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Abstract

Distributed processing over networks relies on in-networkprocessing and cooperation among neigh-

boring agents. Cooperation is beneficial when agents share acommon objective. However, in many

applications agents may belong to different clusters that pursue different objectives. Then, indiscriminate

cooperation will lead to undesired results. In this work, wepropose an adaptive clustering and learning

scheme that allows agents to learn which neighbors they should cooperate with and which other neighbors

they should ignore. In doing so, the resulting algorithm enables the agents to identify their clusters and

to attain improved learning and estimation accuracy over networks. We carry out a detailed mean-square

analysis and assess the error probabilities of Types I and II, i.e., false alarm and mis-detection, for the

clustering mechanism. Among other results, we establish that these probabilities decay exponentially

with the step-sizes so that the probability of correct clustering can be made arbitrarily close to one.

Index Terms

Clustering, diffusion adaptation, consensus adaptation,adaptive networks, distributed learning, dis-

tributed optimization, unsupervised learning

I. INTRODUCTION

Distributed algorithms for learning, inference, modeling, and optimization by networked agents are

prevalent in many domains and applicable to a wide range of problems [2]–[5]. Among the various

classes of algorithms, techniques that are based on first-order gradient-descent iterations are particularly

useful for distributed processing due to their low complexity, low power demands, and robustness against

The authors are with Department of Electrical Engineering,University of California, Los Angeles, CA 90095 Emails:

xiaochuanzhao@ucla.edu and sayed@ee.ucla.edu.

This work was supported by NSF grants CCF-1011918 and ECCS-1407712. A short and limited early version of this work

appeared in the conference proceedings [1].

September 15, 2018 DRAFT

http://arxiv.org/abs/1409.6111v1


2

imperfections or unmodeled effects. Three of the most studied classes are consensus algorithms [5]–[9],

diffusion algorithms [2], [10]–[16], and incremental algorithms [17]–[22]. The incremental techniques rely

on the determination of a Hamiltonian cycle over the topology, which is generally an NP-hard problem

and is therefore a hindrance to real-time adaptation, and even more so when the topology is dynamic

and changes with time. For this reason, we will consider mainly learning algorithms of the consensus

and diffusion types.

In this work we focus on the case in whichconstantstep-sizes are employed in order to enable

continuousadaptation and learning in response to streaming data. Whendiminishing step-sizes are used,

the algorithms would cease to adapt after the step-sizes have approached zero, which is problematic

for applications that require the network to remain continually vigilant and to track possible drifts in

the data and clusters. Therefore, adaptation with constantstep-sizes is necessary in these scenarios. It

turns out that when constant step-sizes are used, the dynamics of the distributed (consensus or diffusion)

strategies are modified in a non-trivial manner: the stochastic gradient noise that is present in their update

steps does not die out anymore and it seeps into the operationof the algorithms. In other words, while

this noise component would be annihilated by decaying step-sizes, it will remain persistently active

during constant step-size adaptation. As such, it becomes important to evaluate how well constant step-

size implementations can alleviate the influence of gradient noise. It was shown in [2], [3], [23] that

consensus strategies can become problematic when constantstep-sizes are employed. This is because of

an asymmetry in their update relations, which can cause the state of the network to grow unbounded

when these networks are used for adaptation. In comparison,diffusion networks do not suffer from this

asymmetry problem and have been shown to be mean stable regardless of the topology of the network.

This is a reassuring property, especially in the context of applications where the topology can undergo

changes over time. These observations motivate us to focus our analysis on diffusion strategies, although

the conclusions and arguments can be extended with proper adjustments to consensus strategies.

Now, most existing works on distributed learning algorithms focus on the case in which all agents

in the network are interested in estimating a common parameter vector, which generally corresponds

to the minimizer of some aggregate cost function (see, e.g.,[2]–[5] and the references therein). In this

article, we are instead interested in scenarios where different clusters of agents within the network are

interested in estimating different parameter vectors. There have been several useful works in this domain

in the literature under various assumptions, including in the earlier version of this work in [1]. This early

investigation dealt only with the case of two separate clusters in the network with each cluster interested

in one parameter vector. One useful application of this formulation in the context of biological networks
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was considered in [24], where each agent was assumed to collect data arising from one of two models

(e.g., the location of two separate food sources). The agents did not know which model generated their

observations and, yet, they needed to reach agreement aboutwhich model to follow (i.e., which food

source to move towards). Another important extension dealing with multiple (more than two) models

appears in [25], [26] where multi-task problems are introduced. In this formulation, different clusters of

the agents are again interested in estimating different parameter vectors (called “tasks”) and the tasks of

adjacent clusters are further assumed to be related to each other so that cooperation among clusters can

still be beneficial. This formulation is useful in many scenarios, as already illustrated in [25], including

in multiple target tracking [27], [28] and classification problems involving multiple models [29]–[34].

Other useful variations of multi-task problems appear in [35], which assumes fully-connected networks,

and in [36] where the agents have two types of parameters to estimate (a local parameter and a global

parameter). These various works focus on mean-square-error (MSE) design, where the parameters of

interest are estimated by seeking the minimizer of an MSE cost. Moreover, with the exception of [1],

[26], it is generally assumed in these works that the agents know beforehand which clusters they belong

to or which parameters they are interested in estimating.

In this article, we extend the approach of [1] and study multi-tasking adaptive networks under three

conditions that are fundamentally different from previousstudies. First, we go beyond mean-square-error

estimation and allow for more general convex risk functionsat the agents. This level of generality allows

the framework to handle broader situations both in adaptation and learning, such as logistic regression

for pattern classification purposes. Second, we do not assume any relation among the different objectives

pursued by the clusters. In other words, we study the important problem where different components

of the network are truly interested in different objectivesand would like to avoid interference among

clusters. And third, the agents do not know beforehand whichclusters they belong to and which other

agents are interested in the same objective.

For example, in an application involving a sensor network tracking multiple moving objects from

various directions, it is reasonable to assume that the trajectories of these objects are independent of

each other. In this case, only information shared within clusters is beneficial for learning; the information

from agents in other clusters would amount to interference.This means that agents would need to

cooperate with neighbors that belong to the same cluster andwould need to cut their links to neighbors

with different objectives. This task would be simple to achieve if agents were aware of their cluster

information. However, we will not be making that assumption. The cluster information will need to be

learned as well. This point highlights one major feature of our formulation: we do not assume that agents
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have full knowledge about their clusters. This assumption is quite common in the context of unsupervised

machine learning [29], [33], where the collected measurement data are not labeled and there are multiple

candidate models. If two neighboring agents are interestedin the same model and they are aware of

this fact, then they should exchange data and cooperate. However, the agents may not know this fact,

so they cannot be certain about whether or not they should cooperate. Accordingly, in this work, we

will devise an adaptive clustering and learning strategy that allows agents to learn which neighbors they

should cooperate with. In doing so, the resulting algorithmenables the agents in a network to be correctly

clustered and to attain improved learning performance through enhanced intra-cluster cooperation.

Notation: We use lowercase letters to denote vectors, uppercase letters for matrices, plain letters for

deterministic variables, and boldface letters for random variables. We also use(·)T to denote transposition,

(·)−1 for matrix inversion,Tr(·) for the trace of a matrix, and‖ · ‖ for the 2-norm of a matrix or the

Euclidean norm of a vector. Besides, we useA ⊗ B for matricesA andB to denote their Kronecker

product,A ≥ B to demote thatA−B is positive semi-definite, andA � B to demote that all entries of

A−B are nonnegative.

II. PROBLEM FORMULATION

We consider a network consisting ofN agents inter-connected via some topology. An individual cost

function,Jk(w) : RM×1 7→ R, of a vector parameterw, is associated with every agentk. Each costJk(w)

is assumed to be strictly-convex and is minimized at a uniquepoint wo
k. According to the minimizers

{wo
k}, agents in the network are categorized intoQ ≥ 2 mutually-exclusive clusters, denoted byCq,

q = 1, 2, . . . , Q.

Definition 1 (Cluster):Each clusterq, denoted byCq, consists of the collection of agents whose

individual costs share the common minimizerw⋆
q , i.e.,wo

k = w⋆
q for all k ∈ Cq.

Since agents from different clusters do not share common minimizers, the network then aims to solve

the clusteredmulti-task problem:

minimize
{wq}

Q
q=1

J(w1, . . . , wQ) ,
Q∑

q=1

∑

k∈Cq

Jk(wq) (1)

If the cluster information{Cq} is available to the agents, then problem (1) can be decomposed into Q

separate optimization problems over the sub-networks associated with the clusters:

minimize
w

Jc
q(w) ,

∑

k∈Cq

Jk(w) (2)
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for q = 1, 2, . . . , Q. Assuming the cluster topologies are connected, the corresponding minimizers{w⋆
q}

can be sought by employing diffusion strategies over each cluster. In this case, collaborative learning will

only occurwithin each cluster without any interaction across clusters. Thismeans that for every agent

k that belongs to a particular clusterCq, i.e., k ∈ Cq, its neighbors, which belong to the set denoted by

Nk, will need to be segmented into two sets: one set is denoted byN+
k and consists of neighbors that

belong to the same clusterCq, and the other set is denoted byN−
k and consists of neighbors that belong

to other clusters. It is clear that

N+
k , Nk ∩ Cq, N−

k , Nk\N+
k (3)

We illustrate a two-cluster network with a total ofN = 20 agents in Fig. 1a. The agents in the clusters

are denoted by blue and red circles, and are inter-connectedby the underlying topology, so that agents

may have in-cluster neighbors as well as neighbors from other clusters. For example, agentk from blue

clusterC1 has the in-cluster sub-neighborhoodN+
k = {k, 3, 4}, which is a subset of its neighborhood

Nk = {k, 1, 2, 3, 4, 5}. If the cluster information is available to all agents, thenthe network can be split

into two sub-networks, one for each cluster, as illustratedin Figs. 1b and 1c.

However, in this work we consider the more challenging scenario in which the cluster information{Cq}
is only partially available to the agents beforehand, or even completely unavailable. When the cluster

information is completely absent, each agentk must first identify neighbors belonging toN+
k . When the

cluster information is partially known, meaning that some agents from the same cluster already know

each other, then these agents can cooperate to identify the other members in their cluster. In order to

study these two scenarios in a uniform manner, we introduce the concept of a group.

Definition 2 (Group): A groupm, denoted byGm, is a collection of connected agents from the same

cluster and knowing that they belong to this same cluster.

Figure 1d illustrates the concept of groups when cluster information is only partially available to the

agents in the network from Fig. 1a. If an agent has no information about its neighbors, then it falls into

a singleton group, such as groupsG1 andG5 in Fig. 1d. If some neighboring agents know the cluster

information of each other, then they form a non-trivial group, such as groupsG2, G3, andG4. If every

agent in a cluster knows the cluster information of all its neighbors, then all cluster members form one

group and this group coincides with the cluster itself, as shown in Fig. 1b.

Since cooperation among neighbors belonging to different clusters can lead to biased results [3],

[25], [37], agents should only cooperate within clusters. However, when agents have access to partial

cluster information, then they only know their group neighbors but notall cluster neighbors. Therefore,
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(a) The underlying topology. (b) The clustered topology forC1.

(c) The clustered topology forC2. (d) Five groups from clusterC1.

Fig. 1. A network withN = 20 nodes andQ = 2 clusters. ClusterC1 consists of 10 agents in blue. ClusterC2 consists

of another 10 agents in red. Agentk belongs to ClusterC1, and its neighborhood is denoted byNk = {k, 1, 2, 3, 4, 5} with

N+

k = {k, 3, 4}. With perfect cluster information, the underlying topology splits into two sub-networks, one for each cluster.

