop. 1 in [14] and p. 72 in [15]. Consensus will be proven in Theorem 1 by showing that the
dynamic range of the beliefs of the network converges to zero asymptotically as the number of algorithm iterations
grow. Since the dynamic range involves taking the difference between the maximum and minimum of the CDF’s

2Theorems 1 and 2 remain valid under the weaker assumption that the network is a disjoint union of strongly connected subnetworks.
However, for simplicity we assume the whole network is strongly connected.
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evaluated at an arbitrary point, Proposition 2 will be used in the proof of Theorem 1 to approximate the maximum
and minimum involved.

Proposition 2. (Tight Smooth Approximation to Maximum/Minimum Operator) Let a ∈ RM be an arbitrary vector.
Then, we have for all k > 0:

max
i
ai ≤

1

k
log

(
M∑
i=1

exp(kai)

)
≤ max

i
ai +

logM

k
(12)

and

min
i
ai ≥ −

1

k
log

(
M∑
i=1

exp(−kai)

)
≥ min

i
ai −

logM

k
(13)

The next lemma shows that the integrated innovation term in (9) has a conditional mean of zero, which will be
used to prove the martingale property in Lemma 2.

Lemma 1. Consider Algorithm 1. Let B ∈ B(X ). Then, we have:

E

[∫
B
Dt(x)pt(x)dx

∣∣∣∣∣Ft
]

= 0.

where Dt(x) was defined in (10).

Proof: See Appendix A.
Lemma 2 shows that a positive linear combination of the integrated posterior distributions forms a martingale

sequence. This will allow us to use the martingale convergence theorem to prove Lemma 3 (a key lemma in proving
the main convergence Theorems 1 and 2).

Lemma 2. Consider Algorithm 1. Let B ∈ B(X ). Then, we have E[vTPt+1(B)|Ft] = vTPt(B) for some positive
vector v � 0, and limt→∞ vTPt(B) exists almost surely.

Proof: See Appendix B.
The next lemma obtains an asymptotic convergence result on the CDF of each agent in the network, which will

be crucial for proving the main Theorems 1 and 2.

Lemma 3. Consider Algorithm 1. Let b ∈ [0, 1]. Then, we have:

µi,t(b) := min {Fi,t(b), 1− Fi,t(b)}
a.s.−→ 0 (14)

as t→∞.

Proof: See Appendix C.
Define the dynamic range (with respect to all agents in the network) of the posterior probability that X∗ lies in

set B ⊂ X :
Vt(B) = max

i
Pi,t(B)−min

i
Pi,t(B) (15)

Also, define the innovation:

di,t+1(B) =

[∫
B
Dt(x)pt(x)dx

]
i

=

∫
B

[Dt(x)]i,ipi,t(x)dx

We next prove a lemma that shows that the dynamic range Vt(B) has a useful upper bound.

Lemma 4. Consider Algorithm 1. Let B = [0, b] with b ≤ 1. Then, for all r ∈ N:

Vt+r(B) ≤ τ1(Ar)Vt(B)

+

r−1∑
k=0

(
max
i
di,t+r−k(B)−min

i
di,t+r−k(B)

)
(16)

In addition, there exists a finite r ∈ N such that τ1(Ar) < 1.
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Proof: See Appendix D.
To show convergence of the integrated beliefs of all agents in the network to a common limiting belief, it suffices

to show Vt(B)
i.p.→ 0. While this method of proof does not allow identification of the limiting belief, it shows a

global equilibrium exists and yields insight into the rate of convergence through the ergodicity properties of A.
The structure of the limiting belief is given in Theorem 2. Theorem 1 shows convergence of asymptotic beliefs to
a common limit.

Theorem 1. Consider Algorithm 1 and let the assumptions in Sec. V.A hold. Let B = [0, b], b ≤ 1. Then, consensus
of the agents’ beliefs is asymptotically achieved across the network:

Vt(B) = max
i

Pi,t(B)−min
i

Pi,t(B)
i.p.−→ 0

as t→∞.

Proof: See Appendix E.
Theorem 1 establishes that Algorithm 1 produces belief functions that become identical over all agents. This

establishes asymptotic consensus among the beliefs, i.e., that as time goes on all agents come to agreement about
the uncertainty in the target state. It remains to show the limiting belief is in fact concentrated at the true target
state X∗, as stated in Thm. 2.

