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Abstract

Distributed processing over networks relies on in-netwmndcessing and cooperation among neigh-
boring agents. Cooperation is beneficial when agents shareramon objective. However, in many
applications agents may belong to different clusters thiasye different objectives. Then, indiscriminate
cooperation will lead to undesired results. In this work, pvepose an adaptive clustering and learning
scheme that allows agents to learn which neighbors theyidltooperate with and which other neighbors
they should ignore. In doing so, the resulting algorithmtees the agents to identify their clusters and
to attain improved learning and estimation accuracy ovenvorks. We carry out a detailed mean-square
analysis and assess the error probabilities of Types | gnickl] false alarm and mis-detection, for the
clustering mechanism. Among other results, we establish ttiese probabilities decay exponentially

with the step-sizes so that the probability of correct @tisg can be made arbitrarily close to one.

Index Terms

Clustering, diffusion adaptation, consensus adaptatidaptive networks, distributed learning, dis-

tributed optimization, unsupervised learning

. INTRODUCTION

Distributed algorithms for learning, inference, modelimd optimization by networked agents are
prevalent in many domains and applicable to a wide range alblems [2]-][5]. Among the various
classes of algorithms, techniques that are based on fotet-gradient-descent iterations are particularly

useful for distributed processing due to their low compigxow power demands, and robustness against
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imperfections or unmodeled effects. Three of the most stlidlasses are consensus algoritnms [5]—[9],
diffusion algorithmsl[2],[[10]-[16], and incremental atgbms [17]-[22]. The incremental techniques rely
on the determination of a Hamiltonian cycle over the topglaghich is generally an NP-hard problem
and is therefore a hindrance to real-time adaptation, aed @evore so when the topology is dynamic
and changes with time. For this reason, we will consider dearning algorithms of the consensus
and diffusion types.

In this work we focus on the case in whidonstantstep-sizes are employed in order to enable
continuousadaptation and learning in response to streaming data. \Wingnishing step-sizes are used,
the algorithms would cease to adapt after the step-sizes hpgroached zero, which is problematic
for applications that require the network to remain cordihuvigilant and to track possible drifts in
the data and clusters. Therefore, adaptation with constaptsizes is necessary in these scenarios. It
turns out that when constant step-sizes are used, the dgsafihe distributed (consensus or diffusion)
strategies are modified in a non-trivial manner: the staithgsadient noise that is present in their update
steps does not die out anymore and it seeps into the opeatitre algorithms. In other words, while
this noise component would be annihilated by decaying siegs, it will remain persistently active
during constant step-size adaptation. As such, it becompsriant to evaluate how well constant step-
size implementations can alleviate the influence of gradisise. It was shown in_[2]/[3],[[23] that
consensus strategies can become problematic when costgprgizes are employed. This is because of
an asymmetry in their update relations, which can cause tite sf the network to grow unbounded
when these networks are used for adaptation. In comparifhnsion networks do not suffer from this
asymmetry problem and have been shown to be mean stablellesgof the topology of the network.
This is a reassuring property, especially in the contextppfliaations where the topology can undergo
changes over time. These observations motivate us to faauanalysis on diffusion strategies, although
the conclusions and arguments can be extended with projgstants to consensus strategies.

Now, most existing works on distributed learning algorithfiocus on the case in which all agents
in the network are interested in estimating a common pammaedctor, which generally corresponds
to the minimizer of some aggregate cost function (see, R:[5] and the references therein). In this
article, we are instead interested in scenarios whererdifteclusters of agents within the network are
interested in estimating different parameter vectors.r&ave been several useful works in this domain
in the literature under various assumptions, includinchim eéarlier version of this work in[1]. This early
investigation dealt only with the case of two separate elgsin the network with each cluster interested

in one parameter vector. One useful application of this fdation in the context of biological networks
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was considered i [24], where each agent was assumed t@tcddéa arising from one of two models
(e.g., the location of two separate food sources). The ag#dtnot know which model generated their
observations and, yet, they needed to reach agreement ahdazlt model to follow (i.e., which food
source to move towards). Another important extension dgaliith multiple (more than two) models
appears in[[25],[]26] where multi-task problems are intietli In this formulation, different clusters of
the agents are again interested in estimating differergrpater vectors (called “tasks”) and the tasks of
adjacent clusters are further assumed to be related to ¢hehso that cooperation among clusters can
still be beneficial. This formulation is useful in many sceos, as already illustrated in_[25], including
in multiple target tracking([27],.[28] and classificationoptems involving multiple models [29]-[34].
Other useful variations of multi-task problems appear_ig],[3vhich assumes fully-connected networks,
and in [36] where the agents have two types of parameterstitoats (a local parameter and a global
parameter). These various works focus on mean-square{®&®E) design, where the parameters of
interest are estimated by seeking the minimizer of an MSE. ddsreover, with the exception of[1],
[26], it is generally assumed in these works that the agemsvkbeforehand which clusters they belong
to or which parameters they are interested in estimating.

In this article, we extend the approach of [1] and study rakking adaptive networks under three
conditions that are fundamentally different from previstisdies. First, we go beyond mean-square-error
estimation and allow for more general convex risk functiahthe agents. This level of generality allows
the framework to handle broader situations both in adaptadind learning, such as logistic regression
for pattern classification purposes. Second, we do not assumy relation among the different objectives
pursued by the clusters. In other words, we study the impbpaoblem where different components
of the network are truly interested in different objectivaesd would like to avoid interference among
clusters. And third, the agents do not know beforehand whiakters they belong to and which other
agents are interested in the same obijective.

For example, in an application involving a sensor netwodcking multiple moving objects from
various directions, it is reasonable to assume that thedi@jes of these objects are independent of
each other. In this case, only information shared withirstets is beneficial for learning; the information
from agents in other clusters would amount to interfereridds means that agents would need to
cooperate with neighbors that belong to the same clustemauodd need to cut their links to neighbors
with different objectives. This task would be simple to &l if agents were aware of their cluster
information. However, we will not be making that assumptidhe cluster information will need to be

learned as well. This point highlights one major feature wff@rmulation: we do not assume that agents
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have full knowledge about their clusters. This assumptsaguite common in the context of unsupervised
machine learning [29]/ [33], where the collected measurdrdata are not labeled and there are multiple
candidate models. If two neighboring agents are interestetie same model and they are aware of
this fact, then they should exchange data and cooperateevowthe agents may not know this fact,
so they cannot be certain about whether or not they shoulgerate. Accordingly, in this work, we
will devise an adaptive clustering and learning strategy gllows agents to learn which neighbors they
should cooperate with. In doing so, the resulting algorigmables the agents in a hetwork to be correctly
clustered and to attain improved learning performanceutjincenhanced intra-cluster cooperation.
Notation We use lowercase letters to denote vectors, uppercaseslétr matrices, plain letters for
deterministic variables, and boldface letters for randamiables. We also uge)' to denote transposition,
()=t for matrix inversion,Tr(-) for the trace of a matrix, an{l - || for the 2-norm of a matrix or the
Euclidean norm of a vector. Besides, we uée B for matricesA and B to denote their Kronecker
product,A > B to demote thatA — B is positive semi-definite, and > B to demote that all entries of

A — B are nonnegative.

[I. PROBLEM FORMULATION

We consider a network consisting 8f agents inter-connected via some topology. An individuait co
function, J, (w) : RM>! 1 R, of a vector parametew, is associated with every ageintEach cost/; (w)
is assumed to be strictly-convex and is minimized at a unjopiet w;. According to the minimizers
{w(}, agents in the network are categorized ifo> 2 mutually-exclusive clusters, denoted By,
g=12,...,0Q.

Definition 1 (Cluster):Each clusterg, denoted byC,, consists of the collection of agents whose
individual costs share the common minimize}, i.e., wy = wy for all k € C,. [ ]

Since agents from different clusters do not share commoimmzars, the network then aims to solve
the clusteredmulti-task problem:

minimize  J(wi,...,wg) = Z Ji(wq) (1)
{wa}it =1 keC,

If the cluster information{C,} is available to the agents, then probldm (1) can be decordpose Q
separate optimization problems over the sub-networkscigsd with the clusters:

minimize J§(w) = Z J(w) 2)
kec,
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for ¢ =1,2,...,Q. Assuming the cluster topologies are connected, the qusreing minimizers{w;, }
can be sought by employing diffusion strategies over eagstet. In this case, collaborative learning will
only occurwithin each cluster without any interaction across clusters. Tesns that for every agent
k that belongs to a particular clustéy, i.e., k € C,, its neighbors, which belong to the set denoted by
N, will need to be segmented into two sets: one set is denote/tl’,;bﬁnd consists of neighbors that
belong to the same clustéy, and the other set is denoted b and consists of neighbors that belong

to other clusters. It is clear that
N+é./\/kﬂcq, N_é./\/’k\./\/’; 3)

We illustrate a two-cluster network with a total 8f = 20 agents in Figl_la. The agents in the clusters
are denoted by blue and red circles, and are inter-connéstékde underlying topology, so that agents
may have in-cluster neighbors as well as neighbors fromrattusters. For example, agehtfrom blue
clusterC; has the in-cluster sub-neighborhodd™ = {k, 3,4}, which is a subset of its neighborhood
N =1{k,1,2,3,4,5}. If the cluster information is available to all agents, thba network can be split
into two sub-networks, one for each cluster, as illustrateBigs.[Ib and Ic.

However, in this work we consider the more challenging sderia which the cluster informatiofC, }
is only partially available to the agents beforehand, or even completelyailaée. When the cluster
information is completely absent, each agkmust first identify neighbors belonging JM,j. When the
cluster information is partially known, meaning that songers from the same cluster already know
each other, then these agents can cooperate to identifytiiee members in their cluster. In order to
study these two scenarios in a uniform manner, we introdoeeconcept of a group.

Definition 2 (Group): A group m, denoted byg,,, is a collection of connected agents from the same
cluster and knowing that they belong to this same cluster. [ |

Figure[1d illustrates the concept of groups when clusterimétion is only partially available to the
agents in the network from Fig. 11a. If an agent has no infaonadbout its neighbors, then it falls into
a singleton group, such as grou@s and G; in Fig.[1d. If some neighboring agents know the cluster
information of each other, then they form a non-trivial ggpsuch as group§,, Gs, andGy. If every
agent in a cluster knows the cluster information of all itsghbors, then all cluster members form one
group and this group coincides with the cluster itself, asashin Fig.[Ib.

