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Abstract—In recent work, robust Principal Components Anal-
ysis (PCA) has been posed as a problem of recovering a low-rank
matrix L and a sparse matrix S from their sum, M := L + S

and a provably exact convex optimization solution called PCP
has been proposed. This work studies the following problem.
Suppose that we have partial knowledge about the column space
of the low rank matrix L. Can we use this information to improve
the PCP solution, i.e. allow recovery under weaker assumptions?
We propose here a simple but useful modification of the PCP
idea, called modified-PCP, that allows us to use this knowledge.
We derive its correctness result which shows that, when the
available subspace knowledge is accurate, modified-PCP indeed
requires significantly weaker incoherence assumptions than PCP.
Extensive simulations are also used to illustrate this. Comparisons
with PCP and other existing work are shown for a stylized
real application as well. Finally, we explain how this problem
naturally occurs in many applications involving time series data,
i.e. in what is called the online or recursive robust PCA problem.
A corollary for this case is also given.

I. I NTRODUCTION

Principal Components Analysis (PCA) is a widely used
dimension reduction technique that finds a small number of
orthogonal basis vectors, called principal components, along
which most of the variability of the dataset lies. Accurately
computing the principal components in the presence of outliers
is called robust PCA. Outlier is a loosely defined term that
refers to any corruption that is not small compared to the
true data vector and that occurs occasionally. As suggestedin
[2], an outlier can be nicely modeled as a sparse vector. The
robust PCA problem occurs in various applications ranging
from video analysis to recommender system design in the
presence of outliers, e.g. for Netflix movies, to anomaly
detection in dynamic networks [3]. In recent work, Candes
et al and Chandrasekharan et al [3], [4] posed the robust PCA
problem as one of separating a low-rank matrixL (true data
matrix) and a sparse matrixS (outliers’ matrix) from their
sum,M := L+S. They showed that by solving the following
convex optimization program

minimizẽL,S̃ ‖L̃‖∗ + λ‖S̃‖1
subject to L̃+ S̃ = M

(1)

it is possible to recoverL andS exactly with high probability
(w.h.p.) under mild assumptions. In [3], they called it principal
components’ pursuit (PCP). Here‖L̃‖∗ denotes the nuclear
norm of L̃ and ‖S̃‖1 denotes theℓ1 norm of S̃ reshaped as
a long vector. This was among the first recovery guarantees
for a practical (polynomial complexity) robust PCA algorithm.
Since then, the batch robust PCA problem, or what is now also
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often called the sparse+low-rank recovery problem, has been
studied extensively but theoretically and empirically, e.g. see
[2], [5], [6], [7], [8], [9], [10], [11], [12], [13].

Contribution: In this work we study the following problem.
Suppose that we have a partial estimate of the column space
of the low rank matrixL. How can we use this information
to improve the PCP solution, i.e. allow recovery under weaker
assumptions? We propose here a simple but useful modifica-
tion of the PCP idea, calledmodified-PCP, that allows us to
use this knowledge. We derive its correctness result (Theorem
III.1) that provides explicit bounds on the various constants
and on the matrix size that are needed to ensure exact recovery
with high probability. Our result is used to argue that, as long
as the available subspace knowledge is accurate, modified-PCP
requires significantly weaker incoherence assumptions than
PCP. To prove the result, we use the overall proof approach
of [3] with some changes (explained in Sec V). By “accurate”
subspace knowledge, we mean that the number of missed
directions and the number of extra directions in the available
subspace knowledge is small compared to the rank ofL.

An important problem where partial subspace knowledge is
available is in online or recursive robust PCA for sequentially
arriving time series data, e.g. for video based foreground and
background separation. Video background sequences are well
modeled as forming a low-rank but dense matrix because
they change slowly over time and the changes are typically
global. Foreground is a sparse image consisting of one or more
moving objects. As explained in [14], in this case, the subspace
spanned by a set of consecutive columns ofL does not remain
fixed, but instead changes gradually over time. Also, often an
initial short sequence of low-rank only data (without outliers)
is available, e.g. in video analysis, it is easy to get an initial
background-only sequence. For this application, modified-PCP
can be used to design a piecewise batch solution that will be
faster and will require weaker assumptions for exact recovery
than PCP. This is made precise in Corollary IV.1.

We also show extensive simulation comparisons and some
real data comparisons of modified-PCP with PCP and with
other existing robust PCA solutions from literature. The imple-
mentation requires a fast algorithm for solving the modified-
PCP program. We develop this by modifying the Inexact
Augmented Lagrange Multiplier Method of [15] and using the
idea of [16], [17] for the sparse recovery step.

Notation. For a matrixX, we denote byX∗ the transpose
of X; denote by‖X‖∞ theℓ∞ norm ofX reshaped as a long
vector, i.e.,maxi,j |Xij |; denote by‖X‖ the operator norm or
2-norm; denote by‖X‖F the Frobenius norm.

Let I denote the identity operator, i.e.,I(Y) = Y for any
matrix Y. Let ‖A‖ denote the operator norm of operatorA,
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i.e., ‖A‖ = sup{‖X‖F=1} ‖AX‖F ; let 〈X,Y〉 denote the Eu-
clidean inner product between two matrices, i.e., trace(X∗Y);
let sgn(X) denote the entrywise sign ofX.

We let PΘ denote the orthogonal projection onto a linear
subspaceΘ of matrices. We useΩ to denote the support set
of S, i.e., Ω = {(i, j) : S(i, j) 6= 0}. As is done in [3],
we also useΩ to denote the subspace spanned by the matrices
supported on the setΩ (i.e. matrices whose entries are zero on
the complement of the setΩ). For a matrixX, we usePΩX to
denote projection onto the subspaceΩ, i.e., (PΩX)ij = Xij ,
if (i, j) ∈ Ω, and(PΩX)ij = 0, if (i, j) /∈ Ω. By Ω ∼ Ber(ρ)
we mean that any matrix index(i, j) has probabilityρ of being
in the support independent of all others.

Given two matricesB and B2, [B B2] constructs a new
matrix by concatenating matricesB andB2 in the horizontal
direction. LetBrem be a matrix containing some columns ofB.
ThenB\Brem is the matrixB with columns inBrem removed.

We say thatU is abasis matrixif U∗U = I whereI is the
identity matrix. We useei to refer to theith columnI. For a
matrix U, we use range(U) to denote its column span.

II. PROBLEM DEFINITION AND PROPOSED SOLUTION

A. Problem Definition

We are given a data matrixM ∈ Rn1×n2 that satisfies

M = L+ S (2)

whereS is a sparse matrix with support setΩ andL is a low
rank matrix with reduced singular value decomposition (SVD)

L
SVD
= UΣV∗ (3)

Let r := rank(L). We assume that we are given a basis
matrixG so that(I−GG∗)L has rank smaller thanr. The goal
is to recoverL andS from M usingG. Let rG := rank(G).

DefineLnew := (I −GG∗)L with rnew := rank(Lnew) and
reduced SVD given by

Lnew := (I−GG∗)L
SVD
= UnewΣnewV

∗
new (4)

We explain this a little more. With the above, it is easy
to show that there exist rotation matricesRU ,RG, and basis
matricesGextra andUnew with Gextra

∗Unew = 0, such that

U = [(GRG \Gextra)
︸ ︷︷ ︸

U0

Unew]R
∗
U . (5)

We provide a derivation for this in Appendix A. Notice
here thatU0 be a basis matrix for range(L) ∩ range(G) =
range(U) ∩ range(G).

Define r0 := rank(U0) and rextra := rank(Gextra). Clearly,
rG = r0 + rextra andr = r0 + rnew = (rG − rextra) + rnew.

B. Proposed Solution: Modified-PCP

From the above model, it is clear that

Lnew+GX∗ + S = M (6)

for X = L∗G. We propose to recoverL andS usingG by
solving the followingModified PCP (mod-PCP) program

minimizẽLnew,S̃,X̃
‖L̃new‖∗ + λ‖S̃‖1

subject to L̃new+GX̃∗ + S̃ = M
(7)

Denote a solution to the above bŷLnew, Ŝ, X̂. Then, L is
recovered aŝL = L̂new+GX̂∗. Modified-PCP is inspired by an
approach for sparse recovery using partial support knowledge
called modified-CS [18].

III. C ORRECTNESSRESULT

We first state the assumptions required for the result and
then give the main result and discuss it.

A. Assumptions

As explained in [3], we need thatS is not low rank in order
to separate it fromLnew. One way to ensure thatS is full rank
w.h.p. is by selecting the support ofS uniformly at random
[3]. We assume this here too. In addition, we need a denseness
assumption onG and on the left and right singular vectors of
Lnew.

Let n(1) = max(n1, n2) andn(2) = min(n1, n2). Assume
that following hold with a constantρr that is small enough
(we set its values later in Assumption III.2).

max
i
‖[G Unew]

∗ei‖2 ≤
ρrn(2)

n1 log
2 n(1)

, (8)

max
i
‖V∗

newei‖2 ≤
ρrn(2)

n2 log
2 n(1)

, (9)

and

‖UnewV
∗
new‖∞ ≤

√

ρr

n(1) log
2 n(1)

. (10)

B. Main Result

We state the main result in a form that is slightly different
from that of [3]. It eliminates the parameterµ and combines
the bound onµr directly with the incoherence assumptions (µ
is a parameter defined in [3] to quantify the denseness ofU

andV and the incoherence between their rows) . We state it
this way because it is easier to interpret and compare with the
result of PCP. In particular, the dependence of the result on
n(2) is clearer this way. The corresponding result for PCP in
the same form is an immediate corollary.

Theorem III.1. Consider the problem of recoveringL and
S from M using partial subspace knowledgeG by solving
modified-PCP (7). Assume thatΩ, the support set ofS, is
uniformly distributed with sizem satisfying

m ≤ 0.4ρsn1n2 (11)

Assume thatL satisfies (8), (9) and (10) andρs, ρr,
are small enough andn1, n2 are large enough to satisfy
Assumption III.2 given below. Then, Modified-PCP (7) with
λ = 1/

√
n(1) recoversS and L exactly with probability at

least1− 23n−10
(1) .

Assumption III.2. Assume thatρs, ρr andn1, n2 satisfy:

(a) ρr ≤ min{10−4, 7.2483× 10−5C−4
03 }

(b) ρs = min{1 − 1.5b1(ρr), 0.0156} where b1(ρr) :=

max
{

60ρ
1/2
r , 11C01ρ

1/2
r , 0.11

}

(c) n(1) ≥ max {exp(0.5019ρr), exp(253.9618C01ρr), 1024}
(d) n(2) ≥ 100 log2 n(1),
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(e) (n1+n2)
1/6

log(n1+n2)
> 10.5

(ρs)1/6(1−5.6561
√
ρs)

,

(f)
n(1)n(2)

500 logn(1)
> 1/ρ2s

whereC01, C03 are numerical constants from Lemma A.5 ([19,
Theorem 4.1]) and Lemma A.7 ([19, Theorem 6.3]) respec-
tively. Their expressions were not specified in the original
paper.

Proof: We prove this result in Sec V.

C. Discussion w.r.t. PCP

The PCP program of [3] is (7) with no subspace knowledge
available, i.e.GPCP = [ ] (empty matrix). With this, Theorem
III.1 simplifies to the corresponding result for PCP. Thus,
Unew,PCP = U andVnew,PCP = V and so PCP needs

max
i
‖U∗ei‖2 ≤

ρrn(2)

n1 log
2 n(1)

, (12)

max
i
‖V∗ei‖2 ≤

ρrn(2)

n2 log
2 n(1)

, (13)

and

‖UV∗‖∞ ≤
√

ρr

n(1) log
2 n(1)

. (14)

Notice that the second and third conditions needed by
modified-PCP, i.e. (9) and (10), are always weaker than (13)
and (14) respectively. They are much weaker whenrnew is
small compared tor. Whenrextra = 0, range(G) = range(U0)
and so the first condition is the same for both modified-PCP
and PCP. Whenrextra > 0 but is small, the first condition
for modified-PCP is slightly stronger. However, as we argue
below the third condition is the hardest to satisfy and hence
in all cases except whenrextra is very large, the modified-PCP
requirements are weaker. We demonstrate this via simulations
and for some real data in Sec VI-B (see Fig 1b and Fig 3b)
and VI-E.

