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Abstract—In recent work, robust Principal Components Anal- often called the sparse+low-rank recovery problem, has bee
ysis (PCA) has been posed as a problem of recovering a low-ran  studied extensively but theoretically and empirically.esee

matrix L and a sparse matrix S from their sum, M := L + S 21, [B1, [6], [71, [8], [9], [LO, [L1], [L2], [L3].

and a provably exact convex optimization solution called P@ S . .
has been proposed. This work studies the following problem. Contribution: In this work we study the following problem.

Suppose that we have partial knowledge about the column spac Suppose that we have a partial estimate of the column space
of the low rank matrix L. Can we use this information to improve of the low rank matrixL.. How can we use this information
the PCP solution, i.e. allow recovery under weaker assumpins? to improve the PCP solution, i.e. allow recovery under weake
We propose here a simple but useful modification of the PCP assumptions? We propose here a simple but useful modifica-
idea, called modified-PCP, that allows us to use this knowlegk. . . o

We derive its correctness result which shows that, when the tion Of_ the PCP idea, callemod_|f|ed-PC|?that allows us to
available subspace knowledge is accurate, modified-PCP indd US€ this knowledge. We derive its correctness result (Treor
requires significantly weaker incoherence assumptions tmPCP. [[II.T) that provides explicit bounds on the various constan
Extensive simulations are also used to illustrate this. Coparisons  and on the matrix size that are needed to ensure exact rgcover
with PCP and other existing work are shown for a stylized with high probability. Our result is used to argue that, aglo

real application as well. Finally, we explain how this probem . . .
naturally occurs in many applications involving time series data, as the available subspace knowledge is accurate, modii&d-P

i.e. in what is called the online or recursive robust PCA protiem. requires significantly weaker incoherence assumptions tha
A corollary for this case is also given. PCP. To prove the result, we use the overall proof approach

of [3] with some changes (explained in $ek V). By “accurate”
subspace knowledge, we mean that the number of missed
directions and the number of extra directions in the avéglab
Principal Components Analysis (PCA) is a widely usedubspace knowledge is small compared to the rark.of
dimension reduction technique that finds a small number of An important problem where partial subspace knowledge is
orthogonal basis vectors, called principal componentma@l available is in online or recursive robust PCA for sequédigtia
which most of the variability of the dataset lies. Accuratelarriving time series data, e.g. for video based foregroumt a
computing the principal components in the presence oferstli background separation. Video background sequences are wel
is called robust PCA. Ouitlier is a loosely defined term thaodeled as forming a low-rank but dense matrix because
refers to any corruption that is not small compared to ththey change slowly over time and the changes are typically
true data vector and that occurs occasionally. As suggéstedylobal. Foreground is a sparse image consisting of one og mor
[2], an outlier can be nicely modeled as a sparse vector. Timving objects. As explained in[14], in this case, the sabsp
robust PCA problem occurs in various applications rangirgpanned by a set of consecutive column§.afoes not remain
from video analysis to recommender system design in tfiged, but instead changes gradually over time. Also, often a
presence of outliers, e.g. for Netflix movies, to anomalipitial short sequence of low-rank only data (without oert)
detection in dynamic networks$1[3]. In recent work, Candes available, e.g. in video analysis, it is easy to get ariaihit
et al and Chandrasekharan et[@l [3], [4] posed the robust PGAckground-only sequence. For this application, modiR&iR
problem as one of separating a low-rank maiftiXtrue data can be used to design a piecewise batch solution that will be
matrix) and a sparse matri® (outliers’ matrix) from their faster and will require weaker assumptions for exact regove
sum,M := L+ S. They showed that by solving the followingthan PCP. This is made precise in Corollary 1V.1.

I. INTRODUCTION

convex optimization program We also show extensive simulation comparisons and some
minimize; g |\I~4|| + )\ngl real data comparisons of modified-PCP with PCP and with
) s 1) * 1 .. . .
subject to LiS—M (1)  other existing robust PCA solutions from literature. Th@iea

mentation requires a fast algorithm for solving the modified
PCP program. We develop this by modifying the Inexact
Augmented Lagrange Multiplier Method af [15] and using the

it is possible to recovek, andS exactly with high probability
(w.h.p.) under mild assumptions. [n [3], they called it pijpal

components’ pursuit (PCP). HefL|. denotes the nuclear;y.- of [T6], [17] for the sparse recovery step.

norm of L and |[S||, denotes the’; norm of S reshaped as  \yiation. For a matrixX, we denote byX* the transpose

a long vector. This was among the first recovery guarantegssy. jenote by|[X | the . norm of X reshaped as a long
fqr a practical (polynomial complexity) robust PCA ngbm. vector, i.e.max;; |X;;|; denote by||X|| the operator norm or
Since then, the batch robust PCA problem, or what is now al§9norm' denoteyby'|X||F the Frobenius norm

A shorter version of this paper appears in the proceedingsSIdf 2014 Le_t 7 denote the identity operator, i.Q(Y) =Y for any
[@]. This work was supported in part by NSF grant CCF-1117125 matrix Y. Let ||.A| denote the operator norm of operatdr
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e, | Al = supyx,-1) |AX]|F; let (X,Y) denote the Eu- Denote a solution to the above Hynew,S,X. Then, L is
clidean inner product between two matrices, i.e., tr¥c&(); recovered a¥, = Lpen+GX*. Modified-PCP is inspired by an
let sgr(X) denote the entrywise sign &. approach for sparse recovery using partial support knayeed
We let Pg denote the orthogonal projection onto a lineatalled modified-CS[[18].
subspace of matrices. We usé) to denote the support set
of S, i.e.,Q = {(4,5) : S(i,5) # 0}. As is done in[[3], [1l. CORRECTNESSRESULT
we also usé) to denote the subspace spanned by the matriceSye first state the assumptions required for the result and
supported on the sét (i.e. matrices whqse entries are zero Ofjen give the main result and discuss it.
the complement of the s€k). For a matrixX, we useP,X to
denote projection onto the subspdeei.e., (PoX);; = X,;,
if (4,7) € Q, and(PaX);; =0, if (4,7) ¢ Q. By Q ~ Ber(p)
we mean that any matrix index, j) has probability» of being ~ As explained in[[3], we need thatis not low rank in order
in the support independent of all others. to separate it fronLpen. One way to ensure th&tis full rank
Given two matricesB and B, [B B,] constructs a new W-h.p. is by selecting the support &f uniformly at random
matrix by concatenating matricd and B in the horizontal [3]. We assume this here too. In addition, we need a denseness
direction. LetBem be a matrix containing some columnsBf assumption orG and on the left and right singular vectors of
ThenB\ Bem is the matrixB with columns inBem removed. Lnew-
We say thafU is abasis matrixif U*U = I wherel is the Let n() = max(ny,n2) andn(z) = min(ny,nz). Assume
identity matrix. We use; to refer to thei™* columnI. For a that following hold with a constanp, that is small enough
matrix U, we use rangdJ) to denote its column span. (we set its values later in Assumptibn l1.2).

A. Assumptions

. prn
max (G Upe"ei[* < — 52— (®)
Il. PROBLEM DEFINITION AND PROPOSED SOLUTION n1l0g (1)
A. Problem Definition max [ Vigeil? < pm2(2) ’ 9)
We are given a data matrixI € R™ > that satisfies g ’ nzlog” nq)
an
M=L+S ) p
wheresS is a sparse matrix with support setandL is a low [UnewV newlloo < m- (10)
rank matrix with reduced singular value decomposition ($VD ) ™
SVD .
L=UxvV () B. Main Result

Let r := rankL). We assume that we are given a basis we state the main result in a form that is slightly different
matrix G so that(I-GG*)L has rank smaller than The goal from that of [3]. It eliminates the parametgrand combines
is to recoverL: and S from M usingG. Let r¢ :=rankG).  the bound onur directly with the incoherence assumptions (
Define Lnew := (I — GG*)L with 7new := rankLnew) and s a parameter defined ifll[3] to quantify the densenes® of
reduced SVD given by andV and the incoherence between their rows) . We state it
(T w\y, SYD * this way because it is easier to interpret and compare wih th
Lnew:= (I~ GGY)L Unennew new ) result of PCP. In particular, the dependence of the result on

We explain this a little more. With the above, it is €asy, , is clearer this way. The corresponding result for PCP in
to show that there exist rotation matricBs;, R¢, and basis the same form is an immediate corollary

matriCeSGextra and UneW Wlth Gextra*UneW = 0, SUCh that
B « Theorem lIl.1. Consider the problem of recoverinfy and
U= [M Unew| Ry ©) S from M using partial subspace knowledde by solving
Uo modified-PCP[{7). Assume thé&, the support set oS, is
We provide a derivation for this in Appendix]A. Noticeuniformly distributed with sizen satisfying
here thatU, be a basis matrix for rangke) N rangéG) =

< 0.4ps 11

rangéU) N rangéG). = 0-4psnan: (11)

Define rg := rankUy) and reyia := rank Gexra). Clearly, ~ Assume thatL, satisfies [(B), [(9) and[(10) ang, pr,
rG =70 + Fexra @NAT = 70 + Fnew = (G — Textra) + Tnew. are small enough andi;,n, are large enough to satisfy

Assumptiod TII.R given below. Then, Modified-PCP (7) with
A=1 /\/W recoversS and L exactly with probability at

—10
least1l — 23n(1) .