With partial cluster information, clusterC1 breaks down into five groups: two singleton groupsG1 andG5, and three non-trivial

groupsG2, G3, andG4. Through adaptive learning and clustering, the five groups in (b) will end up merging into one largest

group corresponding to the entire cluster in (c).

at this stage, agents can only cooperate within groups, leaving behind some potential opportunity for

cooperation with neighbors from the same cluster. The purpose of this work is to devise a procedure to

enable agents to identify all of their cluster neighbors, such that small groups from the same cluster can

merge automatically into larger groups. At the same time, the procedure needs to be able to turn off links

between different clusters in order to avoid interference.By using such a procedure, agents in multi-task
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networks withpartial cluster information will be able to cluster themselves in anadaptivemanner, and

then solve problem (1) by solving (2) collaborativelywithin each cluster. We shall examine closely the

probability of successful clustering and evaluate the steady-state mean-square-error performance for the

overall learning process. In particular, we will show that the probability of correct clustering approaches

one for sufficiently small step-sizes. We will also show that, with the enhanced cooperation that results

from adaptive clustering, the mean-square-error performance for the network will be improved relative

to the network without adaptive clustering.

III. M ODELS AND ASSUMPTIONS

We summarize the main conditions on the network topology in the following statement.

Assumption 1 (Topology, clusters, and groups):

1) The network consists ofQ clusters,{Cq; q = 1, 2, . . . , Q}. The size of clusterCq is denoted byN c
q

such that|Cq| = N c
q and

∑Q
q=1N

c
q = N .

2) The underlying topology for each clusterCq is connected. Clusters are also inter-connected by some

links so that agents from different clusters may still be neighbors of each other.

3) There is a total ofG groups,{Gm;m = 1, 2, . . . , G}, in the network. The size of groupGm is

denoted byNg
m such that|Gm| = Ng

m and
∑G

m=1 N
g
m = N .

It is obvious thatQ ≤ G ≤ N because each cluster has at least one group and each group hasat least

one agent.

Definition 3 (Indexing rule):Without loss of generality, we index groups according to their cluster

indexes such that groups from the same cluster will have consecutive indexes. Likewise, we index agents

according to their group indexes such that agents from the same group will have consecutive indexes.

According to this indexing rule, if groupGm belongs to clusterCq, then the next groupGm+1 will

belong either to clusterCq or the next cluster,Cq+1; if agentk belongs to groupGm, then the next agent

k + 1 will belong either to groupGm or the next group,Gm+1.

Based on the problem formulation in Section II, although agents in the same cluster are connected,

they are generally not aware of each other’s cluster information, and therefore some agents in the same

cluster may not cooperate in the initial stage of adaptation. On the other hand, agents in the same group

are aware of each other’s cluster information, so these agents can cooperate. As the learning process

proceeds, agents from different groups in the same cluster will recognize each other through information

sharing. Once cluster information is inferred, small groups will merge into larger groups, and agents will

start cooperating with more neighbors. Through this adaptive clustering procedure, cooperative learning
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will grow until all agents within the same cluster become cooperative and the network performance is

enhanced.

To proceed with the modeling assumptions, we introduce the following network Hessian matrix

function:

∇2J(W) , diag{∇2J1(w1), . . . ,∇2JN (wN )} (4)

where the vectorW collects the parameters from across the network:

W , col{w1, . . . , wN} ∈ RNM×1 (5)

We also collect the individual minimizers into a vector:

W
o , col{wo

1, . . . , w
o
N} = col{1Nc

q
⊗ w⋆

q ; q = 1, . . . , Q} (6)

where the second equality is due to the indexing rule in Definition 3, and1n denotes ann × 1 vector

with all its entries equal to one. We next list two standard assumptions for stochastic distributed learning

over adaptive networks to guide the subsequent analysis in this work. One assumption relates to the

analytical properties of the cost functions, and is meant toensure well-defined minima and well-posed

problems. The second assumption relates to stochastic properties of the gradient noise processes that

result from approximating the true gradient vectors. This assumption is meant to ensure that the gradient

approximations are unbiased and with moments satisfying some regularity conditions. Explanations and

motivation for these assumptions in the context of inference problems can be found in [2], [3], [38].

Assumption 2 (Cost functions):

1) Each individual costJk(w) is assumed to be strictly-convex, twice-differentiable, and with bounded

Hessian matrix function satisfying:

λk,LIM ≤ ∇2Jk(w) ≤ λk,UIM (7)

where0 ≤ λk,L ≤ λk,U < ∞.

2) In each groupGm, at least one individual cost, say,Jko(w), is strongly-convex, meaning that the

lower bound,λko,L, on the Hessian of this cost is positive.

3) The network Hessian function∇2J(W) in (4) satisfies the Lipschitz condition:

‖∇2J(W1)−∇2J(W2)‖ ≤ κH‖W1 − W2‖ (8)

for any W1,W2 ∈ RNM×1 and someκH ≥ 0.

The second set of assumptions relate to conditions on the gradient noise processes. For this purpose,

we introduce the filtration{Fi; i ≥ 0} to represent the information flow that is available up to thei-th
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iteration of the learning process. The true network gradient function and its stochastic approximation are

respectively denoted by

∇J(W) , col{∇J1(w1), . . . ,∇JN (wN )} (9)

∇̂J(W) , col{∇̂J1(w1), . . . , ∇̂JN (wN )} (10)

The gradient noise at iterationi and agentk is denoted by:

sk,i(wk,i−1) , ∇̂Jk(wk,i−1)−∇Jk(wk,i−1) (11)

wherewk,i−1 denotes the estimate forwo
k that is available to agentk at iterationi − 1. The network

gradient noise is denoted bySi(Wi−1) and is the random process that is obtained by aggregating all

noise processes from across the network into a vector:

Si(Wi−1) , col{s1,i(w1,i−1), . . . , sN,i(wN,i−1)} (12)

Using (11), we can write

∇̂J(Wi−1) = ∇J(Wi−1) + Si(Wi−1) (13)

We denote the conditional covariance ofSi(Wi−1) by

Rs,i(Wi−1) , E[Si(Wi−1)S
T

i (Wi−1)|Fi−1] (14)

whereWi−1 is in Fi−1.

Assumption 3 (Gradient noise):It is assumed that the gradient noise process satisfies the following

properties for anyWi−1 in Fi−1:

1) Martingale difference [3], [39]:

E[Si(Wi−1)|Fi−1] = 0 (15)

2) Bounded fourth-order moment [3], [40], [41]:

E[‖Si(Wi−1)‖4|Fi−1] ≤ α2‖Wo −Wi−1‖4 + σ4
s (16)

for someα, σs ≥ 0, and whereWo is from (6).

3) Lipschitz conditional covariance function [3], [40], [41]:

‖Rs,i(W
o)−Rs,i(Wi−1)‖ ≤ κs‖Wo − Wi−1‖γs (17)

for someκs ≥ 0 and0 < γs ≤ 4.
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4) Convergent conditional covariance matrix [3], [39]–[41]:

Rs , lim
i→∞

Rs,i(W
o) > 0 (18)

whereRs is symmetric and positive definite.

It is easy to verify from (16) that the second-order moment ofthe gradient noise process also satisfies:

E[‖Si(Wi−1)‖2|Fi−1] ≤ α‖Wo − Wi−1‖2 + σ2
s (19)

IV. PROPOSEDALGORITHM AND MAIN RESULTS

In order to minimize all cluster cost functions{Jc
q(w); q = 1, 2, . . . , Q} defined by (2), agents need to

cooperate only within their clusters. Although cluster information is in general not available beforehand,

groups within each cluster are available according to Assumption 1. Therefore, based on this prior

information, agents can instead focus on solving the following problem based on partitioning by groups

rather than by clusters:

minimize
{wm}G

m=1

J ′(w1, . . . , wG) ,
G∑

m=1

∑

k∈Gm

Jk(wm) (20)

with one parameter vectorwm for each groupGm. In the extreme case when prior clustering information

is totally absent, groups will collapse into singletons andproblem (20) will reduce to the individual

non-cooperative case with each agent running its own stochastic-gradient algorithm to minimize its

cost function. In another extreme case when cluster information is completely available, groups will

be equivalent to clusters and problem (20) will reduce to theformation in (1). Therefore, problem (20) is

general and includes many scenarios of interest as special cases. We shall argue in the sequel that during

the process of solving (20), agents will be able to graduallylearn their neighbors’ clustering information.

This information will be exploited by aseparatelearning procedure by each group to dynamically involve

more neighbors (from outside the group) in local cooperation. In this way, we will be able to establish

analytically that, with high probability, agents will be able to successfully solve problem (1) (and not

just (20)) evenwithout having the complete clustering information in advance.

We motivate the algorithm by examining problem (20). Since the groups{Gm} are already formed

and they are disjoint, problem (20) can be decomposed intoG separate optimization problems, one for

each group:

minimize
w

Jg
m(w) ,

∑

k∈Gm

Jk(w) (21)
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with m = 1, 2, . . . , G. For any agentk belonging to groupGm in clusterCq, i.e.,k ∈ Gm ⊆ Cq, it is easy

to verify that

{k} ⊆ Nk ∩ Gm ⊆ Nk ∩ Cq = N+
k (22)

Then, agents in groupGm can seek the solution ofJg
m(w) in (21) by using the adapt-then-combine (ATC)

diffusion learning strategy overGm, namely,

ψk,i = wk,i−1 − µk∇̂Jk(wk,i−1) (23a)

wk,i =
∑

ℓ∈Nk∩Gm

aℓkψℓ,i (23b)

for all k ∈ Gm, whereµk > 0 denotes the step-size parameter, and{aℓk} are convex combination

coefficients that satisfy 



aℓk > 0 if ℓ ∈ Nk ∩ Gm

aℓk = 0 otherwise
, and

N∑

ℓ=1

aℓk = 1 (24)

Moreover,wk,i denotes the random estimate computed by agentk at iterationi, andψk,i is the intermedi-

ate iterate. We collect the coefficients{aℓk} into a matrixA , [aℓk]
N
ℓ,k=1. Obviously,A is a left-stochastic

matrix, namely,

AT
1N = 1N (25)

We collect the iterates generated from (23a)–(23b) by groupGm into a vector:

Wm,i , col{wk,i; k ∈ Gm} ∈ RNg
mM×1 (26)

whereNg
m is the size ofGm. According to the indexing rule from Definition 3 for agents and groups,

the estimate for the entire network from (23a)–(23b) can be obtained by stacking the group estimates

{Wm,i}:

Wi , col{w1,i, . . . ,wN,i} = col{W1,i, . . . ,WG,i} (27)

The procedure used by the agents to enlarge their groups willbe based on the following results to be

established in later sections. We will show in Theorem 3 thatafter sufficient iterations, i.e., asi → ∞,

and for small enough step-sizes, i.e.,µk ≪ 1 for all k, the network estimateWi defined by (27) exhibits

a distribution that isnearly Gaussian:

Wi ∼ N(Wo, µmaxΠ) (28)

whereN(φ,Ψ) denotes a Gaussian distribution with meanφ and covarianceΨ, Wo is from (6),

µmax , max
k=1,...,N

µk (29)
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andΠ ∈ RNM×NM is a symmetric, positive semi-definite matrix, independentof µmax, and defined later

by (118). In addition, we will show that for any pair of agentsfrom two different groups, for example,

k ∈ Gm andℓ ∈ Gn, where the two groupsGm andGn may or may not originate from the same cluster,

the difference between their estimates will also be distributed approximately according to a Gaussian

distribution:

wℓ,i −wk,i ∼ N(wo
ℓ − wo

k, µmax∆ℓ,k) (30)

where

∆ℓ,k , Πℓ,ℓ +Πk,k −Πk,ℓ −Πℓ,k (31)

is a symmetric, positive semi-definite matrix, andΠk,ℓ denotes the(k, ℓ)-th block ofΠ with block size

M ×M . These results are useful for inferring the cluster information for agentsk and ℓ. Indeed, since

the covariance matrix in (30) is on the order ofµmax, the probability density function (pdf) ofwℓ,i−wk,i

will concentrate around its mean, namely,wo
ℓ −wo

k, whenµmax is sufficiently small. Therefore, if these

agents belong to the same cluster such thatwo
ℓ = wo

k, then we will be able to conclude from (30) that

with high probability,‖wℓ,i −wk,i‖2 = O(µmax). On the other hand, if the agents belong to different

clusters such thatwo
ℓ 6= wo

k, then it will hold with high probability that‖wℓ,i −wk,i‖2 = O(µ0
max). This

observation suggests that a hypothesis test can be formulated for agentsℓ andk to determine whether or

not they are members of the same cluster:

‖wℓ,i −wk,i‖2
H0

≶
H1

θk,ℓ (32)

whereH0 denotes the hypothesiswo
ℓ = wo

k, H1 denotes the hypothesiswo
ℓ 6= wo

k, and θk,ℓ > 0 is a

predefined threshold. Both agentsℓ and k will test (32) to reach a symmetric pattern of cooperation.