The third condition constrains the inner product between
the rows of two basis matricesU and V while the first
and second conditions only constrain the norm of the rows
of a basis matrix. On first glance it may seem that the
third condition is implied by the first two using the Cauchy-
Schwartz inequality. However that is not the case. Using
Cauchy-Schwartz inequality, the first two conditions only
imply that‖UV∗‖∞ ≤

√
ρr

n(1) log
2 n(1)

√
ρrn(2)

logn(1)
which is looser

than what the third condition requires.

IV. ONLINE ROBUST PCA

Consider the online / recursive robust PCA problem where
data vectorsyt := st+ ℓt come in sequentially and their sub-
space can change over time. Starting with an initial knowledge
of the subspace, the goal is to estimate the subspace spanned
by ℓ1, ℓ2, . . . ℓt and to recover thest’s. Assume the following
subspace change model introduced in [14]:ℓt = P(t)at where
P(t) = Pj for all tj ≤ t < tj+1, j = 0, 1, . . . J . At the
change times,Pj changes asPj = [(Pj−1Rj \Pj,old) Pj,new]
where Pj,new is a n × cj,new basis matrix that satisfies
P∗
j,newPj−1 = 0; Rj is a rotation matrix; andPj,old is a

n×cj,old matrix that contains a subset of columns ofPj−1Rj.

Also assume thatcj,new ≤ c and
∑

j(cj,new− cj,old) ≤ cdif .
Let rj := rank(Pj). Clearly,rj = rj−1 + cj,new− cj,old and so
rj ≤ rmax = r0 + cdif .

For the above model, the following is an easy corollary.

Corollary IV.1 (modified-PCP for online robust
PCA). Let Mj := [ytj ,ytj+1, . . .ytj+1−1],
Lj := [ℓtj , ℓtj+1, . . . ℓtj+1−1], Sj := [stj , stj+1, . . . stj+1−1]
and letLfull := [L1,L2, . . .LJ ] and Sfull := [S1,S2, . . .SJ ].
Suppose that the following hold.

1) Sfull satisfies the assumptions of Theorem III.1.
2) The initial subspace range(P0) is exactly known, i.e. we

are givenP̂0 with range(P̂0) = range(P0).
3) For all j = 1, 2, . . . J , (8), (9), and (10) hold withn1 =

n, n2 = tj+1− tj , G = Pj−1, Unew = Pj,new andVnew

being the matrix of right singular vectors ofLnew =
(I−Pj−1P

∗
j−1)Lj .

4) We solve modified-PCP at everyt = tj+1, usingM =
Mj and with G = Gj = P̂j−1 where P̂j−1 is the
matrix of left singular vectors of the reduced SVD of
L̂j−1 (the low-rank matrix obtained from modified-PCP
on Mj−1). At t = t1 we useG = P̂0.

Then, modified-PCP recoversSfull ,Lfull exactly and in a piece-
wise batch fashion with probability at least(1 − 23n−10)J .

Proof: Denote by Θ0 the event that range(P̂0) =
range(P0). For j = 1, 2, . . . J , denote byΘj the event that
the program (7) succeeds for the matrixM = Mj , i.e.
Sj and Lj are exactly recovered. Clearly,Θj also implies
that range(P̂j) = range(Pj). Using Theorem III.1 and the
model, we then get that probabilityP(Θj|Θ0,Θ1, . . .Θj−1) ≥
1− 23n−10. Also, by assumption,P(Θ0) = 1. Thus by chain
rule, P(Θ0,Θ1,Θ2, · · · ,ΘJ) ≥ (1− 23n−10)J .

Discussion w.r.t. PCP. For the data model above, two
possible corollaries for PCP can be stated.

Corollary IV.2 (PCP for online robust PCA). If Sfull satisfies
the assumptions of Theorem III.1 and if (8), (9), and (10)
hold withn1 = n, n2 = tJ+1− t1, GPCP = [ ], Unew,PCP =
U = [P0,P1,new, . . .PJ,new] and Vnew,PCP = V being the
right singular vectors ofLfull := [L1,L2, . . .LJ ], then, we
can recoverLfull andSfull exactly with probability at least(1−
23n−10) by solving PCP (1) with inputMfull . HereMfull :=
Lfull + Sfull .

When we compare this with the result for modified-PCP, the
second and third condition are even more significantly weaker
than those for PCP. The reason is thatVnew contains at most
c columns whileV contains at mostr0 + Jc columns. The
first conditions cannot be easily compared. The LHS contains
at most rmax + c = r0 + cdif + c columns for modified-
PCP, while it containsr0+Jc columns for PCP. However, the
RHS for PCP is also larger. Iftj+1 − tj = d, then the RHS
is also J times larger for PCP than for modified-PCP. The
above advantage for mod-PCP comes with two caveats. First,
modified-PCP assumes knowledge of the subspace change
times while PCP does not need this. Secondly, modified-PCP
succeeds w.p.(1 − 23n−10)J ≥ 1 − 23Jn−10 while PCP
succeeds w.p.1− 23n−10.
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Alternatively if PCP is solved at everyt = tj+1 usingMj,
we get the following corollary

Corollary IV.3 (PCP forMj). Solve PCP, i.e. (1), att = tj+1

usingMj. If Sfull satisfies the assumptions of Theorem III.1
and if (8), (9), and (10) hold withn1 = n, n2 = tj+1 − tj ,
GPCP = [ ], Unew,PCP = Pj and Vnew,PCP = Vj being
the right singular vectors ofLj for all j = 1, 2, . . . , J , then,
we can recoverLfull andSfull exactly with probability at least
(1− 23n−10)J .

When we compare this with modified-PCP, the second and
third condition are significantly weaker than those for PCP
whencj,new≪ rj . The first condition is exactly the same when
cj,old = 0 and is only slightly stronger as long ascj,old≪ rj .

Discussion w.r.t. ReProCS.In [20], [21], [14], Qiu et
al studied the online / recursive robust PCA problem and
proposed a novel recursive algorithm called ReProCS. With the
subspace change model described above, they also needed the
following “slow subspace change” assumption:‖P ∗

j,newℓt‖ is
small for sometime aftertj and increases gradually. Modified-
PCP does not need this. Moreover, even with perfect initial
subspace knowledge, ReProCS cannot achieve exact recovery
of st or ℓt while, as shown above, modified-PCP can. On the
other hand, ReProCS is a recursive algorithm while modified-
PCP is not; and for highly correlated support changes of the
st’s, ReProCS outperforms modified-PCP (see Sec VI). The
reason is that correlated support change results inS also being
rank deficient, thus making it difficult to separate it fromLnew

by modified-PCP.
Discussion w.r.t. the work of Feng et al.Recent work

of Feng et. al. [22], [23] provides two asymptotic results
for online robust PCA. The first work [22] does not model
the outlier as a sparse vector but just as a vector that is
“far” from the low-dimensional data subspace. In [23], the
authors reformulate the PCP program and use this to develop
a recursive algorithm that comes “close” to the PCP solution
asymptotically.

V. PROOF OFTHEOREM III.1: MAIN LEMMAS

Our proof adapts the proof approach of [3] to our new
problem and the modified-PCP solution. The main new lemma
is Lemma V.7 in which we obtain different and weaker
conditions on the dual certificate to ensure exact recovery.
This lemma is given and proved in Sec V-E. In addition, we
provide a proof for two key statements from [3] for which
either a proof is not immediate (Lemma V.1) or for which the
cited reference does not work (Lemma V.2). These lemmas
are given below in Sec V-A and proved in the Appendix.

We state Lemma V.1 and Lemma V.2 in Sec V-A. We
give the overall proof architecture next in Sec V-B. Some
definitions and basic facts are given in Sec V-D and V-C.
In Sec V-E, we obtain sufficient conditions (on the dual
certificate) under whichS,Lnew is the unique minimizer of
modified-PCP. In Sec V-F, we construct a dual certificate that
satisfies the required conditions with high probability (w.h.p.).
Here, we also give the two main lemmas to show that this
indeed satisfies the required conditions. The proof of all the
four lemmas from this section is given in the Appendix.

Whenever we say “with high probability” or w.h.p., we
mean with probability at least1−O(1)n−10

(1) .

A. Two Lemmas

Lemma V.1. Denote byPUnif and PBer the probabilities
calculated under the uniform and Bernoulli models and let
“Success” be the event that(Lnew,S,L

∗G) is the unique
solution of modified-PCP (7). Then

PUnif(m0)(Success) ≥ PBer(ρ0)(Success)− e−2n1n2ǫ
2
0 ,

whereρ0 = m0

n1n2
+ ǫ0.

The proof is given in Appendix B. A similar statement
is given in Appendix A.1 of [3] but without a proof. The
expression for the second term on the right hand side given

there ise−
2n1n2ǫ20

ρ0 which is different from the one we derive.

Lemma V.2. Let E be an1 × n2 random matrix with entries
i.i.d. (independently identically distributed) as

Eij =







1, w. p. ρs/2,

0, w. p. 1− ρs,

−1, w. p. ρs/2.

(15)

If ρs < 0.03 and (n1+n2)
1/6

log(n1+n2)
> 10.5

(ρs)1/6(1−5.6561
√
ρs)

, then

P(‖E‖ ≥ 0.5
√
n(1)) ≤ n−10

(1) .

The proof is provided in Appendix C and uses the result
of [24]. In [3], the authors claim that using [25],‖E‖ >
0.25
√
n(1) w.p. less thann−10

(1) . While the claim is correct,
it is not possible to prove it using any of the results from
[25]. Using ideas from [25], one can only show that the above
holds whenn(2) is upper bounded by a constant timeslogn(1)

(see the Appendix H) which is a strong extra assumption.

B. Proof Architecture

The proof of the theorem involves 4 main steps.
(a) The first step is to show that when the locations of the

support ofS are Bernoulli distributed with parameter
ρs and the signs ofS are i.i.d ±1 with probability
1/2 (and independent from the locations), and all the
other assumptions onL, n1, n2, ρs, ρr in Theorem III.1
are satisfied, then Modified-PCP (7) withλ = 1/

√
n(1)

recoversS exactly (and hence alsoL = M − S) with
probability at least1− 22n−10

(1) .
(b) By [3, Theorem 2.3], the previous claim also holds for the

model in which the signs ofS are fixed and the locations
of its nonzero entries are sampled from the Bernoulli
model with parameterρs/2, and all the other assumptions
on L, n1, n2, ρs, ρr from Theorem III.1 are satisfied.

(c) By Lemma V.1 withǫ0 = 0.1ρs, m0 = ⌊0.4ρsn1n2⌋,
sincen1n2 > 500 logn1/ρ

2
s (Assumption III.2(f)), the

previous claim holds with probability at least1−23n−10
(1)

for the model in which the signs ofS are fixed and
the locations of its nonzero entries are sampled from
the Uniform model with parameterm0, and all the other
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assumptions onL, n1, n2, ρs, ρr from Theorem III.1 are
satisfied.

(d) By [3, Theorem 2.2], the previous claim also holds for
the model in which the signs ofS are fixed and the
locations of its nonzero entries are sampled from the
Uniform model with parameterm ≤ m0 = 0.4ρsn1n2,
and all the other assumptions onL, n1, n2, ρs, ρr from
Theorem III.1 are satisfied.

Thus, all we need to do is to prove step (a). To do this we
start with the KKT conditions and strengthen them to get a set
of easy to satisfy sufficient conditions on the dual certificate
under whichLnew,S is the unique minimizer of (7). This is
done in Sec V-E. Next, we use the golfing scheme [26], [3] to
construct a dual certificate that satisfies the required conditions
(Sec. V-F).

C. Basic Facts

We state some basic facts which will be used in the
following proof.