Assumption 111.2. Assume thaps, p, and n1, ny satisfy:

B. Proposed Solution: Modified-PCP
From the above model, it is clear that

Lew + GX"+8 =M ®) (@ p, < min{10~*,7.2483 x 10-5C;;
for X = L*G. We propose to recovdi andS usingG by  (b) ps = min{1 — 1.5b1(p,),0.0156} where by(p,) :=
solving the followingModified PCP (mod-PCP) program max {60p%, 11Co1p-/?,0.11
minimize;, s | Tnewll« + AlIS|1 (©) nay > max {exp(0.5019p,), exp(253.9618Co1p,.), 1024}

()

subject to Loew+ GX*+S=M (d) ng2) >100log”n(),



+ng)'/C 10.5
(e) f:gl_(nﬁ)nz) > GO e Also assume that;new < ¢ and " (cjnew — Cjold) < Caif-

() o /)2 Letr; :=rankP;). Clearly,r; = rj_1 + ¢j new— ¢j,old and so

00logn (1)
. 7 < 7T = Cdif-
whereCy;, Co3 are numerical constants from LemmalA5 {[19,7 = ~wmax — 70 T Caif

Theorem 4.1]) and Lemnia .7 ([19, Theorem 6.3]) respec- For the above model, the following is an easy corollary.
tively. Their expressions were not specified in the origingorollary V.1 (modified-PCP  for online robust
paper. PCA. Let M; = [yi,.¥e41-- Vi1l
Proof: We prove this result in Sdc]V. Lj o= [l e 1s o Loy 1]y S = [8t5080405 8t
and letLgy := [Ly,Lo,...Ly] and Sy := [S1, Ss, ... Sl
Suppose that the following hold.
) ) 1) Sy satisfies the assumptions of TheofemJIl.1.
The PCP program of [3] i$[7) with no subspace knowledge 2) The initial subspace rang®,) is exactly known, i.e. we
available, i.eGpcp = [ | (empty matrix). With this, Theorem are givenP, with rangeP,) = range(Py).
[T.1] simplifies to the corresponding result for PCP. Thus, 3) Forall j —1,2,....J, @), @), and[(ID) hold with, —
Unevv.,PCP =U and Vnevv,PCP =V and so PCP needs n, ng = tjp1 — 1, G = Pj—ly Unew = Pj new and Vpey

C. Discussion w.r.t. PCP

max |[U*e;||? < LQ(Q), (12) being the matrix of right singular vectors dfpey =
l o8 nay (I-P;1P;_,)L;.
Pr1(2) 4) We solve modified-PCP at every= t;,, usingM =

max [[Ve;|* < , (13) M; and withG = G; = P,_, whereP;_; is the
matrix of left singular vectors of the reduced SVD of

f,j,l (the low-rank matrix obtained from modified-PCP

||UV*HOO < pT2 ) (14) on Mjfl). Att =t; we USGG:PQ.
\/ n(1) log™ n) Then, modified-PCP recovess,, Ly, exactly and in a piece-

Notice that the second and third conditions needed Myise batch fashion with probability at leaét — 23n10)”.
modified-PCP, i.e[{9) and (IL0), are always weaker thah (13)
and [I4) respectively. They are much weaker whgg, is

small compared to. Whenreqa = 0, rangéG) = ranggUo) o program [{7) succeeds for the mattM = M;, i.e.
and so the first condition is the same for both modified-P g
; and L; are exactly recovered. Clearly); also implies

and PCP. Whenrega > 0 but is small, the first condition - .

for modified-PCP is slightly stronger. However, as we argl}n%ggé?rﬁffﬁgn;ertat%%??gbalﬁll%%grgorgnﬂm(la _an()j ;he
below the third condition is the hardest to satisfy and hence™ 2’ T~ - by assumptiori]?(@J) :0’1 EI"hus k;;::hz;in
in all cases except whenyy, is very large, the modiﬁed-PCPrule PO @ 6’ ) > (1 230 ,10)5 =
requirements are weaker. We demonstrate this via simoftio _: ~ 01 L2200 PJ) = " '

: Discussion w.rt. PCP. For the data model above, two
Zggmfor some real data in SEC VI-B (see Eig 1b and[Eig 38 ssible corollaries for PCP can be stated.

The third condition constrains the inner product betweeaDorollary IV.2 (PCP for online robust PCA)If Sy satisfies
the rows of two basis matricet) and V while the first the assumptions of Theordm 11l.1 and [ifi (8)] (9), ahd] (10)

no 1og2 n(1)
and

Proof: Denote by ©, the event that rangé’o) =
rangéP,). For j = 1,2,...J, denote by®; the event that

and second conditions only constrain the norm of the row®ld withn; = n, no = t;41 —t1, Gpep = [ |, Unewrcpr =
of a basis matrix. On first glance it may seem that thg = [Py, Py new ... Pined and Veewpcp = V being the
third condition is implied by the first two using the Cauchyright singular vectors ofLigy := [Li,Ls,... L], then, we

Schwartz inequality. However that is not the case. Usingan recover, andSg, exactly with probability at leastl —
Cauchy-Schwartz inequality, the first two conditions onlg3,~10) by solving PCP[{{L) with inpuMyy;. Here My :=

- . P\ hich i
imply that|[UV* ||, < \/n(l) g7y Jogn, Which is looser Ly + Sq.

than what the third condition requires.

When we compare this with the result for modified-PCP, the

second and third condition are even more significantly weake
IV. ONLINE ROBUST PCA than those for PCP. The reason is thaf,, contains at most

Consider the online / recursive robust PCA problem wherecolumns whileV contains at mosty + Jc¢ columns. The
data vectory; := s; + £; come in sequentially and their sub-first conditions cannot be easily compared. The LHS contains
space can change over time. Starting with an initial knog#edat mostry.x + ¢ = 79 + cqif + ¢ columns for modified-
of the subspace, the goal is to estimate the subspace sparif@€#, while it containg, + Jc¢ columns for PCP. However, the
by ¢1, 45, ... £, and to recover the;’s. Assume the following RHS for PCP is also larger. if;.; — t; = d, then the RHS
subspace change model introduced.ini [¥4]= P, a, where is also J times larger for PCP than for modified-PCP. The
Py = P; forallt; <t < tj1,j=0,1,...J. At the above advantage for mod-PCP comes with two caveats. First,
change timesP; changes a®; = [(P;_1R; \P;0d) Pjnen] modified-PCP assumes knowledge of the subspace change
where P new iS @ n X cjnew basis matrix that satisfiestimes while PCP does not need this. Secondly, modified-PCP
P} enPj-1 = 0; R; is a rotation matrix; andP;qq is a succeeds w.p(l — 23n~'%)7 > 1 — 23Jn'% while PCP
n X ¢j.0ld Matrix that contains a subset of columns®f 1 R;. succeeds w.pl — 23n~10.



Alternatively if PCP is solved at every= t;; usingM,;, Whenever we say “with high probability” or w.h.p., we
we get the following corollary mean with probability at least — O(1)n_°

1 -
Corollary IV.3 (PCP forM;). Solve PCP, i.e[{1), at= ¢,
using M;. If Sq satisfies the assumptions of Theolem1i1.A- Two Lemmas
and if (8), ), and[(ZD) hold witt; = n, ny = t;41 —t;, Lemma V.1. Denote byPyn: and Pge the probabilities
Gpcp = [ |, Unewrcrp = P;j and Vyewpcp = V; being calculated under the uniform and Bernoulli models and let
the right singular vectors oL; for all j =1,2,...,J, then, “Success” be the event thatLpew, S,L*G) is the unique
we can recoveiLg, and Sy exactly with probability at least solution of modified-PCHL7). Then

(1—23n"19)7. Punif(m,) (SUCCESE> Pgey ), ) (SUCCESE— 6_27“”26[2’,
When we compare this with modified-PCP, the second agghere p, = 20 + ¢,
third condition are significantly weaker than those for PCP e ] ) o
whenc; new < r;. The first condition is exactly the same when The proof is given in AppendiX1B. A similar statement
cjon = 0 and is only slightly stronger as long aseg < r;. 1S 9iven in Appendix A.1 of [[B] but wnhout a proo_f. Thg
Discussion w.r.t. ReProCS.In [20], [21], [14], Qiu et expressmn2 for tzhe second term on the right hand side given
al studied the online / recursive robust PCA problem anflere iSe_%ero which is different from the one we derive.
proposed a novel recursive algorithm called ReProCS. Wih t
subspace change model described above, they also needed the L .
following “slow subspace change” assumptigi e, £ is Lemma V.2. Let E be an; x ne random matrix with entries

small for sometime aftef; and increases gradually. Modified-i'i'd' (independently identically distributed) as

PCP does not need this. Moreover, even with perfect initial 1,  w.p.ps/2,
subspace knowledge, ReProCS cannot achieve exact recovery Ei; =<¢0, w.p.1—p,, (15)
of s; or £; while, as shown above, modified-PCP can. On the ' 1 wpps/2.

other hand, ReProCS is a recursive algorithm while modified-

PCP is not; and for highly correlated support changes of tkfep, < 0.03 and
s;’s, ReProCS outperforms modified-PCP (see Bdc VI). The _10
reason is that correlated support change resulisaiso being P(IE] 2 0.5\/nq)) < My -
rank deficient, thus making it difficult to separate it frAmey

bmeod|f|gd-PCP.t th K of F t alR t K The proof is provided in Appendix]C and uses the result
iscussion w.rt. the work of Feng et alRecent wor f [24]. In [3], the authors claim that using [25]E| >
of Feng et. al.[[22], [[23] provides two asymptotic result 95 | ham=10 While the claim i
for online robust PCA. The first work [22] does not mode?'. Vi) Wp. less tham,) . While the claim s correct,
th i : tor but iust tor th t| is not possible to prove it using any of the results from
“fe"ofu |ertr?s Ia s;()jgrse vec Olrd l: Jusb as a V (;rS ?h . Using ideas from25], one can only show that the above
ar” from the low-dimensional data subspace. [n][23], olds whem(y) is upper bounded by a constant timegn ;)

authors reformulate the PCP program and use this to deve B . S :
. i _(see the AppendikIH) which is a strong extra assumption.
a recursive algorithm that comes “close” to the PCP solution PP IH) 9 P

asymptotically.