Sincewk,i andwℓ,i are accessible through local interactions within neighborhoods, the hypothesis test

(32) can be carried out in a distributed manner. We will further show that the probabilities for both types

of errors incurred by (32), i.e., the false alarm (Type-I) and the missing detection (Type-II) errors, decay

at exponential rates, namely,

Type-I:P[‖wℓ,i −wk,i‖2 > θk,ℓ|wo
ℓ = wo

k] ≤ O(e−c1/µmax)

Type-II: P[‖wℓ,i −wk,i‖2 < θk,ℓ|wo
ℓ 6= wo

k] ≤ O(e−c2/µmax)

for some constantsc1 > 0 andc2 > 0. Therefore, for long enough iterations and small enough step-sizes,

agents are able to successfully infer the cluster information with very high probability.
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The clustering information acquired at each iterationi is used by the agents to dynamically adjust their

inferred cluster neighborhoods. TheN+
k,i for agentk ∈ Gm at iterationi consists of the neighbors that

are accepted under hypothesisH0 and the other neighbors that are already in the same group:

N+
k,i , {ℓ ∈ Nk; ‖wℓ,i −wk,i‖2 < θk,ℓ or ℓ ∈ Gm} (33)

Using these dynamically-evolving cluster neighborhoods,we introduce aseparateATC diffusion learning

strategy:

ψ′
k,i = w

′
k,i−1 − µk∇̂Jk(w

′
k,i−1) (34a)

w′
k,i =

∑

ℓ∈N+

k,i−1

a′ℓk(i− 1)ψ′
ℓ,i (34b)

where the combination coefficients{a′ℓk(i − 1)} become random becauseN+
k,i−1 is random and may

vary over iterations. The iteration indexi − 1 is used for these coefficients to enforce causality. Since

Nk ∩ Gm denotes the neighbors of agentk that are already in the same groupGm as k, it is obvious

thatNk ∩Gm ⊆ N+
k,i−1 for any i ≥ 0. This means that recursion (34a)–(34b) generally involvesa larger

range of interactions among agents than the first recursion (23a)–(23b). We summarize the algorithm in

the following listing.

Distributed clustering and learning over networks

Initialization:wk,−1 = w
′
k,−1 = 0 andN+

k,−1 = Nk ∩ Gm for all k ∈ Gm andm = 1, 2, . . . , G.

for i ≥ 0 do

(1) Each agentk updateswk,i according to the first recursion (23a)–(23b) overNk ∩ Gm.

(2) Each agentk updatesw′
k,i according to the second recursion (34a)–(34b) overN+

k,i−1.

(3) Each agentk updatesN+
k,i by using (33) with{wℓ,i; ℓ ∈ Nk} from step (1).

end for

V. MEAN-SQUARE-ERROR ANALYSIS

In the previous section, we mentioned that Theorem 3 in Section VI-A is the key result for the design of

the clustering criterion. To arrive this theorem, we shall derive two useful intermediate results, Lemmas 1

and 2, in this section. These two results are related to the MSE analysis of the first recursion (23a)–(23b),

which is used in step (1) of the proposed algorithm. We shall therefore examine the stability and the

MSE performance of recursion (23a)–(23b) in the sequel. It is clear that the evolution of this recursion

is not influenced by the other two steps. Thus, we can study recursion (23a)–(23b) independently.
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A. Network Error Recursion

Using model (13), recursion (23a)–(23b) leads to

Wi = AT
Wi−1 −ATM∇J(Wi−1)−ATMSi(Wi−1) (35)

whereWi is from (27),∇J(·) is from (9),Si(·) is from (12), and

M , diag{µ1, . . . , µN} ⊗ IM (36)

A , A⊗ IM (37)

We introduce the network error vector:

W̃i , W
o − Wi = col{w̃1,i, . . . , w̃N,i} (38)

whereWo is from (6), and the individual error vectors:

w̃k,i , wo
k −wk,i (39)

Using the mean-value theorem [3], [38], we can write

∇J(Wi−1) = ∇J(Wo)−
[∫ 1

0
∇2J(Wo − tW̃i−1)dt

]
W̃i−1 (40)

where∇2J(·) is from (4). SinceWo consists of individual minimizers throughout the network,it follows

that∇J(Wo) = 0. Let

Hi−1 ,
∫ 1

0
∇2J(Wo − tW̃i−1)dt = diag{Hk,i−1}Nk=1 (41)

where

Hk,i−1 ,
∫ 1

0
∇2Jk(w

o
k − tw̃k,i−1)dt (42)

Then, expression (40) can be rewritten as

∇J(Wi−1) = −Hi−1W̃i−1 (43)

where it is worth noting that the random matrixHi−1 is dependent oñWi−1. Substituting (43) into (35)

yields:

Wi = AT
Wi−1 +ATMHi−1W̃i−1 −ATMSi(Wi−1) (44)

By the indexing rule from Definition 3 and condition (24), thecombination matrixA possesses a block

diagonal structure:

A = diag{Am;m = 1, . . . , G} (45)
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where eachAm collects the combination coefficients within groupGm:

Am , [aℓk; ℓ, k ∈ Gm] (46)

From the same condition (24), we have that eachAm is itself anNg
m ×Ng

m left-stochastic matrix:

AT

m1Ng
m
= 1Ng

m
(47)

If group Gm is a subset of clusterCq, then the agents inGm share the same minimizer atw⋆
q . Thus, for

anyGm ⊆ Cq, let

W
o
m , col{wo

k; k ∈ Gm} = 1Ng
m
⊗ w⋆

q (48)

It follows from (47) and (48) that

(AT

m ⊗ IM )Wo
m = (AT

m ⊗ IM )(1Ng
m
⊗ w⋆

q) = W
o
m (49)

Again, from the indexing rule in Definition 3, we have from (6)and (48) that

W
o = col{Wo

m;m = 1, . . . , G} (50)

Then, it follows from (45) and (50) that

AT
W

o =




AT
1 ⊗ IM

. . .

AT

G ⊗ IM







Wo
1

...

Wo
G



= W

o (51)

Accordingly, subtractingWo from both sides of (44) and using (51) yields the network error recursion:

W̃i = AT(INM −MHi−1)W̃i−1 +ATMSi(Wi−1) (52)

We denote the coefficient matrix appearing in (52) by

Bi−1 , AT(INM −MHi−1) (53)

Then, the network error recursion (52) can be rewritten as

W̃i = Bi−1W̃i−1 +ATMSi(Wi−1) (54)

We further introduce the group quantities:

Am , Am ⊗ IM (55)

Wm,i , col{wk,i; k ∈ Gm} ∈ RNg
mM×1 (56)
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Mm , diag{µk; k ∈ Gm} ⊗ IM (57)

Hm,i−1 , diag{Hk,i−1; k ∈ Gm} (58)

Sm,i(Wm,i−1) , col{sk,i(wk,i−1); k ∈ Gm} (59)

It follows from the indexing rule in Definition 3 that

A = diag{A1, . . . ,AG} (60)

Wi = col{W1,i, . . . ,WG,i} (61)

M = diag{M1, . . . ,MG} (62)

Hi−1 = diag{H1,i−1, . . . ,HG,i−1} (63)

Si(Wi−1) = col{S1,i(W1,i−1), . . . , SG,i(WG,i−1)} (64)

Using (60)–(63), the matrixBi−1 in (53) can be expressed by

Bi−1 = diag{B1,i−1, . . . ,BG,i−1} (65)

where

Bm,i−1 , AT

m(INg
mM −MmHm,i−1) (66)

Due to the block structures in (60)–(65), groups are isolated from each other. Therefore, using these

group quantities, the network error recursion (54) is automatically decoupled into a total ofG group

error recursions, where them-th recursion is given by

W̃m,i = Bm,i−1W̃m,i−1 +AT

mMmSm,i(Wm,i−1) (67)

B. Mean-Square and Mean-Fourth-Order Error Stability

The stability of the network error recursion (54) is now reduced to studying the stability of the group

recursions (67). Recall that, by Definition 2, the agents in each group are connected. Moreover, condition

(24) implies that agents in each group have non-trivial self-loops, meaning thatakk > 0 for all k ∈ Gm.

It follows that eachAm is a primitive matrix [2], [42] (which is satisfied as long as there exists at least

one akk > 0 in each group). Under these conditions, we are now able to ascertain the stability of the

second and fourth-order error moments of the network error recursion (54) by appealing to results from

[3].
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Theorem 1 (Stability of error moments):For sufficiently small step-sizes, the network error recursion

(54) is mean-square and mean-fourth-order stable in the sense that

lim sup
i→∞

E‖W̃i‖2 = O(µmax) (68)

lim sup
i→∞

E‖W̃i‖4 = O(µ2
max) (69)

Proof: It is obvious that the network error recursion (54) is mean-square and mean-fourth-order

stable if, and only if, each group error recursion (67) is stable in a similar sense. From Assumption 2,

we know that there exists at least one strongly-convex cost in each group. Since the combination matrix

Am for each group is primitive and left-stochastic, we can now call upon Theorems 9.1 and 9.2 from

[3, p. 508, p. 522] to conclude that every group error recursion is mean-square and mean-fourth-order

stable, namely,

lim sup
i→∞

E‖W̃m,i‖2 = O(µmax) (70)

lim sup
i→∞

E‖W̃m,i‖4 = O(µ2
max) (71)

from which (68) and (69) follow.

C. Long-Term Model

Once network stability is established, we can proceed to assess the performance of the adaptive

clustering and learning procedure. To do so, it becomes moreconvenient to first introduce a long-term

model for the error dynamics (54). Note that recursion (54) represents a non-linear, time-variant, and

stochastic system that is driven by a state-dependent random noise process. Analysis of recursion (54) is

facilitated by noting (see Lemma 1 below) that when the step-size parameterµmax is small enough, the

mean-square behavior of (54) in steady-state, wheni ≫ 1, can be well approximated by the behavior of

the following long-term model:

W̃
long
i = B W̃

long
i−1 +ATMSi(Wi−1) (72)

where we replaced the random matrixBi−1 in (54) by the constant matrix

B , AT(INM −MH) (73)

In (73), the matrixH is defined by

H , diag{H1, . . . ,HN} (74)
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where

Hk , ∇2Jk(w
o
k) (75)

Note that the long-term model (72) is now alinear time-invariantsystem, albeit one that continues to be

driven by thesamerandom noise process as in (54). Similarly to the original error recursion (54), the

long-term recursion (72) can also be decoupled intoG recursions, one for each group:

W̃
long
m,i = Bm W̃

long
m,i−1 +AT

mMmSm,i(Wm,i−1) (76)

where

W̃
long
m,i , col{w̃long

k,i ; k ∈ Gm} ∈ RNg
mM×1 (77)

Bm , AT

m(INg
mM −MmHm) (78)

Hm , diag{Hk; k ∈ Gm} (79)

W
o
m , col{wo

k; k ∈ Gm} (80)

Lemma 1 (Accuracy of long-term model):For sufficiently small step-sizes, the evolution of the long-

term model (72) is close to the original error recursion (54)in MSE sense:

lim sup
i→∞

E‖W̃i − W̃
long
i ‖2 = O(µ2

max) (81)

Proof: We call upon Theorem 10.2 from [3, p. 557] to conclude that thedifference between each

group error recursion (67) and its long-term model (76) satisfies:

lim sup
i→∞

E‖W̃m,i − W̃
long
m,i‖2 = O(µ2

max) (82)

for all m. It is then immediate to conclude that (81) holds.