Since cooperation among neighbors belonging to differém$ters can lead to biased results [3],
[25], [37], agents should only cooperate within clusterewidver, when agents have access to partial

cluster information, then they only know their group neigtiobut notall cluster neighbors. Therefore,
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Fig. 1. A network withN = 20 nodes andl = 2 clusters. ClusteC; consists of 10 agents in blue. Clus@r consists
of another 10 agents in red. Agehtbelongs to Cluste€;, and its neighborhood is denoted B, = {k,1,2,3,4,5} with
N = {k, 3,4}. With perfect cluster information, the underlying topojogplits into two sub-networks, one for each cluster.
With partial cluster information, clustet; breaks down into five groups: two singleton groghsandgs, and three non-trivial
groupsGa, Gs, andG4. Through adaptive learning and clustering, the five groumpé) will end up merging into one largest

group corresponding to the entire cluster in (c).

at this stage, agents can only cooperate within groupsjngawehind some potential opportunity for

cooperation with neighbors from the same cluster. The mepd this work is to devise a procedure to
enable agents to identify all of their cluster neighborghsthat small groups from the same cluster can
merge automatically into larger groups. At the same time,pifocedure needs to be able to turn off links

between different clusters in order to avoid interferef®gusing such a procedure, agents in multi-task
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networks withpartial cluster information will be able to cluster themselves inaalaptivemanner, and
then solve probleni{1) by solvingl(2) collaborativeljthin each cluster. We shall examine closely the
probability of successful clustering and evaluate thedstedate mean-square-error performance for the
overall learning process. In particular, we will show thag probability of correct clustering approaches
one for sufficiently small step-sizes. We will also show thaith the enhanced cooperation that results
from adaptive clustering, the mean-square-error perfoo@dor the network will be improved relative

to the network without adaptive clustering.

[11. M ODELS AND ASSUMPTIONS

We summarize the main conditions on the network topologyhenfollowing statement.

Assumption 1 (Topology, clusters, and groups):

1) The network consists @ clusters{Cy;¢ = 1,2,...,Q}. The size of cluste€, is denoted byNy,

such thatC,| = Ng and 222:1 ;=N

2) The underlying topology for each clustgyis connected. Clusters are also inter-connected by some

links so that agents from different clusters may still begheors of each other.

3) There is a total of5 groups,{G,,;m = 1,2,...,G}, in the network. The size of grou@,, is

denoted byNy, such thatG,,| = Ng and>%_, N§, = N. m
It is obvious thatQ) < G < N because each cluster has at least one group and each groap lbast
one agent.

Definition 3 (Indexing rule):Without loss of generality, we index groups according toirtlduster
indexes such that groups from the same cluster will haveamrise indexes. Likewise, we index agents
according to their group indexes such that agents from thee sgroup will have consecutive indexas.

According to this indexing rule, if groug,, belongs to cluste€,, then the next grou,,+: will
belong either to clustef, or the next clusterC,; if agentk belongs to groufy,,, then the next agent
k 4+ 1 will belong either to groug,,, or the next groupgG,,, 1.

Based on the problem formulation in Sectioh I, althoughragén the same cluster are connected,
they are generally not aware of each other’s cluster inftionaand therefore some agents in the same
cluster may not cooperate in the initial stage of adaptatimthe other hand, agents in the same group
are aware of each other’s cluster information, so thesetagmm cooperate. As the learning process
proceeds, agents from different groups in the same clusteragognize each other through information
sharing. Once cluster information is inferred, small gwpll merge into larger groups, and agents will

start cooperating with more neighbors. Through this aseptlustering procedure, cooperative learning
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will grow until all agents within the same cluster become pam@tive and the network performance is
enhanced.
To proceed with the modeling assumptions, we introduce tilewing network Hessian matrix
function:
V2I(w) & diag{V2J; (w1),..., ViIn(wN)} (4)
where the vectow collects the parameters from across the network:
w2 col{wy,...,wy} € RVMx! (5)
We also collect the individual minimizers into a vector:
W"écol{wﬁ,...,w}’v}:col{]lN;®w;;q:1,...,Q} (6)
where the second equality is due to the indexing rule in D@fim[3, and1, denotes am x 1 vector
with all its entries equal to one. We next list two standarsuagptions for stochastic distributed learning
over adaptive networks to guide the subsequent analysikisnwork. One assumption relates to the
analytical properties of the cost functions, and is meargrtsure well-defined minima and well-posed
problems. The second assumption relates to stochastieniexp of the gradient noise processes that
result from approximating the true gradient vectors. Tlsisuanption is meant to ensure that the gradient
approximations are unbiased and with moments satisfyinges@gularity conditions. Explanations and

motivation for these assumptions in the context of infeeepmblems can be found inl[2],/[3],.138].

Assumption 2 (Cost functions):
1) Each individual cost/;(w) is assumed to be strictly-convex, twice-differentiabled aith bounded
Hessian matrix function satisfying:
MepIvr < V2 (w) < MeoIn (7)

where0 < A\ 1, < Ay < oc.
2) In each groug,,, at least one individual cost, sayx-(w), is strongly-convex, meaning that the
lower bound,\;- 1, on the Hessian of this cost is positive.

3) The network Hessian functioW?.J(w) in (@) satisfies the Lipschitz condition:
V2T (1) = V2T (Wa)|| < kWi — wall (8)

for anywi, wy € RVNMX1 and somecy > 0. n

The second set of assumptions relate to conditions on thdiegitanoise processes. For this purpose,

we introduce the filtratioF;;7 > 0} to represent the information flow that is available up to thi
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iteration of the learning process. The true network gradiemction and its stochastic approximation are

respectively denoted by

VJ(W) = col{VJi(w1),...,VIy(wn)} 9)
VIW) 2 col{VJi (w1), ..., VIx(wy)} (10)

The gradient noise at iteratianand agent: is denoted by:
ski(wyio1) = ﬂf(wk,i—l) — VJi(wg,i—1) (11)

wherew;, ;1 denotes the estimate far] that is available to agent at iterationi — 1. The network
gradient noise is denoted hs;(w;_1) and is the random process that is obtained by aggregating all

noise processes from across the network into a vector:
5i(Wi—1) £ col{s1i(wii-1),- .., sni(wn,-1)} (12)

Using [11), we can write
ﬁ(wi—ﬂ =VJ(Wi-1) + si(Wi-1) (13)

We denote the conditional covariances{w,_1) by
Rsi(Wi1) 2 Els;(Wi_1)8] (Wi_1)|Fi_1] (14)

wherew;_; is in F;_;.
Assumption 3 (Gradient noise)t is assumed that the gradient noise process satisfies Hosvifog
properties for anywy; 1 in F;_1:
1) Martingale differencel ]3], [39]:
E[s;(W;-1)|F;—1] =0 (15)
2) Bounded fourth-order moment! [3],_[40], [41]:

Ell|lsi(wi—)I'|Fi1] < o?W° — wi||* + o (16)

for somea, os > 0, and wheren? is from (8).

3) Lipschitz conditional covariance function| [3], [40], 14

[Rsi(W°) — Rsi(Wi1)|l < ks[[W” — wiq

7. (17)

for somex; > 0 and0 < v, < 4.
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4) Convergent conditional covariance matrix [3], [[39]41

Rs £ lim Rs;(w°) >0 (18)
1— 00
whereR; is symmetric and positive definite. |

It is easy to verify from[(16) that the second-order momerthefgradient noise process also satisfies:

Elllsi(Wi-1)*|Fi—1] < a|w® — wiq|* + o2 (19)

IV. PROPOSEDALGORITHM AND MAIN RESULTS

In order to minimize all cluster cost functiofs/{(w); ¢ = 1,2,...,Q} defined by[(2), agents need to
cooperate only within their clusters. Although clusteimhation is in general not available beforehand,
groups within each cluster are available according to Asgtiom [1. Therefore, based on this prior
information, agents can instead focus on solving the falgwproblem based on partitioning by groups

rather than by clusters:

G
minimize J (wy, ..., wg) = Z Z Ji(wp,) (20)
Wm fm=1 m=1 k?egm

with one parameter vectas,, for each groug,,. In the extreme case when prior clustering information
is totally absent, groups will collapse into singletons grdblem [20) will reduce to the individual
non-cooperative case with each agent running its own sstichgradient algorithm to minimize its
cost function. In another extreme case when cluster infoomas completely available, groups will
be equivalent to clusters and probledml(20) will reduce toftlmation in {1). Therefore, problerh (20) is
general and includes many scenarios of interest as spesiascWe shall argue in the sequel that during
the process of solving (20), agents will be able to gradueabyn their neighbors’ clustering information.
This information will be exploited by aeparatdearning procedure by each group to dynamically involve
more neighbors (from outside the group) in local coopematin this way, we will be able to establish
analytically that, with high probability, agents will be lakto successfully solve problerhl (1) (and not
just (20)) everwithout having the complete clustering information in advance.