(nﬁ-nz)l/ﬁ > 10.5
log(n1+r2) = (pa)17o(1-5.6561y/75)

then

B. Proof Architecture
V. PROOF OFTHEOREM[ILI! MAIN LEMMAS The proof of the theorem involves 4 main steps.

Our proof adapts the proof approach [3] to our new@a) The first step is to show that when the locations of the
problem and the modified-PCP solution. The main new lemma support of S are Bernoulli distributed with parameter
is Lemma[VT in which we obtain different and weaker ps and the signs ofS are i.i.d +£1 with probability
conditions on the dual certificate to ensure exact recovery. 1/2 (and independent from the locations), and all the
This lemma is given and proved in Sec V-E. In addition, we  other assumptions ok, ny,ns, ps, pr in TheoremIIL1
provide a proof for two key statements froml [3] for which are satisfied, then Modified-PCH (7) with= 1//may
either a proof is not immediate (LemrhaV.1) or for which the  recoversS exactly (and hence alsh = M — S) with
cited reference does not work (LemmalV.2). These lemmas probability at leastl — 22n*110.
are given below in Sec VAA and proved in the Appendix. (b) By [3, Theorem 2.3], the previous claim also holds for the

We state Lemma_V1 and Lemnia_ V.2 in Sec_ V-A. We  model in which the signs d8 are fixed and the locations
give the overall proof architecture next in SEC_ V-B. Some of its nonzero entries are sampled from the Bernoulli
definitions and basic facts are given in §ec MV-D and]V-C. model with parametes, /2, and all the other assumptions
In Sec[-B, we obtain sufficient conditions (on the dual onL, ny, ns,ps, p- from Theoreni [l are satisfied.
certificate) under whict8, Lyey is the unique minimizer of (c) By LemmalV1 witheg = 0.1ps, mo = |0.4psnina|,
modified-PCP. In Seic VIF, we construct a dual certificate that since niny > 500logny/p? (Assumption[IIL2(f)), the
satisfies the required conditions with high probabilityH(yp.). previous claim holds with probability at leakt- 23n‘110
Here, we also give the two main lemmas to show that this for the model in which the signs d8 are fixed and
indeed satisfies the required conditions. The proof of @l th  the locations of its nonzero entries are sampled from
four lemmas from this section is given in the Appendix. the Uniform model with parameter,, and all the other



assumptions ofL, n1, na, ps, p from Theoren 1.1 are and

satisfied. 2 * 2 2 2
Y| =tracd YY) = oY) < oi(Y))" =Y
(d) By [3, Theorem 2.2], the previous claim also holds fou I e{ ) z; ()< (; ¥)) 1Yl
the model in which the signs db are fixed and the | et 1 pe the linear space of matrices with column span
locations of its nonzero entries are sampled from ”E'qual to that of the columns &; and row span equal to that

Uniform model with parametem < mo = 0.4psnina,  of the columns ofP, whereP; and P, are basis matrices.
and all the other assumptions dnni,na, ps, pr fIOM  Then for a matrixM

TheorenfIIl.1 are satisfied.
, _ PyiM = (I-P,P;)M(I-P,P;) andPyM = M—Pr. M.
Thus, all we need to do is to prove step (a). To do this we ) ] _
start with the KKT conditions and strengthen them to get a seft T Pe the linear space of matrices with column span equal
of easy to satisfy sufficient conditions on the dual certitica!© that of the columns oP;. Then,
under_ whichLpew, S is the unique minimizer of({7). This is Py M= (I-P,P;)M andP+M = P, PTM
done in Se€ V-E. Ne_x_t, we use the_ g_olflng sche@ [_23], [B]1t0 o 4 matrixxy* wherex andy are vectors,
construct a dual certificate that satisfies the requireditiond o2 S
(Sec [V7F). Iy 113 = [1xIIIly -
If an operatorA is linear and bounded, then [31]

C. Basic Facts [ A*A| = |lA]I>.

We state some basic facts which will be used in th®. Definitions

following proof. Here we define the following linear spaces of matrices.

Definition V.3 (Sub-gradient[[27]) Consider a convex func- ~Denote byl" the linear space of matrices with column span
tion f : O — R on a convex set of matricé3. A matrix Y equal to that of the columns &, i.e.

is called its sub-gradient at a poiX, € O if I:={GY* Y e R"2X7¢}, (16)
f(X) = f(Xo) > (Y, (X = X)) and byT'! its orthogonal complement.
for all X € O. The set of all sub-gradients of at X, is Define also the following linear spaces of matrices
denoted byd f (Xo). Thew := {UnewY i+ Y5 Vi, Y1 € R2XTmen Y, ¢ R XTnen},
It is known [28], [29] that 1= {[G Uned Y1 +Y2 Vi, Y1 € RP2X(rotmen) y, ¢ R xrien).
|| Lnewll« = {UnewVnew+ W : Pr,,, W = 0,[[W| < 1}.  Notice thatTpeyUT = II.
and

Remark V.6. For the matrixe;e;, together with[(B) and{9),
0||S|l1 = {F : PoF = sgnS), ||F|le < 1}. we have
[P eie]|:
= [[(I—[G Unew[G Unew*)eil][|(I — VnewVewe; ||
> (1-p,/log’ng))?,

Definition V.4 (Dual norm [8]) The matrix norm|| - ||o is
said to be dual to matrix normi- || if, for all Y, € R"1*"2,

Yillo = supjy,) <1 (Y1, Ya). 17)
Proposition V.5 (Proposition 2.1 of [30]) The following pairs where p./log? n;) < 1 as assumed. UsingPre;e}||3 +
of matrix norms are dual to each other: |‘PHLeie§||QF =1, we have
o I+l and || - floc; . 2pr
o |l-]l. and ]|} IPreelle < [ (18)
o [-lrandfl .
For all these pairs, the following hold. E. Dual Certificates
1) KY,Z)| <Y allZ]o- We modify Lemma 2.5 of{[3] to get the following lemma
2) Fixing anyY € R"**"2 there existsZ € R™*"2 (that which gives us sufficient conditions on the dual certificate
depends orY') such that needed to ensure that modified-PCP succeeds.
(Y.Z) = Y|alZ]o- Lemma V.7. If |[PoPr|| < 1/4, A < 3/10, and there is a
3) In particular, we can get(Y,Z) = ||Y|1]|Z]|« by Pair (W,F) obeying
settingZ = sgn(Y), we can ge{(Y,Z) = || Y||.[/Z] UnewView+ W = A\(sgn(S) + F + PuD)

by settingZ = Uy V3 where Uy Xy V3 is the SVD
of Y, and we can getY,Z) = || Y|/ »||Z| » by letting
Z=Y.

with PrW = 0, [W| < %, PoF = 0, ||F|l. < %, and
[|PaDl|r < i, then (Lpew, S, L*G) is the unique solution to

Modified-PCP[(V).
For any matrixY’, we have Proof: Any feasible perturbation ofLpew, S, L*G) will
Y[} =tracd YY) = > [Yy[* < O [Yy)? = Y|? be of the form
b wd (Lpew+ H;,S — H,L"G + H,), with H; + GH; = H.



Let G, be a basis matrix that is such tH&t G | ] is a unitary
matrix. ThenH; = H-GH; = G, G H+GG*H—-GHS:.
Notice that

e Lyew= G| G’ Lpew and G G H = Pr. H.

o For any two matrice’; andYs,

[GLY1 + GYll > [[GLY .
where equality holds if and only ifY, 0. To
see why this holds, let the full SVD o¥;,Y, be
Y, ¥ Q3Vvi and Y, X Q,3.Vi. Since
[G G.] is a unitary matrix, G, Y; + GY2 Svb
G1Q1 GQ2 {02122 [Vi Vo]*. Thus, [[GLY: +
GY;|. = tracgX;) + tracgX,) > tracgX)
IGLY ]|« where equality holds if and only &, = 0,
or equivalently,Y, = 0.
Thus,
HLnew+ HlH*
= HGJ_(Gj_Lnew‘f' Gj_H) + G(G*H - HS)”*
> |G L(G' Lnew+ GTH)|[x = ||Lnew+ Pr. H|[. (19)
where equality holds if and only H, = G*H.

Recall that Thew U T II. Choose aW, so that
(We,PnH) = ||PnpH]|.||[W,|. This is possible using
Propositio Vb. Let

Wi =P Wo/[[Wal.

Thus, W satisfiesPr,,,Wo = 0 and [Wy|| < 1 and so it
belongs to the sub-gradient set of the nuclear noria}.
Also,

<W01 ,PFJ-H>

1
Wl
1
Wl
1
[Wall
Let Fy = —sgnPq.H). Thus,PoFy = 0, |Follcc = 1 and
so it belongs to the sub-gradient set of the 1-norr8.adlso,

(Fo,H) = (Fo, Po . H) = —||Po HJ|;.

(P W, Pr.H)

(W, Prp. ProH)

(Wa, Prir H) = [P H.

Thus,
| Lnew+ Ha |« + AIS — H|1

>||Lnew+ ProHJ|. + A||S — H||4
(using [19))

> Lnewl« + AlIS|l1 + (UnewVew + Wo, Pro H)
— A\(sgnS) + Fy, H)
(by definition of sub-gradient)

=||Lnewlls + AllSl1 + [P H[« + Al P H][1
+ (UnewVew — ASgN(S), H)
(usingW, andF, as defined above)

2| Lnewl|« + AlISI[x + [P HI|« + Al[PorHx

— maxX(|[[W |, [[Flloo) (P Hll+ + AlPo Hl|1) + A(PaD, H)

(by the lemma’s assumption and Proposifion] V.5)
1
> [Loeul« + A8 | + 75 (11PrH. + A Po- Hily )

A
~ 1o ¢

(by Propositioi’ Vb and assumptidiPoD||F < %)
Observe now that
[PoH| r < |PoPuB||lr + [|[PoPrH| r

1
< 71 Hllr + [P H] e

1 1
< ZHPQHHF + ZHPQLHHF + [P H|[p
and, therefore,

1 4
[PoH| F < §||7’9LHHF + gHPHLHHF

1 4
< g”PQJ-HHl + gHPHLHH*

In conclusion,

[[Lnew + Pr Hl|. + AllS — HI|x
1

> |[Lneul. + MISI + (55 -

> [[Linewll + Al[S]}

The last inequality holds becausgPoPr| < 1 and this
implies thatII N 2 = {0} and so at least one o?;. H or
P H is strictly positive forH = 0. Thus, the cost function is
strictly increased by any feasible perturbation. Sincedbst
is convex, this proves the lemma. |
Lemmd VT is equivalently saying thétnew, S, L*G) is the

unique solution to Modified-PCP](7) if there i satisfying:

W e IIt,

[W]| < 9/10,

[P (UnewView — ASGN(S) + W)[lr < A/4,

||,PQJ. (UneWV;ew'i_ W)”oo < 9)\/10

A A
DlIPrH]. + S5 [Po-Hl: )

(20)

F. Construction of the required dual certificate

The golfing scheme is introduced by [32], [26]; here we use
it with some maodifications similar to those in| [3] to construc
dual certificate. Assume thd - Ber(ps) or equivalently,
Q¢ «~ Ber(1 — ps).

Notice that{)¢ can be generated as a union ff i.i.d.
sets{Qj}-;‘;l, whereQ; "% Ber(q),1 < j < jo with ¢, jo
satisfyingps = (1 — ¢)’°. This is true because

P((,5) € @) =P((,5) ¢ L UQU--- Q) = (1 - ).
As there is overlap betweefﬁ;s, we haveg > (1 — ps)/Jo.
LetW = WX+ W5, whereW’, W* are constructed similar

to [3] as:
« Construction ofW via the golfing scheméet Y, = 0,
Y; =Y, 1+q¢ "Po,Pu(UnewVpew— Yj1),
andWZ’ = P, Y, . Notice thatY,; € Q.