Lemma 5. Consider Algorithm 1. Let v be the left eigenvector of A corresponding to the unit eigenvalue. Assume
that for all agents i, pi,0(X∗) > 0. Then, the posteriors evaluated at the true target state X∗ have the following
asymptotic behavior:

lim inf
t→∞

1

t

M∑
i=1

vi log(pi,t(X
∗)) ≥

M∑
i=1

viai,iC(εi) = K(ε) (a.s.)

where C(ε) is the capacity of the BSC.

Proof: See Appendix F.
Now, we are ready to prove the main consistency result of the asymptotic beliefs. The proof is based on the

consensus result of Theorem 1.

Theorem 2. Consider Algorithm 1 and let the assumptions in Sec. V.A hold. Let b ∈ [0, 1]. Then, we have for each
i ∈ N :

Fi,t(b)
i.p.−→ F∞(b) =

{
0, b < X∗

1, b > X∗

as t→∞. In addition, for all i ∈ N :

X̌i,t :=

∫ 1

x=0
xpi,t(x)dx

i.p.−→ X∗

Proof: See Appendix G.
Finally, we have a corollary that generalizes Theorem 2 to sets B that are finite unions of intervals.

Corollary 1. Consider Algorithm 1. Let B = ∪Kk=1Ik ∈ B([0, 1]) be a finite union of disjoint intervals Ik = [ak, bk),
where 0 ≤ ak < bk ≤ 1. Then, for each i ∈ N :

Pi,t(B)
i.p.−→

{
0, X∗ /∈ B
1, X∗ ∈ B

as t→∞.

Proof: The proof follows by noting that Pi,t(B) = Pi,t(∪kIk) =
∑

k Pi,t(Ik) =
∑

k Fi,t(bk) − Fi,t(ak) and
using Theorem 2.
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VI. EXPERIMENTAL VALIDATION

This section presents simulations that validate the theory in Section V and demonstrate the benefits of the
proposed decentralized 20 questions method. As expected from Theorems 1 and 2, the estimation error converges
to zero for all agents in the network as the number of algorithm iterations grows, implying correct learning of the
true target state across the network.

The instantaneous squared residual error for agent i was calculated using SEi,t = (X̂i,t−X∗)2 for the tth Monte
Carlo trial. There are a total of T experimental trials. The min, max and average RMSE metrics were calculated
as:

RMSEmin =

√√√√ 1

T

T∑
t=1

min
i

SEi,t (17)

RMSEmax =

√√√√ 1

T

T∑
t=1

max
i

SEi,t (18)

RMSEavg =

√√√√ 1

T

T∑
t=1

1

M

M∑
i=1

SEi,t (19)

The min and max metrics, RMSEmin and RMSEmax, represent the worst and best performance over all the agents
and the average over all agents is denoted RMSEavg.

For comparison we implement the centralized fully Bayesian estimation algorithm, which requires full knowledge
of the error probabilities of all agents. We make use of the basic equivalence principle derived in [1], and implement
the centralized method using a series of bisections (one per agent). The equivalence principle shows that this
sequential bisection algorithm achieves the same performance as the jointly optimal algorithm on average.

We consider the performance of Algorithm 1 for random graphs based on the Erdös-Rényi construction. Let
p ∈ (0, 1) denote the probability of two nodes being joined with an edge, and M denote the number of nodes in the
graph. The set G(M,p) denotes the class of all undirected random graphs based on the Erdös-Rényi construction, and
GIR(M,p) ⊂ G(M,p) denotes the subclass of all irreducible graphs. We consider the ensemble-average RMSE’s,
E[RMSEmin],E[RMSEavg],E[RMSEmax], and approximate them by random sampling from GIR(M,p). An example
graph G ∈ GIR(100, 0.05) is shown in Fig. 3. Figures 4, 5 and 6 show the average, worst-case and best-case RMSE

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Student Version of MATLAB

Fig. 3. A realization, G, from the ensemble of Erdös-Rényi irreducible graphs GIR(100, 0.05).

for a graph of M = 100 agents with a connectivity probability of p = 0.05. For this experiment the number of
reliable agents Mrel, i.e., with error probability εi = 0.05, is either 0 or 1, and the unreliable agents, i.e., with error
probability εi = 0.45, are the M −Mrel remaining ones. The self-reliance parameter of the reliable agent was set
to 0.95 and the self-reliance of the unreliable agents was set to 0.6. The rest of the parameters were made equal
such that each row of A sums to unity. The error performance is averaged over 500 Monte Carlo runs.