We motivate the algorithm by examining problem](20). Sinlce groups{g,,} are already formed
and they are disjoint, problerh (20) can be decomposedGhieparate optimization problems, one for
each group:

minimize JY (w) = Z Ji(w) (21)
keGm
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with m =1,2,...,G. For any agenk belonging to grouf,, in clusterC,, i.e.,k € G,,, C C,, it is easy
to verify that
{k}gNkﬁgmgNkﬁCq:N; (22)

Then, agents in grou@,, can seek the solution off, (w) in (21) by using the adapt-then-combine (ATC)

diffusion learning strategy ovey,,, namely,

Pri = W1 — VI (wpi 1) (239)
wri= Y amtpe (23b)
LENNG,

for all £ € G,,, whereyu; > 0 denotes the step-size parameter, dag.} are convex combination

coefficients that satisfy

ag, >0 if LeN,NG, N
,and > ag =1 (24)
agr, = 0 otherwise =1

Moreover,w;, ; denotes the random estimate computed by agentiterationi, andq,, ; is the intermedi-
ate iterate. We collect the coefficierts,; } into a matrixA £ [agk]é\’[kzl. Obviously,A is a left-stochastic
matrix, namely,

ATy =1y (25)

We collect the iterates generated from (23a)-(23b) by g@upnto a vector:
Wi 2 col{wy, i1k € G} € RVAMX1 (26)

where N}, is the size ofgG,,. According to the indexing rule from Definitidd 3 for agentsdagroups,
the estimate for the entire network fromn (23&)=(23b) can biined by stacking the group estimates
{ Wi}
w; & col{wi ,...,wn,;} = co{Wi,...,Wqg,} (27)
The procedure used by the agents to enlarge their groupdevitiased on the following results to be
established in later sections. We will show in Theofem 3 #fter sufficient iterations, i.e., as— oo,
and for small enough step-sizes, i, < 1 for all k, the network estimatey; defined by[(2l7) exhibits

a distribution that imearly Gaussian:
wWj ~ N(WO7 ,umaxH) (28)
whereN(¢, ) denotes a Gaussian distribution with meamand covarianc&, we is from (@),

Hmax £ lc—InaXN Mk (29)

ey
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andIl € RVMxNM jg g symmetric, positive semi-definite matrix, independeni,,.., and defined later
by (118). In addition, we will show that for any pair of ageifitsm two different groups, for example,
k € G,, and/ € G,,, where the two group§,, andgG, may or may not originate from the same cluster,
the difference between their estimates will also be digted approximately according to a Gaussian
distribution:

wy; — Wi ~ N(wy — wy, fmaxAek) (30)

where

App =g+ Mg — My p — My (31)

is a symmetric, positive semi-definite matrix, alig , denotes thék, ¢)-th block of IT with block size

M x M. These results are useful for inferring the cluster infdiorafor agentsk and/. Indeed, since
the covariance matrix in_(30) is on the order.gf.., the probability density function (pdf) ab, ; —wy, ;

will concentrate around its mean, namely;, — w?, when un,. is sufficiently small. Therefore, if these
agents belong to the same cluster such that= wg, then we will be able to conclude frorh (30) that
with high probability, |[ws; — wi:||* = O(umax). On the other hand, if the agents belong to different
clusters such thawv? # w¢, then it will hold with high probability that|w,; — wy. ;| = O(ud.y). This
observation suggests that a hypothesis test can be foeduiat agent¢ andk to determine whether or
not they are members of the same cluster:

o Ho
H’wé,z‘ - wk,i” S Ok (32)

H,

where H, denotes the hypothesis; = wy, H; denotes the hypothesis; # wy, andf,, > 0 is a
predefined threshold. Both agentsand & will test (32) to reach a symmetric pattern of cooperation.
Sincewy; andwy,; are accessible through local interactions within neighbods, the hypothesis test
(32) can be carried out in a distributed manner. We will farthow that the probabilities for both types
of errors incurred by((32), i.e., the false alarm (Type-I§ldhe missing detection (Type-Il) errors, decay

at exponential rates, namely,
Type-l: Pllw; — wiil|? > O elwf = w)] < O(e /o)
Type-Il: Pllwg; — wy > < O elwf # wf] < O(e™/Hnex)

for some constants, > 0 andce > 0. Therefore, for long enough iterations and small enougp-siees,

agents are able to successfully infer the cluster infoilmnatvith very high probability.
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The clustering information acquired at each iteratios used by the agents to dynamically adjust their
inferred cluster neighborhoods. ngi for agentk € G, at iteration: consists of the neighbors that

are accepted under hypothekig and the other neighbors that are already in the same group:
NZ’Z £ {B S Nk; ”’UJ&Z' — wk7iH2 < Hk’g or /¢ gm} (33)

Using these dynamically-evolving cluster neighborhoedsjntroduce aseparateATC diffusion learning

strategy:
@bllm = ’w;m'—l - Mkﬁc(’w/;,i—l) (34a)
wi; = Y api— 1)y, (34b)
ENT

where the combination coefficien{s,, (: — 1)} become random becau:z.?é,j’i_1 is random and may
vary over iterations. The iteration index— 1 is used for these coefficients to enforce causality. Since
N N G, denotes the neighbors of agentthat are already in the same grogp, ask, it is obvious
that Vi, NG, C ./\/’;’i_1 for anyi > 0. This means that recursion (34&)—(B4b) generally involvérger
range of interactions among agents than the first recur@da){{Z23b). We summarize the algorithm in

the following listing.

Distributed clustering and learning over networks

Initialization: wy, _; = w;c,—l =0 and/\/;_1 =N.NG, forall kg, andm =1,2,...,G.
for + > 0 do
(1) Each agenk updateswy, ; according to the first recursioh_(23d)-(23b) owér N G,»,.
(2) Each agenk updates:%i according to the second recursidn _(34a)-{34b) o\@fi_l.
(3) Each agenk updates/\/;i by using [(3B) with{w ;¢ € N} from step (1).

end for

V. MEAN-SQUARE-ERROR ANALYSIS

In the previous section, we mentioned that Thedrém 3 in &&8I-Alis the key result for the design of
the clustering criterion. To arrive this theorem, we shaliiek two useful intermediate results, Lemrhas 1
and(2, in this section. These two results are related to thE Bi&lysis of the first recursion (23d)=(23b),
which is used in step (1) of the proposed algorithm. We slnatefore examine the stability and the
MSE performance of recursioh (23d)—(23b) in the sequek tlear that the evolution of this recursion

is not influenced by the other two steps. Thus, we can studyrsiemn [238)+£(23b) independently.
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A. Network Error Recursion
Using model [(IB), recursiof (23a)=(23b) leads to
wi=A"wi_1 — ATMVJI(w;_1) — ATMs;(Wi_1) (35)
wherew; is from (21),VJ(-) is from (9), s;(-) is from (12), and
M & diag{py,...,un} @ Iy (36)
A2 ATy (37)
We introduce the network error vector:
Wi 2W° —w; = col{wr,...,WN;} (38)
wherew? is from (8), and the individual error vectors:
Wy, £ W) — Wy (39)
Using the mean-value theorem [3], [38], we can write
VJ(Wwi_1) = VJIW°) — [ /O 1 V2I(W° — twj_1)dt| Wiy (40)

whereV?2.J(-) is from (@). Sincenr° consists of individual minimizers throughout the netwdtKpllows
that V.J(w°) = 0. Let

1
a2 [ V200 it = ding (i )i (a1)
0

where

1
Higr 2 [ V2hug b (42)
0
Then, expression_(40) can be rewritten as
VJI(Wi—1) = —Hi1Wi1 (43)

where it is worth noting that the random matf;_, is dependent omy; ;. Substituting[(4B3) into[(35)
yields:
wW; = ATWi_l + ATM’HZ‘_1V~VZ'_1 — ATMSi(Wi_l) (44)

By the indexing rule from Definitionl3 and condition_{24), tbembination matrixA possesses a block
diagonal structure:

A =diag{4,;;m=1,...,G} (45)
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where eachd,,, collects the combination coefficients within grogp,:
A 2 [ag; 0,k € G (46)
From the same conditiofi_(24), we have that edghis itself anN;, x N;, left-stochastic matrix:
Aplng =1y, (47)

If group G,,, is a subset of clustef,, then the agents ig,, share the same minimizer af;. Thus, for
any G, C Cg, let
Wi, = col{lwg; k € G} = g, @ w (48)

It follows from (47) and[(4B) that
(A7, © i)Wy, = (A7, © Ing) (Lg, @ wy) = wy, (49)
Again, from the indexing rule in Definition] 3, we have frold @)d [48) that
W =col{wy ;m=1,...,G} (50)
Then, it follows from [45) and_(80) that
(AT @ Iy We

ATn? = D =we (51)

AL @ Iy | WS
Accordingly, subtractingy® from b(_)th sides of[(44) and usi;151) yields the network rerezursion:
wi = AT (Iny — MH; 1)W1 + AT Ms;(Wi—1) (52)
We denote the coefficient matrix appearing[inl (52) by
Bio1 2 AT (Iny — MH;—1) (53)
Then, the network error recursion {52) can be rewritten as
Wi = BiiWi—1 + ATMs;(Wi_1) (54)
We further introduce the group quantities:
A & A @ Iy (55)

Wini £ co{wy 3k € G} € RN M1 (56)
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M., & diag{p; k € G} @ Iy (57)
Hm,io1 = diag{Hy;_1;k € G} (58)
Smi(Wmi—1) 2 col{sgi(wki—1);k € G} (59)

It follows from the indexing rule in Definitionl3 that

A = diag{A4,..., Ac} (60)

w; =col{iwi,....,Waq,i} (61)

M = diag{M;, ..., Mg} (62)

Hi =diag{Hii-1,...., Ha,i-1} (63)
Si(Wi—1) = col{s1,;(W1,i-1),...,8c.:(W¢,i-1)} (64)

Using (60)-(68), the matri®3;_; in (53) can be expressed by
Bz’—l = diag{BLi_l, e 7BG,2‘—1} (65)

where

Bt = AL (Ino s — My Honi—1) (66)

Due to the block structures in_(60)=(65), groups are isdldtem each other. Therefore, using these
group quantities, the network error recursion](54) is auttically decoupled into a total off group

error recursions, where the-th recursion is given by

‘X’m,i = Bm,i—lf/vvm,i—l + A;Mmsm,i(wm,i—l) (67)

B. Mean-Square and Mean-Fourth-Order Error Stability

The stability of the network error recursidn {54) is now reeld to studying the stability of the group
recursions[(67). Recall that, by Definitibh 2, the agentsaichegroup are connected. Moreover, condition
(24) implies that agents in each group have non-trivial-eelps, meaning thai,, > 0 for all & € G,),.