« Construction of W9 via the method of least squares.
Assume that||PoPu|| < 1/4. We prove that this
holds in Lemmd_ VDB below. With this||PoPrPq| =
||PQPHH2 < 1/16 and s0|Pq—PoPuPa| > 1-1/16 >
0. Thus this operator, which maps the subsp&cento
itself, is invertible. Let(Po — PoPnPq) ' denote its



inverse and let For the modified-PCP progranil(7), the Augmented La-

WS = APy (Pa — PaPrPa)”lsgn(s). grangian function is:

Using the Neumann series, notice tHat [3] L(Lnew. S, Y, 7) = |[Lnews + AlIS[[1 + (Y, M ~ Lnew— S

~ T ~ ~ ~
- ~GX*) + = |[M — Lpew— S — GX*||2,,
(Pa — PaPnPq) 'sgnS) = Z(Pﬂpnpﬂ)ksgr(s). ) 5 I new %
k>0 Thus, with similar steps iri_[15], we have following algorith
Thus [3], In Algorithm[1, Lines 3 solveS;. 1 = argmin || Lnews|« +
S

PQWS = )\SQI‘(S)
This follows becauséPq, — PoPrPq) is an operator mapping Algorithm 1 Algorithm for solving Modified-PCP (T}
Q onto itself, and sdPq — PoPrnPq) 'sgnS) = Po(Po — Input: Measurement matrixM e R™>72 )\ =

PoPuPa) 'sgn(S) W With this, PoW* = MPqo(Z — 1/y/max{ni, na}, G. -
Pr)Pa(Pa—PaPuPa) 'sgn(S) = M(Po—PaPuPa)(Pa— 1. Yo = M/ max{|M|, M| ~/A}; So = 0; 70 > 0; v >
PaPrPa)”'sgn(S) = Asgr(S). L, k=0.

Clearly, W = WL + W¥ is a dual certificate if 2: while not convergedio .
[WE -+ WS|| < 9/10, 3 Spp1 =6, 1M~ GX; — Lnew + 7' Yi].
1Po(UnewView+ WE) | < A4, 1)) 4 (U2 V)=svd(l -GG )M = Sp1 +7, " Yi);
5:

new _ T
1Po: (UnewV i + W + W) |, < 9A/10. Lnewi41 = US 0 [BIVE.
Xpt1 = G*(M — Sk+1 :i— Ty Yk)

Next, we present the two lemmas that together prove that J ~
@) holds w.h.p.. # Yir = Yo+ 7i(M = Sies = Dnewirr = GXoern).
8  Tp1 = min(vrg, 7).
Lemma V.8. Assumef) ~ Ber(p,). Let jo = 1.3[lognmy]. 9 k<« k+1.
Under the other assumptions of Theofem]Il.1, the ma#ix  10: end while

obeys, with probability at least — 11n(*1§0, Output: Lpew = Lnew,S = Sk, L = M — S;..
(@) W] < 1/16,
(0) [IPe(UnewView+ WH)I[F < A4, NS + (YoM — Dnews — S — GXI) + —|M —
(©) IPor (UnewViewt W) [loo < 2M/5. 2

Ene\Mk - g~— GXZ|
This is similar to [3, Lemma 2.8]. The proof is in thearg min ||Lnewl|« + Al

Appendix. LnewX_ _ - _

GX*)+ =||M —Lpew—Si+1 — GX|%. The soft-thresholdin
Lemma V.9. Assume? ~ Ber(p), and the signs o are in- era>\:(;r2i£ definenZIWas h el g
dependent of2 and i.i.d. symmetric. Under the other assump-p

2,; Line 4-6 solve[Lnewg+1, Xp+1] =
Sk+1”1 + <Yk7M - Lnew_ Sk+1 -

tions of TheorerfTIMIL, with probability at leagt— 11n )", r—e ifr>e
the following is true Sclz] =4 =46 ifz<—g (22)
(@) PaPru|l < 1/4 and soW g constructed earlier is well 0, otherwise,
defined. Parameters are set as suggested [in] [15], i®., =
(b) |[W¥| < 67/80, 1.25/|M||,v = 1.5,7 = 1077 and iteration is stopped when
©) [[Par W50 < A/2. IM = Sps1 — Lnewk+1 — GXipa|[p/[M]lp < 1077

This is similar to [3, Lemma 2.9]. The proof is in the

Appendix. B. Simulated data

The data was generated as follows. For the sparse matrix
VI. SOLVING THE MODIFIED-PCPPROGRAM AND S, we ge_nerated a support. set of smeumformlly at rando_m
and assigned values-1 with equal probability to entries
EXPERIMENTS WITH IT )

) ) ) __in the support set. We generated the mafiGx Upey by

We first give be]ow the algorithm used to splve mOd'f'edﬁrthonormalizing amy x (7o -+ Fextrat Tnew) Matrix with entries
RCP. Next, we give recovery error comparisons _for stati¢ 4. Gaussian\V'(0, 1/n1); we setU, as the firstry columns
simulated and real data. Finally we show some online robysgt ihis matrix, Gexra as the NeXtrexa columns andU e, as

PCA experiments, both on simulated and real data. the lastrnew columns. Then, we se& = [Uy, Gexrd. This
matrix hasrg = rg + rexra COlumns. We generated a matrix
A. Algorithm for solving Modified-PCP Y, of sizerg x d and a matrixYs of size (1o + rnew) X 12

We give below an algorithm based on the Inexact AudVith entries i.i.d V(0,1/n,). We setM¢ = GY, as training
mented Lagrange Multiplier (ALM) method[L5] to solve thedata andM = [Up Unew Y5 + S. The matrixMg is ny x d
modified-PCP program, i.e. soNd (7). This algorithm is @clir and theM is n, x n,. We computeds as the left singular
modification of the algorithm designed to solve PCPIifl [151ectors with nonzero singular valuesdf; and this was used

and uses the idea df [L6].J17] for the sparse recovery stefS the parti_ql subspace knowledge for modified-PCP. _
For modified-PCP, we solved](7) withM and G using

LThis is also clear from the Neumann series Algorithm[d. For PCP, we solvef](1) wifhI using the Inexact



Augmented Lagrangian Multiplier algorithm frorn [15]. This

section provides a simulation comparison of what we corelud ~

from the theoretical results. In the theorems, both modified &

PCP and PCP use the same malixik but modified-PCP is =

given extra information (partial subspace knowledge).he t ? ¥ /J “F mod-PCP
first set of simulations, we also compare with PCP when it is @_ //‘\\ / @Egigé\jf) M)
also given access to the initial daM, i.e. we also solve = [ f’ ReProCs
PCP usingM¢ M]. We refer to this as PCRIs M]). < M %\elk

Sparse recovery error is calculated g8 — S||%./||S||% -15, o a0 & s 100
averaged over 100 Monte Carlo trials. For the simulated,data Number of extra directions
we also_ (_:ompute _the smallest value ©f required to satisfy (a) Recovery result comparison
the sufficient conditions £18).J(9L.(ILO) for mod-PCP and)(12
(@I3), (I3) for PCP. We denote the respective valueg,oby e % v * %k
pr([G Unew])’ Pr(Vnew), Pr(Uneanew)y pr(U), PT(V) and K= 0 UnewVaew) X (UV)
p,,(UV) AISO, %Pr(f Unew)) %pv(g)
pr(Mod-PCR = max{p;([G Unewl), pr-(Vnew), £r (UnewVrnew) } - o) o ‘ 2
and < 10 * }

pr(PCP = max{p,(U), pr(V), pr(UV)}.

In Fig.[, we show comparisons with increasing number of OO0 OO0 OO0
extra directions-exya We usedn; = 200, d = 200, np = 120, 10 20 20 60 80 100
m = 0.075n1ng, r = 20, 79 = 0.97 = 18, rpew = 0.1 = 2 Number of extra dirctions
andrexra ranging fromo to ny —r = 100. As we can see from (b) Comparing the value gf,

Fig. [1a, forrexra < 60, mod-PCP performs better than PCRrig. 1: Comparison with increasingexsa (n1 = 200, d = 200,
with or without training dataM. Fig.[IB shows that mod- no = 120, m = 0.075nin2, r = 20, 7o = 18, Tnew = 2).
PCP allows a larger value ¢f. (needs weaker assumptionsjn (b), we plot the value ofp. needed to satisfy[18)[}(9)[(L0)

than PCP. Notice that the recovery error of PGR{ M) g;d pu(][%'r K%B)’ ]I)ZML' (\\//Ve )den;)t((eUtheVresipe?i\z%)valze?\g?f
is larger than that of PCR{). This is because the rankgng e (UV). Notice that p;-(UV) is the’largest,' ie. [(14)

of [Mg M] is larger than that ofM because of the exirais the hardest to satisfy. Notice also that(mod-PCR =
directions. In the rest of the simulations, we only compareax{p-([G  Uneu]), pr(Vnew), pr(UnewVinew)} is significantly

with PCPM). smaller thanp,(PCP = max{p-(U), p-(V), p-(UV)}.
In Fig.[2, we show comparisons with increasing number of : :
. . . . VAVAN
new directions ey (Or equivalently decreasing = r — rpew)- 0 AﬂﬁﬁﬁﬁﬁéA&é‘é‘é‘é‘éﬁémm

We usedn; = 200, d = 200, ny = 120, m = 0.075n1n2,
r = 30, rexra = 5 and rpew ranging from1 to 20 (thusrg
ranges from 29 to 10). As we can see, mod-PCP performs
better than PCP.

In Fig 3, we show a comparison for increasing number of
columnsns. For this figure, we used; = 200,d = 60, rg =

L L L L 0 S S
S Sssssssessssssss:

a
mod-PCP ?‘\é %@2
PCP(M) N |
ReProCS [\

logyo (15 = S1le/115lr)
&

N
ro = 18, rnew = 2,m = 0.075n1n2, and ny ranging from f' x

40 to 200. Notice that this is the situation whete < n;

so thatn) = np andn) = ny. This situation typically 0 5 10 _1‘5 20
occurs for time series applications, where one would likes® Number of new directions

fewer columns to still get exact/accurate recovery. We cn@p Fig. 2: Comparison with increasingnew (n1 = 200, d = 200,

mod-PCP and PCP. As we can see from Eig. 3a, PCP needs- 120, m = 0.075n1n2, © = 30, rextra= 5).

many more columns than mod-PCP for exact recovery. Here

we say exact recovery wheli$ —S||%/||S||% is less thal075.  reqa = [0.157] and we generated as follows. We let

Fig.[3D is the corresponding comparisonp{mod-PCP and U, be the first(r — 7new) columns of the orthonormalized

pr(PCB for this dataset and the conclusion is similar. X, and we generaterexia s the firstrexra columns of the
Finally we generated phase transition plots similar to ¢hogrthonomalizedI — UU*)X;. HereU is the matrix of left

for PCP in [3]. We used the approach outlined [ [3] téingular vectors oL andX is any x 2rexrai.i.d. N'(0,1/n;)

generateL,S and M i.e. we letn; = ny = 400 and matrix. We setG = [Uy, Gexird-

L = XY*, whereX andY are independent; x r i.i.d. To show the advantages of mod-PCP with less columns,

N(0,1/n1) matrix and independents x r i.i.d. (0,1/n2) we also did a comparison with the same parameters above

matrices respectively. The suppditof S is of sizem and but with ny = 400,n, = 200. Fig.[4 shows the fraction of

uniformly distributed and for(i,j) € Q, P(S;; = 1) = correct recoveries across 10 trials (as was also dongl in [3])

P(S;; = —1) = 1/2. For mod-PCP, we usethe, = [0.157], Recoveries are considered corredtif— L|| /|| L|| » < 1073.