In terms of average and worst-case RMSE performance of the network, Figures 4 and 5 show that the decentralized
estimation algorithm with information sharing uniformly outperforms the algorithm without information sharing over
all iterations. Of course, as Fig. 6 shows, this naturally occurs at a penalty for the best-case RMSE performance,
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which is attained by discounting all of the agents except for the single reliable one. The phenomenon of local
information aggregation leads to sophisticated global behavior; convergence of all agents’ estimates towards the
correct target.

Furthermore, we observe from Figures 4-6 that if reliable agents are introduced into the network, the average
RMSE and worst-case RMSE are both dramatically reduced and the best-case RMSE penalty is significantly
diminished. Even one reliable agent injected in a large set of unreliable agents greatly enhances the network-wide
estimation performance if information sharing is implemented. This is entirely due to the decentralized nature of the
algorithm; the good information of the reliable agent is spread around the network, affecting in a positive manner
all the agents in the network.

Figures 7 and 8 compare the decentralized algorithm’s performance to the centralized one, for the cases of
Mrel = 0 (no reliable agents) and Mrel = 1 (a single reliable agent), respectively. We note that the best-case RMSE
performance of the decentralized algorithm when Mrel = 1 is comparable with the performance of the centralized
algorithm. On the other hand, with no reliable agents (Mrel = 0), the centralized Bayesian solution provides a
significant performance advantage. Under the conditions of this experiment, the presence of a single reliable agent
yields a significant performance gain.

VII. CONCLUSION

We proposed a solution to the problem of decentralized 20 questions with noise and illustrated several benefits
of information sharing as compared to no information sharing. At each iteration of our proposed decentralized
information sharing algorithm, agents query and respond based on their local beliefs and average information through
their neighbors. Asymptotic convergence properties of the agents’ posterior distributions were derived, showing that
they reach consensus to the true state. Numerical experiments were presented to validate the convergence properties
of the algorithm.

We note that lemmas 1, 2 and 4 hold for any dimension d ≥ 1, while the rest of the analysis in the paper
holds for a scalar target state. Generalization of Lemma 3 to state dimension d > 1 is an open problem, see the
discussion in Waeber, et al., [7] in the context of extending the convergence theory of the probabilistic bisection
algorithm (PBA) to higher dimensions. Several other interesting open problems arise from this decentralized 20
questions algorithm including analysis of the rate of convergence and tuning of the interaction matrix weights in
some optimal manner to improve estimation performance.



12

APPENDIX A
PROOF OF LEMMA 1

Proof: Without loss of generality, fix i ∈ N . From direct substitution and integration, we have:∫
B

[Dt(x)]i,ipi,t(x)dx

= ai,i

(∫
B li(yi,t+1|x,Ai,t)pi,t(x)dx

Zi,t(yi,t+1)
−
∫
B
pi,t(x)dx

)
= ai,i

(
2

∫
B
li(yi,t+1|x,Ai,t)pi,t(x)dx− Pi,t(B)

)

where we used the fact that Zi,t(y) = 1/2 for all y ∈ Y . This follows from the probabilistic bisection property:

Zi,t(y)

=

∫
X
pi,t(x)

(
f

(i)
1 (y)I(x ∈ Ai,t) + f

(i)
0 (y)I(x /∈ Ai,t)

)
dx

= f
(i)
1 (y)Pi,t(Ai,t) + f

(i)
0 (y)Pi,t(Aci,t)

= f
(i)
1 (y)(1/2) + f

(i)
0 (y)(1/2)

= 1/2

where we used the fact f (i)
1 (y) + f

(i)
0 (y) = 1. From the definition of li(y|x,Ai,t), it follows that:∫

B
[Dt(x)]i,ipi,t(x)dx = ai,i

(
2
(
f

(i)
1 (yi,t+1)Pi,t(B ∩Ai,t)