It follows that eachA,, is a primitive matrix [2], [42] (which is satisfied as long dgte exists at least
oneay, > 0 in each group). Under these conditions, we are now able ter@se the stability of the

second and fourth-order error moments of the network egounsion[(5G¥) by appealing to results from

3.
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Theorem 1 (Stability of error momentsifor sufficiently small step-sizes, the network error reicurs

(54) is mean-square and mean-fourth-order stable in theestat

limsup E|wW;|? = O(ttmax) (68)
1—00

fm sp | = 01 69
1—00

Proof: It is obvious that the network error recursidn](54) is meguase and mean-fourth-order
stable if, and only if, each group error recursignl(67) idkan a similar sense. From Assumptioh 2,
we know that there exists at least one strongly-convex eosach group. Since the combination matrix
A,, for each group is primitive and left-stochastic, we can nal apon Theorems 9.1 and 9.2 from
[3, p. 508, p. 522] to conclude that every group error recurss mean-square and mean-fourth-order

stable, namely,

lim sup E||V~vm7@\|2 = O(lmax) (70)
1—>00
lim sup IE|]V~Vn~L7iH4 = O(ernax) (71)
1—00
from which [68) and[(69) follow. [ |

C. Long-Term Model

Once network stability is established, we can proceed tesasthe performance of the adaptive
clustering and learning procedure. To do so, it becomes momngenient to first introduce a long-term
model for the error dynamic$ (b4). Note that recursion (®presents a non-linear, time-variant, and
stochastic system that is driven by a state-dependent mamaddise process. Analysis of recursionl(54) is
facilitated by noting (see Lemnia 1 below) that when the siep-parametef,,., is small enough, the
mean-square behavior ¢f (54) in steady-state, whenl, can be well approximated by the behavior of

the following long-term model:
W = BwW + AT Ms;(wi—1) (72)
where we replaced the random mat#s_; in (54) by the constant matrix
B& AT (Iny — MH) (73)
In (73), the matrixH is defined by

H = diag{H,,...,Hy} (74)
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where
Hy, & V2, (wy) (75)

Note that the long-term modél (72) is nowiaear time-invariantsystem, albeit one that continues to be
driven by thesamerandom noise process as [n{54). Similarly to the originabrerecursion[(54), the

long-term recursion (72) can also be decoupled fitoecursions, one for each group:

Vvlr?mrj? = By, ‘7"%‘?—1 + Ay M S i (Wi i1) (76)
where
WD £ col{w % k € Gy} € RN#M X (77)
B & Ap(Ingar — My M) (78)
Hom 2 diag{Hy; k € G} (79)
wo, & col{w(; k € G} (80)

Lemma 1 (Accuracy of long-term modeRor sufficiently small step-sizes, the evolution of the long

term model [(7R) is close to the original error recursion (B4WMSE sense:

limsup E|lw; — szong”2 = O(liar) (81)
1—00

Proof: We call upon Theorem 10.2 from][3, p. 557] to conclude thatdhference between each
group error recursior (67) and its long-term model (76)séiats:

lim sup El|[Win,i = Wi 21> = O(k7a) (82)
1—00 ’
for all m. It is then immediate to conclude that {81) holds. [ |

D. Low-Dimensional Model

Lemmall indicates that we can assess the MSE dynamics of igieadmetwork recursion(34) to
first-order in umax by working with the long-term mode[(¥2). It turns out thaetktate variable of
the long-term model can be split into two parts, one comsistif the centroidsof each group and the
other consisting of in-group discrepancies. The detailthisf splitting are not important for our current
discussion but interested readers can refer to Sec. V_ofdd0]Eq. (10.37) of [3, p. 558] for a detailed
explanation. Here we only use this fact to motivate the ohiction of the low-dimensional model.
Moreover, it also turns out that the first part, i.e, the parresponding to the centroids, is the dominant

component in the evolution of the error dynamics and thatewaution of the two parts (centroids
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and in-group discrepancies) is weakly-coupled. By retajrthe first part, we can therefore arrive at a
low-dimensional model that will allow us to assess perfarogin closed-form to first-order ify, .. TO
arrive at the low-dimensional model, we need to exploit tlgem-structure of the combination matrix
A, or, equivalently, that of eacH,,.

Recall that we indicated earlier prior to the statement oédrem(1 that eachl,, is a primitive and
left-stochastic matrix. By the Perron-Frobenius theor@h [42], [43], it follows that eachA,, has a
simple eigenvalue at one with all other eigenvalues lyingtyt inside the unit circle. Moreover, if we
let pj, € RV=»*! denote the right-eigenvector of,, that is associated with the eigenvalue at one, and
normalize its entries to add up to one, then the same theormmres that all entries gfy, will be
positive:

N!’!
pl, = COl{ngk}k;ﬁ =0, Appi, = D ﬂ}-v,ap%b = (83)

wherep? . denotes thek-th entry of pf,. This means that we can express eath in the form (see
(@68) further ahead):
A = Ph A% + Vi R m, Vi L (84)

for some eigenvector matricég,, r and V,, r, and whereJ,, . denotes the collection of the Jordan
blocks with eigenvalues inside the unit circle and with theiit entries on the first lower sub-diagonal
replaced by some arbitrarily small constéank ¢ < 1. The first rank-one component on the RHS of
(84)) represents the contribution by the largest eigenvalug,,, and this component will be used further
ahead to describe the centroid of grop. The network Perron eigenvector is obtained by stacking the

group Perron eigenvectofs;, }:

pécol{p?,...,p%} éCol{pl,...,p]\/} (85)

wherep, denotes the:-th entry ofp € RV*!, According to the indexing rule from Definitidd 3, it is
obvious thatp¥, = col{pi; k € G}

Now, for each groupg,,, we introduce the low-dimensional (centroid) error retansdefined by
(compare with[(76)):

ﬁlrtr)lv,\; = Dmﬁfl\t\;—l + (pgn, ® IM)TMmvai (Wm,i—l) (86)

Whereﬁ;m is M x 1, andD,, is M x M and defined by

Dm = IM - ,umax];_[m (87)
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where

Hy, = /j’r:lgxx(pgn ® IM)TMmHm(]lN{Jn ® In)
Pkl
= > B = 0l (88)
keg,, Hmax

The matrix H,, is positive definite since there is at least one Hessian xatri{ H;; k € G,,,} that is
positive definite according to Assumptibh 2. We collect tw-fank recursiong (86) for groups into one

recursion for the entire network by stacking them on top afheather:

W = DWW + PTMs;(wi_1) (89)
where
W L col{wl?, ..., WY} € ROV (90)
D 2 diag{D,,...,Dg} € REM*GM (91)
P £ diag{p],...,pl} ® Iy € RVM*CM (92)

Recursion [(89) describes the joint dynamics of all the cedér (one for each group). Note that the
dimension ofyw in (89) is GM, which is lower than the dimensiody ), of W in (72) or w;
in (54), becausé& < N by Assumptiori . In order to measure the difference betwkerdynamics of

low -

the long-term mode[(72) and the low-dimensional mofdel (88 expandwy, " in the following manner

(compare with[(90)):

WY £ col WP, ..., Wik} € RV (93)
Wlow A ]1N ®,wlow RN%MXI (94)

becaus& %_, N§, = N according to Assumptiofl 1.
Lemma 2 (Accuracy of low-dimensional modefor sufficiently small step-sizes, the low-dimensional

model [89) is close to the network long-term modell (72) in filllowing sense:

lim sup E[ Wi = Wi||* = O(ui3) (95)
1—00
wherew'*" is given by [98) and is related " via (94).
Proof: See Appendix_A. [ |

Lemma 3 (Low-dimensional error covariancdjor sufficiently small step-sizes, the covariance matrix
for W' satisfies
lim sup [Epv™ (wi™)T] = O] = O (i) (96)

1—00
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where® € REMXGM s symmetric, positive-definite, and uniquely solves treedite Lyapunov equation:
© = DOD + PT MR MP (97)

Proof: See AppendixB. [ |

E. Steady-State MSE Performance

From TheoreniIl, we know that the limit superior of the MSE isitmbed withinO(pmax). In order
to define meaningful steady-state performance metrics, avesider the case in which the step-sizes
approach zero asymptotically. Results obtained in thi® @as representative of operation in the slow
adaptation regime (see Sec. 11.2[df [3, pp. 581-583]).

Lemma 4 (Steady-state normalized MSDhe normalized total MSD ofy; in (B4) is given by

G -1
Ng
lim llmsupumaXEHWZH2= E E PrikHy E Prui Ry, (98)
Hmax—0 — 2Nmax
m=1 k€Gm keGm

whereHy, is from (78) andR;, is them-th block on the diagonal dR ; from (18) with block sizeM x M.
Proof: The normalized total MSD is the sum of the normalized MSD factegroup. From Lemma

11.3 of [3, p. 594], the normalized MSD for each gra@p is given by

lim  lim sup ppa B[ Wi i || = 2# (Z pkuka> (Z Piﬂi&k) (99)

ITAB,Xﬁ
K 00 kEGm kEGm

Note that we calculate theormalized totalMSD rather than the@verageMSD in (98) and[(99). m

In order to examine the statistical properties of the eremterw;, we need to strengthen the result in
Lemma[4 by evaluating the full normalized error covarianarir of w; in steady-state. From Lemmas
I and[2, it is clear that the mean-square dynamics of thenailiggrror recursion(54) can be well
approximated by the low-dimensional modell(89). And it waswven in Eq. (10.78) of[[3, p. 563] that

the variances of the centron{m;'o‘”} are in the order ofi.x IN Steady-state, which implies that

limlimsup b E[WEY[? = O(100) (100)

Hmax— 1—00

Since the induced-2 norm of the covariance matrix of any eamdiector is always bounded by its
variance, i.e.||[Exzz || < E|x||? by using Jensen’s inequality, it follows from (100) that thermalized

covariance matrix ofw'ow

is finite in steady-state. Moreover, since Lemima 3 appliearty positive
value of .« as long as it is small enough to ensure stability, we can fa&dimit of i, in (@8) by

letting it approach zero asymptotically. That is,

lim _Tim sup | g, BV (W) T] — @[ = 0 (101)

Hmax—U 4500
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where

$L lim (uph®) (102)

Hmax—0

Due to [100) and[(I01)$ is in the order oful .., i.e., |®| = O(ul..). In fact, by introducing

®; £ uzl EW™ (W) T] and using the triangle inequality, we have

[} = [[® = @; + @i <[] — Dyf| + || (103)
[Bil] = [|®i — @ + @ < [P — [ + [|®]] (104)

Taking i — oo and puyax — 0 for both [103) and[(104) yields:

|0 < lim limsup @] (105)
max—0 1—00

|® > lim limsup ||| (106)
)ufnlax_>0 i—00

by using [(101). From (105) an@d (106), we get

| = lim 0limsup [|D;]] (107)
L ;

max 7 71— 00

Since®; € REM*GM g positive semi-definite, it holds that
(GM) ™' Tr(®;) < ||| < Tr () (108)

where we used the fact for any positive semi-definite makrix 0 that (i) all the eigenvalues oX” are
nonnegative, (ii)| X | is equal to the largest eigenvalue &f and (i) Tr(X) is equal to the sum of all

the eigenvalues oK. Moreover,

Te(®:) = Tr(pm DV (W) ) = fimmis EIDVE" |2 (109)
Using [100), it follows from[(108) and _(109) that
lim_limsup || 94| = O(p15x) (110)