Definition V.3 (Sub-gradient [27]). Consider a convex func-
tion f : O → R on a convex set of matricesO. A matrixY
is called its sub-gradient at a pointX0 ∈ O if

f(X)− f(X0) ≥ 〈Y, (X−X0)〉.
for all X ∈ O. The set of all sub-gradients off at X0 is
denoted by∂f(X0).

It is known [28], [29] that

∂‖Lnew‖∗ = {UnewV
∗
new+W : PTnewW = 0, ‖W‖ ≤ 1}.

and

∂‖S‖1 = {F : PΩF = sgn(S), ‖F‖∞ ≤ 1}.
Definition V.4 (Dual norm [8]). The matrix norm‖ · ‖♥ is
said to be dual to matrix norm‖ ·‖♠ if, for all Y1 ∈ Rn1×n2 ,
‖Y1‖♥ = sup‖Y2‖♠≤1〈Y1,Y2〉.
Proposition V.5 (Proposition 2.1 of [30]). The following pairs
of matrix norms are dual to each other:

• ‖ · ‖1 and ‖ · ‖∞;
• ‖ · ‖∗ and ‖ · ‖;
• ‖ · ‖F and ‖ · ‖F .

For all these pairs, the following hold.

1) |〈Y,Z〉| ≤ ‖Y‖♠‖Z‖♥.
2) Fixing anyY ∈ Rn1×n2 , there existsZ ∈ Rn1×n2 (that

depends onY) such that

〈Y,Z〉 = ‖Y‖♠‖Z‖♥.
3) In particular, we can get〈Y,Z〉 = ‖Y‖1‖Z‖∞ by

settingZ = sgn(Y), we can get〈Y,Z〉 = ‖Y‖∗‖Z‖
by settingZ = UYV

∗
Y whereUYΣYV

∗
Y is the SVD

of Y, and we can get〈Y,Z〉 = ‖Y‖F ‖Z‖F by letting
Z = Y.

For any matrixY, we have

‖Y‖2F = trace(Y∗Y) =
∑

i,j

|Yij |2 ≤ (
∑

i,j

|Yij |)2 = ‖Y‖21

and

‖Y‖2F = trace(Y∗Y) =
∑

i

σ2
i (Y) ≤ (

∑

i

σi(Y))2 = ‖Y‖2∗

Let Υ be the linear space of matrices with column span
equal to that of the columns ofP1 and row span equal to that
of the columns ofP2 whereP1 andP2 are basis matrices.
Then, for a matrixM,

PΥ⊥M = (I−P1P
∗
1)M(I−P2P

∗
2) andPΥM = M−PΥ⊥M.

Let Υ be the linear space of matrices with column span equal
to that of the columns ofP1. Then,

PΥ⊥M = (I−P1P
∗
1)M andPΥM = P1P

∗
1M

For a matrixxy∗ wherex andy are vectors,

‖xy∗‖2F = ‖x‖2‖y‖2.
If an operatorA is linear and bounded, then [31]

‖A∗A‖ = ‖A‖2.

D. Definitions

Here we define the following linear spaces of matrices.
Denote byΓ the linear space of matrices with column span

equal to that of the columns ofG, i.e.

Γ := {GY∗, Y ∈ R
n2×rG}, (16)

and byΓ⊥ its orthogonal complement.
Define also the following linear spaces of matrices

Tnew := {UnewY
∗
1+Y2V

∗
new, Y1 ∈ R

n2×rnew,Y2 ∈ R
n1×rnew},

Π := {[GUnew]Y
∗
1+Y2V

∗
new, Y1 ∈ R

n2×(rG+rnew),Y2 ∈ R
n1×rnew},

Notice thatTnew∪ Γ = Π.

Remark V.6. For the matrixeie∗j , together with (8) and (9),
we have

‖PΠ⊥eie
∗
j‖2F

= ‖(I− [G Unew][G Unew]
∗)ei‖2‖(I−VnewV

∗
new)ej‖2

≥ (1 − ρr/ log
2 n(1))

2,
(17)

where ρr/ log
2 n(1) ≤ 1 as assumed. Using‖PΠeie

∗
j‖2F +

‖PΠ⊥eie
∗
j‖2F = 1, we have

‖PΠeie
∗
j‖F ≤

√

2ρr

log2 n(1)

. (18)

E. Dual Certificates

We modify Lemma 2.5 of [3] to get the following lemma
which gives us sufficient conditions on the dual certificate
needed to ensure that modified-PCP succeeds.

Lemma V.7. If ‖PΩPΠ‖ ≤ 1/4, λ < 3/10, and there is a
pair (W,F) obeying

UnewV
∗
new+W = λ(sgn(S) + F+ PΩD)

with PΠW = 0, ‖W‖ ≤ 9
10 , PΩF = 0, ‖F‖∞ ≤ 9

10 , and
‖PΩD‖F ≤ 1

4 , then(Lnew,S,L
∗G) is the unique solution to

Modified-PCP (7).

Proof: Any feasible perturbation of(Lnew,S,L
∗G) will

be of the form

(Lnew+H1,S−H,L∗G+H2), with H1 +GH∗
2 = H.
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Let G⊥ be a basis matrix that is such that[G G⊥] is a unitary
matrix. Then,H1 = H−GH∗

2 = G⊥G∗
⊥H+GG∗H−GH∗

2.
Notice that

• Lnew = G⊥G∗
⊥Lnew andG∗

⊥G
∗
⊥H = PΓ⊥H.

• For any two matricesY1 andY2,

‖G⊥Y1 +GY2‖∗ ≥ ‖G⊥Y1‖∗
where equality holds if and only ifY2 = 0. To
see why this holds, let the full SVD ofY1,Y2 be
Y1

SVD
= Q1Σ1V

∗
1 and Y2

SVD
= Q2Σ2V

∗
2 . Since

[G G⊥] is a unitary matrix, G⊥Y1 + GY2
SVD
=

[G⊥Q1 GQ2]
[
Σ1 0
0 Σ2

]

[V1 V2]
∗. Thus, ‖G⊥Y1 +

GY2‖∗ = trace(Σ1) + trace(Σ2) ≥ trace(Σ1) =
‖G⊥Y1‖∗ where equality holds if and only ifΣ2 = 0,
or equivalently,Y2 = 0.

Thus,

‖Lnew+H1‖∗
= ‖G⊥(G

∗
⊥Lnew+G∗

⊥H) +G(G∗H−H∗
2)‖∗

≥ ‖G⊥(G
∗
⊥Lnew+G∗

⊥H)‖∗ = ‖Lnew+ PΓ⊥H‖∗ (19)

where equality holds if and only ifH2 = G∗H.
Recall that Tnew ∪ Γ = Π. Choose aWa so that
〈Wa,PΠ⊥H〉 = ‖PΠ⊥H‖∗‖Wa‖. This is possible using
Proposition V.5. Let

W0 = PΠ⊥Wa/‖Wa‖.
Thus,W0 satisfiesPTnewW0 = 0 and ‖W0‖ ≤ 1 and so it
belongs to the sub-gradient set of the nuclear norm atLnew.
Also,

〈W0,PΓ⊥H〉 =
1

‖Wa‖
〈PΠ⊥Wa,PΓ⊥H〉

=
1

‖Wa‖
〈Wa,PΠ⊥PΓ⊥H〉

=
1

‖Wa‖
〈Wa,PΠ⊥H〉 = ‖PΠ⊥H‖∗.

Let F0 = −sgn(PΩ⊥H). Thus,PΩF0 = 0, ‖F0‖∞ = 1 and
so it belongs to the sub-gradient set of the 1-norm atS. Also,

〈F0,H〉 = 〈F0,PΩ⊥H〉 = −‖PΩ⊥H‖1.
Thus,

‖Lnew+H1‖∗ + λ‖S−H‖1
≥‖Lnew+ PΓ⊥H‖∗ + λ‖S−H‖1

(using (19))

≥‖Lnew‖∗ + λ‖S‖1 + 〈UnewV
∗
new+W0,PΓ⊥H〉

− λ〈sgn(S) + F0,H〉
(by definition of sub-gradient)

=‖Lnew‖∗ + λ‖S‖1 + ‖PΠ⊥H‖∗ + λ‖PΩ⊥H‖1
+ 〈UnewV

∗
new− λsgn(S),H〉

(usingW0 andF0 as defined above)

≥‖Lnew‖∗ + λ‖S‖1 + ‖PΠ⊥H‖∗ + λ‖PΩ⊥H‖1
−max(‖W‖, ‖F‖∞)(‖PΠ⊥H‖∗ + λ‖PΩ⊥H‖1) + λ〈PΩD,H〉
(by the lemma’s assumption and Proposition V.5)

≥‖Lnew‖∗ + λ‖S‖1 +
1

10

(

‖PΠ⊥H‖∗ + λ‖PΩ⊥H‖1
)

− λ

4
‖PΩH‖F

(by Proposition V.5 and assumption‖PΩD‖F ≤
1

4
)

Observe now that

‖PΩH‖F ≤ ‖PΩPΠH‖F + ‖PΩPΠ⊥H‖F
≤ 1

4
‖H‖F + ‖PΠ⊥H‖F

≤ 1

4
‖PΩH‖F +

1

4
‖PΩ⊥H‖F + ‖PΠ⊥H‖F

and, therefore,

‖PΩH‖F ≤
1

3
‖PΩ⊥H‖F +

4

3
‖PΠ⊥H‖F

≤ 1

3
‖PΩ⊥H‖1 +

4

3
‖PΠ⊥H‖∗

In conclusion,

‖Lnew+ PΓ⊥H‖∗ + λ‖S−H‖1
≥ ‖Lnew‖∗ + λ‖S‖1 +

(

(
1

10
− λ

3
)‖PΠ⊥H‖∗ +

λ

60
‖PΩ⊥H‖1

)

> ‖Lnew‖∗ + λ‖S‖1
The last inequality holds because‖PΩPΠ‖ < 1 and this
implies thatΠ ∩ Ω = {0} and so at least one ofPΠ⊥H or
PΩ⊥H is strictly positive forH 6= 0. Thus, the cost function is
strictly increased by any feasible perturbation. Since thecost
is convex, this proves the lemma.

Lemma V.7 is equivalently saying that(Lnew,S,L
∗G) is the

unique solution to Modified-PCP (7) if there is aW satisfying:






W ∈ Π⊥,

‖W‖ ≤ 9/10,

‖PΩ(UnewV
∗
new− λsgn(S) +W)‖F ≤ λ/4,

‖PΩ⊥(UnewV
∗
new+W)‖∞ < 9λ/10.

(20)

F. Construction of the required dual certificate

The golfing scheme is introduced by [32], [26]; here we use
it with some modifications similar to those in [3] to construct
dual certificate. Assume thatΩ ∽ Ber(ρs) or equivalently,
Ωc ∽ Ber(1− ρs).

Notice thatΩc can be generated as a union ofj0 i.i.d.
sets{Ω̄j}j0j=1, whereΩ̄j

i.i.d
∽ Ber(q), 1 ≤ j ≤ j0 with q, j0

satisfyingρs = (1− q)j0 . This is true because

P((i, j) ∈ Ω) = P((i, j) /∈ Ω̄1 ∪ Ω̄2 ∪ · · · Ω̄j0) = (1− q)j0 .

As there is overlap between̄Ω′
js, we haveq ≥ (1− ρs)/j0.

Let W = WL+WS , whereWL,WS are constructed similar
to [3] as:

• Construction ofWL via the golfing scheme.Let Y0 = 0,

Yj = Yj−1 + q−1PΩ̄j
PΠ(UnewV

∗
new−Yj−1),

andWL = PΠ⊥Yj0 . Notice thatYj ∈ Ω⊥.
• Construction ofWS via the method of least squares.