+ f
(i)
0 (yi,t+1)Pi,t(B ∩Aci,t)

)
− Pi,t(B)

)
Taking the conditional expectation of both sides, we obtain:

E

[∫
B

[Dt(x)]i,ipi,t(x)dx

∣∣∣∣∣Ft
]

= ai,i

(
2E
[
f

(i)
1 (Yi,t+1)Pi,t(B ∩Ai,t)

+ f
(i)
0 (Yi,t+1)Pi,t(B ∩Aci,t)|Ft

]
− Pi,t(B)

)

= ai,i

(
2

1∑
y=0

(
f

(i)
1 (y)Pi,t(B ∩Ai,t) + f

(i)
0 (y)Pi,t(B ∩Aci,t)

)
× P(Yi,t+1 = y|Ft)− Pi,t(B)

)

= ai,i

(
1∑
y=0

(
f

(i)
1 (y)Pi,t(B ∩Ai,t) + f

(i)
0 (y)Pi,t(B ∩Aci,t)

)
− Pi,t(B)

)
= ai,i

((
Pi,t(B ∩At,i) + Pi,t(B ∩Aci,t)

)
− Pi,t(B)

)
= ai,i (Pi,t(B)− Pi,t(B)) = 0
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where we used the fact that under the probabilistic bisection, P(Yi,t+1 = y|Ft) = 1/2 for all y. This follows from:

P(Yi,t+1 = y|Ft)

=

1∑
z=0

P(Yi,t+1 = y|Zi,t = z,Ft)P(Zi,t = z|Ft)

= P(Yi,t+1 = y|Zi,t = 0)P(Zi,t = 0|Ft)
+ P(Yi,t+1 = y|Zi,t = 1)P(Zi,t = 1|Ft)

= f0(y)P(X∗ /∈ Ai,t|Ft) + f1(y)P(X∗ ∈ Ai,t|Ft)
= f0(y)Pi,t(Aci,t) + f1(y)Pi,t(Ai,t)
= 1/2

Since i was arbitrarily chosen, the proof is complete.

APPENDIX B
PROOF OF LEMMA 2

Proof: From strong connectivity (i.e., Assumption 3), it follows that A is an irreducible stochastic matrix.
Thus, there exists a left eigenvector v ∈ RM with strictly positive entries corresponding to a unit eigenvalue-i.e.,
vT = vTA [16].

Integrating (9) and left-multiplying by vT :

vT
∫
B

pt+1(x)dx = vTA

∫
B

pt(x)dx+ vT
∫
B
Dt(x)pt(x)dx

⇔ vTPt+1(B) = vTPt(B) +

M∑
i=1

vi

∫
B

[Dt(x)]i,ipi,t(x)dx (20)

Taking the conditional expectation of both sides and using Lemma 1, we obtain E[vTPt+1(B)|Ft] = vTPt(B).
Thus, the process {vTPt(B) : t ≥ 0} is a martingale with respect to the filtration Ft. We note that it is bounded
below by zero and above by ‖v‖1 almost surely. From the martingale convergence theorem [17], it follows that it
converges almost surely.

APPENDIX C
PROOF OF LEMMA 3

Proof: Define the tilted measure variable

ζt(B) = exp(vTPt(B)).

From Lemma 2 and Jensen’s inequality, it follows that

E[ζt+1(B)|Ft] ≥ ζt(B)

so the process {ζt(B) : t ≥ 0} is a submartingale with respect to the filtration Ft. From the proof of Lemma 2, it
follows that ζt(B) is bounded a.s., so by the martingale convergence theorem [17], it follows that limt→∞ ζt(B)
exists and is finite almost surely. As a result, we have from Lemma 2 and (20):

lim
t→∞

ζt+1(B)

ζt(B)

a.s.
= 1

a.s.
= lim

t→∞
exp

(
vT
∫
B
Dt(x)pt(x)dx

)
Since the variables in the limit on the RHS are bounded a.s., i.e.,∣∣∣∣vT ∫

B
Dt(x)pt(x)dx

∣∣∣∣
≤ ‖v‖1 max

i

∣∣∣∣∫
B

[Dt(x)]i,ipi,t(x)dx

∣∣∣∣
≤ ‖v‖1 max

i
(2(1− εi)Pi,t(B)− Pi,t(B))