)ufn]ax_>0 1—00

Substituting[(110) intd(107) yields the desired resultmedy, |®|| = O(1Y ..). Then, according td (102),
® is the unique solution to equation (97) whep,.,x — 0 asymptotically. Introduce twa@M x GM

matrices:
H £ diag{Hy,...,Hg} = O(u°,.) (111)

R 2 2, PTMRMP = O(1ly) (112)

September 15, 2018 DRAFT



23

where H,,, is from (88) andR, is from (I8). It is easy to verify thaH and R are symmetric and

positive-definite according to Assumptidns 2 and 3. Fron),(@11), and[(87), we get

D = Ign — HmaxH (113)
Using [102)4(11B), equation (97) reduces to
HP + OH = R + fimax HOH (114)

Since’H{ and R are constant matrices, an#l is finite, the last term on the RHS df (114) disappears
as umax — 0 asymptotically. Therefore, we conclude thhtis the unique solution to the continuous
Lyapunov equation:

HE+¢H =R (115)

Let us define thanormalizednetwork error covariance matrix fow; from (54) by

I 2 ppt Eovw, ) (116)

Theorem 2 (Block structure)n steady-state, and as the step-sizes approach zero adioaiby, the

normalized network error covariance matfil in (118) satisfies

lim limsup ||[II; - II|| =0 (117)
Hmax— 1—00
where ) )
(]lNiq]lL{’) ® (1)171 R (]lle]l;rvg) ® (I)LG
= ; ; (118)

(]lNg;]l]-l\—flg) X (IDG,l - (]lNg]l-]I;,é) X (IDG,G

and ®,, , denotes thém,r)-th block of ® from (115) with block sizeM x M.
Proof: See Appendix C. [ |

VI. ERRORPROBABILITY ANALYSIS FORCLUSTERING

Using the results from the previous section, we now move oasess the error probabilities for
the hypothesis testing problein {32). To do so, we need taméate the probability distribution of the
decision statistic that is generated by recursionl(2888)(2
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A. Asymptotic Joint Distribution of Estimation Errors

Using [113), we rewrite the low-dimensional modell(89) as

VVIiOW = WIZO_Wl - Mmax,}'—lwliollvl + ,umaxéi (119)
where? is from (I11) and
8i 2 [l PTMsi(W;_1) € RO (120)

Lemma 5 (Rate of weak convergencé&lie normalized sequenc{afv'-ow/,/umax;z' > 0}, from (119)

2

converges in distribution as— co and jumax — 0 to the Gaussian random variable:

€ £ col{&y,...,&q} ~ N(0,d) (121)

where¢,,, € RMx1 for all m, and® € R&M*GM s the unique solution to the Lyapunov equatibn (115).
Proof: See AppendixD. [ |
In the sequel we establish the main result that the distdbutf the normalized error sequence from
(G4), {wi/\/Imax; © > 0}, asymptotically approaches a Gaussian distribution. Ating to Definition 4
from [44, p. 253], a random sequengé;;i > 0} converges in distribution to some random variadle
if, and only if,
lim E|£(G:) = £(¢)] =0 (122)
for anybounded continuous functiof(-). We use this fact together with the following lemma to esgibl
Theorem B further ahead.
Lemma 6 (Weak convergenca)et {¢;;: > 0} and {n;;7 > 0} be two random sequences that are

dependent on the parametef.x. If {¢;;¢ > 0} approacheg$n;;i > 0} in mean-square sense:

lim limsup E[|¢; - ;> =0 (123)

Hmax—0  j 500

and the variances of¢;} converge in the following sense:

lim lim sup E|| ¢ = o2 (124)

Hmax 1—>00

then it holds for any bounded continuous functipf) that

lim_limsupE|f(¢;) — f(n:)| = 0 (125)
Hmax—=0 00
Proof: See AppendixE. [
Theorem 3 (Asymptotic normalityAs i — oo and pimax — 0, the normalized error sequence from

(B4), {wW./\/Itmax; ¢ > 0}, converges in distributiosloseto the Gaussian random variable:
¢Ecol{lys ®&1,...,1ns ® &g} ~ N(0,ID) (126)
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in the following sense:

N Wi _
ur}lﬁiohﬁi‘jpE'f < rmax> - f(C)' =0 (127)

for any bounded continuous functiof(-) : RVM*1 . R, where{¢,,} are from [I21L), andI is from

(118).
Proof: Using the triangle inequality, we have

ﬁ’i Vvliong
f (\/Hmax) a f (\/Hmax) TE

EV( Wi)—f@ﬂg@

(i) G

v/ Mmax
+EV<£§%)—ﬂo (128)

wherefv'f”g is from the long-term mode[(72), ang'® is from (93) and is related to the low-dimensional
model [89). By Lemmal4, the variances of the seque®g/\/fimax; ¢ > 0} converge to its normalized
MSD in (@8) in a sense similar t (I24). Using Lemina 1, it isaclhat{w;/,/fimax; i > 0} approaches
(W) /Timax; i > 0} in a sense similar td (I23). Therefore, by calling upon Lerf@inae conclude
that the limit superior of the first term on the RHS Dbf (1128) isies. Likewise, using Lemmas 1 and 4,
it can be verified that the variances of the seque{ﬁéong/\/m;i > 0} also converge to the same
normalized MSD in[(98). Therefore, from Lemmds 2 and 6, thatlsuperior of the second term on
the RHS of [(I2B) vanishes. The limit superior of the thirdrteranishes sincéw'™ /. /fimax; i > 0}
converges in distribution tg, which follows from Lemmals. Therefore, the limit superidrtbe RHS
of (I128) vanishes when— oo and piax — 0. [
Theoreni B allows us to approximate the distributiomaf , /1imax by the Gaussian distributids(0, IT)

for large enough and small enoughu,,x.

B. Statistical Decision on Clustering

In Theorem[B, we established that for large enougand for sufficiently smallu,.., the joint
distribution of the individual estimatorgw;, ;; £ = 1,2,..., N} can be well approximated by a Gaussian
distribution [126). Therefore, the marginal distributifam any pair of estimators, saw; ; andw, ;, can

be well approximated by the Gaussian distribution:
Wi wy Uy Hge

~N » Hmax (129)

Wy ; wy ey Il

wherew; andwj are their individual minimizers, ant , denotes thek, £)-th block of IT with block

size M x M. Without loss of generality, let us consider the scenari@enehagent: is from groupg,,
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in clusterC, and agent is from groupg,, in clusterC,, i.e.,k € G,, C C, and/ € G,, C C,. Then, we
have from Definitio 11 that

wp = w wy = wy (130)

From Theoreni12, the covarince matifikpossesses the block structure showriin118). Using (118), a

noticing thatk € G,, and/ € G,, it is obvious that
ek = Prm, Hpo = Prn, Hop = P, oo = Pppy (131)

Then, it follows from [12B)+£(131) that

Wk, ; "LU; (I)mmv, (I)m,n
~N » Mmax (132)

*
Wy ; w,. (I)n,m cI)n,n

which means that the mean and covariance of the joint digioib for any pair of agenté and/ only

depends on their groups. In other words, for any two agéntand k» from the same groug,,, the

joint distribution of {k;, ¢} and the joint distribution of k2, ¢} will be well approximated by the same

Gaussian distribution in_(182). Therefore, if both agéatand k; need to decide whether agehis in

the same cluster as they are, then they will have the same mbabilities in the hypothesis tet {32).
Based on[(132), the hypothesis test problem for clusterowg Ibecomes that of determining whether

or not the two (near) Gaussian random vectays; andw, ; have the same mean. Suppose the samples

from the two variables are paired. The difference
dyo £ wy; — wy; (133)

serves as a sufficient statistics [45]. Sinog, andw,, are jointly Gaussian i (132), their difference

dy ¢ is also Gaussian:

dy;0 ~ N(dy ., ftmaxAm,n) (134)

where
dy . & wh —wy (135)
Apn £ Py + @y — Py — Py > 0 (136)

If the agentsk and ¢ are from the same cluster such that= r, then hypothesidl, in (32) is true
andd; , = 0; otherwise, hypothesi&l; in (32) is true andi;, # 0. The hypothesis test for clustering
becomes to test whether or not the differezg in (133) is zero meawithout knowing its covariance

mMatrixX fimaxAmn- If Nsam independent samples af, , are available for testing, whe®sayn > M, and
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A, 1S non-singular, then according to the Neyman-Pearsoarimit [46], the likelihood ratio test is
given by [45, p. 164]

2 A Tl ko

where T¢, is called Hotelling’s T-square statisti; is the sample mean ofy ¢, S is the unbiased

sample covariance matrix, argl , is the predefined threshold from_{32). The scaled T-squatéstits

Nsarn_ M
(Nsam—1) M

centrality parametefVggm L (d;,T)TA_l dy, [47, p. 480]. Whend;, = 0, it reduces to a central

max m,nq,r

F-distribution [47, p. 322].

-T,f,Z has a non-central F-distribution with/ and Ng;m— M degrees of freedom and non-

However, because stochastic iterative algorithms empéwy small step-sizes, sampling their steady-
state estimators over time does not produce independernplesnin many scenarios we only have
one sample available for testing, where the sample mearcesdw the sample itself, and the sample
covariance matrix is not even available. In order to carryythe hypothesis test, we replace the sample
covariance matrix by the identity matrix. Then, the Hotalls T-square tesf (187) becomes

2 A 2 Ho
0o = ldrell” < Or e (138)

H;y

where we re-used, , to denote the only available sample for testing. The detisiatistics? , is a

quadratic form of the (near) Gaussian random vedior. Using [134), the mean QT,%’Z is given by
ES; ;= Elldi||* = ETx(dredy ) = Tr(Edyedyf, ;) = ||d} |I° + fmaxTr(Amn) (139)
and the variance 05,%74 is given by (see Appendix| F)
Var(87 ) = Elldye|l* — (Elldiel®)? = dpmaxl|dy, 1A, + 205a Te(A, 1) (140)

It is seen that the mean 6} , is dominated b)ﬂd;rH? for sufficiently small step sizes. Since the variance

of 6,%1 is in the order ofumax, according to Chebyshev’s inequality [44, p. 47], we have

Var (6?2
]PH(SI%,Z - Edl%,f’ > C] < % = O(Nmax) (141)

for any constant > 0. Therefore, for sufficiently small step sizes, the probghbihass ofé,%vé will highly
concentrate arounﬂdi’z. When hypothesié, is true, we havel . =0 and IE(S,%’,Z = fmax T (A ) =
O(pmax) = 0; when hypothesid, is true, we havel; . # 0 andEd; , = [|dj . [|* + O(pmax) ~ [|d} . ||*.
That is, the probability mass QT,ZM underH, concentrates nedr while the probability mass 05/%,@
underH, concentrates nedjel; . ||* = |lw} —w}||* > 0 (which is a constant that is independent.Qf..).