D. Low-Dimensional Model

Lemma 1 indicates that we can assess the MSE dynamics of the original network recursion (54) to

first-order inµmax by working with the long-term model (72). It turns out that the state variable of

the long-term model can be split into two parts, one consisting of thecentroidsof each group and the

other consisting of in-group discrepancies. The details ofthis splitting are not important for our current

discussion but interested readers can refer to Sec. V of [40]and Eq. (10.37) of [3, p. 558] for a detailed

explanation. Here we only use this fact to motivate the introduction of the low-dimensional model.

Moreover, it also turns out that the first part, i.e, the part corresponding to the centroids, is the dominant

component in the evolution of the error dynamics and that theevolution of the two parts (centroids
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and in-group discrepancies) is weakly-coupled. By retaining the first part, we can therefore arrive at a

low-dimensional model that will allow us to assess performance in closed-form to first-order inµmax. To

arrive at the low-dimensional model, we need to exploit the eigen-structure of the combination matrix

A, or, equivalently, that of eachAm.

Recall that we indicated earlier prior to the statement of Theorem 1 that eachAm is a primitive and

left-stochastic matrix. By the Perron-Frobenius theorem [3], [42], [43], it follows that eachAm has a

simple eigenvalue at one with all other eigenvalues lying strictly inside the unit circle. Moreover, if we

let pgm ∈ RNg
m×1 denote the right-eigenvector ofAm that is associated with the eigenvalue at one, and

normalize its entries to add up to one, then the same theorem ensures that all entries ofpgm will be

positive:

pgm , col{pgm,k}
Ng

m

k=1 ≻ 0, Ampgm = pgm, 1T

Ng
m
pgm = 1 (83)

wherepgm,k denotes thek-th entry of pgm. This means that we can express eachAm in the form (see

(168) further ahead):

Am = pgm1
T

Ng
m
+ Vm,RJm,ǫV

T

m,L (84)

for some eigenvector matricesVm,R and Vm,L, and whereJm,ǫ denotes the collection of the Jordan

blocks with eigenvalues inside the unit circle and with their unit entries on the first lower sub-diagonal

replaced by some arbitrarily small constant0 < ǫ ≪ 1. The first rank-one component on the RHS of

(84) represents the contribution by the largest eigenvalueof Am, and this component will be used further

ahead to describe the centroid of groupGm. The network Perron eigenvector is obtained by stacking the

group Perron eigenvectors{pgm}:

p , col{pg1, . . . , p
g
G} , col{p1, . . . , pN} (85)

wherepk denotes thek-th entry of p ∈ RN×1. According to the indexing rule from Definition 3, it is

obvious thatpgm = col{pk; k ∈ Gm}.

Now, for each groupGm, we introduce the low-dimensional (centroid) error recursion defined by

(compare with (76)):

w̃low
m,i = Dmw̃

low
m,i−1 + (pgm ⊗ IM )TMmSm,i(Wm,i−1) (86)

wherew̃low
m,i is M × 1, andDm is M ×M and defined by

Dm , IM − µmaxH̄m (87)
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where

H̄m , µ−1
max(p

g
m ⊗ IM )TMmHm(1Ng

m
⊗ IM )

=
∑

k∈Gm

pkµk

µmax
Hk = O(µ0

max) (88)

The matrix H̄m is positive definite since there is at least one Hessian matrix in {Hk; k ∈ Gm} that is

positive definite according to Assumption 2. We collect the low-rank recursions (86) for groups into one

recursion for the entire network by stacking them on top of each other:

W̃
low
i = DW̃

low
i−1 + PTMSi(Wi−1) (89)

where

W̃
low
i , col{w̃low

1,i , . . . , w̃
low
G,i} ∈ RGM×1 (90)

D , diag{D1, . . . ,DG} ∈ RGM×GM (91)

P , diag{pg1, . . . , pgG} ⊗ IM ∈ RNM×GM (92)

Recursion (89) describes the joint dynamics of all the centroids (one for each group). Note that the

dimension ofW̃ low
i in (89) is GM , which is lower than the dimension,NM , of W̃

long
i in (72) or W̃i

in (54), becauseG ≤ N by Assumption 1. In order to measure the difference between the dynamics of

the long-term model (72) and the low-dimensional model (89), we expandW̃ low
i in the following manner

(compare with (90)):

W̄
low
i , col{W̄ low

1,i , . . . , W̄
low
G,i} ∈ RNM×1 (93)

W̄
low
m,i , 1Ng

m
⊗ w̃low

m,i ∈ RNg
mM×1 (94)

because
∑G

m=1 N
g
m = N according to Assumption 1.

Lemma 2 (Accuracy of low-dimensional model):For sufficiently small step-sizes, the low-dimensional

model (89) is close to the network long-term model (72) in thefollowing sense:

lim sup
i→∞

E‖W̃ long
i − W̄

low
i ‖2 = O(µ2

max) (95)

whereW̄
low
i is given by (93) and is related tõW low

i via (94).

Proof: See Appendix A.

Lemma 3 (Low-dimensional error covariance):For sufficiently small step-sizes, the covariance matrix

for W̃
low
i satisfies

lim sup
i→∞

‖E[W̃ low
i (W̃

low
i )T]−Θ‖ = O(µ1+γs/2

max ) (96)
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whereΘ ∈ RGM×GM is symmetric, positive-definite, and uniquely solves the discrete Lyapunov equation:

Θ = DΘD + PTMRsMP (97)

Proof: See Appendix B.

E. Steady-State MSE Performance

From Theorem 1, we know that the limit superior of the MSE is bounded withinO(µmax). In order

to define meaningful steady-state performance metrics, we consider the case in which the step-sizes

approach zero asymptotically. Results obtained in this case are representative of operation in the slow

adaptation regime (see Sec. 11.2 of [3, pp. 581–583]).

Lemma 4 (Steady-state normalized MSD):The normalized total MSD of̃Wi in (54) is given by

lim
µmax→0

lim sup
i→∞

µ−1
maxE‖W̃i‖2 =

G∑

m=1

Ng
m

2µmax
Tr



(∑

k∈Gm

pkµkHk

)−1(∑

k∈Gm

p2kµ
2
kRk

)
 (98)

whereHk is from (75) andRk is them-th block on the diagonal ofRs from (18) with block sizeM×M .

Proof: The normalized total MSD is the sum of the normalized MSD for each group. From Lemma

11.3 of [3, p. 594], the normalized MSD for each groupGm is given by

lim
µmax→0

lim sup
i→∞

µ−1
maxE‖W̃m,i‖2 =

Ng
m

2µmax
Tr



(∑

k∈Gm

pkµkHk

)−1(∑

k∈Gm

p2kµ
2
kRk

)
 (99)

Note that we calculate thenormalized totalMSD rather than theaverageMSD in (98) and (99).

In order to examine the statistical properties of the error vectorW̃i, we need to strengthen the result in

Lemma 4 by evaluating the full normalized error covariance matrix of W̃i in steady-state. From Lemmas

1 and 2, it is clear that the mean-square dynamics of the original error recursion (54) can be well

approximated by the low-dimensional model (89). And it was shown in Eq. (10.78) of [3, p. 563] that

the variances of the centroids{w̃low
k,i } are in the order ofµmax in steady-state, which implies that

lim
µmax→0

lim sup
i→∞

µ−1
maxE‖W̃ low

i ‖2 = O(µ0
max) (100)

Since the induced-2 norm of the covariance matrix of any random vector is always bounded by its

variance, i.e.,‖ExxT‖ ≤ E‖x‖2 by using Jensen’s inequality, it follows from (100) that thenormalized

covariance matrix ofW̃ low
i is finite in steady-state. Moreover, since Lemma 3 applies toany positive

value ofµmax as long as it is small enough to ensure stability, we can take the limit of µmax in (96) by

letting it approach zero asymptotically. That is,

lim
µmax→0

lim sup
i→∞

‖µ−1
maxE[W̃

low
i (W̃

low
i )T]− Φ‖ = 0 (101)
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where

Φ , lim
µmax→0

(µ−1
maxΦi) (102)

Due to (100) and (101),Φ is in the order ofµ0
max, i.e., ‖Φ‖ = O(µ0

max). In fact, by introducing

Φi , µ−1
maxE[W̃

low
i (W̃

low
i )T] and using the triangle inequality, we have

‖Φ‖ = ‖Φ − Φi +Φi‖ ≤ ‖Φ− Φi‖+ ‖Φi‖ (103)

‖Φi‖ = ‖Φi − Φ+ Φ‖ ≤ ‖Φi − Φ‖+ ‖Φ‖ (104)

Taking i → ∞ andµmax → 0 for both (103) and (104) yields:

‖Φ‖ ≤ lim
µmax→0

lim sup
i→∞

‖Φi‖ (105)

‖Φ‖ ≥ lim
µmax→0

lim sup
i→∞

‖Φi‖ (106)

by using (101). From (105) and (106), we get

‖Φ‖ = lim
µmax→0

lim sup
i→∞

‖Φi‖ (107)

SinceΦi ∈ RGM×GM is positive semi-definite, it holds that

(GM)−1Tr(Φi) ≤ ‖Φi‖ ≤ Tr(Φi) (108)

where we used the fact for any positive semi-definite matrixX ≥ 0 that (i) all the eigenvalues ofX are

nonnegative, (ii)‖X‖ is equal to the largest eigenvalue ofX, and (iii) Tr(X) is equal to the sum of all

the eigenvalues ofX. Moreover,

Tr(Φi) = Tr(µ−1
maxE[W̃

low
i (W̃

low
i )T])= µ−1

maxE‖W̃ low
i ‖2 (109)

Using (100), it follows from (108) and (109) that

lim
µmax→0

lim sup
i→∞

‖Φi‖ = O(µ0
max) (110)

Substituting (110) into (107) yields the desired result, namely,‖Φ‖ = O(µ0
max). Then, according to (102),

Φ is the unique solution to equation (97) whenµmax → 0 asymptotically. Introduce twoGM × GM

matrices:

H̄ , diag{H̄1, . . . , H̄G} = O(µ0
max) (111)

R̄ , µ−2
maxPTMRsMP = O(µ0

max) (112)
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where H̄m is from (88) andRs is from (18). It is easy to verify that̄H and R̄ are symmetric and

positive-definite according to Assumptions 2 and 3. From (91), (111), and (87), we get

D = IGM − µmaxH̄ (113)

Using (102)–(113), equation (97) reduces to

H̄Φ+ ΦH̄ = R̄+ µmaxH̄ΦH̄ (114)

Since H̄ and R̄ are constant matrices, andΦ is finite, the last term on the RHS of (114) disappears

as µmax → 0 asymptotically. Therefore, we conclude thatΦ is the unique solution to the continuous

Lyapunov equation:

H̄Φ+ΦH̄ = R̄ (115)

Let us define thenormalizednetwork error covariance matrix for̃Wi from (54) by

Πi , µ−1
maxE(W̃iW̃

T

i ) (116)

Theorem 2 (Block structure):In steady-state, and as the step-sizes approach zero asymptotically, the

normalized network error covariance matrixΠi in (116) satisfies

lim
µmax→0

lim sup
i→∞

‖Πi −Π‖ = 0 (117)

where

Π ,




(1Ng
1
1
T

Ng
1

)⊗ Φ1,1 . . . (1Ng
1
1
T

Ng

G

)⊗Φ1,G

...
. . .

...

(1Ng

G
1
T

Ng
1

)⊗ ΦG,1 . . . (1Ng

G
1
T

Ng

G
)⊗ ΦG,G




(118)

andΦm,r denotes the(m, r)-th block ofΦ from (115) with block sizeM ×M .

Proof: See Appendix C.

VI. ERROR PROBABILITY ANALYSIS FOR CLUSTERING

Using the results from the previous section, we now move on toassess the error probabilities for

the hypothesis testing problem (32). To do so, we need to determine the probability distribution of the

decision statistic that is generated by recursion (23a)–(23b).
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A. Asymptotic Joint Distribution of Estimation Errors

Using (113), we rewrite the low-dimensional model (89) as

W̃
low
i = W̃

low
i−1 − µmaxH̄W̃

low
i−1 + µmaxs̄i (119)

whereH̄ is from (111) and

s̄i , µ−1
maxPTMSi(Wi−1) ∈ RGM×1 (120)

Lemma 5 (Rate of weak convergence):The normalized sequence,{W̃ low
i /

√
µmax; i ≥ 0}, from (119)

converges in distribution asi → ∞ andµmax → 0 to the Gaussian random variable:

ξ , col{ξ1, . . . , ξG} ∼ N(0,Φ) (121)

whereξm ∈ RM×1 for all m, andΦ ∈ RGM×GM is the unique solution to the Lyapunov equation (115).