≤ ‖v‖1(1− 2 min
i
εi) ≤ ‖v‖1 <∞,
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the dominated convergence theorem for conditional expectations [18] implies, by changing the order of conditional
expectation and the limit:

E

[
exp

(
vT
∫
B
Dt(x)pt(x)dx

) ∣∣∣∣∣Ft
]

a.s.−→ 1 (21)

as t → ∞. Substituting the definition of Dt(x) into (21) and using Assumption 1, it follows after some algebra
that (21) is equivalent to:

M∏
i=1

E

[
exp

(
viai,i

∫
B 2li(Yi,t+1|x,Ai,t)pi,t(x)dx

) ∣∣∣∣∣Ft
]

exp(viai,iPi,t(B))

a.s.−→ 1 (22)

Next, we analyze the ratio of exponentials for two separate cases. First, consider the case Pi,t([0, b]) =
∫ b

0 pi,t(x)dx ≤
1/2. Using the definition of X̂i,t, it follows that b ≤ X̂i,t. This implies that li(y|x,Ai,t) = f

(i)
1 (y) for all x ≤ b.

Using this fact and P(Yi,t+1 = y|Ft) = 1/2:

E

[
exp

(
viai,i

∫
B 2li(Yi,t+1|x,Ai,t)pi,t(x)dx

) ∣∣∣∣∣Ft
]

exp(viai,iPi,t(B))

=
1

2

exp (viai,i2(1− εi)Pi,t(B)) + exp (viai,i2εiPi,t(B))

exp (viai,iPi,t(B))

=
1

2

(
exp (viai,i(1− 2εi)Pi,t(B))

+ exp (−viai,i(1− 2εi)Pi,t(B))
)

= cosh (viai,i(1− 2εi)Pi,t(B)) (23)

where we used the fact that (ea + e−a)/2 = cosh(a). Second, consider the complementary case Pi,t([0, b]) > 1/2.
In this case, we have b > X̂i,t and as a result:∫ b

0
2li(Yi,t+1|x,At,i)pi,t(x)dx

=

∫ X̂i,t

0
2f

(i)
1 (Yi,t+1)pi,t(x)dx+

∫ b

X̂i,t

2f
(i)
0 (Yi,t+1)pi,t(x)dx

= 2f
(i)
1 (Yi,t+1)Pi,t(Ai,t) + 2f

(i)
0 (Yi,t+1)(Pi,t(B)− Pi,t(Ai,t))

= f
(i)
1 (Yi,t+1) + f

(i)
0 (Yi,t+1)(2Pi,t(B)− 1)

=

{
(1− 2εi) + 2εiPi,t(B), Yi,t+1 = 1
2(1− εi)Pi,t(B) + (2εi − 1), Yi,t+1 = 0
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Using this result and P(Yi,t+1 = y|Ft) = 1/2:

E

[
exp

(
viai,i

∫
B 2li(Yi,t+1|x,Ai,t)pi,t(x)dx

) ∣∣∣∣∣Ft
]

exp(viai,iPi,t(B))

=
1

2

1

exp (viai,iPi,t(B))
×(

exp (viai,i((1− 2εi) + 2εiPi,t(B)))

+ exp (viai,i(2(1− εi)Pi,t(B) + (2εi − 1)))
)

=
1

2

(
exp (viai,i(1− 2εi)(1− Pi,t(B)))

+ exp (−viai,i(1− 2εi)(1− Pi,t(B)))
)

= cosh (viai,i(1− 2εi)Pi,t(Bc)) (24)

Combining the two cases (23) and (24) by noting that

min {Pi,t(B), 1− Pi,t(B)} =

{
Pi,t(B), Pi,t(B) ≤ 1/2
1− Pi,t(B), Pi,t(B) > 1/2

,

we have:

E

[
exp

(
viai,i

∫
B 2li(Yi,t+1|x,Ai,t)pi,t(x)dx

) ∣∣∣∣∣Ft
]

exp(viai,iPi,t(B))

= cosh (viai,i(1− 2εi) min {Pi,t(B), 1− Pi,t(B)})

Substituting this expression into (22), we obtain:
M∏
i=1

cosh (viai,i(1− 2εi) min {Pi,t(B), 1− Pi,t(B)}) a.s.−→ 1

Since 1 = cosh(0) ≤ cosh(x) for all x ∈ R, it follows that min{Pi,t(B), 1 − Pi,t(B)} → 0 almost surely. Note
that here we used the positivity of the vi and the self-reliances ai,i (i.e., Assumption 3) along with the fact that
εi < 1/2. The proof is complete.