Obviously, the threshold;, , should be chosen between 0 dh@,r|’2- By doing so, the Type-I error will
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correspond to the right tail probability aﬂ‘fM whend; . = 0 (see [(14b) further ahead) and the Type-lI
error will correspond to the left tail probability QT,ZM whend; , # 0 (see [(145) further ahead).
In order to examine the statistical propertiesé@fg and to perform the analysis for error probabilities,

let us introduce the eigen-decomposition/f, ,, in (136) and denote it by
Apn = UrAAUR (142)
whereU, is orthonormal and\ 5 is diagonal and nonnegative. Let further

o2 A PUTdpy, 72 APURd: (143)

q,r
Sincedy, ; ~ N(dy .., ftmaxAm,n), it follows from (142) and[(143) that ~ N(Z, pmaxIar)- Substituting
(142) and[(14B) into[(138) yields
M

Siy=x Az =) Nz} (144)
h=1
wherex;, denotes thé-th elements ofe, and )\, denotes thé:i-th element on the diagonal dfs. From

(144), it is obvious thaﬁ,i,Z is a weighted sum of independent squared Gaussian randdabbes: \When
hypothesisH is true, we havel; . = 0 andz = 0 by (143). In this caseﬁ,ig reduces to a weighted sum
of independent Gamma random variables (because squadhean Gaussian random variables follow
Gamma distributions [48, p. 337]), whose pdf is availablelwsed-form (but is very complicated) [49],
[50]. When hypothesi&l; is true ande(*mH2 > 0, the pdf ofd,%,z is generally not available in closed-
form. Several procedures have been proposed in [51]-[35)dmerical evaluation of its tail probability.
Instead of relying on the precise pdf 6,35, we shall provide some useful constructions in the sequel

for the error probabilities in the hypothesis test probl&&8).

C. Error Probabilities

For anyk € G, C C, and? € G,, C C,, the Type-I error, namely, the false alarm for incorrecécéipn
of a trueH, is given by

Type-I error: P8} ; > Opeldy, = 0] (145)
and the Type-Il error, namely, the missing detection foomect rejection of a truél,, is given by
Type-Il error: P[6% ; < Opeldy . # O] (146)

It is seen that the Type-I error corresponds to the rightaibability ofdz,z with d7 . = 0 and the Type-
Il error corresponds to the left tail probability 6%74 with d; , # 0. This is a fundamental difference

between the two types of errors and, therefore, differechrigjues are needed to approximate them.
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Specifically, for the Type-Il error, the pdf Qi‘,zM is close to a bell shape and can be well approximated
by a Gaussian pdf. Then, the Type-Il error probability canbbended by using Chernoff bound [56].
However, this technique does not apply to the Type-I errarabse wheni;, = 0, the pdf of 5,3’,5
concentrates on the positive side of the origin point anckéwved with a long right tail. Consequently,
we need to take a different approach to bound the Type-| gmaability.

1) Type-l Error: We first note that

50 =2 Az < [|Ag | - |2 (147)

whereA, is from (I42). This means that & , > 6 ¢, then||A,, || - |z]|* > 6k must be true, which

further implies that the ever{td,i,z > 0k o} is a subset of the evedt| A, || - [|x||? > Ok} Therefore,

P[0} ¢ > Oreldy, = 0 < P[llz|* > 6} 4|z = 0] (148)
wherez is from (143), and
O 0
0,2 (149)
S Al

Sincez = 0, u,. ||z||? follows a central chi-square distribution wiflf degrees of freedom [48, p. 415].

max

Therefore, using the Chernoff bound for the central chiesgudistribution[[5F, Lemma 1, p. 2500], we
get from [148) that

/ M/2 /
P@g>%mmzmél—mes%m=ms(f@5> em(—ﬁi> (150)
: 1%, , Hmax M 2/tmax
for pimax < Hgﬁg/M, wheree is Euler's number. Therefore, when,.x is small enough, the Type-I error
probability decays exponentially at a rate @fe—°'/#~=) for some constant; > 0.
2) Type-Il Error: We consider the characteristic function&%[Z. Since{x}} are mutually-independent,

the characteristic function af , is given by
coz,(t) 2 E [eﬂt‘s%,e} —E [eﬂch,zl Ahm}i] -T[E [eytAhm}i] (151)
h=1

where we used (147). Sine& . # 0 in this casex from (143) has nonzero mean# 0. Therefore,
eachu,, .. x? is a non-central chi-square random variable with one degféeedom and non-centrality

PmaxZs [47), p. 433]. The characteristic function of is then given by[[47, p. 437]:

o 1 - _
E [ejtwh] — We]xht/(l_zjt”m“) (152)
Substituting [(I5R) into[(151) yields:
- 1
2 (t) = . ji‘itAhr/(l_zthmax)\h,) 153
céw( ) g T— 2l e ( )
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When um.x is sufficiently small, we have
1 ~1 1
V1 = 25t fmax An "1 = 25t prmax An
Using [156), we can approximatg: , () in @@s3) by

~ 1+ 2jtﬂmax)\h (154)

M
., .
csr (1) ~ H I TR AR (1427 max An)
k.t
h=1

I TR 20 (DI, N2

— It P =28 pmax |G 1R (155)
where we used the fact that
M M
> owzh =lld; 3 > NEk = lld; R (156)
h=1 h=1

Note that the RHS of (155) coincides with the characterfsiiction of a Gaussian distribution with mean
|d? -|I* and variancelymax||d; |13, [48, p. 89]. Since the distribution of a random variable isquely
determined by its characteristic function, resGlt(155plies thatd; , ~ N(|[d} 17, 4pmax|Idy . [17,)
approximately for sufficiently small, .. Thus,
2piaxd pllas ) 2

where Q(-) denotes they-function, which is the tail probability of the standard Gaian distribution,

d*/’n 2 - 0 1 * 2 2 * 2
P[5, < Ol 01 ~ Q (”q”—“> < Loy 0 Sl iy (157)

and the last step is by using the Chernoff bound [56, p. 38Brdfore, whenu,.x is small enough,
the Type-Il error decays exponentially at a rateQue—¢>/#==<) for some constant, > 0.

3) A Special Casefor the purpose of illustration only, we consider a speceecwhered,, , =
omnlar. In this case, the pdf 08} , has a closed-form pdf. WheH, is true and||d;,[> > 0, the
quadratic formé,%vé/(umaxafm) reduces to a non-central chi-square random variable Witllegrees
of freedom and non-centrality parametpﬂ;vrnz/umaxoﬁm [47, p. 433]. Let us denote the non-central
chi-square distribution withi degrees of freedom and non-centrality paramatéy x2()). The pdf of

x2(\) is then given by[[47, p. 433]:

1 pa\@d=2)/4 _
fe@dN =3 (5) e Ly (VA) (158)
for z > 0, wherel,(x) denotes thé:-th order modified Bessel function of the first kind. Then,
o7 ¢ o s, ?
t _rert 159
/j’maxo'%q,n X ///maxo'?nm ( )
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Hy: same cluster
sk —— H,: different clusters

3.5

Fig. 2. The pdf ofé; , defined in [Z6D) and(161) with/ = 10, ||d; . ||* = 1, 07, = 1, ftmax = 0.01,0.03, 0.05.

and the pdf ofd} , is given by

d* 2
f(Z)Z%-fv( ¢y, Ml ) (160)

9
:umaXO-m,n :umaXO-m,n ﬂmaxamm

where f,:(-) is from (I58). WheriH is true and|d} ,||* = 0, the pdff(z) in (I60) reduces to a scaled
central chi-square distribution [48, p. 415]:

f2) = — o (—2 M, o) (161)

fimax T fimaxOr
We plot the pdff(z) from (160) and[(I61) in Fid.]2. It can be observed that whén||d? . ||?, ando?, ,,
are fixed, in bothH, (blue curves) andi; (red curves) cases, the probability masaig)} concentrates
more around its mean gs,.x decreases. Wheq # r (i.e., H; is true), the mean o, is close to
|d? | = 1 for sufficiently smalljimay; wheng = r (i.e., Hy is true), the mean is close to zero. The
right tail probabilities of the blue curves (undgp) and the left tail probabilities of the red curves (under
H,) all decay exponentially. In addition, it is seen that thé ofi 6,%75 underH; (the red curves with
|d% .|* > 0) is near symmetric and is in bell-shape, which agrees wighGlaussian approximation we
made when evaluating the Type-Il error (mis-detection)tf@ general case. On the other hand, the pdf
of 6,%1 underHj (the blue curves withd} ,.||* = 0) concentrates close to zero and has large skewness
with a long tail on the RHS, which distinguishes itself fronaussian distributions; this demonstrates
our previous statement that it is not appropriate to as$es$ytpe-I error (false alarm) by approximating

the pdf of 67 , underH, with Gaussian distributions.

D. Dynamics of Diffusion with Adaptive Clustering

Since both Type-1 and Type-II errors decay exponentiallihveixponent proportional to/imax, it is

expected that incorrect clustering decisions will becoare @as the iteration proceeds. We can therefore
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assume that enough iterations have elapsed and the firssi@t{23a)-£(23b) is operating in steady-state.
Under these conditions, we can examine the dynamics of tmnserecursion (34a)=(34b) with adaptive
clustering.

From Assumptiori]l, correct clustering decisions split tinelarlying topology into@ sub-networks
one for each cluster. Within each cluster, correct clusgedecisions merge all disjoint groups into a
bigger group. Therefore, the resulting topology for thaéremetwork will now consist of) separate sub-
networks and each sub-network will be strongly-connedtedddition, since the step-sizes are sufficiently
small, the decision statistidgw,; — wy ;||* generated by the first recursidn (23&)=(23b) in steadg-stat
will be nearly time-invariant. The clustering decisiondlwherefore also be nearly time-invariant. Then,
with high probability, the cooperative sub—neighborthM;i} produced by[(33) will become nearly
time-invariant after the first recursion (234)—(P3b) remchkteady-state:

N = NF, as i— (162)

for all k, where ;" is from (3).