Assume that‖PΩPΠ‖ ≤ 1/4. We prove that this
holds in Lemma V.9 below. With this,‖PΩPΠPΩ‖ =
‖PΩPΠ‖2 ≤ 1/16 and so‖PΩ−PΩPΠPΩ‖ ≥ 1−1/16 >
0. Thus this operator, which maps the subspaceΩ onto
itself, is invertible. Let(PΩ − PΩPΠPΩ)

−1 denote its
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inverse and let

WS = λPΠ⊥(PΩ − PΩPΠPΩ)
−1sgn(S).

Using the Neumann series, notice that [3]

(PΩ − PΩPΠPΩ)
−1sgn(S) =

∑

k≥0

(PΩPΠPΩ)
ksgn(S).

Thus [3],

PΩW
S = λsgn(S).

This follows because(PΩ−PΩPΠPΩ) is an operator mapping
Ω onto itself, and so(PΩ −PΩPΠPΩ)

−1sgn(S) = PΩ(PΩ −
PΩPΠPΩ)

−1sgn(S) 1. With this, PΩW
S = λPΩ(I −

PΠ)PΩ(PΩ−PΩPΠPΩ)
−1sgn(S) = λ(PΩ−PΩPΠPΩ)(PΩ−

PΩPΠPΩ)
−1sgn(S) = λsgn(S).

Clearly,W = WL +WS is a dual certificate if






‖WL +WS‖ < 9/10,

‖PΩ(UnewV
∗
new+WL)‖F ≤ λ/4,

‖PΩ⊥(UnewV
∗
new+WL +WS)‖∞ < 9λ/10.

(21)

Next, we present the two lemmas that together prove that
(21) holds w.h.p..

Lemma V.8. AssumeΩ ∼ Ber(ρs). Let j0 = 1.3⌈logn(1)⌉.
Under the other assumptions of Theorem III.1, the matrixWL

obeys, with probability at least1− 11n−10
(1) ,

(a) ‖WL‖ < 1/16,
(b) ‖PΩ(UnewV

∗
new+WL)‖F < λ/4,

(c) ‖PΩ⊥(UnewV
∗
new+WL)‖∞ < 2λ/5.

This is similar to [3, Lemma 2.8]. The proof is in the
Appendix.

Lemma V.9. AssumeΩ ∼ Ber(ρs), and the signs ofS are in-
dependent ofΩ and i.i.d. symmetric. Under the other assump-
tions of Theorem III.1, with probability at least1 − 11n−10

(1) ,
the following is true

(a) ‖PΩPΠ‖ ≤ 1/4 and soWS constructed earlier is well
defined.

(b) ‖WS‖ < 67/80,
(c) ‖PΩ⊥WS‖∞ < λ/2.

This is similar to [3, Lemma 2.9]. The proof is in the
Appendix.

VI. SOLVING THE MODIFIED-PCPPROGRAM AND

EXPERIMENTS WITH IT

We first give below the algorithm used to solve modified-
PCP. Next, we give recovery error comparisons for static
simulated and real data. Finally we show some online robust
PCA experiments, both on simulated and real data.

A. Algorithm for solving Modified-PCP

We give below an algorithm based on the Inexact Aug-
mented Lagrange Multiplier (ALM) method [15] to solve the
modified-PCP program, i.e. solve (7). This algorithm is a direct
modification of the algorithm designed to solve PCP in [15]
and uses the idea of [16], [17] for the sparse recovery step.

1This is also clear from the Neumann series

For the modified-PCP program (7), the Augmented La-
grangian function is:

L(L̃new, S̃,Y, τ) = ‖L̃new‖∗ + λ‖S̃‖1 + 〈Y,M− L̃new− S̃

−GX̃∗〉+ τ

2
‖M− L̃new− S̃−GX̃∗‖2F ,

Thus, with similar steps in [15], we have following algorithm.
In Algorithm 1, Lines 3 solves̃Sk+1 = argmin

S̃

‖L̃new,k‖∗ +

Algorithm 1 Algorithm for solving Modified-PCP (7)

Input: Measurement matrixM ∈ Rn1×n2 , λ =
1/

√

max{n1, n2}, G.
1: Y0 = M/max{‖M‖, ‖M‖∞/λ}; S̃0 = 0; τ0 > 0; v >

1; k = 0.
2: while not convergeddo
3: S̃k+1 = Sλτ−1

k
[M−GX̃k − L̃new,k + τ−1

k Yk].

4: (Ũ, Σ̃, Ṽ) = svd((I −GG∗)(M− S̃k+1 + τ−1
k Yk));

5: L̃new,k+1 = ŨSτ−1
k

[Σ̃]ṼT .

6: X̃k+1 = G∗(M− S̃k+1 + τ−1
k Yk)

7: Yk+1 = Yk + τk(M − S̃k+1 − L̃new,k+1 −GX̃k+1).
8: τk+1 = min(vτk, τ̄).
9: k ← k + 1.

10: end while
Output: L̂new = L̃new,k, Ŝ = S̃k, L̂ = M− S̃k.

λ‖S̃‖1 + 〈Yk,M − L̃new,k − S̃ − GX̃∗
k〉 +

τ

2
‖M −

L̃new,k − S̃ − GX̃∗
k‖2F ; Line 4-6 solve[L̃new,k+1, X̃k+1] =

arg min
L̃new,X̃

‖L̃new‖∗ + λ‖S̃k+1‖1 + 〈Yk,M − L̃new− S̃k+1 −

GX̃∗〉+ τ

2
‖M−L̃new−S̃k+1−GX̃∗

k‖2F . The soft-thresholding
operator is defined as

Sǫ[x] =







x− ǫ, if x > ǫ;
x+ ǫ, if x < −ǫ;
0, otherwise,

(22)

Parameters are set as suggested in [15], i.e.,τ0 =
1.25/‖M‖, v = 1.5, τ̄ = 107τ0 and iteration is stopped when
‖M− S̃k+1 − L̃new,k+1 −GX̃k+1‖F /‖M‖F < 10−7.

B. Simulated data

The data was generated as follows. For the sparse matrix
S, we generated a support set of sizem uniformly at random
and assigned values±1 with equal probability to entries
in the support set. We generated the matrix[G Unew] by
orthonormalizing ann1×(r0+rextra+rnew) matrix with entries
i.i.d. GaussianN (0, 1/n1); we setU0 as the firstr0 columns
of this matrix,Gextra as the nextrextra columns andUnew as
the lastrnew columns. Then, we setG = [U0, Gextra]. This
matrix hasrG = r0 + rextra columns. We generated a matrix
Y1 of sizerG × d and a matrixY2 of size (r0 + rnew)× n2

with entries i.i.d.N (0, 1/n1). We setMG = GY1 as training
data andM = [U0 Unew]Y2 + S. The matrixMG is n1 × d
and theM is n1 × n2. We computedG as the left singular
vectors with nonzero singular values ofMG and this was used
as the partial subspace knowledge for modified-PCP.

For modified-PCP, we solved (7) withM and G using
Algorithm 1. For PCP, we solved (1) withM using the Inexact
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Augmented Lagrangian Multiplier algorithm from [15]. This
section provides a simulation comparison of what we conclude
from the theoretical results. In the theorems, both modified-
PCP and PCP use the same matrixM, but modified-PCP is
given extra information (partial subspace knowledge). In the
first set of simulations, we also compare with PCP when it is
also given access to the initial dataMG, i.e. we also solve
PCP using[MG M]. We refer to this as PCP([MG M]).

Sparse recovery error is calculated as‖S − Ŝ‖2F/‖S‖2F
averaged over 100 Monte Carlo trials. For the simulated data,
we also compute the smallest value ofρr required to satisfy
the sufficient conditions – (8), (9), (10) for mod-PCP and (12),
(13), (14) for PCP. We denote the respective values ofρr by
ρr([G Unew]), ρr(Vnew), ρr(UnewVnew), ρr(U), ρr(V) and
ρr(UV). Also,

ρr(mod-PCP) = max{ρr([GUnew]), ρr(Vnew), ρr(UnewVnew)}
and

ρr(PCP) = max{ρr(U), ρr(V), ρr(UV)}.
In Fig. 1, we show comparisons with increasing number of

extra directionsrextra. We usedn1 = 200, d = 200, n2 = 120,
m = 0.075n1n2, r = 20, r0 = 0.9r = 18, rnew = 0.1r = 2
andrextra ranging from0 to n2−r = 100. As we can see from
Fig. 1a, forrextra < 60, mod-PCP performs better than PCP
with or without training dataMG. Fig. 1b shows that mod-
PCP allows a larger value ofρr (needs weaker assumptions)
than PCP. Notice that the recovery error of PCP([MG M])
is larger than that of PCP(M). This is because the rank
of [MG M] is larger than that ofM because of the extra
directions. In the rest of the simulations, we only compare
with PCP(M).

In Fig. 2, we show comparisons with increasing number of
new directionsrnew (or equivalently decreasingr0 = r−rnew).
We usedn1 = 200, d = 200, n2 = 120, m = 0.075n1n2,
r = 30, rextra = 5 and rnew ranging from1 to 20 (thus r0
ranges from 29 to 10). As we can see, mod-PCP performs
better than PCP.

In Fig 3, we show a comparison for increasing number of
columnsn2. For this figure, we usedn1 = 200, d = 60, rG =
r0 = 18, rnew = 2,m = 0.075n1n2, and n2 ranging from
40 to 200. Notice that this is the situation wheren2 ≤ n1

so thatn(2) = n2 and n(1) = n1. This situation typically
occurs for time series applications, where one would like touse
fewer columns to still get exact/accurate recovery. We compare
mod-PCP and PCP. As we can see from Fig. 3a, PCP needs
many more columns than mod-PCP for exact recovery. Here
we say exact recovery when‖S−Ŝ‖2F /‖S‖2F is less than10−6.
Fig. 3b is the corresponding comparison ofρr(mod-PCP) and
ρr(PCP) for this dataset and the conclusion is similar.

Finally we generated phase transition plots similar to those
for PCP in [3]. We used the approach outlined in [3] to
generateL,S and M i.e. we let n1 = n2 = 400 and
L = XY∗, whereX and Y are independentn1 × r i.i.d.
N (0, 1/n1) matrix and independentn2 × r i.i.d. (0, 1/n2)
matrices respectively. The supportΩ of S is of sizem and
uniformly distributed and for(i, j) ∈ Ω, P(Sij = 1) =
P(Sij = −1) = 1/2. For mod-PCP, we usedrnew = ⌊0.15r⌋,
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(a) Recovery result comparison
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(b) Comparing the value ofρr
Fig. 1: Comparison with increasingrextra (n1 = 200, d = 200,
n2 = 120, m = 0.075n1n2, r = 20, r0 = 18, rnew = 2).
In (b), we plot the value ofρr needed to satisfy (8), (9), (10)
and (12), (13), (14). We denote the respective values ofρr
by ρr([G Unew]), ρr(Vnew), ρr(UnewVnew), ρr(U), ρr(V)
and ρr(UV). Notice that ρr(UV) is the largest, i.e. (14)
is the hardest to satisfy. Notice also thatρr(mod-PCP) =
max{ρr([G Unew]), ρr(Vnew), ρr(UnewVnew)} is significantly
smaller thanρr(PCP) = max{ρr(U), ρr(V), ρr(UV)}.
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Fig. 2: Comparison with increasingrnew (n1 = 200, d = 200,
n2 = 120, m = 0.075n1n2, r = 30, rextra = 5).

rextra = ⌊0.15r⌋ and we generatedG as follows. We let
U0 be the first(r − rnew) columns of the orthonormalized
X, and we generatedGextra as the firstrextra columns of the
orthonomalized(I −UU∗)X1. HereU is the matrix of left
singular vectors ofL andX1 is an1×2rextra i.i.d.N (0, 1/n1)
matrix. We setG = [U0, Gextra].

To show the advantages of mod-PCP with less columns,
we also did a comparison with the same parameters above
but with n1 = 400, n2 = 200. Fig. 4 shows the fraction of
correct recoveries across 10 trials (as was also done in [3]).
Recoveries are considered correct if‖L̂−L‖F/‖L‖F ≤ 10−3.
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(b) Comparing the value ofρr
Fig. 3: Comparison with increasingn2 (n1 = 200, d = 60, rG =
r0 = 18, rnew = 2, m = 0.075n1n2).