APPENDIX D
PROOF OF LEMMA 4

Proof: Integrating both sides of the recursion (9):

Pt+1(B) = APt(B) + dt+1(B) (25)

Unrolling (25) over r steps:

Pt+r(B) = ArPt(B) +

r−1∑
k=0

Akdt+r−k(B) (26)
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Since A is a stochastic matrix, Proposition 1 implies:

Vt+r(B)

= max
i

Pi,t+r(B)−min
i

Pi,t+r(B)

≤ τ1(Ar)Vt(B)

+ max
i,j

r−1∑
k=0

(
[Akdt+r−k(B)]i − [Akdt+r−k(B)]j

)
≤ τ1(Ar)Vt(B)

+

r−1∑
k=0

(
max
i

[Akdt+r−k(B)]i −min
i

[Akdt+r−k(B)]i

)
≤ τ1(Ar)Vt(B)

+

r−1∑
k=0

(
max
i
di,t+r−k(B)−min

i
di,t+r−k(B)

)
It is known that the coefficient of ergodicity τ1(Ar) ∈ [0, 1] for any r ∈ N [13], [12]. The irreducibility of the
matrix A implies the existence of a positive r such that τ1(Ar) < 1 [12].

APPENDIX E
PROOF OF THEOREM 1

Proof: Without loss of generality, we consider the case r = 1 in Lemma 4. The case r > 1 follows similarly.
From Lemma 4, we obtain:

E[Vt+1(B)|Ft] ≤ τ1(A)Vt(B)

+ E

[
max
i
di,t+1(B)−min

i
di,t+1(B)

∣∣∣∣∣Ft
]

(27)

where τ1(A) < 1. To continue, we need to show that the remainder is asymptotically negligible-i.e.,

E

[
max
i
di,t+1(B)−min

i
di,t+1(B)

∣∣∣∣∣Ft
]
→ 0.

Using Proposition 2, we obtain for any k > 0:

E

[
max
i
di,t+1(B)−min

i
di,t+1(B)

∣∣∣∣∣Ft
]

≤ 1

k
E

[
log

(
M∑
i=1

exp(kdi,t+1(B))

)

+ log

(
M∑
i=1

exp(−kdi,t+1(B))

)∣∣∣∣∣Ft
]

≤ 1

k

[
log

(
M∑
i=1

E[exp(kdi,t+1(B))|Ft]

)

+ log

(
M∑
i=1

E[exp(−kdi,t+1(B))|Ft]

)]
(28)

where we used Jensen’s inequality and the linearity of expectation.
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Using similar analysis as in the proof of Lemma 3, the (conditional) moment generating functions of the innovation
terms can be written as hyperbolic cosines:

E[exp (kdi,t+1(B)) |Ft] = cosh (kai,i(1− 2εi)µi,t(b))

E[exp (−kdi,t+1(B)) |Ft] = cosh (−kai,i(1− 2εi)µi,t(b))

where µi,t(b) = min {Fi,t(b), 1− Fi,t(b)}.
Using the even symmetry of the cosh(·) function, substituting these expressions into (28) and using Proposition

2 again, we obtain:

E

[
max
i
di,t+1(B)−min

i
di,t+1(B)

∣∣∣∣∣Ft
]

≤ 2

k
log

(
M∑
i=1

cosh (kai,i(1− 2εi)µi,t(b))

)

≤ 2

k
log

(
M∑
i=1

exp (kai,i(1− 2εi)µi,t(b))

)

≤ 2 max
i
{ai,i(1− 2εi)µi,t(b)}+

logM

k

Taking the limit k →∞ to tighten the bound and using (27):