Proof: See Appendix D.

In the sequel we establish the main result that the distribution of the normalized error sequence from

(54), {W̃i/
√
µmax; i ≥ 0}, asymptotically approaches a Gaussian distribution. According to Definition 4

from [44, p. 253], a random sequence{ζi; i ≥ 0} converges in distribution to some random variableζ

if, and only if,

lim
i→∞

E |f(ζi)− f(ζ)| = 0 (122)

for anybounded continuous functionf(·). We use this fact together with the following lemma to establish

Theorem 3 further ahead.

Lemma 6 (Weak convergence):Let {ζi; i ≥ 0} and {ηi; i ≥ 0} be two random sequences that are

dependent on the parameterµmax. If {ζi; i ≥ 0} approaches{ηi; i ≥ 0} in mean-square sense:

lim
µmax→0

lim sup
i→∞

E‖ζi − ηi‖2 = 0 (123)

and the variances of{ζi} converge in the following sense:

lim
µmax→0

lim sup
i→∞

E‖ζi‖2 = σ2 (124)

then it holds for any bounded continuous functionf(·) that

lim
µmax→0

lim sup
i→∞

E|f(ζi)− f(ηi)| = 0 (125)

Proof: See Appendix E.

Theorem 3 (Asymptotic normality):As i → ∞ andµmax → 0, the normalized error sequence from

(54), {W̃i/
√
µmax; i ≥ 0}, converges in distributioncloseto the Gaussian random variable:

ζ , col{1Ng
1
⊗ ξ1, . . . ,1Ng

G
⊗ ξG} ∼ N(0,Π) (126)
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in the following sense:

lim
µmax→0

lim sup
i→∞

E

∣∣∣∣f
(

W̃i√
µmax

)
− f(ζ)

∣∣∣∣ = 0 (127)

for any bounded continuous functionf(·) : RNM×1 7→ R, where{ξm} are from (121), andΠ is from

(118).

Proof: Using the triangle inequality, we have

E

∣∣∣∣f
(

W̃i√
µmax

)
− f(ζ)

∣∣∣∣ ≤ E

∣∣∣∣∣f
(

W̃i√
µmax

)
− f

(
W̃

long
i√
µmax

)∣∣∣∣∣+ E

∣∣∣∣∣f
(

W̃
long
i√
µmax

)
− f

(
W̄

low
i√

µmax

)∣∣∣∣∣

+ E

∣∣∣∣f
(

W̄
low
i√

µmax

)
− f(ζ)

∣∣∣∣ (128)

whereW̃ long
i is from the long-term model (72), and̄W low

i is from (93) and is related to the low-dimensional

model (89). By Lemma 4, the variances of the sequence{W̃i/
√
µmax; i ≥ 0} converge to its normalized

MSD in (98) in a sense similar to (124). Using Lemma 1, it is clear that{W̃i/
√
µmax; i ≥ 0} approaches

{W̃ long
i /

√
µmax; i ≥ 0} in a sense similar to (123). Therefore, by calling upon Lemma6, we conclude

that the limit superior of the first term on the RHS of (128) vanishes. Likewise, using Lemmas 1 and 4,

it can be verified that the variances of the sequence{W̃ long
i /

√
µmax; i ≥ 0} also converge to the same

normalized MSD in (98). Therefore, from Lemmas 2 and 6, the limit superior of the second term on

the RHS of (128) vanishes. The limit superior of the third term vanishes since{W̄ low
i /

√
µmax; i ≥ 0}

converges in distribution toζ, which follows from Lemma 5. Therefore, the limit superior of the RHS

of (128) vanishes wheni → ∞ andµmax → 0.

Theorem 3 allows us to approximate the distribution ofW̃i/
√
µmax by the Gaussian distributionN(0,Π)

for large enoughi and small enoughµmax.

B. Statistical Decision on Clustering

In Theorem 3, we established that for large enoughi and for sufficiently smallµmax, the joint

distribution of the individual estimators{wk,i; k = 1, 2, . . . , N} can be well approximated by a Gaussian

distribution (126). Therefore, the marginal distributionfor any pair of estimators, say,wk,i andwℓ,i, can

be well approximated by the Gaussian distribution:


wk,i

wℓ,i


 ∼ N






wo
k

wo
ℓ


 , µmax



Πk,k Πk,ℓ

Πℓ,k Πℓ,ℓ





 (129)

wherewo
k andwo

ℓ are their individual minimizers, andΠk,ℓ denotes the(k, ℓ)-th block ofΠ with block

sizeM ×M . Without loss of generality, let us consider the scenario where agentk is from groupGm
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in clusterCq and agentℓ is from groupGn in clusterCr, i.e., k ∈ Gm ⊆ Cq and ℓ ∈ Gn ⊆ Cr. Then, we

have from Definition 1 that

wo
k = w⋆

q , wo
ℓ = w⋆

r (130)

From Theorem 2, the covarince matrixΠ possesses the block structure shown in (118). Using (118), and

noticing thatk ∈ Gm andℓ ∈ Gn, it is obvious that

Πk,k = Φm,m, Πk,ℓ = Φm,n, Πℓ,k = Φn,m, Πℓ,ℓ = Φn,n (131)

Then, it follows from (129)–(131) that


wk,i

wℓ,i


 ∼ N






w⋆
q

w⋆
r


 , µmax



Φm,m Φm,n

Φn,m Φn,n





 (132)

which means that the mean and covariance of the joint distribution for any pair of agentsk and ℓ only

depends on their groups. In other words, for any two agentsk1 and k2 from the same groupGm, the

joint distribution of{k1, ℓ} and the joint distribution of{k2, ℓ} will be well approximated by the same

Gaussian distribution in (132). Therefore, if both agentsk1 andk2 need to decide whether agentℓ is in

the same cluster as they are, then they will have the same error probabilities in the hypothesis test (32).

Based on (132), the hypothesis test problem for clustering now becomes that of determining whether

or not the two (near) Gaussian random vectorswk,i andwℓ,i have the same mean. Suppose the samples

from the two variables are paired. The difference

dk,ℓ , wk,i −wℓ,i (133)

serves as a sufficient statistics [45]. Sincewk,i andwℓ,i are jointly Gaussian in (132), their difference

dk,ℓ is also Gaussian:

dk,ℓ ∼ N(d⋆q,r, µmax∆m,n) (134)

where

d⋆q,r , w⋆
q − w⋆

r (135)

∆m,n , Φm,m +Φn,n − Φm,n − Φn,m ≥ 0 (136)

If the agentsk and ℓ are from the same cluster such thatq = r, then hypothesisH0 in (32) is true

andd⋆q,r = 0; otherwise, hypothesisH1 in (32) is true andd⋆q,r 6= 0. The hypothesis test for clustering

becomes to test whether or not the differencedk,ℓ in (133) is zero meanwithout knowing its covariance

matrix µmax∆m,n. If Nsam independent samples ofdk,ℓ are available for testing, whereNsam> M , and
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∆m,n is non-singular, then according to the Neyman-Pearson criterion [46], the likelihood ratio test is

given by [45, p. 164]

T 2
k,ℓ , Nsamx̄

TS−1x̄
H0

≶
H1

θk,ℓ (137)

whereT 2
k,ℓ is called Hotelling’s T-square statistic,̄x is the sample mean ofdk,ℓ, S is the unbiased

sample covariance matrix, andθk,ℓ is the predefined threshold from (32). The scaled T-square statistics

Nsam−M
(Nsam−1)M · T 2

k,ℓ has a non-central F-distribution withM andNsam− M degrees of freedom and non-

centrality parameterNsamµ
−1
max(d

⋆
q,r)

T∆−1
m,nd

⋆
q,r [47, p. 480]. Whend⋆q,r = 0, it reduces to a central

F-distribution [47, p. 322].

However, because stochastic iterative algorithms employ very small step-sizes, sampling their steady-

state estimators over time does not produce independent samples. In many scenarios we only have

one sample available for testing, where the sample mean reduces to the sample itself, and the sample

covariance matrix is not even available. In order to carry out the hypothesis test, we replace the sample

covariance matrix by the identity matrix. Then, the Hotelling’s T-square test (137) becomes

δ2k,ℓ , ‖dk,ℓ‖2
H0

≶
H1

θk,ℓ (138)

where we re-useddk,ℓ to denote the only available sample for testing. The decision statisticδ2k,ℓ is a

quadratic form of the (near) Gaussian random vectordk,ℓ. Using (134), the mean ofδ2k,ℓ is given by

Eδ2k,ℓ = E‖dk,ℓ‖2 = ETr(dk,ℓd
T

k,ℓ) = Tr(Edk,ℓd
T

k,ℓ) = ‖d⋆q,r‖2 + µmaxTr(∆m,n) (139)

and the variance ofδ2k,ℓ is given by (see Appendix F)

Var(δ2k,ℓ) = E‖dk,ℓ‖4 − (E‖dk,ℓ‖2)2 = 4µmax‖d⋆q,r‖2∆m,n
+ 2µ2

maxTr(∆
2
m,n) (140)

It is seen that the mean ofδ2k,ℓ is dominated by‖d⋆q,r‖2 for sufficiently small step sizes. Since the variance

of δ2k,ℓ is in the order ofµmax, according to Chebyshev’s inequality [44, p. 47], we have

P[|δ2k,ℓ − Eδ2k,ℓ| ≥ c] ≤
Var(δ2k,ℓ)

c
= O(µmax) (141)

for any constantc > 0. Therefore, for sufficiently small step sizes, the probability mass ofδ2k,ℓ will highly

concentrate aroundEδ2k,ℓ. When hypothesisH0 is true, we haved⋆q,r = 0 andEδ2k,ℓ = µmaxTr(∆m,n) =

O(µmax) ≈ 0; when hypothesisH1 is true, we haved⋆q,r 6= 0 andEδ2k,ℓ = ‖d⋆q,r‖2 +O(µmax) ≈ ‖d⋆q,r‖2.
That is, the probability mass ofδ2k,ℓ underH0 concentrates near0 while the probability mass ofδ2k,ℓ

underH1 concentrates near‖d⋆q,r‖2 = ‖w⋆
q −w⋆

r‖2 > 0 (which is a constant that is independent ofµmax).

Obviously, the thresholdθk,ℓ should be chosen between 0 and‖d⋆q,r‖2. By doing so, the Type-I error will

September 15, 2018 DRAFT



28

correspond to the right tail probability ofδ2k,ℓ whend⋆q,r = 0 (see (145) further ahead) and the Type-II

error will correspond to the left tail probability ofδ2k,ℓ whend⋆q,r 6= 0 (see (146) further ahead).

In order to examine the statistical properties ofδ2k,ℓ and to perform the analysis for error probabilities,

let us introduce the eigen-decomposition of∆m,n in (136) and denote it by

∆m,n = U∆Λ∆U
T

∆ (142)

whereU∆ is orthonormal andΛ∆ is diagonal and nonnegative. Let further

x , Λ
−1/2
∆ UT

∆dk,ℓ, x̄ , Λ
−1/2
∆ UT

∆d
⋆
q,r (143)

Sincedk,ℓ ∼ N(d⋆q,r, µmax∆m,n), it follows from (142) and (143) thatx ∼ N(x̄, µmaxIM ). Substituting

(142) and (143) into (138) yields

δ2k,ℓ = x
TΛ∆x =

M∑

h=1

λhx
2
h (144)

wherexh denotes theh-th elements ofx, andλh denotes theh-th element on the diagonal ofΛ∆. From

(144), it is obvious thatδ2k,ℓ is a weighted sum of independent squared Gaussian random variables. When

hypothesisH0 is true, we haved⋆q,r = 0 andx̄ = 0 by (143). In this case,δ2k,ℓ reduces to a weighted sum

of independent Gamma random variables (because squared zero-mean Gaussian random variables follow

Gamma distributions [48, p. 337]), whose pdf is available inclosed-form (but is very complicated) [49],

[50]. When hypothesisH1 is true and‖d⋆q,r‖2 > 0, the pdf ofδ2k,ℓ is generally not available in closed-

form. Several procedures have been proposed in [51]–[55] for numerical evaluation of its tail probability.