As we can see from Fig. 4, mod-PCP is always better than
PCP sincernew andrextra are small. But the difference is much
more significant whenn2 = n1/2 than whenn2 = n1.
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Fig. 4: Phase transition plots withrnew = ⌊0.15r⌋, rextra =
⌊0.15r⌋, n1 = 400

C. Real data (face reconstruction application)

As stated in [3], robust PCA is useful in face recognition
to remove sparse outliers, like cast shadows, specularities or
eyeglasses, from a sequence of images of the same face.
As explained there, without outliers, face images arranged
as columns of a matrix are known to form an approximately
low-rank matrix. Here we use the images from the Yale Face
Database [33] that is also used in [3]. Outlier-free training

data consisting of face images taken under a few illumination
conditions, but all without eyeglasses, is used to obtain a
partial subspace estimate. The test data consists of face images
under different lighting conditions and with eyeglasses orother
outliers. For test data, the goal is to reconstruct a clear face
image with the cast shadows, eyeglasses or other outliers
removed. Thus, the clear face image should be a column
of the estimated low-rank matrix while the cast shadows or
eyeglasses should be a column of the sparse matrix.

Each image is of size243 × 320, which we reduce to
122× 160. All images are re-arranged as long vectors and a
mean image is subtracted from each of them. The mean image
is computed as the empirical mean of all images in the training
data. For the training data,MG, we use images of subjects
with no glasses, which is 12 subjects out of 15 subjects. We
keep four face images per subject – taken with center-light,
right-light, left-light, and normal-light – for each of these 12
subjects. Thus the training data matrixMG is 19520× 48. We
computeG by keeping its left singular vectors corresponding
to 99% energy. This results inrG = 38. We use another
two face images per subject for each of the twelve subjects,
some with glasses and some without, as the test data, i.e. the
measurement matrixM. ThusM is 19520× 24.

In the experiments, we compare modified-PCP with PCP
[3] and ReProCS [20], [21] and also with some of the other
algorithms compared in [21]: robust subspace learning (RSL)
[34], which is a batch robust PCA algorithm that was com-
pared against in [3], and GRASTA [35], which is a very recent
online robust PCA algorithm. We also compare against Dense
Error Correction (DEC) [2], [36] since this first addressed this
application usingℓ1 minimization. To implement Dense Error
Correction (DEC) [2], [36], we normalize each column ofMG

to get the dictionary(D)n1×48, and we solve

(x̂i, ŝi) = argmin
x̃,s̃
‖x̃‖1 + ‖s̃‖1 subject toMi = Dx̃+ s̃

using YALL-1. HereMi is theith column ofM. The solution
gives usŝi and ℓ̂i = Dx̂i.

For PCP and RSL, we use the test dataset only, i.e.,M,
which is a 19520× 24 matrix, as the measurement matrix.
DEC, ReProCS and GRASTA are provided the same partial
knowledge that mod-PCP gets. Fig. 5 shows 3 cases where
mod-PCP successfully removes the glasses into(Ŝ)i and gives
the clearest estimate of the person’s face without glasses as
(L̂)i. In the total 24 test frames, both mod-PCP and DEC
remove the glasses (for those having glasses) or remove
nothing (for those not having glasses) correctly in 14 of them,
but the result of DEC has extra shadows in the face estimate.
The other algorithms succeed for none of the 24 frames.
Both ReProCS and GRASTA assume that the initial subspace
estimate is accurate and “slow subspace change” holds, neither
of which happen here and this is the reason that neither of
them work. RSL does not converge for this data set because
the available number of frames is too small. The time taken
by each algorithm is shown in Table I.

D. Online robust PCA: simulated data comparisons

For simulation comparisons for online robust PCA, we
generated data as explained in [37]. The data was generated
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using the model given in Section IV, withn = 256, J = 3,
r0 = 40, t0 = 200 and cj,new = 4, cj,old = 4, for eachj =
1, 2, 3. The coefficients,at,∗ = P∗

j−1ℓt were i.i.d. uniformly
distributed in the interval[−γ, γ]; the coefficients along the
new directions,at,new := P∗

j,newℓt generated i.i.d. uniformly
distributed in the interval[−γnew, γnew] (with a γnew ≤ γ) for
the first 1700 columns after the subspace change and i.i.d.
uniformly distributed in the interval[−γ, γ] after that. We
vary the value ofγnew; small values mean that “slow subspace
change” required by ReProCS holds. The sparse matrixS

was generated in two different ways to simulate uncorrelated
and correlated support change. For partial knowledge,G, we
first did SVD decomposition on[ℓ1, ℓ2, · · · , ℓt0 ] and kept
the directions corresponding to singular values larger than
E(z2)/9, wherez ∼ Unif[−γnew, γnew]. We solved PCP and
modified-PCP every200 frames by using the observations for
the last 200 frames as the matrixM. The ReProCS algorithm
of [14], [37] was implemented withα = 100. The averaged
sparse part errors with three different sets of parameters over
20 Monte Carlo simulations are displayed in Fig. 6a, Fig. 6b,
and Fig. 6c, and the corresponding averaged time spent for
each algorithm is shown in Table I. For all three figures, we
usedt1 = t0+6α+1, t2 = t0+12α+1 andt3 = t0+18α+1
andγ = 5.

In the first case, Fig. 6a, we usedγnew = γ and so “slow
subspace change” does not hold. For the sparse vectorsst,
each index is chosen to be in support with probability0.0781.
The nonzero entries are uniformly distributed between[20, 60].
Since “slow subspace change” does not hold, ReProCS does
not work well. Since the support is generated independently
over time, this is a good case for both PCP and mod-PCP.
Mod-PCP has the smallest sparse recovery error. In the second
case, Fig. 6b, we usedγnew = 1 and thus “slow subspace
change” holds. For sparse vectors,st, the support is generated
in a correlated fashion. We used support sizes = 5 for eachst;
the support remained constant for 25 columns and then moved
down bys = 5 indices. Once it reachedn, it rolled back over
to index one. Because of the correlated support change, PCP
does not work. In this case, both mod-PCP and ReProCS work
but PCP does not. In the third case, Fig. 6c, the parameters
are the same as in the second case, except that the support
size iss = 10 in each column and it moves down bys/2 = 5
indices every 25 columns. In this case, the sparse vectors are
much more correlated over time, resulting in sparse matrixS

that is even more low rank, thus neither mod-PCP nor PCP
work for this data. In this case, only ReProCS works.

Thus from simulations, modified-PCP is able to handle
correlated support change better than PCP but worse than
ReProCS. Modified-PCP also works when slow subspace
change does not hold; this is a situation where ReProCS fails.
Of course, modified-PCP, GRASTA and ReProCS are provided
the same partial subspace knowledgeG while PCP and RSL
do not get this information.

E. Online robust PCA: comparisons for video layering

The lake sequence is similar to the one used in [21]. The
background consists of a video of moving lake waters. The

foreground is a simulated moving rectangular object. The
sequence is of size72×90×1500, and we used the first1420
frames as training data (after subtracting the empirical mean
of the training images), i.e.MG. The rest 80 frames (after
subtracting the same mean image) served as the background
L for the test data. For the first frame of test data, we generated
a rectangular foreground support with upper left vertex(1, j0)
and lower right vertex(i1, 25 + j0), wherej0 ∼ Unif[1, 30]
and i1 ∼ Unif[7, 16], and the foreground moves to the right
1 column each time. Then we stacked each image as a long
vectorℓt of size6480× 1. For each indexi belonging to the
support set of foregroundst, we assign(st)i = 185 − (ℓt)i.
We setM = L + S. For mod-PCP, ReProCS and GRASTA,
we used the approach used in [21] to estimate the initial
background subspace (partial knowledge): do SVD onMG

and keep the left singular vectors corresponding to95% energy
as the matrixG. A few recovered frames are shown in Fig. 7,
and the averaged normalized mean squared error (NMSE) of
the sparse part over50 Monte Carlo realizations is shown in
Fig. 8. The averaged time spent for each algorithm is shown
in Table I. As can be seen, in this case, both mod-PCP and
ReProCS perform almost equally well, with ReProCS being
slightly better.

Next we compute the value ofρr for the lake video
sequence. We calculated prior knowledgeG as explained
above. We calculated the singular vectorsU,V by doing
SVD decomposition onL and keeping all the directions with
corresponding singular values larger than10−10 (we choose
10−10 because it is the precision that MATLAB can achieve
for SVD decomposition); calculateUnew,Vnew by doing SVD
decomposition of(I −GG∗)L and keeping all the directions
with singular values larger than10−10. With this, we get
ρr(PCP) = 1.8584× 104 andρr(mod-PCP) = 1.7785× 104.

We also calculateρr for fountain02 sequence, which can be
found on http://changedetection.net/. The image size is288×
432, and we resize it to96×144. For the first 600 background
images we form a low rank matrix[MG L] by stacking each
image as a column (the first 300 columns belong toMG and
the rest belong toL). With the same steps for lake sequence,
we getρr(PCP) is4.311× 104 andρr(mod-PCP) is1.7866×
104.
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Fig. 8: Lake sequence NMSE comparison.
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F. Comparison with Simulated Noisy Data

In order to address an anonymous reviewer’s comment, we
have also added simulations with noisy data. We assume the
measurement model

M = L+ S+ Z (23)

whereL is low rank (with partial knowledgeG similar to
previous case),S is sparse andZ is a noise term with‖Z‖F ≤
σ. Inspired by [38], we propose the following optimization
problem to solve the problem:

minimizẽLnew,S̃,X̃
‖L̃new‖∗ + λ‖S̃‖1

subject to ‖L̃new+GX̃∗ + S̃−M‖F ≤ σ
(24)

with λ =
√

max{n1, n2}. To compare the result with stable
PCP [38], we generated square matrices as stated in [38,
Section V], i.e.,n1 = n2 = 200, r = 10, rnew = 2, rextra = 0,
ρs = 0.2, L = XY∗ where X and Y are independent
n1 × r i.i.d. N (0, 1/n1) matrices, and each entry ofS is
independently distributed, taking value0 with probability
1 − ρs and uniformly distributed in[−5, 5] with probability
ρs. We used the same suggestedτ̄ for the stable mod-PCP
solver as in [38]. By varyingσ from 0.1 to 1, we got recovery
errors over50 Monte Carlo simulations as shown in Fig. 9.We
plot the root-mean-squared (RMS) error which is defined in
[38] as the average of‖L̂ − L‖F /n for the low-rank matrix
and of‖Ŝ− S‖F /n for the sparse matrix.
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Fig. 9: Noisy data RMS error comparison.

VII. C ONCLUSIONS

In this work we studied the following problem. Suppose
that we have a partial estimate of the column space of the low
rank matrixL. How can we use this information to improve
the PCP solution? We proposed a simple modification of PCP,
called modified-PCP, that allows us to use this knowledge.
We derived its correctness result that allows us to argue that,
when the available subspace knowledge is accurate enough,
modified-PCP requires significantly weaker incoherence as-
sumptions on the low-rank matrix than PCP. We also obtained
a useful corollary (Corollary IV.1) for the online or recursive
robust PCA problem. Extensive simulation experiments and
some experiments for a real application further illustratethese
claims. Ongoing work includes studying the error stability
of modified-PCP for online robust PCA. Future work will

include developing a fast and recursive algorithm for solving
modified-PCP and using the resulting algorithm for various
practical applications. Two applications that will be explored
are (a) video layering, e.g. using the BMC dataset of [13], and
(b) recommendation system design in the presence of outliers
and missing data. For getting a recursive algorithm, we will
explore the use of ideas similar to those introduced in Feng
et al’s recent work on developing a recursive algorithm that
asymptotically approximates the PCP solution [23].