In order to gain from enhanced cooperation via adaptiveteting, it is critical to choose proper
combination policies for recursiofh (34d)=(34b). From th&cdssion in Chapter 12 of |[3, p. 624-635],
we know that doubly-stochastic combination policies arke &b exploit the benefit of cooperation when

more agents are included in cooperation. For example, oneltaose the Metropolis rule][3, p. 664],

i.e.,
1
, Le NG N\KY
max{|N /|, IV} b
ap(i) =3 1= Y apl), =k (163)
neNT (k)
0, le Nk\Nl—;z

\

When the combination coefficien{sr, (i)} are chosen according tb (163), their values are determined
by the size of their cooperative sub-neighborhdd .. It is then obvious that coefficien{g), (i)} will
tend to be constant values:

ay, (i) — ap,, as i— oo (164)

which will be determined by the size of,. Therefore, we can rewrite the second recursion](3%a)}(34b

for small enoughum.x and large enough as

‘Mg,i = 'w;e,z'—l - Mkﬂc(w;c,z—ﬂ (165a)
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w;c,i = Z a%mé,z- (165b)

LENT
by using [16P) and (164). We collect the}, } into a matrix and denote it byl’. The matrixA’ is block
diagonal and each block on its diagonal corresponds to @ecliRecursion (16%a)=(165b) only involves
in-cluster cooperative learning for common minimizersgwéhall agents from a cluster form a single big

group. Therefore, the performance analysis in Seciibn Mieppo this case as well.

VIl. SIMULATION RESULTS

We first simulate a network consisting é&f = 200 agents. Each agent observes a data stream

{di (i), ur ;1 > 0} that satisfies the linear regression model [58]:
di (i) = uy jwy, + vi(7) (166)

where di (i) € R is a scalar response variable ang;, € R'™*M s a row vector feature variable
with M = 2. The feature variable, ; is randomly generated at every iteration by using a Gaussian
distribution with zero mean and scaled identity covariameerix Uﬁ,kIM- The model noisey, (i) € R is

also randomly generated at every iteration by using andtitependent Gaussian distribution with zero
mean and variance; ;.. The values of{o7. .} and {0, } are positive and randomly generated.

There are) = 2 clusters in the network. The firs; = 100 agents belong to clustety, i.e.,

Cy =1{1,2,...,100}. The secondV, = 100 agents belong to clusték, i.e.,C, = {101,102,...,200}.

The loading factors for the two clusters, namely, and w3, are randomly generated. The step-size is
uniform and is set tq: = 0.05. The underlying topology that connects all agents is shawhig.[3a.
Agents from cluste€; are in red and agents fro@} are in blue. We simulated the scenario where agents
have some partial knowledge about the grouping at the biegjrof the learning process. The partial
knowledge is non-trivial, meaning that the groufs, } used in the first recursion (23d)=(23b) are not
just singletons. The topologies that reflect #t&,,} are plotted in Figd._3b arid3c for the two clusters.
The Metropolis rule[(183) is used in both recursions, (2@88) and [(34a)£(34b).

As we explained before, in steady-state the clusteringsétets become time-invariant and small groups
in the same cluster merge into bigger groups. The links berweeighbors within the same cluster are
active while links to neighbors from different clusters at@pped. We plot the resulting topology in
steady-state with active links in Fifg.]3d. Compared to Eig, the underlying topology in Fidg. Bd is
trimmed and split into two disjoint sub-networks. This résmplies that the interference between two

clusters is suppressed. The two sub-networks are thenssebrenected at steady-state and are shown
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(a) The initial topology with all links.
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(d) The final topology at steady-state. (e) Resulting topology of cluster 1.  (f) Resulting topology of cluster 2.

Fig. 3. The underlying topology of the entire network whegerts from different clusters are connected. As the legrnin
process progresses, the disjoint groups in each clustegemieto a bigger group to enable collaborative learning agnoore

agents. In steady-state, only in-cluster links remainvacti

in Figs[3é¢ and_3f. Comparing the resulting cluster topolegieFigs[3e and_Bf with the initial cluster
topologies in Figs[_3b and Bc, it can be observed that allregpamall groups from the same cluster
merge into a bigger group and collaborative learning inWmvmore agents emerges.

The MSD learning curves are plotted in Hig. 4 where the clugt®Ds are obtained by averaging over
100 trials. The cluster MSDs for the first recursién (23a3H)2are in black and green for clusters 1 and
2, respectively. The cluster MSDs for the second recursddia¥-{(34b) are in red and blue for clusters
1 and 2, respectively. Obviously both clusters improverts&ady-state MSD performance on average
by forming larger clusters for cooperation.

In the second simulation, we simulate a network wih= 50 nodes inQQ = 5 clusters. The sizes
of the five clusters are 8, 9, 10, 11, and 12, respectively. iitial topology is shown in FigiBa. We
choose the uniform step-size = 0.01. After 1000 iterations, the resulting topology is sepatatgo
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Fig. 4. The steady-state cluster average MSDs for the ficstrseon [23h)-£(23b) and the second recursionl(3#a)}-(34b).

five clusters and is shown in Fig.15b, and the topologies ferfite clusters are given in Figs.1$c}5g,
respectively. The MSD learning curves that are obtainedveyaaing over 500 trials match the theory
well, as shown in Figd._6a andl6b.

VIIl. CONCLUSIONS

In this work we proposed a distributed strategy for adaptening and clustering over multi-cluster
networks. Detailed performance analysis is conducted heddsults are supported by simulations. The
proposed algorithm can be used in applications to segmeatdgeneous networks into sub-networks
to enhance in-cluster cooperation and suppress crose(clierference. It can also be applied to
homogeneous networks to prevent intrusion or jamming biafsmy malicious nodes from normal nodes.
Furthermore, it can be used to trim and grow adaptive netsvadcording to the objectives of the agents

in the network.

APPENDIXA

PROOF OFLEMMA [2

Since both models[(89) and (72), can be decoupled@h&eparate recursions one for each group, it

is sufficient to show that for sufficiently small step-sizasd for any groug,,, it holds that

lim sup B[ Wi ¥ — Wi |2 = O(12,.) (167)

; m,i m,i
1—+00
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(a) The initial topology with five clusters. (b) The remaining topology with five clusters.
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Fig. 5. The initial topology withV = 50 nodes and) = 5 clusters. In steady-state, the five clusters are succhsstparated

from each other while each cluster remains connected.
wherefv'%’fi is given by [94). We adopt a technique similar to the one usdHe proof of Theorem 10.2
[3, p. 557] to establisH (167) in the sequel. We introducelihvelan decomposition of each,, [3], [59]:

A = ViV 2 [0, Vi g 1 (10 Vm,L]T (168)

m,e
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(a) The MSD learning curves for the first recursién (23a)Bjj2®) The MSD learning curves for the second recursion](3BEY

Fig. 6. The MSD learning curves for the proposed distributketering and learning algorithm.

whereJ,, . € CWVa=1x (N5 —1) consists of all stable Jordan blocks wifh on the first lower off-diagonal,

andV,, is a non-singular complex matrix. Let
Vi 2 Vi @ Iy (169)
TIm = T @ I (170)
Multiplying V! to both sides of((76) yields:
VIS = B VI | + TV Mo S i(Wini1) (171)

where

B 2 VLB (Vh) ™ = Tk — T Vm M Hn (Vi) (172)

By (168) and[(16P), we have

~ | _
T xlong _ (b ® )" Tznzg A w:%rj?
VWi = T~Jong| | . long (173)

(Vm7R®IM) w

m,i m,i

wherew!>"% is an M x 1 vector, W% is an (N, — 1)M x 1 vector. It follows from [I6D) and(94) that

e
Vil = (Vi ys) @ Wl = ’ (174)
0

sincel s is the first column of(V,})~! in [68). Using [I78) and_(1T74), we find that

E[[ Wiy — Witil,, = Ellwg? — @] + Elwp (175)
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whereY,, £ V,,V! is a positive-definite weighting matrix. Sindg, || is independent Ofip.y, result
(167) holds if the following condition holds:

lim sup E[[ @9 — &12%]|* + E[Wr9)? = O(u,.) (176)

1—00

Using Eq. (10.78) in[[3, p. 563], we know that

lim sup E[Wrd|? = O(42,.) (177)

1—00

From [171) and[(173), the evolution aii"’"g is given by (see Eg. (9.61) from![3, p. 514] for a similar
derivation):

_ long

0'°" — melong

m,i—1

— D21W|7?1n§ 1 + ( & IM)TMmSm,i(Wm,i—l) (178)
where DI, £ (p%, @ Ing) " My Hn (Vi ® Inr). Using [I78) and{86), we obtain

_ long ~low __ _ long ~low « Iong
Wy, i = Wi = Dm(wm,i—l - wm,i—l) Dyyw m,i—1 (179)

We recognize that recursion (179) has a form that is similahe recursion fob; in Eq. (10.64) of[[3,
p. 561] except that here in_(1]79) the driving noise term iseabsTherefore, we immediately get from

Eq. (10.66) of[[3, p. 562] that
El[@'°" — @22 < (1 — 011t B[ 0119, — @19, |1% + %f;‘“lﬁu W |2 (180)

m,i—1 m,i—1 m,i—1

for some constants;; > 0 andos; > 0. Substituting [(1717) into (180) yields
El[w,y — ol < (1= 011t Bl @iy — @01 [1* + O(1a) (181)

m,i—1 mzl

for large enough. Therefore, it follows from[(181) that

lim sup E[@)? — @i | = O (1) (182)
1—00
Combining [(17¥7) and(182) proves (176).
APPENDIX B

PROOF OFLEMMA [3

Let us examine the evolution of the covariance matri)Wi‘fW, which is defined by
0, 2 EpV (w7 (183)

3 3

Using [14) and[(15), we get from _(B9) that

0; = DO; 1D + PTM[ER,;(W;_1)]MP (184)
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We next introduce the fixed-point covariance recursion

O™ = D™ D+ PT MR, ;(W°)MP (185)
Let

AQ; 20, -0 AR ; 2ER,;(Wi-1) — Rsi(W°) (186)

The difference matrixA©; evolves by the following recursion:

AO; = DAO; 1D+ PT MAR, ; MP (187)
We bound the difference matriaR, ; by

18R € BIReu(Wict) = Resr)|

(b) . N
< kE|wWi_ ]|

(©) ~ S
< ko (Bwig[4)*"* (188)

where step (@) is by using Jensen'’s inequality; step (b) isdiyg [1T7) from Assumption] 3; and step (c)
is by applying Jensen’s inequality again to the concavetfona:+/* for v, < 4 andz > 0. As i — oo,
we get from [(18B) that
limsup AR, = O(u:2) (189)
1—00
by using [69). From Eq. (9.286) in![3, p. 548], we have
D[ = max | Dy || <1 — 0ptmax (190)
for somes > 0. Using the triangle inequality and the sub-multiplicagvproperty of norms, we have
from (187) that
|46 < [DAG; 1 D|| + |PTMAR, ;MP||
< IDIPIAG1 | + piax PP AR,
< (1= 0ptmax) [AOi—1 || + oI PIP| AR 4 (191)
where in the last step we uséd (190) and the fact@hatl — oumax < 1. Then, as — oo, we get from
(I89) and[(191) that
limsup [|AO; | < 0™ frmal|P|* (lim sup AR il]) = Ol /?) (192)
] 1—00

1—00

Now, sinceD is stable and in view ofl (18), the fixed-point recursién_(186jpverges as — oco. At
steady-state, the limi®™ 2 lim; ,., O™ of (I88) satisfies the discrete Lyapunov equation (97) by
identifying © = O™,
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APPENDIXC

PROOF OFTHEOREM[Z
From Lemmag]1l and 2,

lim lim sup gL E[w; — w2

Hmax—U 4300

~ long low | | 2

< lim limsupp, !l E|w; — Iong +w, T —w;

Pmax—0 ;550

< lim limsup 2up L Bl — W2+ lim limsup 25,5 E[ Wi — wiow |2
Hmax—U 00 Pmax—0 500

=0
Let
HIZ-OW AL r_n;xEWIOW(WIiOW)T

Then, by Jensen’s inequality,

~ ~T _ _
pmax [T — T | < E[Wiw; — w2 (wW)T |

(2

= E[[Wiw; — W, + W] — Wi (o))
< EJ|(wi = W)W || + E[WP (Wi — w™)T)|

The second term on the RHS &f (195) can be bounded by

E[[W (Wi —wi) Tl = E[(W2Y — Wi +wi) (W — W) ||

< B[ = wi) (Wi = W) T|| + E[wi (Wi = wi)T|
= B[P — wil? + E[wi(w; — W)

Substituting [(196) into[(195) yields:

e [T =TI < 2E[| 00; = W)W || + E[wi — w|”

The first term on the RHS of (I197) can be bounded by

E|[(Wi — w)w] || < E(|wi — wi|[[will)

< \JEIW: — Wi 2B v |2

by using the Cauchy-Schwarz inequality. Substituting §1i8® (197) yields:

I — T < 23 e Bl — W2 B2 + i W — i
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(196)

(197)

(198)
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Using [193) and Theoref 1, it follows frorh (199) that

lim limsup |[II; — oY) =0 (200)

Mmax —0 1—00

Noting thatyv!® is obtained by extendingv’’” via (@3) and [9%), we have
EWmi(Wit)" = (g 1) ® Ewly(wyy)" (201)
for any m andn. From [101), we know that

lim 1 sup | tpax E@s (0,7) T — @] = 0 (202)

Lo — oo m, n,s
where®,, ,, denotes thém, n)-th block of ® with block sizeM x M. It follows from (201) and[(202)
that

lim i sup|| s EWis W) T — (L ngd Ng) @ || =0 (203)

Hmax— 1—00

Using (93), [11B), and (194), we get froin_(203) that

lim limsup [T — 11| = 0 (204)

Hmax— 1—00

Combining [20D) and (204), we arrive at (117).

APPENDIXD

PROOF OFLEMMA [B

We establish this result by calling upon Theorem 1.1 from [89319], which considers a stochastic
recursion of the following form:

x; = i1+ pg(Tio1) + po; (205)

with step-sizeu > 0, update vectog(x;—1), and noisev;, satisfying the conditions:

1) The functiong(-) is continuously differentiable and can be expanded as
g(z) = g(a°) + [Vg(a*)]T (z — 2°) + o( [l — 2°])) (206)

around a pointz°, whereVg(-) denotes the Jacobian ¢f-), ando(-) is the “smalle” notation
that represents higher order terms.

2) It holds thatz? is the unique point that satisfies:
g(z°) =0 (207)

3) The Jacobiam = Vg(z°) is a Hurwitz matrix (i.e., the real parts of the eigenvaluésdoare

negative).
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4) The noise procesgv;;i > 0} is a martingale difference, i.e.,
E(vi|Fi—1) =0 (208)

wherelF;_; is the filtration defined by{x;;i > 0}.

5) The noisev; has an asymptotically bounded moment of order higher thara@ely,

lim lim sup E|jv;]|**? < oo (209)
n—0

1—00

for somep > 0.
6) The covariance matrices of the noise prodassi > 0} converge to a positive semi-definite matrix
> >0:
lim lim sup ||Ev;v] — 2| =0 (210)

=0 oo
Under these conditions, it holds that as—+ oo and i — 0 asymptotically, the sequender;/./1i}
converges weakly to a Gaussian random distribution withrme&aand covariance matrix’, which is
the unique solution to the continuous Lyapunov equat@n+ CAT = 3.

These conditions are satisfied by our recursion](119) bytiiyerg W™ = x;, fimax = p1, —HW", =
g(x;_1), v; = ;. First, sinceH is positive-definite by[(111) and (B8), it is obvious th&t= 0 is the
unique point satisfying (207). Second, singe) = —Hz andz° = 0, condition 1) holds automatically
with [Vg(2°)]T = —H. Third, it is easy to recognize that = —H is Hurwitz since# is positive-definite.
Fourth, by [15) from Assumptio 3, condition (208) holddithsiby (18) from Assumptiofl3, we have

Ellsi|* < [PI'Ellsi(wi-1)|*
< IPI*(@®El[Wi-1]* + o) (211)
Using Theorenill, we get fromh (211) that

lim Timsup E[|s;]|* < |P[*(O (k) + 05) < 00 (212)

Hmax—U {500

which satisfies conditiorl (209). Sixth, we have frdm (120)l §84) that
E5,3; = pmexPT MER ;(Wi_1)MP (213)

Let
i 2 firpan PT MR i(W°) MP (214)

Then, using Jensen’s inequality andl(17) from Assumgtiowe have from[(2113) that
IEsis] — Sl < [|PIPAR| (215)
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where AR ; is from (I186). Using[(189), we further get

lim limsup ||E3;3] — ;|| =0 (216)

Pmax—0 00
Using [18), we have
lim ¥; = p 2 PTMRMP =R >0 (217)

1—00

whereR is from (I12). It follows from [[216) and (217) that

lim limsup |[Es;3] — R =0 (218)

Mmax —0 1—00

Therefore, we conclude that the sequer{ﬁa'iow/,/umax;z’ > 0} converges weakly to the Gaussian

random variable with zero mean and covariance matrithat satisfies (115).

APPENDIX E

PROOF OFLEMMA [

We follow an argument similar to the proof of Theorem 2 frord,[$. 256] (which proves the result
that convergence in moments implies convergence in digiob). Let|f(z)| < ¢, i.e., bounded. Because
a continuous functionf(z) is also uniformly continuous in anyboundedregion [44, p. 54], forany
constant > 0 and for any constant > 0, there exists somé. ; > 0, which depends on the choices of
e and b, such thatlf(z) — f(y)| < e for |lz|| < b and ||z — y|| < .5. Now, settingb = /2co?/e > 0,

whereo? is from (I124), and using conditional expectations, we have
Elf (&) = fma)l = E[lf(G) — fma)l | 16 = mill < dep, Gill < 0] - Pl — mill < 0ep, [Iill < 0]
+E[f(G) = F@a)l 1[I — mall < e, 16l = 0] - Pll|Gs — mill < Geps [IGill = 0]
+E[£(&) = fm)l [ 16 — mill = de] - PlIG; — il = 0ep] (219)
The first term on the RHS of (2119) is bounded by
Ist term< E[e | || — mi|| < 0, [|Ci]| < b] x 1 =€ (220)

Using the fact thatf(z) — f(y)| < |f(x)| + |f(y)|] < 2¢, and also the fact that the joint probability is
bounded by any one of the marginal probabilities, A N B] < P[A] for any two eventsd and B,
the second term on the RHS 6f (219) is bounded by

2cE i2 eE i2
ond term< 2¢B[||¢;|| > b] < b”f I _ l‘fg ” (221)
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where we used Chebyshev’s inequality |[44, p. 47]. Likewibe, third term on the RHS of (Z219) is

bounded by
2¢E||¢; — ni?
3rd term< 2¢P[||¢; — mi| > 9] < % (222)
Now, substituting[(2Z20)E(222) intg_(2119), we have
ek : 2 2cE s — 1) 2
BIF(G) — £l < e+ Sl 2¢BIG — i (223)

o2 52
Using [123) and[(124), we end up with
lim limsupE|f((i) — f(mi)] < 2e (224)

Hmax— 1—»00

Sincee is arbitrary, result[(125) follows from_(2P4).

APPENDIX F
PrRoOF OF(140)

To simplify the notation, we drop the subscript df , and denote its mean by = Ed and its

covariance byC' £ E(d — d)(d — d)T. Sinced is Gaussian, it holds that
El|d||' =E|d —d+d]|*
=E[|d — d|* +2(d — d)"d + ||d]*]”
=El|d — d||* + 2E[|d — d||*|d||* + |d||* + 4d"E[(d — d)(d — d)"]d
=E|d —d|[* + 2Tx(C)||d|]* + [|d]|* + 4]|d[|Z; (225)
where we used the fact that the odd order momentd ofd is zero. Likewise,
(Elld|*)* = (Elld — d + d]|*)?
= (El|ld — d||* + [|d][*)*
= [Te(O))? + 2Tx(C) || d|f* + [|d]* (226)
From [225) and((226), we have
Elld|* — (E[d]?)? = Elld — d||* - [Tx(C)]? + 4|d|}% (227)

From Lemma A.2 of([58, p. 11], it can be verified that

E||d — d||* = [Tr(C))? + 2Tx(C?) (228)
Substituting [(22B) into[(227) yields:
Elld|* - (E[d]*)? = 2Tx(C?) + 4||d] 2 (229)
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