—£-mod-PCP
| PCP(M)
| K ReProCS

|
=
o

log (15 = Sll#/I1S1r)

|
[N
¢)]

50 100 150 200
Number of Columns

(a) Recovery result comparison

107 K 2 UnewVaew) | r(UV) 1
! Unew)) | 3 p0(U)
» (V)
2 %H’%’%f :
10 %%%*W*Hﬂ%e

10°L . .
50 100 150 200

Number of Columns

(b) Comparing the value gb,
Fig. 3: Comparison with increasing> (n1 = 200,d = 60, r¢ =
ro = 18, rnew = 2, m = 0.075n1n2).

data consisting of face images taken under a few illumimatio
conditions, but all without eyeglasses, is used to obtain a
partial subspace estimate. The test data consists of faaggeisn
under different lighting conditions and with eyeglassestber
outliers. For test data, the goal is to reconstruct a cleeg fa
image with the cast shadows, eyeglasses or other outliers
removed. Thus, the clear face image should be a column
of the estimated low-rank matrix while the cast shadows or
eyeglasses should be a column of the sparse matrix.

Each image is of siz43 x 320, which we reduce to
122 x 160. All images are re-arranged as long vectors and a
mean image is subtracted from each of them. The mean image
is computed as the empirical mean of all images in the trginin
data. For the training datdyl;, we use images of subjects
with no glasses, which is 12 subjects out of 15 subjects. We
keep four face images per subject — taken with center-light,
right-light, left-light, and normal-light — for each of the 12
subjects. Thus the training data mathX; is 19520 x 48. We
computeG by keeping its left singular vectors corresponding
to 99% energy. This results i = 38. We use another
two face images per subject for each of the twelve subjects,
some with glasses and some without, as the test data, i.e. the
measurement matriv. ThusM is 19520 x 24.

In the experiments, we compare modified-PCP with PCP
[8] and ReProCS[[20],[21] and also with some of the other
algorithms compared ir_[21]: robust subspace learning JRSL

As we can see from Fid.] 4, mod-PCP is always better th@¥], which is a batch robust PCA algorithm that was com-
PCP sincemnew andrexra are small. But the difference is muchpared against i [3], and GRASTA [B5], which is a very recent

more significant whems = n,/2 than whenny, = n;.

0.1 0.2 03 0.4 05 0.1 0.2 03 0.4 05
r/ng r/n

(@) mod-PCRy2 = 400 (b) PCP,n2 = 400

@
U
02

0.1

0.1 0.2 0.3 0.4 05 0.1 02 0.3 0.4 05
r/ng r/ny

(c) mod-PCPpn2 = 200 (d) PCP,n2 = 200

Fig. 4: Phase transition plots withhew = [0.157], rextra =
10.157], ny = 400

C. Real data (face reconstruction application)

online robust PCA algorithm. We also compare against Dense
Error Correction (DEC)[[2],[[36] since this first addresshibt
application using’; minimization. To implement Dense Error
Correction (DEC)[[2],[[36], we normalize each columnidf

to get the dictionaryD),,, x4s, and we solve

(%;,8;) = argmin ||X|1 + ||8]|; subject toM; = Dx + §
X,S

using YALL-1. HereM; is theith column ofM. The solution
gives uss; and/; = Dx;.

For PCP and RSL, we use the test dataset only, Mg,
which is a 19520 x 24 matrix, as the measurement matrix.
DEC, ReProCS and GRASTA are provided the same partial
knowledge that mod-PCP gets. Fid. 5 shows 3 cases where
mod-PCP successfully removes the glasses(iﬁy@ and gives
the clearest estimate of the person’s face without glasses a
(L);. In the total 24 test frames, both mod-PCP and DEC
remove the glasses (for those having glasses) or remove
nothing (for those not having glasses) correctly in 14 ofrthe
but the result of DEC has extra shadows in the face estimate.
The other algorithms succeed for none of the 24 frames.
Both ReProCS and GRASTA assume that the initial subspace
estimate is accurate and “slow subspace change” holdkgeneit
of which happen here and this is the reason that neither of

As stated in[[B], robust PCA is useful in face recognitiothem work. RSL does not converge for this data set because
to remove sparse outliers, like cast shadows, specukagtie the available number of frames is too small. The time taken
eyeglasses, from a sequence of images of the same fdyeeach algorithm is shown in Tak I.

As explained there, without outliers, face images arranged

as columns of a matrix are known to form an approximately- Online robust PCA: simulated data comparisons

low-rank matrix. Here we use the images from the Yale FaceFor simulation comparisons for online robust PCA, we
Database[[33] that is also used in [3]. Outlier-free tragningenerated data as explained [inl[37]. The data was generated
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using the model given in Sectidn]lV, with = 256, J = 3, foreground is a simulated moving rectangular object. The
ro = 40, top = 200 and ¢ new = 4, cjoa = 4, for eachj = sequence is of size2 x 90 x 1500, and we used the firdt120
1,2,3. The coefficientsa, . = P;_,£; were i.i.d. uniformly frames as training data (after subtracting the empiricaarme
distributed in the interval—-~,v|; the coefficients along the of the training images), i.eM¢. The rest 80 frames (after
new directionsa; new := P} e\ generated i.i.d. uniformly subtracting the same mean image) served as the background
distributed in the interval—ynew, Tnew] (With @ ynew < ) for L for the test data. For the first frame of test data, we gengrate
the first 1700 columns after the subspace change and i.i.d.rectangular foreground support with upper left vertexj,)
uniformly distributed in the interva[—~,~] after that. We and lower right vertex(is, 25 + jo), wherej, ~ Unif[1, 30]

vary the value ofyney; small values mean that “slow subspacandi, ~ Unif[7, 16], and the foreground moves to the right
change” required by ReProCS holds. The sparse m#&rix1l column each time. Then we stacked each image as a long
was generated in two different ways to simulate uncorrdlatgector ¢, of size 6480 x 1. For each index belonging to the
and correlated support change. For partial knowledgewe support set of foregrouns},, we assign(s;); = 185 — (£;);.

first did SVD decomposition oné;,£s,--- ,£;,] and kept We setM = L 4 S. For mod-PCP, ReProCS and GRASTA,
the directions corresponding to singular values largen thave used the approach used in][21] to estimate the initial
E(2?)/9, wherez ~ Unif[—vnew, Ynew]- We solved PCP and background subspace (partial knowledge): do SVDMg
modified-PCP everg00 frames by using the observations forand keep the left singular vectors correspondingitd energy

the last 200 frames as the matdif. The ReProCS algorithm as the matrixG. A few recovered frames are shown in H. 7,
of [14], [37] was implemented witln = 100. The averaged and the averaged normalized mean squared error (NMSE) of
sparse part errors with three different sets of parametezs othe sparse part ovéil0 Monte Carlo realizations is shown in
20 Monte Carlo simulations are displayed in Higl 6a, Eid. 6Big.[8. The averaged time spent for each algorithm is shown
and Fig.[6t, and the corresponding averaged time spent iiorTable[]. As can be seen, in this case, both mod-PCP and
each algorithm is shown in Tablé I. For all three figures, weeProCS perform almost equally well, with ReProCS being
usedt; = to+6a+1,ts =tg+12a+1 andts = tg+18a+1 slightly better.

and~y = 5. Next we compute the value of, for the lake video

In the first case, Fid. 6a, we usegdew = v and so “slow sequence. We calculated prior knowled@e as explained
subspace change” does not hold. For the sparse vestorsabove. We calculated the singular vectdis V by doing
each index is chosen to be in support with probability781. SVD decomposition o, and keeping all the directions with
The nonzero entries are uniformly distributed betw8n60]. corresponding singular values larger theoT'° (we choose
Since “slow subspace change” does not hold, ReProCS daes'® because it is the precision that MATLAB can achieve
not work well. Since the support is generated independenfty SVD decomposition); calculat® ey, View by doing SVD
over time, this is a good case for both PCP and mod-PGfecomposition of 7 — GG*)L and keeping all the directions
Mod-PCP has the smallest sparse recovery error. In the decaith singular values larger tham0~—'°. With this, we get
case, Fig[[Bb, we usethew = 1 and thus “slow subspacep,(PCP = 1.8584 x 10* and p,.(mod-PCR = 1.7785 x 10%.
change” holds. For sparse vectass, the support is generated e also calculate, for fountain02 sequence, which can be
in a correlated fashion. We used support size 5 for eachs;;  found on http://changedetection.net/. The image siZ38sx
the support remained constant for 25 columns and then moves?, and we resize it t96 x 144. For the first 600 background
down byS = 5 indices. Once it reached, it rolled back over images we form a low rank matribh/[c L] by Stacking each
to index one. Because of the correlated support change, PgRige as a column (the first 300 columns belondgMe; and
does not work. In this case, both mod-PCP and ReProCS wéik rest belong td.). With the same steps for lake sequence,
but PCP does not. In the third case, Higl 6c, the parametgis getp,(PCP) is4.311 x 10* and p,(mod-PCP) isl.7866 x
are the same as in the second case, except that the suppprt
size iss = 10 in each column and it moves down by2 = 5
indices every 25 columns. In this case, the sparse vecters ar
much more correlated over time, resulting in sparse m&trix
that is even more low rank, thus neither mod-PCP nor PCP
work for this data. In this case, only ReProCS works.

Thus from simulations, modified-PCP is able to handle
correlated support change better than PCP but worse thar
ReProCS. Modified-PCP also works when slow subspace
change does not hold; this is a situation where ReProCS fails
Of course, modified-PCP, GRASTA and ReProCS are provided
the same partial subspace knowledgevhile PCP and RSL
do not get this information.