E[Vt+1(B)|Ft] ≤ τ1(A)Vt(B) + δt (29)

where δt := 2 maxi {ai,i(1− 2εi)µi,t(b)}. Lemma 3 implies that µi,t(b)
a.s.→ 0, for all i ∈ N . As a result, we have

δt
a.s.→ 0 as t→∞.
Taking the unconditional expectation of both sides in (29):

E[Vt+1(B)] ≤ τ1(A)E[Vt(B)] + E[δt] (30)

where E[δt]→ 0 by the dominated convergence theorem. Using induction on (30), we obtain for all t ≥ 0:

E[Vt(B)] ≤ τ1(A)tE[V0(B)] +

t−1∑
l=0

τ1(A)lE[δt−1−l] (31)

Taking the limits of both sides of (31) and using the fact that τ1(A) < 1 and E[V0(B)] <∞:

lim sup
t→∞

E[Vt(B)] ≤
(

lim
t→∞

τ1(A)t
)
E[V0(B)]

+ lim
t→∞

t−1∑
l=0

τ1(A)lE[δt−1−l] = 0

It follows that E[Vt(B)]→ 0 since Vt(B) is always nonnegative. Markov’s inequality further implies Vt(B)
i.p.→ 0.

The proof is complete.

APPENDIX F
PROOF OF LEMMA 5

Proof: From (4), we evaluate at x = X∗ and obtain:

pi,t+1(X∗)

= ai,ipi,t(X
∗)

(
li(Yi,t+1|X∗, Ai,t)
Zi,t(Yi,t+1)

)
+
∑
j 6=i

ai,jpj,t(X
∗)

= ai,ipi,t(X
∗) (2P(Yi,t+1|Zi,t)) +

∑
j 6=i

ai,jpj,t(X
∗)
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where Zi,t = I(X∗ ∈ Ai,t) is the query input to the noisy channel and P(Yi,t+1|Zi,t) models the binary symmetric
channel for the ith agent. Taking the logarithm of both sides and using Jensen’s inequality, we obtain for each
agent i:

log pi,t+1(X∗) ≥
M∑
j=1

ai,j log pj,t(X
∗)

+ ai,i log (2P(Yi,t+1|Zi,t))

Writing this in vector form with the understanding that the logarithm of a vector is taken component-wise:

log pt+1(X∗) � A log pt(X
∗) + diag(A) log ut+1 (32)

where the vector ut+1 is given component-wise by [ut+1]i = 2P(Yi,t+1|Zi,t). Left-multiplying (32) by vT and using
the eigenrelation vT = vTA, we obtain:

vT log pt+1(X∗) ≥ vT log pt(X
∗) + vT diag(A) log ut+1 (33)

Using induction on (33), we obtain:

vT log pt(X
∗) ≥ vT log p0(X∗) +

t−1∑
k=0

vT diag(A) log uk+1

This implies by the strong law of large numbers (LLN):

lim inf
t→∞

1

t
vT log pt(X

∗)

≥ lim
t→∞

1

t
vT log p0(X∗) + lim

t→∞

1

t

t−1∑
k=0

vT diag(A) log uk+1

= E

[
M∑
i=1

viai,i log(2P(Yi|Zi))

]
=
∑
i

viai,iE [log(2P(Yi|Zi))]

To finish the proof, note:

E [log2(2P(Yi|Zi))]

=
∑
Zi

P(Zi)
∑
Yi

P(Yi|Zi) log2(2P(Yi|Zi))

=
∑
Zi

P(Zi) ((1− εi) log2(2(1− εi)) + εi log2(2εi))

= 1− hB(εi) = C(εi)

APPENDIX G
PROOF OF THEOREM 2

Proof: From Theorem 1 we obtain for each agent i,

Pi,t([0, b])
i.p.−→ P∞(B) (34)

as t→∞, where P∞(B) is a common limiting random variable. To finish the proof, we show that P∞(B) is the
constant I(b > X∗). Lemma 5 implies that for t large (as t→∞)3:∑

i

viai,i log(pi,t(X
∗)) = Ω(t)

3The notation an = Ω(bn) implies an ≥ Kbn for infinitely many n and for some positive constant K.
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which implies
∑

i viai,i log(pi,t(X
∗))

a.s.−→ +∞. This further implies that there exists an agent i0 such that
pi0,t(X

∗)→∞ almost surely.
Lemma 3 implies µi0,t(b′) = min{Fi0,t(b′), 1−Fi0,t(b′)}

a.s.→ 0 for any b′ ∈ [0, 1]. This asymptotic result, combined
with the monotonicity of the CDF operator Fi0,t(·) and pi0,t(X

∗)
a.s.→ ∞ imply that Fi0,t(b) → I(b > X∗). From

(34), it then follows that Fi,t(b)
i.p.→ F∞(b) = I(b > X∗) for all i ∈ N .