Instead of relying on the precise pdf ofδ2k,ℓ, we shall provide some useful constructions in the sequel

for the error probabilities in the hypothesis test problem (138).

C. Error Probabilities

For anyk ∈ Gm ⊆ Cq andℓ ∈ Gn ⊆ Cr, the Type-I error, namely, the false alarm for incorrect rejection

of a trueH0, is given by

Type-I error: P[δ2k,ℓ > θk,ℓ|d⋆q,r = 0] (145)

and the Type-II error, namely, the missing detection for incorrect rejection of a trueH1, is given by

Type-II error: P[δ2k,ℓ < θk,ℓ|d⋆q,r 6= 0] (146)

It is seen that the Type-I error corresponds to the right tailprobability ofδ2k,ℓ with d⋆q,r = 0 and the Type-

II error corresponds to the left tail probability ofδ2k,ℓ with d⋆q,r 6= 0. This is a fundamental difference

between the two types of errors and, therefore, different techniques are needed to approximate them.
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Specifically, for the Type-II error, the pdf ofδ2k,ℓ is close to a bell shape and can be well approximated

by a Gaussian pdf. Then, the Type-II error probability can bebounded by using Chernoff bound [56].

However, this technique does not apply to the Type-I error because whend⋆q,r = 0, the pdf of δ2k,ℓ

concentrates on the positive side of the origin point and is skewed with a long right tail. Consequently,

we need to take a different approach to bound the Type-I errorprobability.

1) Type-I Error: We first note that

δ2k,ℓ = x
TΛ∆x ≤ ‖∆m,n‖ · ‖x‖2 (147)

whereΛ∆ is from (142). This means that ifδ2k,ℓ > θk,ℓ, then‖∆m,n‖ · ‖x‖2 > θk,ℓ must be true, which

further implies that the event{δ2k,ℓ > θk,ℓ} is a subset of the event{‖∆m,n‖ · ‖x‖2 > θk,ℓ}. Therefore,

P[δ2k,ℓ > θk,ℓ|d⋆q,r = 0] ≤ P[‖x‖2 > θ′k,ℓ|x̄ = 0] (148)

wherex̄ is from (143), and

θ′k,ℓ ,
θk,ℓ

‖∆m,n‖
(149)

Sincex̄ = 0, µ−1
max‖x‖2 follows a central chi-square distribution withM degrees of freedom [48, p. 415].

Therefore, using the Chernoff bound for the central chi-square distribution [57, Lemma 1, p. 2500], we

get from (148) that

P[δ2k,ℓ > θk,ℓ|d⋆q,r = 0] ≤ 1− P[‖x‖2 ≤ θ′k,ℓ|x̄ = 0] ≤
(

θ′k,ℓe

µmaxM

)M/2

exp

(
−

θ′k,ℓ
2µmax

)
(150)

for µmax < θ′k,ℓ/M , wheree is Euler’s number. Therefore, whenµmax is small enough, the Type-I error

probability decays exponentially at a rate ofO(e−c1/µmax) for some constantc1 > 0.

2) Type-II Error: We consider the characteristic function ofδ2k,ℓ. Since{xh} are mutually-independent,

the characteristic function ofδ2k,ℓ is given by

cδ2
k,ℓ
(t) , E

[
ejtδ

2
k,ℓ

]
=E

[
ejt

∑
M
h=1

λhx
2
h

]
=

M∏

h=1

E

[
ejtλhx

2
h

]
(151)

where we used (147). Sinced⋆q,r 6= 0 in this case,x from (143) has nonzero mean̄x 6= 0. Therefore,

eachµ−1
maxx

2
h is a non-central chi-square random variable with one degreeof freedom and non-centrality

µ−1
maxx̄

2
h [47, p. 433]. The characteristic function ofx2

h is then given by [47, p. 437]:

E

[
ejtx

2
h

]
=

1√
1− 2jtµmax

ejx̄
2
ht/(1−2jtµmax) (152)

Substituting (152) into (151) yields:

cδ2
k,ℓ
(t) =

M∏

h=1

1√
1− 2jtµmaxλh

· ejx̄2
htλh/(1−2jtµmaxλh) (153)
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Whenµmax is sufficiently small, we have

1√
1− 2jtµmaxλh

≈ 1,
1

1− 2jtµmaxλh
≈ 1 + 2jtµmaxλh (154)

Using (156), we can approximatecδ2
k,ℓ
(t) in (153) by

cδ2
k,ℓ
(t) ≈

M∏

h=1

ejx̄
2
htλh(1+2jtµmaxλh)

= ejt(
∑

M

h=1
λhx̄2

h)−2t2µmax(
∑

M

h=1
λ2
hx̄

2
h)

= ejt‖d
⋆
q,r‖

2−2t2µmax‖d⋆
q,r‖

2
Λ∆ (155)

where we used the fact that
M∑

h=1

λhx̄
2
h = ‖d⋆q,r‖2,

M∑

h=1

λ2
hx̄

2
h = ‖d⋆q,r‖2Λ∆

(156)

Note that the RHS of (155) coincides with the characteristicfunction of a Gaussian distribution with mean

‖d⋆q,r‖2 and variance4µmax‖d⋆q,r‖2Λ∆
[48, p. 89]. Since the distribution of a random variable is uniquely

determined by its characteristic function, result (155) implies thatδ2k,ℓ ∼ N(‖d⋆q,r‖2, 4µmax‖d⋆q,r‖2Λ∆
)

approximately for sufficiently smallµmax. Thus,

P[δ2k,ℓ < θk,ℓ|d⋆q,r 6= 0] ≈ Q

(
‖d⋆q,r‖2 − θk,ℓ

2µ
1/2
max‖d⋆q,r‖Λ∆

)
≤ 1

2
e−(‖d⋆

q,r‖
2−θk,ℓ)2/8µmax‖d⋆

q,r‖
2
Λ∆ (157)

whereQ(·) denotes theQ-function, which is the tail probability of the standard Gaussian distribution,

and the last step is by using the Chernoff bound [56, p. 380]. Therefore, whenµmax is small enough,

the Type-II error decays exponentially at a rate ofO(e−c2/µmax) for some constantc2 > 0.

3) A Special Case:For the purpose of illustration only, we consider a special case where∆m,n =

σ2
m,nIM . In this case, the pdf ofδ2k,ℓ has a closed-form pdf. WhenH1 is true and‖d⋆q,r‖2 > 0, the

quadratic formδ2k,ℓ/(µmaxσ
2
m,n) reduces to a non-central chi-square random variable withM degrees

of freedom and non-centrality parameter‖d⋆q,r‖2/µmaxσ
2
m,n [47, p. 433]. Let us denote the non-central

chi-square distribution withd degrees of freedom and non-centrality parameterλ by χ2
d(λ). The pdf of

χ2
d(λ) is then given by [47, p. 433]:

fχ2(x; d, λ) =
1

2

(x
λ

)(d−2)/4
e−(x+λ)/2I(d−2)/2(

√
λx) (158)

for x ≥ 0, whereIh(x) denotes theh-th order modified Bessel function of the first kind. Then,

δ2k,ℓ

µmaxσ2
m,n

∼ χ2
M

(
‖d⋆q,r‖2

µmaxσ2
m,n

)
(159)
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Fig. 2. The pdf ofδ2
k,ℓ defined in (160) and (161) withM = 10, ‖d⋆q,r‖

2
= 1, σ2

m,n = 1, µmax = 0.01, 0.03, 0.05.

and the pdf ofδ2k,ℓ is given by

f(z) =
1

µmaxσ2
m,n

· fχ2

(
z

µmaxσ2
m,n

;M,
‖d⋆q,r‖2

µmaxσ2
m,n

)
(160)

wherefχ2(·) is from (158). WhenH0 is true and‖d⋆q,r‖2 = 0, the pdff(z) in (160) reduces to a scaled

central chi-square distribution [48, p. 415]:

f(z) =
1

µmaxσ2
m,n

· fχ2

(
z

µmaxσ2
m,n

;M, 0

)
(161)

We plot the pdff(z) from (160) and (161) in Fig. 2. It can be observed that whenM , ‖d⋆q,r‖2, andσ2
m,n

are fixed, in bothH0 (blue curves) andH1 (red curves) cases, the probability mass ofδ2k,ℓ concentrates

more around its mean asµmax decreases. Whenq 6= r (i.e., H1 is true), the mean ofδk,ℓ is close to

‖d⋆q,r‖2 = 1 for sufficiently smallµmax; when q = r (i.e., H0 is true), the mean is close to zero. The

right tail probabilities of the blue curves (underH0) and the left tail probabilities of the red curves (under

H1) all decay exponentially. In addition, it is seen that the pdf of δ2k,ℓ underH1 (the red curves with

‖d⋆q,r‖2 > 0) is near symmetric and is in bell-shape, which agrees with the Gaussian approximation we

made when evaluating the Type-II error (mis-detection) forthe general case. On the other hand, the pdf

of δ2k,ℓ underH0 (the blue curves with‖d⋆q,r‖2 = 0) concentrates close to zero and has large skewness

with a long tail on the RHS, which distinguishes itself from Gaussian distributions; this demonstrates

our previous statement that it is not appropriate to assess the Type-I error (false alarm) by approximating

the pdf ofδ2k,ℓ underH0 with Gaussian distributions.

D. Dynamics of Diffusion with Adaptive Clustering

Since both Type-I and Type-II errors decay exponentially with exponent proportional to1/µmax, it is

expected that incorrect clustering decisions will become rare as the iteration proceeds. We can therefore
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assume that enough iterations have elapsed and the first recursion (23a)–(23b) is operating in steady-state.

Under these conditions, we can examine the dynamics of the second recursion (34a)–(34b) with adaptive

clustering.

From Assumption 1, correct clustering decisions split the underlying topology intoQ sub-networks

one for each cluster. Within each cluster, correct clustering decisions merge all disjoint groups into a

bigger group. Therefore, the resulting topology for the entire network will now consist ofQ separate sub-

networks and each sub-network will be strongly-connected.In addition, since the step-sizes are sufficiently

small, the decision statistics‖wℓ,i −wk,i‖2 generated by the first recursion (23a)–(23b) in steady-state

will be nearly time-invariant. The clustering decisions will therefore also be nearly time-invariant. Then,

with high probability, the cooperative sub-neighborhoods{N+
k,i} produced by (33) will become nearly

time-invariant after the first recursion (23a)–(23b) reaches steady-state:

N+
k,i → N+

k , as i → ∞ (162)

for all k, whereN+
k is from (3).

In order to gain from enhanced cooperation via adaptive clustering, it is critical to choose proper

combination policies for recursion (34a)–(34b). From the discussion in Chapter 12 of [3, p. 624-635],

we know that doubly-stochastic combination policies are able to exploit the benefit of cooperation when

more agents are included in cooperation. For example, one can choose the Metropolis rule [3, p. 664],

i.e.,

a′ℓk(i) =





1

max{|N+
ℓ,i|, |N+

k,i|}
, ℓ ∈ N+

k,i\{k}

1−
∑

n∈N+

k,i\{k}

a′nk(i), ℓ = k

0, ℓ ∈ Nk\N+
k,i

(163)

When the combination coefficients{a′ℓk(i)} are chosen according to (163), their values are determined

by the size of their cooperative sub-neighborhoodN+
k,i. It is then obvious that coefficients{a′ℓk(i)} will

tend to be constant values:

a′ℓk(i) → a′ℓk, as i → ∞ (164)

which will be determined by the size ofN+
k . Therefore, we can rewrite the second recursion (34a)–(34b)

for small enoughµmax and large enoughi as

ψ′
k,i = w

′
k,i−1 − µk∇̂Jk(w

′
k,i−1) (165a)
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w′
k,i =

∑

ℓ∈N+

k

a′ℓkψ
′
ℓ,i (165b)

by using (162) and (164). We collect the{a′ℓk} into a matrix and denote it byA′. The matrixA′ is block

diagonal and each block on its diagonal corresponds to a cluster. Recursion (165a)–(165b) only involves

in-cluster cooperative learning for common minimizers, where all agents from a cluster form a single big

group. Therefore, the performance analysis in Section V applies to this case as well.