=
N

—>— mod-PCP
—¥— ReProCS
—+—PCP
GRASTA
RSL
GOSUS

=
N}

[N

[Ise = 8ell?/[Is:1?
o o
o

o
IS

E. Online robust PCA: comparisons for video layering 0 20 10 60 80

The lake sequence is similar to the one used_in [21]. The . .
background consists of a video of moving lake waters. The Fig. 8: Lake sequence NMSE comparison.
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F. Comparison with Simulated Noisy Data include developing a fast and recursive algorithm for savi

In order to address an anonymous reviewer's comment, wmwdified-PCP and using the resulting algorithm for various

have also added simulations with noisy data. We assume fHactical applications. Two applications that will be edgid
measurement model are (a) video layering, e.g. using the BMC datasef of [13}, an

(b) recommendation system design in the presence of auitlier
M=L+S8+Z (23) and missing data. For getting a recursive algorithm, we will
whereL is low rank (with partial knowledgés similar to  explore the use of ideas similar to those introduced in Feng
previous case) is sparse an is a noise term wWitH|Z||» < et al's recent work on developing a recursive algorithm that
o. Inspired by [38], we propose the following optimizatiorasymptotically approximates the PCP solutibnl [23].
problem to solve the problem:

minimize;, 5% | Lnewll + AlIS|1 o APPENDIX
subject to [Lnew+ GX*+S —M|r <o A. Derivation for [%)
(24) Recall from Se¢=A thatnew = rank Lnew),

with A = y/max{ni,n2}. To compare the result with stable oo SVD .
PCP [38], we generated square matrices as stated in [38, Lnew = (I = GG")L =" UnewZnewV new (25)

Section V], i.e.,n1 = ny =200, 7 = 10, Thew = 2, Texsra= 0, Let U, be a basis matrix for rangk) N rangéG) =

ps = 0.2, L = XY* where X and Y are independent rangéU) N rangéG) with o = rankUy) Thus, there exist
ny x r ii.d. N(0,1/n1) matrices, and each entry & is rotation matriceR, R and basis matricet;, Gexra Such

independently distributed, taking valug with probability that

1 — ps and uniformly distributed inN—5, 5] with probability _ _

ps- We used the same suggest?e:f{or th(l. stable mod-PCP UR: = [Uo Ui] andGR = [Uo Geard (26)

solver as in[[38]. By varyingr from 0.1 to 1, we got recovery With Gextra™Uy = 0. ) .

errors overs0 Monte Carlo simulations as shown in Fig. 9.we Clearly, rankU:) = rney B. split ther x r matrix R as

plot the root-mean-squared (RMS) error which is defined &1 = [(Ri)o, (R1)1] so that(Ry)o contains the firstr

[38] as the average ofL. — L /n for the low-rank matrix columns andR,); contains the lastnew columns. Thus,

and of||S — S||»/n for the sparse matrix. Lnew = (I — UgU;)[Up U |R{EV* = Uy (R4);ZV*.
Let (R1):ZV*) = U,%,V} denote its full SVD. Thus
0-8[ % error of S using PCP ‘ Lpew = U; U335V, Comparing with the SVD oLpey We
-A-error of L using PCP get thatUpeyw = Ui Uy wWhere U, iS a rpew X Thew Unitary
0sl error of S us_ing mod-PCP matrix; Xpew = X2 and Vew = Va. Thus,
“°| >~ error of L using mod-PCP

I 0
2

RMS error
o
SN

By takingRy = R, ([I] Ug)_l =R, (f] Ug), we get

0.2 URy = [Ug Upew] andGRg = [Ug Gexird (28)
Rearranging, we gefl(5).
% 02 04 _ 06 08 1
7 B. Proof of Lemm& V1
Fig. 9: Noisy data RMS error comparison. First we state and prove the following f3ct

Proposition A.1. Assumen; < my < nins, We have
VIlI. CONCLUSIONS Punif(m, ) (SUCCESE> Punif(m,) (SUCCES

In this work we studied the following problem. Suppose There are a total of""2) sizem, subsets of the set of
that we have a partial estimate of the column space of the Igidices of ann, x n, matrix. The probability of any one of
rank matrixL. How can we use this information to improveihem getting selected i5/(""2) under the Unifms) model.

mao

the PCP solution? We proposed a simple modification of Pcfuppose that the algorithm succeedsifaut of these(n1n2)
called modified-PCP that allows us to use this knowledgegats call these the “good” sets. Then me

We derived its correctness result that allows us to arguie tha
when the available subspace knowledge is accurate enough, ]P’Unif(m)(Succesﬁz e
modified-PCP requires significantly weaker incoherence as- (mz )
sumptions on the low-rank matrix than PCP. We also o_btameqThis follows becausél - GG*)L — (I-UoU#)[Ug UyJRTIEV* —
a useful corollary (Corollar[I_ﬂ]l) fpl’ the_on“ne Or reCM& [ U,JR{=V*. Since rank[0 U ]) = rank(U,) and all other matrices are
robust PCA problem. Extensive simulation experiments amd rank r, we get that rankU1) = rank(Lnew) = rnew. Here we have used
some experiments for a real application further illusttatese Sylvesters inequality onew = [0 U1 J(R7V™) to get that rankUs ) +

. . . . .7 — 1 < rank(Lnew) = Thew < min(rank(Uy),r) = rank(Uy).
claims. _(_)ngomg work 'r!CIUdeS StUdymg the error Stab”.'ty 3This fact may seem intuitively obvious, however we cannad finsimpler
of modified-PCP for online robust PCA. Future work willproof for it than the one we give.
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By Theorem 2.2 off[B], the algorithm definitely also succeedsemma A.2. [24] Theorem 2(10a)] Forn x n matrix A with
for all size4n, subsets of thesk “good” sizesn, sets. Letk;  entriesa,;, leta;;,7 > j be independent (not necessarily iden-
be the number of such size; subsets. Under the Uifif,;) tically distributed) random variables bounded with a conmmo
modeI the probability of any one such set getting selecdediound K. Assume that foi > j, the a;; have a common
W ThusPypit(m, ) (Succesp= expectationy = 0 and varianceo—z.2 Dgfine aij for.z' < j
by a;; = aj;. (The numbersi, i, o* will be kept fixed as

mN10W we need to lower bound;. There are a total of
(nﬁgz) sizen, sets and each of them hfﬁrgnlf) subsets of th(Ze r@patrlx dimensiom will tend to infinity.) Fork satisfying
sizem,. However, the total number of distinct sizer sets % ¥ /(40*n) < 1/2, we have

"1"2)

is only (”1"2) Because of symmetry, this means that in the p(,,.- 1\ (A < 20v/n kv
m " +v) < nexpl\———»,.
collection of all sizem; subsets of all sizern, sets, a given ( i (:(A)D) Vit v) < Vexp( 20+/n + v)

% times. Proof: see Appendix]G. This is a minor modification of the
upper bound of[[39, Theorem 4[, [40, Theorem 1.4]. The only

T ™1 H " ”
In the sub-collection of sizes; subsets of the: "good change is that it allows the variance @f; to be bounded by
sizesmy sets, the number of times a set is repeated is less thap 5
instead of forcing it to be equal .

or equal tob. Also, the number of entries in this collection” Let
(including repeated ones) is(;?). Thus, the number of 0 B
distinct sizem; subsets of the “good” sets is lower bounded A = < > (29)

mg mg E>k O
by —71~ ( ) ek > k(jfl). Thus,

set is repeated =

Notice thatA is an(n; 4+ n2) X (n1 + ng) symmetric matrix
k(m2)("e2) that satisfies requirements of LemmalA.2. By Lemimal A.2

Punit(m, ) (Succesp > = Pynit(m,) (Succesp

(o) ) () with K = 1, = 0,0 = /p; and settingy = (0.3536 —
iy AR e 2./ps)vVn1 + nz, andk = pi/?(ny +ny)'/6, we have
Proof of Lemmd W/1:Denote by, the support set. We 2v/7+) V71 ¥ 722, b

have P(max |\;(A)| > 0.3536y/n1 + n2)
Per(p,) (Succesp pY3(ny + )6 - (0.3536 — 2./57)/1 F s
~ SV g exp(=- 0.3536y/n1 + na )
= > Perpo) (Suiccess|Qo| = k)Pser,) (120 = k) w 000V +
k=0 <(ni+n2) 10 < nao
mo—1 In the above,y > 0 becausep; /< 0.03 and the second
J— 1/6
< Z Per(p) (1€20] = k)+ inequality holds becausém(*"i) y > s 10.5 .
k=0 og(n1+nz pt/®(1-5.6561,/p5)
nina Clearly,

>~ Punit() (SUccesEPeer(py) (|20 = k) EE* 0
et a1 = VAT =\ |( 5 gl )| = VIEET =B
(30)

S]P)Ber po)(|QO| < mO) + ]P)Unlf(mo)(succes}s

where we have used the fact that fdr > my, Therefore, we haVé)(HE||>0-5\/W)<n(]§O. m
Punit(x) (Success < Punit(m,)(Success by Proposition AL,
and that the conditional distribution 6%, given its cardinality D.

's uniform. Thus, Implications of Assumptidn 1.2

We summarize here some important implications of As-
Punit(me) (SUCCESE> Pgey(,,) (SUCCESE—Pger( ) (|20] < mo). sumptior(TI2.

Let random matrixX™*"2 be a matrix whose each entry is :
ii.d. Bernoull distributed a®(Xy; — 1) — po, P(X,; — 0) — Remark A.3. By Assumptiof LR(@)(b)(c), we have

1 — po. Then, under the Bernoulli model)| = >, - X,;;, ps <1—1.5max {60p,1/2 11Cy1 p/2,0.11

i,
E[Zi,j Xij] = ]EHQQH = poning, and0 < Xij < 1. Thus by <1—1.5max {60;)7«/ 11001 1/2’ %

the Hoeffding inequality, we have

1
2t2 1. omax{60p1/2 11001/)1/2 M " e
] — o> < _ . _ "(2)
E[Z Xz]] ZXZ] = t) — exp( nan) < 1 l.ologn(l)
7
1.3]1
As pg = nm°2 + €0, taket = eyning, we have max {6091/ 11Co1 1/, 111082 n ) [logn(1) |
_ T TL(2)

Pger(pe) (|Q20] < mo) ZX” < myg) < exp(—2€eaninz). <|1! Tog (1)

" (31)

- > . . .