APPENDIX

A. Derivation for (5)

Recall from Sec II-A thatrnew = rank(Lnew),

Lnew = (I−GG∗)L
SVD
= UnewΣnewV

∗
new (25)

Let U0 be a basis matrix for range(L) ∩ range(G) =
range(U) ∩ range(G) with r0 = rank(U0) Thus, there exist
rotation matricesR1,RG and basis matricesU1,Gextra such
that

UR1 = [U0 U1] andGRG = [U0 Gextra] (26)

with Gextra
∗U1 = 0.

Clearly, rank(U1) = rnew
2. Split the r × r matrix R1 as

R1 = [(R1)0, (R1)1] so that (R1)0 contains the firstr0
columns and(R1)1 contains the lastrnew columns. Thus,

Lnew = (I−U0U
∗
0)[U0 U1]R

∗
1ΣV∗ = U1(R1)

∗
1ΣV∗.

Let ((R1)
∗
1ΣV∗)

SVD
= U2Σ2V

∗
2 denote its full SVD. Thus

Lnew = U1U2Σ2V
∗
2 . Comparing with the SVD ofLnew we

get thatUnew = U1U2 whereU2 is a rnew× rnew unitary
matrix; Σnew = Σ2 andVnew = V2. Thus,

UR1 = [U0 UnewU
∗
2] = [U0 Unew]

(
I 0

0 U∗
2

)

(27)

By takingRU = R1

(
I 0
0 U∗

2

)−1

= R1

(
I 0
0 U2

)

, we get

URU = [U0 Unew] andGRG = [U0 Gextra] (28)

Rearranging, we get (5).

B. Proof of Lemma V.1

First we state and prove the following fact3.

Proposition A.1. Assumem1 < m2 < n1n2, we have

PUnif(m1)(Success) ≥ PUnif(m2)(Success).

There are a total of
(
n1n2

m2

)
size-m2 subsets of the set of

indices of ann1 × n2 matrix. The probability of any one of
them getting selected is1/

(
n1n2

m2

)
under the Unif(m2) model.

Suppose that the algorithm succeeds fork out of these
(
n1n2

m2

)

sets. Call these the “good” sets. Then,

PUnif(m2)(Success) =
k

(
n1n2

m2

) .

2This follows because(I−GG∗)L = (I−U0U
∗

0
)[U0 U1]R

−1

1
ΣV∗ =

[0 U1]R∗

1
ΣV∗. Since rank([0 U1]) = rank(U1) and all other matrices are

full rank r, we get that rank(U1) = rank(Lnew) = rnew. Here we have used
Sylvester’s inequality onLnew = [0 U1](R∗

1
ΣV

∗) to get that rank(U1) +
r − r ≤ rank(Lnew) = rnew ≤ min(rank(U1), r) = rank(U1).

3This fact may seem intuitively obvious, however we cannot find a simpler
proof for it than the one we give.
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By Theorem 2.2 of [3], the algorithm definitely also succeeds
for all size-m1 subsets of thesek “good” size-m2 sets. Letk1
be the number of such sizem1 subsets. Under the Unif(m1)
model, the probability of any one such set getting selected is

1

(n1n2
m1

)
. ThusPUnif(m1)(Success) = k1

(n1n2
m1

)
.

Now we need to lower boundk1. There are a total of
(
n1n2

m2

)
size-m2 sets and each of them has

(
m2

m1

)
subsets of

sizem1. However, the total number of distinct size-m1 sets
is only

(
n1n2

m1

)
. Because of symmetry, this means that in the

collection of all size-m1 subsets of all size-m2 sets, a given

set is repeatedb =
(n1n2

m2
)(m2

m1)
(n1n2

m1
)

times.

In the sub-collection of size-m1 subsets of thek “good”
size-m2 sets, the number of times a set is repeated is less than
or equal tob. Also, the number of entries in this collection
(including repeated ones) isk

(
m2

m1

)
. Thus, the number of

distinct size-m1 subsets of the “good” sets is lower bounded

by
k(m2

m1
)

b , i.e. k1 ≥
k(m2

m1
)

b . Thus,

PUnif(m1)(Success) ≥
k
(
m2

m1

)(
n1n2

m1

)

(
n1n2

m1

)(
m2

m1

)(
n1n2

m2

) = PUnif(m2)(Success).

Proof of Lemma V.1:Denote byΩ0 the support set. We
have

PBer(ρ0)(Success)

=

n1n2∑

k=0

PBer(ρ0)(Success| |Ω0| = k)PBer(ρ0)(|Ω0| = k)

≤
m0−1∑

k=0

PBer(ρ0)(|Ω0| = k)+

n1n2∑

k=m0

PUnif(k)(Success)PBer(ρ0)(|Ω0| = k)

≤PBer(ρ0)(|Ω0| < m0) + PUnif(m0)(Success),

where we have used the fact that fork ≥ m0,
PUnif(k)(Success) ≤ PUnif(m0)(Success) by Proposition A.1,
and that the conditional distribution ofΩ0 given its cardinality
is uniform. Thus,

PUnif(m0)(Success) ≥ PBer(ρ0)(Success)−PBer(ρ0)(|Ω0| < m0).

Let random matrixXn1×n2 be a matrix whose each entry is
i.i.d. Bernoulli distributed asP(Xij = 1) = ρ0,P(Xij = 0) =
1 − ρ0. Then, under the Bernoulli model,|Ω0| =

∑

i,j Xij ,
E[
∑

i,j Xij ] = E[|Ω0|] = ρ0n1n2, and0 ≤ Xij ≤ 1. Thus by
the Hoeffding inequality, we have

P(E[
∑

i,j

Xij ]−
∑

i,j

Xij ≥ t) ≤ exp(− 2t2

n1n2
).

As ρ0 = m0

n1n2
+ ǫ0, taket = ǫ0n1n2, we have

PBer(ρ0)(|Ω0| ≤ m0) = P(
∑

i,j

Xij ≤ m0) ≤ exp(−2ǫ20n1n2).

Thus PUnif(m0)(Success) ≥ PBer(ρ0)(Success) −
exp(−2ǫ20n1n2).

C. Proof of Lemma V.2

Proof: First, we state the theorem used in this proof.

Lemma A.2. [24, Theorem 2(10a)] Forn×n matrix A with
entriesaij , let aij , i ≥ j be independent (not necessarily iden-
tically distributed) random variables bounded with a common
boundK. Assume that fori ≥ j, the aij have a common
expectationµ = 0 and varianceσ2. Defineaij for i < j
by aij = aji. (The numbersK,µ, σ2 will be kept fixed as
the matrix dimensionn will tend to infinity.) Fork satisfying
K2k6/(4σ2n) < 1/2, we have

P(max
i

(|λi(A)|) > 2σ
√
n+ v) <

√
n exp(− kv

2σ
√
n+ v

).

Proof: see Appendix G. This is a minor modification of the
upper bound of [39, Theorem 4], [40, Theorem 1.4]. The only
change is that it allows the variance ofaij to be bounded by
σ2 instead of forcing it to be equal toσ2.

Let

A :=

(
0 E

E∗ 0

)

(29)

Notice thatA is an(n1 + n2)× (n1 + n2) symmetric matrix
that satisfies requirements of Lemma A.2. By Lemma A.2
with K = 1, µ = 0, σ =

√
ρs and settingv = (0.3536 −

2
√
ρs)
√
n1 + n2, andk = ρ

1/3
s (n1 + n2)

1/6, we have

P (max
i
|λi(A)| > 0.3536

√
n1 + n2)

≤√n1 + n2 exp(−
ρ
1/3
s (n1 + n2)

1/6 · (0.3536− 2
√
ρs)
√
n1 + n2

0.3536
√
n1 + n2

)

≤(n1 + n2)
−10 < n−10

(1)

In the above,v > 0 becauseρs < 0.03 and the second
inequality holds because(n1+n2)

1/6

log(n1+n2)
> 10.5

ρ
1/3
s (1−5.6561

√
ρs)

.

Clearly,

‖A‖ =
√

‖AA∗‖ =
√
∥
∥
∥
∥

(
EE∗ 0
0 E∗E

)∥
∥
∥
∥
=

√

‖EE∗‖ = ‖E‖
(30)

Therefore, we haveP (‖E‖ > 0.5
√
n(1)) < n−10

(1) .

D. Implications of Assumption III.2

We summarize here some important implications of As-
sumption III.2.

Remark A.3. By Assumption III.2(a)(b)(c), we have

ρs ≤ 1− 1.5max
{

60ρ
1/2
r , 11C01ρ

1/2
r , 0.11

}

≤ 1− 1.5max
{

60ρ
1/2
r , 11C01ρ

1/2
r ,

11 log2 n(1)

n(2)

}

<



1−
1.5max{60ρ1/2r ,11C01ρ

1/2
r ,

11 log2 n(1)
n(2)

}
1.5 logn(1)





1.5 logn(1)

<



1−
max{60ρ1/2r ,11C01ρ

1/2
r ,

11 log2 n(1)
n(2)

}
logn(1)





1.3⌈logn(1)⌉

(31)
The third inequality holds because 0 <

1.5max
{

60ρ
1/2
r , 0.11

}

≤ 1.5max
{
60/102, 0.11

}
< 1; and

for fixed constantb > 1, (1− x/b)b > 1−x wheneverx < 1.
The fourth inequality holds since1.5 logn(1) > 1.3⌈logn(1)⌉
for n(1) ≥ 1024.



13

Remark A.4. By Assumption III.2(b)(c), we have

ρs ≤ 0.0156 ≤ 1− 250C01ρr
log n(1)

. (32)

This follows since n(1) ≥ exp(253.9618C01ρr) gives
250C01ρr
logn(1)

≤ 0.9844, and so1− 250C01ρr
logn(1)

≥ 0.0156.

E. Proof of Lemma V.8

The proof uses the following three lemmas.

Lemma A.5. [19, Theorem 4.1][3, Theorem 2.6] Suppose
Ω0 ∼ Ber(ρ0). Then there is a numerical constantC01 such
that for all β > 1,

‖PΠ − ρ−1
0 PΠPΩ0PΠ‖ ≤ ǫ0, (33)

with probability at least 1 − 3n−β
(1) provided that ρ0 ≥

C01 ǫ
−2
0

βρr
logn(1)

.

Lemma A.6. [3, Lemma 3.1] SupposeZ ∈ Π is a fixed matrix,
andΩ0 ∼ Ber(ρ0). Then

‖Z− ρ−1
0 PΠPΩ0Z‖∞ ≤ ǫ0‖Z‖∞ (34)

with probability at least1 − 2n−11
(1) , provided thatρ0 ≥

60 ǫ−2
0

ρr
log n(1)

.

This is the same as Lemma 3.1 in [3] except that we derive
an explicit expression for the lower bound onρ0. A proof for
this can be found in the Appendix H.

Lemma A.7. [19, Theorem 6.3][3, Lemma 3.2] SupposeZ is
fixed, andΩ0 ∼ Ber(ρ0). Then there is a constantC03 > 0
s.t.

‖(I− ρ−1
0 PΩ0)Z‖ ≤ C03

√

11n(1) logn(1)

ρ0
‖Z‖∞ (35)

with probability at least 1 − n−11
(1) , provided that ρ0 ≥

11 log n(1)

n(2)
.

In the following proof, we take

ǫ = (ρr)
1/4 andq = 1− ρ

1
1.3⌈log n(1)⌉

s (36)

Notice from our assumption onρr given in Assumption III.2
that

ǫ ≤ (10−4)1/4 ≤ e−1.

Let Zj = UnewV
∗
new− PΠYj . Clearly,Zj ∈ Π. From the

definition ofYj , notice thatYj ∈ Ω⊥,

Yj = Yj−1 + q−1PΩ̄j
Zj−1, and

Zj = (PΠ − q−1PΠPΩ̄j
PΠ)Zj−1.

Clearly, Ω̄j andZj−1 are independent. Using (31) and (36),
q ≥ 60

√
ρr

logn(1)
. Thus, by Lemma A.6

‖Zj‖∞ ≤ ǫj‖UnewV
∗
new‖∞, (37)

with probability at least1− 2jn−11
(1) . By Lemma A.5 andq ≥

11C01
√
ρr

logn(1)
, which follows from (31),

‖Zj‖F ≤ ǫ‖Zj−1‖F ≤ ǫj‖UnewV
∗
new‖F = ǫj

√
r (38)

with probability at least1− 3jn−11
(1) .