VII. S IMULATION RESULTS

We first simulate a network consisting ofN = 200 agents. Each agent observes a data stream

{dk(i),uk,i; i ≥ 0} that satisfies the linear regression model [58]:

dk(i) = uk,iw
o
k + vk(i) (166)

where dk(i) ∈ R is a scalar response variable anduk,i ∈ R1×M is a row vector feature variable

with M = 2. The feature variableuk,i is randomly generated at every iteration by using a Gaussian

distribution with zero mean and scaled identity covariancematrix σ2
u,kIM . The model noisevk(i) ∈ R is

also randomly generated at every iteration by using anotherindependent Gaussian distribution with zero

mean and varianceσ2
v,k. The values of{σ2

u,k} and{σ2
v,k} are positive and randomly generated.

There areQ = 2 clusters in the network. The firstN1 = 100 agents belong to clusterC1, i.e.,

C1 = {1, 2, . . . , 100}. The secondN2 = 100 agents belong to clusterC2, i.e., C2 = {101, 102, . . . , 200}.

The loading factors for the two clusters, namely,w⋆
1 andw⋆

2, are randomly generated. The step-size is

uniform and is set toµ = 0.05. The underlying topology that connects all agents is shown in Fig. 3a.

Agents from clusterC1 are in red and agents fromC2 are in blue. We simulated the scenario where agents

have some partial knowledge about the grouping at the beginning of the learning process. The partial

knowledge is non-trivial, meaning that the groups{Gm} used in the first recursion (23a)–(23b) are not

just singletons. The topologies that reflect the{Gm} are plotted in Figs. 3b and 3c for the two clusters.

The Metropolis rule (163) is used in both recursions, (23a)–(23b) and (34a)–(34b).

As we explained before, in steady-state the clustering decisions become time-invariant and small groups

in the same cluster merge into bigger groups. The links between neighbors within the same cluster are

active while links to neighbors from different clusters aredropped. We plot the resulting topology in

steady-state with active links in Fig. 3d. Compared to Fig. 3a, the underlying topology in Fig. 3d is

trimmed and split into two disjoint sub-networks. This result implies that the interference between two

clusters is suppressed. The two sub-networks are themselves connected at steady-state and are shown
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(a) The initial topology with all links. (b) Initial topology of cluster 1. (c) Initial topology of cluster 2.

(d) The final topology at steady-state. (e) Resulting topology of cluster 1. (f) Resulting topology of cluster 2.

Fig. 3. The underlying topology of the entire network where agents from different clusters are connected. As the learning

process progresses, the disjoint groups in each cluster merge into a bigger group to enable collaborative learning among more

agents. In steady-state, only in-cluster links remain active.

in Figs 3e and 3f. Comparing the resulting cluster topologies in Figs 3e and 3f with the initial cluster

topologies in Figs. 3b and 3c, it can be observed that all separate small groups from the same cluster

merge into a bigger group and collaborative learning involving more agents emerges.

The MSD learning curves are plotted in Fig. 4 where the cluster MSDs are obtained by averaging over

100 trials. The cluster MSDs for the first recursion (23a)–(23b) are in black and green for clusters 1 and

2, respectively. The cluster MSDs for the second recursion (34a)–(34b) are in red and blue for clusters

1 and 2, respectively. Obviously both clusters improve their steady-state MSD performance on average

by forming larger clusters for cooperation.

In the second simulation, we simulate a network withN = 50 nodes inQ = 5 clusters. The sizes

of the five clusters are 8, 9, 10, 11, and 12, respectively. Theinitial topology is shown in Fig. 5a. We

choose the uniform step-sizeµ = 0.01. After 1000 iterations, the resulting topology is separated into
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Fig. 4. The steady-state cluster average MSDs for the first recursion (23a)–(23b) and the second recursion (34a)–(34b).

five clusters and is shown in Fig. 5b, and the topologies for the five clusters are given in Figs. 5c–5g,

respectively. The MSD learning curves that are obtained by averaging over 500 trials match the theory

well, as shown in Figs. 6a and 6b.

VIII. C ONCLUSIONS

In this work we proposed a distributed strategy for adaptivelearning and clustering over multi-cluster

networks. Detailed performance analysis is conducted and the results are supported by simulations. The

proposed algorithm can be used in applications to segment heterogeneous networks into sub-networks

to enhance in-cluster cooperation and suppress cross-cluster interference. It can also be applied to

homogeneous networks to prevent intrusion or jamming by isolating malicious nodes from normal nodes.

Furthermore, it can be used to trim and grow adaptive networks according to the objectives of the agents

in the network.

APPENDIX A

PROOF OFLEMMA 2

Since both models, (89) and (72), can be decoupled intoG separate recursions one for each group, it

is sufficient to show that for sufficiently small step-sizes,and for any groupGm, it holds that

lim sup
i→∞

E‖W̃ long
m,i − W̄

low
m,i‖2 = O(µ2

max) (167)
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(a) The initial topology with five clusters.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

(b) The remaining topology with five clusters.
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(c) Final topology ofC1.
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(d) Final topology ofC2.
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(e) Final topology ofC3.
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(f) Final topology ofC4.
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(g) Final topology ofC5.

Fig. 5. The initial topology withN = 50 nodes andQ = 5 clusters. In steady-state, the five clusters are successfully separated

from each other while each cluster remains connected.

whereW̄
low
m,i is given by (94). We adopt a technique similar to the one used in the proof of Theorem 10.2

[3, p. 557] to establish (167) in the sequel. We introduce theJordan decomposition of eachAm [3], [59]:

Am = VmJmV −1
m ,

[
pgm Vm,R

]


1

Jm,ǫ



[
1Ng

m
Vm,L

]T
(168)
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(a) The MSD learning curves for the first recursion (23a)–(23b).
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(b) The MSD learning curves for the second recursion (34a)–(34b).

Fig. 6. The MSD learning curves for the proposed distributedclustering and learning algorithm.

whereJm,ǫ ∈ C(Ng
m−1)×(Ng

m−1) consists of all stable Jordan blocks withǫ’s on the first lower off-diagonal,

andVm is a non-singular complex matrix. Let

Vm , Vm ⊗ IM (169)

Jm , Jm ⊗ IM (170)

Multiplying VT
m to both sides of (76) yields:

VT

mW̃
long
m,i = B̄mVT

mW̃
long
m,i−1 + J T

mVT

mMmSm,i(Wm,i−1) (171)

where

B̄m , VT

mBm(VT

m)−1 = J T

m − J T

mVT

mMmHm(VT

m)−1 (172)

By (168) and (169), we have

VT

mW̃
long
m,i =




(pgm ⊗ IM )TW̃
long
m,i

(Vm,R ⊗ IM )TW̃
long
m,i


 ,



w̄

long
m,i

W̌
long
m,i


 (173)

wherew̄long
m,i is anM × 1 vector,W̌ long

m,i is an(Ng
m − 1)M × 1 vector. It follows from (169) and (94) that

VT

mW̄
low
m,i = (V T

m1Ng
m
)⊗ w̃low

m,i =



w̃low

m,i

0


 (174)

since1Ng
m

is the first column of(V T
m )−1 in (168). Using (173) and (174), we find that

E‖W̃ long
m,i − W̄

low
m,i‖2Σm

= E‖w̄long
m,i − w̃low

m,i‖2 + E‖W̌ long
m,i‖2 (175)
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whereΣm , VmVT
m is a positive-definite weighting matrix. Since‖Σm‖ is independent ofµmax, result

(167) holds if the following condition holds:

lim sup
i→∞

E‖w̄long
m,i − w̃low

m,i‖2 + E‖W̌ long
m,i‖2 = O(µ2

max) (176)

Using Eq. (10.78) in [3, p. 563], we know that

lim sup
i→∞

E‖W̌ long
m,i‖2 = O(µ2

max) (177)

From (171) and (173), the evolution of̄wlong
m,i is given by (see Eq. (9.61) from [3, p. 514] for a similar

derivation):

w̄
long
m,i = Dmw̄

long
m,i−1 −DT

21W̌
long
m,i−1 + (pgm ⊗ IM )TMmSm,i(Wm,i−1) (178)

whereDT
21 , (pgm ⊗ IM )TMmHm(Vm,L ⊗ IM ). Using (178) and (86), we obtain

w̄
long
m,i − w̃low

m,i = Dm(w̄long
m,i−1 − w̃low

m,i−1)−DT

21W̌
long
m,i−1 (179)

We recognize that recursion (179) has a form that is similar to the recursion for̄bi in Eq. (10.64) of [3,

p. 561] except that here in (179) the driving noise term is absent. Therefore, we immediately get from

Eq. (10.66) of [3, p. 562] that

E‖w̄long
m,i − w̃low

m,i‖2 ≤ (1− σ11µmax)E‖w̄long
m,i−1 − w̃low

m,i−1‖2 +
σ2
21µmax

σ11
E‖W̌ long

m,i−1‖2 (180)

for some constantsσ11 > 0 andσ21 > 0. Substituting (177) into (180) yields

E‖w̄long
m,i − w̃low

m,i‖2 ≤ (1− σ11µmax)E‖w̄long
m,i−1 − w̃low

m,i−1‖2 +O(µ3
max) (181)

for large enoughi. Therefore, it follows from (181) that

lim sup
i→∞

E‖w̄long
m,i − w̃low

m,i‖2 = O(µ2
max) (182)

Combining (177) and (182) proves (176).

APPENDIX B

PROOF OFLEMMA 3

Let us examine the evolution of the covariance matrix ofW̃
low
i , which is defined by

Θi , E[W̃
low
i (W̃

low
i )T] (183)

Using (14) and (15), we get from (89) that

Θi = DΘi−1D + PTM[ERs,i(Wi−1)]MP (184)
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We next introduce the fixed-point covariance recursion

Θfix
i = DΘfix

i−1D + PTMRs,i(W
o)MP (185)

Let

∆Θi , Θi −Θfix
i , ∆Rs,i , ERs,i(Wi−1)−Rs,i(W

o) (186)

The difference matrix∆Θi evolves by the following recursion:

∆Θi = D∆Θi−1D + PTM∆Rs,iMP (187)

We bound the difference matrix∆Rs,i by

‖∆Rs,i‖
(a)

≤ E‖Rs,i(Wi−1)−Rs,i(W
o)‖

(b)

≤ κsE‖W̃i−1‖γs

(c)

≤ κs
(
E‖W̃i−1‖4

)γs/4 (188)

where step (a) is by using Jensen’s inequality; step (b) is byusing (17) from Assumption 3; and step (c)

is by applying Jensen’s inequality again to the concave function xγs/4 for γs ≤ 4 andx ≥ 0. As i → ∞,

we get from (188) that

lim sup
i→∞

‖∆Rs,i‖ = O(µγs/2
max ) (189)

by using (69). From Eq. (9.286) in [3, p. 548], we have

‖D‖ = max
m

‖Dm‖ ≤ 1− σµmax (190)

for someσ > 0. Using the triangle inequality and the sub-multiplicativity property of norms, we have

from (187) that

‖∆Θi‖ ≤ ‖D∆Θi−1D‖+ ‖PTM∆Rs,iMP‖

≤ ‖D‖2‖∆Θi−1‖+ µ2
max‖P‖2‖∆Rs,i‖

≤ (1− σµmax)‖∆Θi−1‖+ µ2
max‖P‖2‖∆Rs,i‖ (191)

where in the last step we used (190) and the fact that0 < 1−σµmax < 1. Then, asi → ∞, we get from

(189) and (191) that

lim sup
i→∞

‖∆Θi‖ ≤ σ−1µmax‖P‖2(lim sup
i→∞

‖∆Rs,i‖) = O(µ1+γs/2
max ) (192)