Thus  Punit(m,)(Success > Paerp,)(SUCCESE —  1ra  third inequality holds  because 0 <

—2€3 . n
exp(~2egmnz) 1.5 max {60p}/*,0.11} < 1.5max {60/10%,0.11} < 1; and

for fixed constanb > 1, (1 —x2/b)® > 1 — 2 wheneverr < 1.
C. Proof of Lemm&\2 The fourth inequality holds since5logn(;y > 1.3[logn )]

Proof: First, we state the theorem used in this proof. O n() = 1024.



Remark A.4. By Assumptiof TIL12(b)(c), we have

ps <0.0156 < 1 — %ﬁ— (32)

This follows sincen;;y > exp(253.9618Co1p,) gives
20C1pr < ().9844, and sol — 220C0iL > (,0156.

logn (1) logn (1)
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Proof: As

Jo
=> ¢ Py, Z; 1, (39)
J=1

and PHLZ,- = 0, so we have, with probability at least—

3]0”(1) )

E. Proof of Lemm&\V8
The proof uses the following three lemmas.
Lemma A.5. [19, Theorem 4.1][3, Theorem 2.6] Suppose

Qo ~ Ber(po). Then there is a numerical constafit; such
that for all 5 > 1,

P — po " PrPayPrl| < €o, (33)

with probability at leastl — 3n? provided thatp, >

1)
-2 ﬂ27
COl €o logn(y *

Lemma A.6. [B] Lemma 3.1] Supposé < Il is a fixed matrix,
and g ~ Ber(pg). Then

1Z — p&anPnoZHoo < 6ollzlloo (34)
with probablllty at leastl — 2n
60 ¢

, provided thatp, >

log n(l)

This is the same as Lemma 3.1 in [3] except that we derive
an explicit expression for the lower bound psn A proof for
this can be found in the Appendix H.

Lemma A.7. [19, Theorem 6.3][B, Lemma 3.2] SuppoZds
fixed, andQ)y ~ Ber(po). Then there is a constariy; > 0
S.t.

_ 1177,1 logn1
1(X— py Py )ZI| < oog\/%nznm (35)

with probability at leastl — n(jl provided thatp, >

11 log (1)
ne

In the following proof, we take

1
e=(p)/*andg=1—p, """ (36)

Notice from our assumption op,. given in Assumptiof LR
that

€ S (10—4)1/4 S e—l

Let Z; = UnewV}ew — PuY;. Clearly, Z; € II. From the
definition of Y, notice thatY; € Q-+,

Yj = Yj71 + qil,PQj ijh and
Z;j = (Pu —q "PuPa,Pn)Z;

Clearly, Q,; andZ;_, are independent. UsmﬁBl) arfd’}(36),
> 0v7 . Thus, by Lemm&Al6

= logn()
1Z;lloc < €[|UnewVnewll oo (37)
—11

11001\/”_’ , which follows from [31),

logn(

IIZ-HF S €llZjalr < EJ”UneWVneW”F =eVr  (38)
with probability at leastl — 3jn *
Proof of (a)

(1)

at leastl —2jon,
Z; (similar to [i’.{}r
satlsfylng Assumptiof II[12), the result follows.

Jo

WA =P Yol < Y la™ P Po, Zj |

Jj=1

Jo
:Z [ Prrs (qflps’zjzr
j=1

Jo
<> g Pa,Zi 1 — Z |
=1

1= Zj)

11ng logng) <&
<Cpzy | — 2= ZHijlHoo
q =

(using Lemmd Al ang > > i?(l) by (31))

1ng logng) <~ . )
<Cosy/ % 3 | UnewV w0
j=1

1/2
(using LemmaAJb and > 6(;;) by (31))

_, [1lngylogn
<Co3(1 —¢) 1\/ %HUneanew”oo
11p,
<Co3(1—¢)~* P
qlogn(l)

(using || UnewViawlloe < pi by (10))
n() log n(1)
V1 Cosp
_\/ 01 —et)
60./p,
(usingq > —Y" by @) ande < ¢ )
1ogn(1)
1
<
—16

(using p, < 7.2483 x 107°C,;* by Assu[llL2(a))

The fourth step holds with probability at lealst- jon(];l by
applying Lemmmo times; the fifth holds with probability

1 by applying Lemm&ZAJ, times for each

))- Sincgjo = 1.3logn1) < n() (for ng)

Proof of (b)
Proof: SincePqY ;, = 0, we have
with probability at leastl — 2jng) - By LemmaAD and; > Po(UnewViewt+ P Y;,)

= PQ(UneWV:ew_PHon) = PQ(ZJO

and by [38), [[3b) and (31> 1}00;711:/7? ), we have

1Pa(Zi,) |7 < [1Zjo |7 < €V < e7H208m0 /= 2,

\/,]_a
(4o)
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with probability at leastl — 3]071(1) Thus, when-/Z 08 <7 = PHJ.WO +PHJ.W1

e.g.n() j 102, LemmaZ8(b) holds with probab|l|ty at IeastBy AssumptlorEIJ]:I(b)(e) and LemnfaY.2, we have
1—3n, [ |

Proof of (c) IEl < 0.5y/ma
. o _10 .
Proof: Recall that UnewVie, + WX = Z;, + Y, with probability at leastl — ng) - Sincex = 1/ /Ay, we
Po.Y;, =Y,,. From above, have
T 1P Wi < IIW§H = AE[ <05,
120l < V2l < 05 < 5 @0
s with probability at leastl — (1)
by (40) with probability at leastl — 3n,)") when \(z)s <§  LetR = Y-, (PoPuPao)k. Let Ny, N, denotel/2-nets
e.g.n(1y > 1024. Thus, we only need to ShONWgoHoo < A for 8! 8"~ T whereS™ ! is a unit Euclidean sphere in
We have, with probability at leagt— 2]'0”(*1%1, R™ A subsetV of R™ is referred to as &-net, if and only if,
o JO for everyy € R™, there is ay; € N for which ||y —y1|| <¢
Yiollw < ¢ 21 1Pa,Zj-1ll (here we used the Euclidean distance metfic) [25].
< ¢! JO 1Zj-1lc
< ¢! E]o . o j1||U V| By [25, Lemma 5.2], the cardinality of the 1/2-ne¥§ and
- =l new T new °°60 N, is 5™ and 5™ respectively.
(using Lemmd Al and > 1ogp£( 5 y (31))
< gy e %Ip,‘z By [25, Lemma 5.4],
R, IREN =  sw (v REX
(using [[UnewV fewlloo < q/m y (19)) xeSm2~1 yesni-1
A1 < 4 s R(E)x). 44
S soa—e T < i = xe;;}?gﬁ@ (E)x) (44)

60./pr
(usingg > lognfl) by (81) ande < e~ by @8R 5 fixed pair(y,x) of unit-normed vectors inV; x Ny,

_ ) (42)  define the random variable
The third step follows from Lemm@a_A.6 with probability at

Ieast1—2j0n(*11 Thus, Lemm&VB(c) holds with probability X(x,y) = (y, R(E)x) = (R(yx"), E).
at leastl — 2n- 1 ) Conditional onQ? = supfE), the signs ofE are i.i.d. sym-

To sum up, with the assumptlons in LemimalV.8, we havgetric and Hoeffding's inequality gives
(a), (b) (c) of Lemmd& VI8 hold with probability at least— 2t?

X(x,y)| >t|Q) <2exp| —— ).
tng)’ . PR <200 ()
Now since |lyx*[|r = 1, the matrix R(yx*) obeys
F. Proof of Lemm& V19 [R(yx*)||F < [R]| and, therefore,
. 2t2

The proof uses the following lemma. ]p( sup | X(x,y)| > t|Q) < 2|Ny|| Ny exp(__Q),
L A.8. [B) Corollary 2.7] A thafdy ~ Ber(py), ool 17

emma orollary ssume o ~ Ber(pg th <
L satisfies[(B) [{9) and(10), then there is a numerical cortstann e event|[PoPul| < o}, )
Co1 such that for allg > 1, IR| < ZU% __9

< T
[PayPul|* < po + €, k21
with probability at leastl — 3n(_1’()3 provided thatl — po > and, therefore, letting = 202 , we have,
Con €0 Tog iy POIR(E)] > )
. . . < PR < P

This is a direct corollary of Lemmia_A.5 stated earlier. It — NIRE) > 55, [PoPul 02)7:;%”7)97)“” > 0)

follows by replacing® by Q¢ in LemmalAS. < P(Supxezvg,yezvl 4X(x,y)| > | [PoPull < 0)+
Proof of (a) P(||PoPul| > o)

Let E := sgn(S). Recall from the assumption in this lemma < 2|V, || Ny | exp _2721;(1))072) + P(|PoPol > o)

that E satisfies the assumptions of LemmalV.2. . M)y 10
By taking Qo = ©, po = ps, €0 = 0.2, andg = 10in = 2x570 exlo(—i12800 )+3n( )
Lemma[A8, and using(32), we get < QeXp(—n(l)(O.O57O’yQ —log 25)) + 3n(1)

[PaPul* < o := ps +0.2, (43) (@aso = ps + 0.2 < 0.2156, = 0.0570v% — log 25 > 2.7773)

with probability at least —3n;)°. Thus, using the bound on = ’ (when2.7773n() > 10logn(1), €.9.,n¢1y > 10.)
ps from (32), we get thaf|PoPr||? < 0.22 < 1/4. Thus
Proof of (b) W5 < 67/80,
Proof: Note that . . _10
with probability at leastl — 5n(1) . [ |

$ =P AE+ Prid Y (PoPuPo)'E
>1 Proof of (¢)
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Proof: Observe that Notice that