To conclude the proof, we show the conditional mean estimators X̌i,t converge to the correct target state X∗ in
probability (i.e., consistency). From the definition of the conditional expectation, we obtain:

X̌i,t =

∫ 1

u=0
Pi,t((u, 1])du

= 1−
∫ 1

u=0
Fi,t(u)du

where the random variables Fi,t(u) are uniformly bounded in [0, 1]. To finish the proof it suffices to show∫ 1

u=0
Fi,t(u)du

i.p.−→
∫ 1

u=0
F∞(u)du

since
∫ 1
u=0 F∞(u)du = 1 −X∗. This is accomplished by a variant of the dominated convergence theorem, where

the limits are taken in probability. We prove this here for completeness. The first part of the theorem implies

lim sup
t→∞

|Fi,t(u)− F∞(u)| i.p.= 0 (35)

for each u ∈ [0, 1]\X∗. Also, we have with probability 1:

|Fi,t(u)− F∞(u)| ≤ 2 (36)

for all u ∈ [0, 1]\X∗ and all t. The reverse Fatou lemma along with (36) and (35) imply:

lim sup
t→∞

∫ 1

0
|Fi,t(u)− F∞(u)| du

≤
∫ 1

0
lim sup
t→∞

|Fi,t(u)− F∞(u)| du i.p.
= 0.

Thus, we conclude that:

lim
t→∞

∫ 1

0
|Fi,t(u)− F∞(u)| du i.p.

= 0.

This concludes the proof.
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Fig. 4. Average RMSE as a function of algorithm iteration. With information sharing between a single reliable agent (ε = 0.05) and
the unreliable agents (ε = 0.45) the proposed decentralized 20 questions algorithm attains a much lower RMSE (solid magenta line) than
without information sharing. The RMSE was computed as the average network RMSE (19), and is further averaged over 10 realizations of
irreducible Erdös-Rényi graphs drawn from GIR(100, 0.05).
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Fig. 5. Same as in Fig. 4 except we show the worst-case RMSE, computed using (18).
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Fig. 6. Same as in Fig. 4 except we show the best-case RMSE, computed using (17).
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Fig. 7. Average RMSE performance as a function of algorithm iteration. Here, all agents are unreliable; i.e., have an error probability
εi = 0.45. The centralized 20 questions strategy (bottom curve) is significantly better than the proposed decentralized strategy with information
sharing, in terms of best, average and worst case RMSE, since there are no reliable agents. The average, worst-case and best-case RMSE
was computed using (17)-(19), and is further averaged over 10 realizations of irreducible Erdös-Rényi graphs drawn from GIR(100, 0.05).
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Fig. 8. Same as Fig. 7 except that there is a single reliable agent with error probability ε1 = 0.05 and the rest of the agents are all
unreliable with error probability εi = 0.45. As compared to Fig. 7, the presence of even one reliable agent makes the proposed decentralized
information sharing algorithm have performance close to that of the centralized algorithm.


	I Introduction
	II Notation
	III Prior Work
	III-A 20 Questions & Stochastic Search
	III-B Non-Bayesian Social Learning

	IV Decentralized Collaborative 20 Questions for Target Localization
	V Convergence of Decentralized Algorithm
	VI Experimental Validation
	VII Conclusion
	Appendix A: Proof of Lemma ??
	Appendix B: Proof of Lemma ??
	Appendix C: Proof of Lemma ??
	Appendix D: Proof of Lemma ??
	Appendix E: Proof of Theorem ??
	Appendix F: Proof of Lemma ??
	Appendix G: Proof of Theorem ??
	References