Proof of (a)

Proof: As

Yj0 =

j0∑

j=1

q−1PΩ̄j
Zj−1, (39)

andPΠ⊥Zj = 0, so we have, with probability at least1 −
3j0n

−11
(1) ,

‖WL‖ =‖PΠ⊥Yj0‖ ≤
j0∑

j=1

‖q−1PΠ⊥PΩ̄j
Zj−1‖

=

j0∑

j=1

‖PΠ⊥(q−1PΩ̄j
Zj−1 − Zj−1)‖

≤
j0∑

j=1

‖q−1PΩ̄j
Zj−1 − Zj−1‖

≤C03

√

11n(1) logn(1)

q

j0∑

j=1

‖Zj−1‖∞

(using Lemma A.7 andq ≥ 11 logn(1)

n(2)
by (31))

≤C03

√

11n(1) logn(1)

q

j0∑

j=1

ǫj−1‖UnewV
∗
new‖∞

(using Lemma A.6 andq ≥ 60ρ
1/2
r

log n(1)
by (31))

<C03(1− ǫ)−1

√

11n(1) logn(1)

q
‖UnewV

∗
new‖∞

≤C03(1− ǫ)−1

√

11ρr
q logn(1)

(using‖UnewV
∗
new‖∞ ≤

√

ρr

n(1) log
2 n(1)

by (10))

≤
√
11C03ρ

1/4
r√

60(1 − e−1)

(usingq ≥ 60
√
ρr

logn(1)
by (31) andǫ ≤ e−1)

≤ 1

16
(usingρr ≤ 7.2483× 10−5C−4

03 by Assu. III.2(a))

The fourth step holds with probability at least1− j0n
−11
(1) by

applying Lemma A.7j0 times; the fifth holds with probability
at least1−2j0n−11

(1) by applying Lemma A.6j0 times for each
Zj (similar to (37)). Sincej0 = 1.3 logn(1) < n(1) (for n(1)

satisfying Assumption III.2), the result follows.

Proof of (b)
Proof: SincePΩYj0 = 0, we have

PΩ(UnewV
∗
new+PΠ⊥Yj0) = PΩ(UnewV

∗
new−PΠYj0) = PΩ(Zj0 ),

and by (38), (36) and (31) (q ≥ 11C01
√
ρr

logn(1)
), we have

‖PΩ(Zj0)‖F ≤ ‖Zj0‖F ≤ ǫj0
√
r ≤ e−1.3 log n(1)

√
r =

√
r

n1.3
(1)

,

(40)
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with probability at least1 − 3j0n
−11
(1) . Thus, when

√
r

n0.8
(1)

< 1
4 ,

e.g.n(1) ≥ 102, Lemma V.8(b) holds with probability at least
1− 3n−10

(1) .
Proof of (c)

Proof: Recall that UnewV
∗
new + WL = Zj0 + Yj0 ,

PΩ⊥Yj0 = Yj0 . From above,

‖Zj0‖∞ ≤ ‖Zj0‖F ≤
√
r

n1.3
(1)

<
λ

8
(41)

by (40) with probability at least(1− 3n−10
(1) ) when

√
r

n0.8
(1)

< 1
8 ,

e.g.n(1) ≥ 1024. Thus, we only need to show‖Yj0‖∞ ≤ 11λ
40 .

We have, with probability at least1− 2j0n
−11
(1) ,

‖Yj0‖∞ ≤ q−1
∑j0
j=1 ‖PΩ̄j

Zj−1‖∞
≤ q−1

∑j0
j=1 ‖Zj−1‖∞

≤ q−1
∑j0
j=1 ǫ

j−1‖UnewV
∗
new‖∞

(using Lemma A.6 andq ≥ 60ρ1/2r

logn(1)
by (31))

≤ q−1
∑j0
j=1 ǫ

j−1
√

ρr
n(1) log

2 n(1)

(using‖UnewV
∗
new‖∞ ≤

√
ρr

n(1) log
2 n(1)

by (10))

≤ λ
60(1−e−1) <

11λ
40

(usingq ≥ 60
√
ρr

logn(1)
by (31) andǫ ≤ e−1 by (36))

(42)
The third step follows from Lemma A.6 with probability at
least1−2j0n

−11
(1) . Thus, Lemma V.8(c) holds with probability

at least1− 2n−10
(1) .

To sum up, with the assumptions in Lemma V.8, we have
(a), (b), (c) of Lemma V.8 hold with probability at least1 −
11n−10

(1) .

F. Proof of Lemma V.9

The proof uses the following lemma.

Lemma A.8. [3, Corollary 2.7] Assume thatΩ0 ∼ Ber(ρ0),
L satisfies (8), (9) and (10), then there is a numerical constant
C01 such that for allβ > 1,

‖PΩ0PΠ‖2 ≤ ρ0 + ǫ0,

with probability at least1 − 3n−β
(1) provided that1 − ρ0 ≥

C01 ǫ
−2
0

βρr
logn(1)

.

This is a direct corollary of Lemma A.5 stated earlier. It
follows by replacingΩ by Ωc0 in Lemma A.5.

Proof of (a)
Let E := sgn(S). Recall from the assumption in this lemma

thatE satisfies the assumptions of Lemma V.2.
By taking Ω0 = Ω, ρ0 = ρs, ǫ0 = 0.2, and β = 10 in

Lemma A.8, and using (32), we get

‖PΩPΠ‖2 ≤ σ := ρs + 0.2, (43)

with probability at least1− 3n−10
(1) . Thus, using the bound on

ρs from (32), we get that‖PΩPΠ‖2 ≤ 0.22 < 1/4.
Proof of (b)

Proof: Note that

WS = PΠ⊥λE+ PΠ⊥λ
∑

k≥1

(PΩPΠPΩ)
kE

:= PΠ⊥WS
0 + PΠ⊥WS

1 .

By Assumption III.2(b)(e) and Lemma V.2, we have

‖E‖ ≤ 0.5
√
n(1)

with probability at least1 − n−10
(1) . Sinceλ = 1/

√
n(1), we

have

‖PΠ⊥WS
0 ‖ ≤ ‖WS

0 ‖ = λ‖E‖ ≤ 0.5,

with probability at least1− n−10
(1) .

Let R =
∑

k≥1(PΩPΠPΩ)
k. Let N1, N2 denote1/2-nets

for Sn1−1,Sn2−1 whereSn1−1 is a unit Euclidean sphere in
Rn1 .A subsetN of Rn1 is referred to as aξ-net, if and only if,
for everyy ∈ Rn1 , there is ay1 ∈ N for which ‖y−y1‖ ≤ ξ
(here we used the Euclidean distance metric) [25].

By [25, Lemma 5.2], the cardinality of the 1/2-netsN1 and
N2 is 5n1 and5n2 respectively.

By [25, Lemma 5.4],

‖R(E)‖ = sup
x∈Sn2−1,y∈Sn1−1

〈y,R(E)x〉

≤ 4 sup
x∈N2,y∈N1

〈y,R(E)x〉. (44)

For a fixed pair(y,x) of unit-normed vectors inN1 × N2,
define the random variable

X(x,y) := 〈y,R(E)x〉 = 〈R(yx∗),E〉.
Conditional onΩ = supp(E), the signs ofE are i.i.d. sym-
metric and Hoeffding’s inequality gives

P(|X(x,y)| > t |Ω) ≤ 2 exp
(

− 2t2

‖R(yx∗)‖2F

)

.

Now since ‖yx∗‖F = 1, the matrix R(yx∗) obeys
‖R(yx∗)‖F ≤ ‖R‖ and, therefore,

P

(

sup
x∈N2,y∈N1

|X(x,y)| > t |Ω
)

≤ 2|N1||N2| exp
(

− 2t2

‖R‖2
)

.

On the event{‖PΩPΠ‖ ≤ σ},

‖R‖ ≤
∑

k≥1

σ2k =
σ2

1− σ2

and, therefore, lettingγ = 1−σ2

2σ2 , we have,

P(λ‖R(E)‖ > 27
80 )

≤ P(λ‖R(E)‖ > 27
80 , ‖PΩPΠ‖ ≤ σ) + P(‖PΩPΠ‖ > σ)

≤ P

(

supx∈N2,y∈N1
4|X(x,y)| > 27

√
n(1)

80 | ‖PΩPΠ‖ ≤ σ
)

+

P(‖PΩPΠ‖ > σ)

≤ 2|N1||N2| exp
(

− 272n(1)γ
2

12800

)

+ P(‖PΩPΠ‖ > σ)

≤ 2× 52n(1) exp
(

− 272n(1)γ
2

12800

)

+ 3n−10
(1)

≤ 2 exp
(

−n(1)(0.0570γ
2 − log 25)

)

+ 3n−10
(1)

(asσ = ρs + 0.2 ≤ 0.2156,⇒ 0.0570γ2 − log 25 ≥ 2.7773)
≤ 5n−10

(1) (when2.7773n(1) ≥ 10 logn(1), e.g.,n(1) ≥ 10.)

Thus

‖WS‖ ≤ 67/80,

with probability at least1− 5n−10
(1) .

Proof of (c)
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Proof: Observe that

PΩ⊥WS = λPΩ⊥(I − PΠ)(PΩ − PΩPΠPΩ)
−1E

= −λPΩ⊥PΠ(PΩ − PΩPΠPΩ)
−1E

Let WS
3 := PΩ⊥WS . Clearly, for (i, j) ∈ Ω, (WS

3 )i,j =
0 and for (i, j) ∈ Ωc, (WS

3 )i,j = (−λPΠ(PΩ −
PΩPΠPΩ)

−1E)i,j .
For (i, j) ∈ Ωc, it can be rewritten as

(WS
3 )ij = 〈ei,WS

3 ej〉 = 〈eie∗j ,WS
3 〉

= 〈eie∗j ,−λPΠPΩ(PΩ − PΩPΠPΩ)
−1E〉

= λ〈X(i, j),E〉
whereX(i, j) := −(PΩ − PΩPΠPΩ)

−1PΩPΠ(eie
∗
j ). Condi-

tional onΩ = supp(E), the signs ofE are i.i.d. symmetric,
and Hoeffding’s inequality gives

P(|(WS
3 )ij | > tλ |Ω) ≤ 2 exp

(

− 2t2

‖X(i, j)‖2F

)

,

and, thus,

P

(

sup
i,j∈Ωc

|(WS
3 )ij | > tλ |Ω

)

≤ 2n1n2 exp
(

− 2t2

supi,j ‖X(i, j)‖2F

)

.

Since (18) holds, on the event{‖PΩPΠ‖ ≤ σ}, we have

‖PΩPΠ(eie
∗
j )‖F ≤ ‖PΩPΠ‖‖PΠ(eie

∗
j )‖F ≤ σ

√

2ρr/ log
2 n(1)

On the same event,‖(PΩ−PΩPΠPΩ)
−1‖ ≤ (1−σ2)−1 and,

therefore,

‖X(i, j)‖2F ≤
2σ2

(1− σ2)2
ρr

log2 n(1)

.

Then unconditionally, lettingγ = (1−σ2)2

2σ2 , we have

P

(

‖PΩ⊥WS‖∞ > λ
2

)

= P

(

‖WS
3 ‖∞ > λ

2

)

≤ 2n(1)n(2) exp
(

− log2 n(1)γ
2

4ρr

)

+ P(‖PΩPΠ‖ ≥ σ)

≤ 2n
−

log n(1)γ
2

4ρr
+2

(1) + 3n−10
(1)

≤ 5n−10
(1)

The last bound follows sinceσ = ρs + 0.2 ≤ 0.2156 by (32)
and soγ ≥ 9.7798; andn(1) ≥ exp(0.5019ρr) by Assumption
III.2(c).