Por WS = \Pqu (T — Pr)(Pa — PoPuPq)~'E F_ N o
= —APq1 Pr(Pa — PoPnPa) 'E Traced” = Zl 201112a1213 Girmrivivin, - (49)
1= U=
Let W§ := P W¥. Clearly, for (i,j) € Q, (W5)i; = so we have
0 and for (i,j) € Q¢ (W35); = (= \Pu(Pa — n n
'PQPH’PQ)ilE)i_,j. Trace&k Z Z Qiyin Qigig **° Qig_qip iy -
For (i,4) € Q¢, it can be rewritten as =1 =1 (46)
Sy, — e Sa.\ — (a.aof S
(W3)ij :(e%,ngig ;(eﬁjﬁ\;ﬁp S~ For 1 < p < k denote by E(n,k,p) the sum of
:E\ez)(zj’-_, :EI]I Q( Gorer Q) > ]Ea’ili2a’i2i3.'.a’ik—likaikil over all sequencesy, iz, -+, ik
= MX(2,5), E) such that [{i1,iz, -+ ,ix}| = p (.e., p different in-

whereX (i, j) := —(Pa — PaPuPq) ' PaPu(eie}). Condi- dices). As theEa;; = 0, if some a;; in the product
tional on 2 = supgE), the signs ofE are i.i.d. symmetric, a; ;,a;,i, ---ai, ,i,a::, has multiplicity one, then the ex-

and Hoeffding’s inequality gives pectation of the whole product is 0. When> (k/2) + 1, by
212 pigeon hole principle, there must exist @y with multiplicity
S &
P(I(W3)ij| > tA|Q) < 2exp(—m)v one. ThusE(n, k, p) = 0 whenp > (k/2) + 1.
and, thus, | Noge thlz;\(t a productu;, ;, @iy - - - iy, 4, Qigi, defines a
2 osed wa
]P’( sup [(W5)i] > t/\|Q) < 2n1ngexp( 2;2; o S
i,jeQe sup; ; 1X(2, 4)11 7 (i1i2)(i2i3) - - - (ik—17k) (iki1)

Since [18) holds, on the evefifPoPru| < o}, we have of lengthk on the complete grapk,, on{1,--- ,n} (here we

/ allow loops inK,,). If a product is non-zero, then any edge in
IPaPr(eie))llr < IPaPulllPu(eies)llr < 7y/20,/log* na) the walk should appear at least twice. Denotelbyn, k, p)
On the same even(Pqo — PoPrnPa) || < (1—0%)~! and, the number of walks i, usingk edges ang vertices where

therefore, each edge in the walk is used at least twice.
I1X(4, 1)|% 20° Pr_ For a walk W with p vertices, denote by (W) =
' ~ (1-02)? log® ngy) v1,v2,- -+ ,v, the ordered sequence. For graph, with n

vertices, there are(n —1)---(n — p+ 1) different ordered
sequence. Denote by’ (n, k,p) the number of walks with

Then unconditionally, lettingy = (1;‘7’;)2, we have

p(”meS”OO > %) =P(|W5]e > %) fixed sequence. Clearly,
< 2nyne exp (— T ) 4 B([PaPull 2 o) W ko) =n(n = 1)+ (1= p+ W (.. p).
ogn(1yv>
e A ~10 Lemma A.9. [24][40] Lemma 2.1][41, Problem 1.33] We
<2n +3n,
<5 A, M have
n
(1) / k 2(k—2p+2) 92p—2
The last bound follows since = p, + 0.2 < 0.2156 by (32) Wi(n, k,p) < <2p _ 2) prE IR,
and soy > 9.7798; andny > exp(0.5019p,.) by Assumption
[T2Lc). As |a;;| < K, we have, for any > 2,
To sum up, with the assumption in LemmalV.9, we have (a), E(lai;|) < K'72E(ja;;|?) < K'~202.

b) in Lemm& V9 hold with probability at leagt— 10n; _ _ ,
(b) P Y (1) With p vertices, there are at legst- 1 differenta;’s, denoted

by {ai,j, s Qivjos -+ @i M > p—1, and each of them has
G. Proof of Lemm&Al2 multiplicity at least2, so we have
Proof: The proof is the same as that givenl[in][40, Section E(ai1i2 %ig Qg i By )
2]. We rewrite it to clarify that variance of; ; bounded by =E(ab oal ..al.mj )
o2 also works. kz p 12 , 9
As we know <K*YE(d} ; df,;, Gy Gy
n <Kk7(2p72)0_2p72
N\ (A)F = Tracd A* B
; (A) A%, Thus, we have
we have E(n,k,p)
< o 2K DWW (n,k, p)
ZE = E(TracdA")). < o 2RRCrp(n 1) (n—p+ 1) (2plc_2) p2(h—2p+2)92p—2
Whenk is even )\-(A) are non-negative. Thus AEd 5.k, p)
n
E(max(|A\;(A)[*) < ZIE — E(Tracd A%)). S(n,k,p—1)

S(n, k,p)
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K2 (2p’“_4) (p — 1)2(k=2p+0) Thus we only need to prove

102n—p+1)( & p2(k=2p+2) 1 5 ﬁ
(22 miye | —— [Bal 1] <
_ K? 2p=3)2p—4)  (p—1)** 2" Wit required probab|I|ty. Byl[25, Lemma 5.2], we can choose

d02(n—p+1)(k—2p+3)(k—2p+4) p2k-2pt2) the net\V so that it has cardinality\/] < 9"2.
K2 k2 p2(k72p+4)

= 4o2n 1 p2(k—2p+2) (becausey < k/2 + 1) As we know, for any unit norm vectoxk € C™ and
[gz:a P any fixedp, € (0,1), {EwX}"ll are bounded bM

thus they are sub- gaussmn By |[25, Lemma 5. 14] we have

~ 40?n [Ex|2
. 1, are sub-exponential. As
Thus fork < (£)Y3(2n)Y/S, S(n,k,p — 1) < 25(n, k,p). 5 P
So |E x|? 2 .
|| || - ,2,"',”1,
k/2+1 Ds
kyy
E(TracgA®)) = Z; E(n, k,p) thus by [25, Remark 5. 18]{‘E = qym o are independent
—
k/241 centered sub-exponential random vanables ﬂ -
< Z S(n, k, p) 1|y, <2K,, where
p=1 1 |Eax*P 1/

K, = sup p (Ei) p7
<28(n,k,k/2+1) p>1 Ps
=2akn(n— 1)---(71—1{/2)2’C ie.,

~|2p
< 20(20v/n)* EEyr < p vz 1,
By Markov’s inequality, we have ) Ps
y quaity Defined by [25, (5.15)].
P(max(|A;(A)]) > 20vn +v)
! Let
! b Bz:l—_lv i:1727"'an17
< E(max;([Ai(A)[7)) Ps
~ (20y/n+v)k then
2n(20/n)* EB; = 0,(EBY)Y/P < 2K,p,Vp > 1
~ (20yn+v)* and fort < —, we have
v
=om(l————)F
n( 20+/n + v)
kv tPEBY
< S -
< 2nexp( 20\/ﬁ+v) Eexp(tB;) =1+ tEB; +p22
The last inequality holds fof < m <1,ie,v>0. < ypop [P P
(Because fol) < # < 1, (1 — x)* < exp(—kz) & 1 —2 < <1+ Z —
exp(—z), which is easy to check. ) [ = P

<1+) (2etK,)
H. Bound on||E|| by [25] p=2

_ . <1+ (2etK,)?
In [3], they need||E|| < 0.25, /71y with large probability.

Here we derive the condition needed fI|| < « 0 < exp(4e*’K7)
VI 0 <
a < 1, with large probability. the second inequality holds because> (p/e)?; the third
By [25, Lemma 5.36], and assunse= \/% —1> 1, we inequality holds becausttK, < 1/2. Thus
only need to prove

n
E exp(t Z B;) < exp(4n1e*t*K?).
I

E*E — I|| < max(é,6%) = 6* P

nips . .
By Markov inequality, we have
with required probability. By[[25, Lemma 5.4], for gnet\/ Y | g 5 y
of the unit spheres™ !, we have P(— ZBi > %) = Pexp(— ZB ) > exp(7’52/2))
R i 2
[ EE E -1
< e PEexp(L 3 By
< 2m2}€§|<( E*E—I)ZC,ZCH n1 i=1
o€ ;rlLlps < 877'62/24*4627'2}(3/711
= 2ma || B - 1. =
zeN nip when L < 48}%, e, 7 < 8. Take 7 =



. 52
mm{lgegKg, 1.k} we have

1 52

-1 > =

(- p 1= 3)
1 52
= _ >—
]P)(nlgBl— 2)

< exp(—76%/2 + 4e*T? K2 /ny)
< exp(—716%/2 + 762 /4)

. 71154 71152
< exp(—min{z 2K2’ 16K, b
162
exp(— e mln{ 1})
Let
K = sup K,
xeN
then
52 n.62 52
P — 21> =)< 9™ - 2
(max | IEx||"~1] = 5) < 9™ exp(— g min{
2 _(_a (a— \/E)
whered (\/p_ 1) =

So far the loose bound oK we can get isa/ps, SO the

best we can get is
1 9 52
]P’(max|—HEx|| -1 > 3)

xeN
o virm (o= yEP

< 92 — i 1
- exp/ 16ens min{ deny )
=Y
=9 exp —7(0[ ps; M :
64e?n3

Together with [[25, Lemma 5.36], we can get bound|d|.
If we takeny = clogn for some constant, we have

P([E[ < ay/n1)

1 5?2
= P(max | — [Ex|* - 1| > )
xeN M1pPs 2
(a _\/PS)4 )
<ex 7+c10 9logn, |,
- p( 6462c210g ny &ol08 1

which gives what we want when, is large enough,

(@ — /ps)'m

74—010 9logn, < —10lognq,
64e2¢2 log® ny srios = s
ie.,
n1 (o — \/E)4
]0g3 ny 6482(10 + ClOg 9)02

But if no is the order ofn; or larger, we don'’t have the result[ -

with large probability.
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Fig. 5: Yale Face Image result comparison

DataSet | Image Size| Sequence LengtH| mod-PCP PCP ReProCS| GRASTA RSL DEC GOSUSI[12]
Yale Face| 122 x 160 48 + 24 2.7 sec 9.8 sec 0.5 sec 50.2 sec | 141.7 sec| 21.3 sec
Lake 72 x 90 1420 + 80 2.2 sec 1.7 sec 9.3 sec | 338.7 sec| 26.7 sec
Fig.[6d 256 x 1 200+2400 2.7 sec 6.2sec | 12.0sec| 5.7 sec 25.4 sec 576.9 sec
Fig.[60 256 x 1 200+8000 9.7sec | 189 sec| 24.8sec| 12.6 sec| 67.7 sec 1735.6 sec
Fig.[64 256 x 1 200+8000 13.1 sec | 18.7 sec| 26.1sec| 12.7sec | 74.8 sec 1972.5 sec

TABLE I. Speed comparison of different algorithms. (Sequence tergfers to the length of sequence for training plus the lemft

sequence.)
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(a) Uniform distributeds; (b) Correlateds; with small support size (c) Correlateds; with large support size

Fig. 6: NRMSE of sparse part comparison with online model = 256, J = 3, 7o = 40, to = 200, ¢jnew =4, Cjod =4, 7 = 1,2,3)
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Fig. 7: Lake sequence result comparison (colunifis69, 79 are shown here. Note that in the last 2 rows, clearly thereissing part in

St a.nd.corresponding extra part # the back detected by RSL).
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