Now, sinceD is stable and in view of (18), the fixed-point recursion (185)converges asi → ∞. At

steady-state, the limitΘfix
∞ , limi→∞Θfix

i of (185) satisfies the discrete Lyapunov equation (97) by

identifying Θ ≡ Θfix
∞.
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APPENDIX C

PROOF OFTHEOREM 2

From Lemmas 1 and 2,

lim
µmax→0

lim sup
i→∞

µ−1
maxE‖W̃i − W̄

low
i ‖2

≤ lim
µmax→0

lim sup
i→∞

µ−1
maxE‖W̃i − W̃

long
i + W̃

long
i − W̄

low
i ‖2

≤ lim
µmax→0

lim sup
i→∞

2µ−1
maxE‖W̃i − W̃

long
i ‖2 + lim

µmax→0
lim sup
i→∞

2µ−1
maxE‖W̃ long

i − W̄
low
i ‖2

= 0 (193)

Let

Πlow
i , µ−1

maxEW̄
low
i (W̄ low

i )T (194)

Then, by Jensen’s inequality,

µmax‖Πi −Πlow
i ‖ ≤ E‖W̃iW̃

T

i − W̄
low
i (W̄ low

i )T‖

= E‖W̃iW̃
T

i − W̄
low
i W̃

T

i + W̄
low
i W̃

T

i − W̄
low
i (W̄ low

i )T‖

≤ E‖(W̃i − W̄
low
i )W̃

T

i ‖+ E‖W̄ low
i (W̃i − W̄

low
i )T‖ (195)

The second term on the RHS of (195) can be bounded by

E‖W̄ low
i (W̃i − W̄

low
i )T‖ = E‖(W̄ low

i − W̃i + W̃i)(W̃i − W̄
low
i )T‖

≤ E‖(W̄ low
i − W̃i)(W̃i − W̄

low
i )T‖+ E‖W̃i(W̃i − W̄

low
i )T‖

= E‖W̄ low
i − W̃i‖2 + E‖W̃i(W̃i − W̄

low
i )T‖ (196)

Substituting (196) into (195) yields:

µmax‖Πi −Πlow
i ‖ ≤ 2E‖(W̃i − W̄

low
i )W̃

T

i ‖+ E‖W̄ low
i − W̃i‖2 (197)

The first term on the RHS of (197) can be bounded by

E‖(W̃i − W̄
low
i )W̃T

i ‖ ≤ E(‖W̃i − W̄
low
i ‖‖W̃i‖)

≤
√
E‖W̃i − W̄

low
i ‖2E‖W̃i‖2 (198)

by using the Cauchy-Schwarz inequality. Substituting (198) into (197) yields:

‖Πi −Πlow
i ‖ ≤ 2

√
µ−1
maxE‖W̃i − W̄

low
i ‖2 ·

√
µ−1
maxE‖W̃i‖2 + µ−1

maxE‖W̄ low
i − W̃i‖2 (199)
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Using (193) and Theorem 1, it follows from (199) that

lim
µmax→0

lim sup
i→∞

‖Πi −Πlow
i ‖ = 0 (200)

Noting thatW̄ low
i is obtained by extending̃W low

i via (93) and (94), we have

EW̄
low
m,i(W̄

low
n,i )

T = (1Ng
m
1
T

Ng
n
)⊗ Ew̃low

m,i(w̃
low
n,i )

T (201)

for anym andn. From (101), we know that

lim
µmax→0

lim sup
i→∞

‖µ−1
maxEw̃

low
m,i(w̃

low
n,i )

T −Φm,n‖ = 0 (202)

whereΦm,n denotes the(m,n)-th block ofΦ with block sizeM ×M . It follows from (201) and (202)

that

lim
µmax→0

lim sup
i→∞

‖µ−1
maxEW̄

low
m,i(W̄

low
n,i )

T−(1Ng
m
1
T

Ng
n
)⊗ Φm,n‖=0 (203)

Using (93), (118), and (194), we get from (203) that

lim
µmax→0

lim sup
i→∞

‖Πlow
i −Π‖ = 0 (204)

Combining (200) and (204), we arrive at (117).

APPENDIX D

PROOF OFLEMMA 5

We establish this result by calling upon Theorem 1.1 from [39, p. 319], which considers a stochastic

recursion of the following form:

xi = xi−1 + µg(xi−1) + µvi (205)

with step-sizeµ > 0, update vectorg(xi−1), and noisevi, satisfying the conditions:

1) The functiong(·) is continuously differentiable and can be expanded as

g(x) = g(xo) + [∇g(xo)]T(x− xo) + o(‖x− xo‖) (206)

around a pointxo, where∇g(·) denotes the Jacobian ofg(·), and o(·) is the “small-o” notation

that represents higher order terms.

2) It holds thatxo is the unique point that satisfies:

g(xo) = 0 (207)

3) The JacobianA , ∇g(xo) is a Hurwitz matrix (i.e., the real parts of the eigenvalues of A are

negative).
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4) The noise process{vi; i ≥ 0} is a martingale difference, i.e.,

E(vi|Fi−1) = 0 (208)

whereFi−1 is the filtration defined by{xi; i ≥ 0}.

5) The noisevi has an asymptotically bounded moment of order higher than 2,namely,

lim
µ→0

lim sup
i→∞

E‖vi‖2+p < ∞ (209)

for somep > 0.

6) The covariance matrices of the noise process{vi; i ≥ 0} converge to a positive semi-definite matrix

Σ ≥ 0:

lim
µ→0

lim sup
i→∞

‖EvivTi − Σ‖ = 0 (210)

Under these conditions, it holds that asi → ∞ and µ → 0 asymptotically, the sequence{xi/
√
µ}

converges weakly to a Gaussian random distribution with mean xo and covariance matrixC, which is

the unique solution to the continuous Lyapunov equationAC + CAT = Σ.

These conditions are satisfied by our recursion (119) by identifying W̃
low
i ≡ xi, µmax ≡ µ, −H̄W̃

low
i−1 ≡

g(xi−1), vi ≡ s̄i. First, sinceH̄ is positive-definite by (111) and (88), it is obvious thatxo = 0 is the

unique point satisfying (207). Second, sinceg(x) = −H̄x andxo = 0, condition 1) holds automatically

with [∇g(xo)]T = −H̄. Third, it is easy to recognize thatA ≡ −H̄ is Hurwitz sinceH̄ is positive-definite.

Fourth, by (15) from Assumption 3, condition (208) holds. Fifth, by (16) from Assumption 3, we have

E‖s̄i‖4 ≤ ‖P‖4E‖Si(Wi−1)‖4

≤ ‖P‖4(α2E‖W̃i−1‖4 + σ4
s) (211)

Using Theorem 1, we get from (211) that

lim
µmax→0

lim sup
i→∞

E‖s̄i‖4 ≤ ‖P‖4(O(µ2
max) + σ4

s) < ∞ (212)

which satisfies condition (209). Sixth, we have from (120) and (14) that

Es̄is̄
T

i = µ−2
maxPTMERs,i(Wi−1)MP (213)

Let

Σi , µ−2
maxPTMRs,i(W

o)MP (214)

Then, using Jensen’s inequality and (17) from Assumption 3,we have from (213) that

‖Es̄is̄Ti −Σi‖ ≤ ‖P‖2‖∆Rs,i‖ (215)
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where∆Rs,i is from (186). Using (189), we further get

lim
µmax→0

lim sup
i→∞

‖Es̄is̄Ti − Σi‖ = 0 (216)

Using (18), we have

lim
i→∞

Σi = µ−2
maxPTMRsMP = R̄ ≥ 0 (217)

whereR̄ is from (112). It follows from (216) and (217) that

lim
µmax→0

lim sup
i→∞

‖Es̄is̄Ti − R̄‖ = 0 (218)

Therefore, we conclude that the sequence{W̃ low
i /

√
µmax; i ≥ 0} converges weakly to the Gaussian

random variable with zero mean and covariance matrixΦ that satisfies (115).

APPENDIX E

PROOF OFLEMMA 6

We follow an argument similar to the proof of Theorem 2 from [44, p. 256] (which proves the result

that convergence in moments implies convergence in distribution). Let |f(x)| ≤ c, i.e., bounded. Because

a continuous functionf(x) is also uniformly continuous in anyboundedregion [44, p. 54], forany

constantǫ > 0 and for any constantb > 0, there exists someδǫ,b > 0, which depends on the choices of

ǫ and b, such that|f(x)− f(y)| < ǫ for ‖x‖ < b and ‖x − y‖ < δǫ,b. Now, settingb ,
√

2cσ2/ǫ > 0,

whereσ2 is from (124), and using conditional expectations, we have

E|f(ζi)− f(ηi)| = E[|f(ζi)− f(ηi)| | ‖ζi − ηi‖ < δǫ,b, ‖ζi‖ < b] · P[‖ζi − ηi‖ < δǫ,b, ‖ζi‖ < b]

+ E[|f(ζi)− f(ηi)| | ‖ζi − ηi‖ < δǫ,b, ‖ζi‖ ≥ b] · P[‖ζi − ηi‖ < δǫ,b, ‖ζi‖ ≥ b]

+ E[|f(ζi)− f(ηi)| | ‖ζi − ηi‖ ≥ δǫ,b] · P[‖ζi − ηi‖ ≥ δǫ,b] (219)

The first term on the RHS of (219) is bounded by

1st term≤ E[ǫ | ‖ζi − ηi‖ < δ, ‖ζi‖ < b]× 1 = ǫ (220)

Using the fact that|f(x) − f(y)| ≤ |f(x)| + |f(y)| ≤ 2c, and also the fact that the joint probability is

bounded by any one of the marginal probabilities, i.e.,P[A ∩ B] ≤ P[A] for any two eventsA andB,

the second term on the RHS of (219) is bounded by

2nd term≤ 2cP[‖ζi‖ ≥ b] ≤ 2cE‖ζi‖2
b2

=
ǫE‖ζi‖2

σ2
(221)
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where we used Chebyshev’s inequality [44, p. 47]. Likewise,the third term on the RHS of (219) is

bounded by

3rd term≤ 2cP[‖ζi − ηi‖ ≥ δ] ≤ 2cE‖ζi − ηi‖2
δ2

(222)

Now, substituting (220)–(222) into (219), we have

E|f(ζi)− f(ηi)| ≤ ǫ+
ǫE‖ζi‖2

σ2
+

2cE‖ζi − ηi‖2
δ2

(223)

Using (123) and (124), we end up with

lim
µmax→0

lim sup
i→∞

E|f(ζi)− f(ηi)| ≤ 2ǫ (224)

Sinceǫ is arbitrary, result (125) follows from (224).

APPENDIX F

PROOF OF(140)

To simplify the notation, we drop the subscript ofdk,ℓ and denote its mean bȳd , Ed and its

covariance byC , E(d− d̄)(d − d̄)T. Sinced is Gaussian, it holds that

E‖d‖4 = E‖d− d̄+ d̄‖4

= E[‖d− d̄‖2 + 2(d− d̄)Td̄+ ‖d̄‖2]2

= E‖d− d̄‖4 + 2E‖d − d̄‖2‖d̄‖2 + ‖d̄‖4 + 4d̄TE[(d− d̄)(d− d̄)T]d̄

= E‖d− d̄‖4 + 2Tr(C)‖d̄‖2 + ‖d̄‖4 + 4‖d̄‖2C (225)

where we used the fact that the odd order moments ofd− d̄ is zero. Likewise,

(E‖d‖2)2 = (E‖d− d̄+ d̄‖2)2

= (E‖d− d̄‖2 + ‖d̄‖2)2

= [Tr(C)]2 + 2Tr(C)‖d̄‖2 + ‖d̄‖4 (226)

From (225) and (226), we have

E‖d‖4 − (E‖d‖2)2 = E‖d− d̄‖4 − [Tr(C)]2 + 4‖d̄‖2C (227)

From Lemma A.2 of [58, p. 11], it can be verified that

E‖d− d̄‖4 = [Tr(C)]2 + 2Tr(C2) (228)

Substituting (228) into (227) yields:

E‖d‖4 − (E‖d‖2)2 = 2Tr(C2) + 4‖d̄‖2C (229)
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