To sum up, with the assumption in Lemma V.9, we have (a),
(b) in Lemma V.9 hold with probability at least1− 10n−10

(1) .

G. Proof of Lemma A.2

Proof: The proof is the same as that given in [40, Section
2]. We rewrite it to clarify that variance ofai,j bounded by
σ2 also works.

As we know
n∑

i=1

λi(A)k = Trace(Ak),

we have
n∑

i=1

E(λi(A)k) = E(Trace(Ak)).

Whenk is even,λi(A)k are non-negative. Thus

E(max
i

(|λi(A)|k) ≤
n∑

i=1

E(λi(A)k) = E(Trace(Ak)).

Notice that

TraceAk =

n∑

i1=1

· · ·
n∑

ik=1

ai1i2ai2i3 · · · aik−1ikaiki1 , (45)

so we have

E(TraceAk) =

n∑

i1=1

· · ·
n∑

ik=1

Eai1i2ai2i3 · · · aik−1ikaiki1 .

(46)
For 1 ≤ p ≤ k, denote by E(n, k, p) the sum of
Eai1i2ai2i3 · · ·aik−1ikaiki1 over all sequencesi1, i2, · · · , ik
such that |{i1, i2, · · · , ik}| = p (i.e., p different in-
dices). As theEaij = 0, if some aij in the product
ai1i2ai2i3 · · · aik−1ikaiki1 has multiplicity one, then the ex-
pectation of the whole product is 0. Whenp > (k/2) + 1, by
pigeon hole principle, there must exist anaij with multiplicity
one. ThusE(n, k, p) = 0 whenp > (k/2) + 1.

Note that a productai1i2ai2i3 · · ·aik−1ikaiki1 defines a
closed walk

(i1i2)(i2i3) · · · (ik−1ik)(iki1)

of lengthk on the complete graphKn on {1, · · · , n} (here we
allow loops inKn). If a product is non-zero, then any edge in
the walk should appear at least twice. Denote byW (n, k, p)
the number of walks inKn usingk edges andp vertices where
each edge in the walk is used at least twice.

For a walk W with p vertices, denote byV (W ) =
v1, v2, · · · , vp the ordered sequence. For graphKn with n
vertices, there aren(n − 1) · · · (n − p + 1) different ordered
sequence. Denote byW ′(n, k, p) the number of walks with
fixed sequence. Clearly,

W (n, k, p) = n(n− 1) · · · (n− p+ 1)W ′(n, k, p).

Lemma A.9. [24][40, Lemma 2.1][41, Problem 1.33] We
have

W ′(n, k, p) ≤
(

k

2p− 2

)

p2(k−2p+2)22p−2.

As |aij | ≤ K, we have, for anyl ≥ 2,

E(|aij |l) ≤ K l−2
E(|aij |2) ≤ K l−2σ2.

With p vertices, there are at leastp−1 differentaij ’s, denoted
by {ai1j1 , ai2j2 , · · · , aimjm},m ≥ p−1, and each of them has
multiplicity at least2, so we have

E(ai1i2ai2i3 · · · aik−1ikaiki1)

=E(al1i1j1a
l2
i2j2
· · · almimjm)

≤Kk−(2p−2)
E(a2i1j1a

2
i2j2 · · · a2ip−1jp−1

)

≤Kk−(2p−2)σ2p−2

Thus, we have
E(n, k, p)

≤ σ2p−2Kk−(2p−2)W (n, k, p)

≤ σ2p−2Kk−(2p−2)n(n− 1) · · · (n− p+ 1)
(

k
2p−2

)

p2(k−2p+2)22p−2

≡ S(n, k, p)

And
S(n, k, p− 1)

S(n, k, p)
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=
K2

4σ2(n− p+ 1)

(
k

2p−4

)

(
k

2p−2

)
(p− 1)2(k−2p+4)

p2(k−2p+2)

=
K2

4σ2(n− p+ 1)

(2p− 3)(2p− 4)

(k − 2p+ 3)(k − 2p+ 4)

(p− 1)2(k−2p+4)

p2(k−2p+2)

≤ K2

4σ2n

k2

1

p2(k−2p+4)

p2(k−2p+2)
(becausep ≤ k/2 + 1)

≤ K2k6

4σ2n

Thus for k ≤ ( σK )1/3(2n)1/6, S(n, k, p − 1) ≤ 1
2S(n, k, p).

So

E(Trace(Ak)) =

k/2+1
∑

p=1

E(n, k, p)

≤
k/2+1
∑

p=1

S(n, k, p)

≤ 2S(n, k, k/2 + 1)

= 2σkn(n− 1) · · · (n− k/2)2k

≤ 2n(2σ
√
n)k

By Markov’s inequality, we have

P(max
i

(|λi(A)|) ≥ 2σ
√
n+ v)

= P(max
i

(|λi(A)|k) ≥ (2σ
√
n+ v)k)

≤ E(maxi(|λi(A)|k))
(2σ
√
n+ v)k

≤ 2n(2σ
√
n)k

(2σ
√
n+ v)k

= 2n(1− v

2σ
√
n+ v

)k

≤ 2n exp(− kv

2σ
√
n+ v

)

The last inequality holds for0 < v
2σ

√
n+v

< 1, i.e., v > 0.

(Because for0 < x < 1, (1 − x)k ≤ exp(−kx) ⇔ 1 − x ≤
exp(−x), which is easy to check. )

H. Bound on‖E‖ by [25]

In [3], they need‖E‖ < 0.25
√
n(1) with large probability.

Here we derive the condition needed for‖E‖ < α
√
n(1), 0 <

α < 1, with large probability.
By [25, Lemma 5.36], and assumeδ = α√

ρs
− 1 > 1, we

only need to prove

‖ 1

n1ρs
E∗E− I‖ ≤ max(δ, δ2) = δ2

with required probability. By [25, Lemma 5.4], for a14 -netN
of the unit sphereSn−1, we have

‖ 1

n1ρs
E∗E− I‖

≤ 2max
x∈N
|〈( 1

n1ρs
E∗E− I)x, x〉|

= 2max
x∈N
| 1

n1ρs
‖Ex‖2 − 1|.

Thus we only need to prove

max
x∈N
| 1

n1ρs
‖Ex‖2 − 1| ≤ δ2

2

with required probability. By [25, Lemma 5.2], we can choose
the netN so that it has cardinality|N | ≤ 9n2 .

As we know, for any unit norm vectorx ∈ Cn2 and

any fixedρs ∈ (0, 1), {Eix√
ρs
}n1

i=1 are bounded by
∑n1

j=1 |xj|√
ρs

,
thus they are sub-gaussian. By [25, Lemma 5.14], we have
{ |Eix|2

ρs
}n1

i=1 are sub-exponential. As

E
|Eix|2
ρs

= ‖x‖2 = 1, i = 1, 2, · · · , n1,

thus by [25, Remark 5.18],{ |Eix|2
ρs
− 1}n1

i=1 are independent

centered sub-exponential random variables and‖ |Eix|2
ρs

−
1‖ψ1 ≤ 2Kx, where

Kx = sup
p≥1

p−1(E
|Eix|2p

ρs
)1/p,

i.e.,

(E
|Eix|2p

ρs
)1/p ≤ Kxp, ∀p ≥ 1,

Defined by [25, (5.15)].

Let

Bi =
|Eix|2
ρs

− 1, i = 1, 2, · · · , n1,

then

EBi = 0, (EBp
i )

1/p ≤ 2Kxp, ∀p ≥ 1

and for t ≤ 1
4eKx

, we have

E exp(tBi) = 1 + tEBi +

∞∑

p=2

tpEBp
i

p!

≤ 1 +

∞∑

p=2

tp2pKp
xp
p

p!

≤ 1 +
∞∑

p=2

(2etKx)
p

≤ 1 + (2etKx)
2

≤ exp(4e2t2K2
x)

the second inequality holds becausep! ≥ (p/e)p; the third
inequality holds because2etKx ≤ 1/2. Thus

E exp(t

n1∑

i=1

Bi) ≤ exp(4n1e
2t2K2

x).

By Markov inequality, we have

P(
1

n1

n1∑

i=1

Bi ≥
δ2

2
) = P(exp(

τ

n1

n1∑

i=1

Bi) ≥ exp(τδ2/2))

≤ e−τδ
2/2

E exp(
τ

n1

n1∑

i=1

Bi)

≤ e−τδ
2/2+4e2τ2K2

x/n1

when τ
n1

≤ 1
4eKx

, i.e., τ ≤ n1

4eKx
. Take τ =
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min{ n1δ
2

16e2K2
x
, n1

4eKx
}, we have

P(| 1

n1ρs
‖Ex‖2 − 1| ≥ δ2

2
)

= P(
1

n1

n1∑

i=1

Bi ≥
δ2

2
)

≤ exp(−τδ2/2 + 4e2τ2K2
x/n1)

≤ exp(−τδ2/2 + τδ2/4)

≤ exp(−min{ n1δ
4

64e2K2
x

,
n1δ

2

16eKx
})

= exp(− n1δ
2

16eKx
min{ δ2

4eKx
, 1})

Let

K = sup
x∈N

Kx,

then

P(max
x∈N
| 1

n1ρs
‖Ex‖2−1| ≥ δ2

2
) ≤ 9n2 exp(− n1δ

2

16eK
min{ δ2

4eK
, 1}),

whereδ2 = ( α√
ρs
− 1)2 =

(α−√
ρs)

2

ρs
.

So far the loose bound onK we can get isn2/ρs, so the
best we can get is

P(max
x∈N
| 1

n1ρs
‖Ex‖2 − 1| ≥ δ2

2
)

≤ 9n2 exp(− (α−√ρs)2n1

16en2
min{ (α−

√
ρs)

2

4en2
, 1})

= 9n2 exp

(

− (α−√ρs)4n1

64e2n2
2

)

.

Together with [25, Lemma 5.36], we can get bound on‖E‖.
If we taken2 = c logn1 for some constantc, we have

P(‖E‖ ≤ α
√
n1)

= P(max
x∈N
| 1

n1ρs
‖Ex‖2 − 1| ≥ δ2

2
)

≤ exp

(

− (α−√ρs)4n1

64e2c2 log2 n1

+ c log 9 logn1

)

,

which gives what we want whenn1 is large enough,

− (α−√ρs)4n1

64e2c2 log2 n1

+ c log 9 logn1 ≤ −10 logn1,

i.e.,

n1

log3 n1

≥ (α−√ρs)4
64e2(10 + c log 9)c2

But if n2 is the order ofn1 or larger, we don’t have the result
with large probability.
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Fig. 5: Yale Face Image result comparison

DataSet Image Size Sequence Length mod-PCP PCP ReProCS GRASTA RSL DEC GOSUS [12]
Yale Face 122× 160 48 + 24 2.7 sec 9.8 sec 0.5 sec 50.2 sec 141.7 sec 21.3 sec

Lake 72× 90 1420 + 80 2.2 sec 1.7 sec 9.3 sec 338.7 sec 26.7 sec
Fig. 6a 256 × 1 200+2400 2.7 sec 6.2 sec 12.0 sec 5.7 sec 25.4 sec 576.9 sec
Fig. 6b 256 × 1 200+8000 9.7 sec 18.9 sec 24.8 sec 12.6 sec 67.7 sec 1735.6 sec
Fig. 6c 256 × 1 200+8000 13.1 sec 18.7 sec 26.1 sec 12.7 sec 74.8 sec 1972.5 sec

TABLE I: Speed comparison of different algorithms. (Sequence length refers to the length of sequence for training plus the length of
sequence.)
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(b) Correlatedst with small support size
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(c) Correlatedst with large support size

Fig. 6: NRMSE of sparse part comparison with online model (n = 256, J = 3, r0 = 40, t0 = 200, cj,new = 4, cj,old = 4, j = 1, 2, 3)
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Fig. 7: Lake sequence result comparison (columns60, 69, 79 are shown here. Note that in the last 2 rows, clearly there is missing part in
st and corresponding extra part inℓt the back detected by RSL).
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